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The Circle Criterion and

Input-to-State Stability

for Infinite-Dimensional

Systems∗

B. Jayawardhana†, H. Logemann‡, and E.P. Ryan§

1 Introduction

In this paper, the focus is on absolute stability and input-to-state stability of the
feedback interconnection of an infinite-dimensional linear system Σ and a nonlinear-
ity Φ : dom(Φ) ⊂ L2

loc(R+, Y ) → L2
loc(R+, U), where dom(Φ) denotes the domain

of Φ and U and Y (Hilbert spaces) denote the input and output spaces of Σ, respec-
tively (see Figure 1, wherein v is an essentially bounded input signal). The system
Σ is assumed to belong to the rather general class of well-posed systems (see, for
example, [11, 13] and the references therein) and the nonlinearity is assumed to
satisfy a (generalized) sector condition.

In the literature on the circle criterion for infinite-dimensional systems (see,
for example, [3, 4, 5, 7, 9, 12], and the references therein), the emphasis is usually on
L2- or L∞-stability and global asymptotic or global exponential stability (or some
variants thereof) of feedback systems of the type shown in Figure 1, with a static
sector-bounded nonlinearity Φ in the feedback path. The new contribution of this
paper as compared to the previous literature is twofold.

(i) In addition to static nonlinearities, we include a class of dynamic nonlineari-
ties which may exhibit bias, but still satisfy a generalized pointwise sector condition.
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Figure 1. Feedback interconnection of linear system Σ and nonlinearity Φ

As specific subclasses, the class of nonlinearities encompasses both static nonlinear-
ities with “negative resistance” and a wide range of hysteretic effects described by
so-called Preisach operators.

(ii) The main results of the paper guarantee input-to-state-stability with “bias”
(and “standard” input-to-state-stability if the nonlinearity is unbiased), thereby
making contact with the important and rapidly developing input-to-state-stability
theory in (finite-dimensional) nonlinear control.

As in the classical theory of absolute stability and circle criteria, the method-
ology involves a “symbiosis” of (generalized) sector data relating to the nonlinearity
Φ and properties of the transfer function of the linear system Σ to conclude stabil-
ity properties of the feedback interconnection. We mention that the viewpoint of
this paper is similar in spirit to that of [1]: however, the class of feedback systems
considered here is very different to that in [1] as is the methodology adopted.

For sake of brevity, this paper does not contain any proofs: for these we refer
to [6].

Notation and terminology. For α ∈ R, set Cα := {s ∈ C : Re s > α}.
If S is a non-empty subset of C, then a set R ⊂ S is said to be discrete in S, if,
for every s ∈ S, there exists a neighbourhood N of s such that N ∩ R is finite.
For Hilbert spaces U and Y , let B(U, Y ) denote the space of all linear bounded
operators mapping U to Y . We write B(U) for B(U, U). For T ∈ B(U), we define

Re T :=
1

2
(T + T ∗) ∈ B(U).

The space of all holomorphic and bounded functions Cα → B(U, Y ) is denoted by
H∞

α (B(U, Y )). We write H∞(B(U, Y )) for H∞
0 (B(U, Y )). Moreover, in the scalar

case (that is U = Y = C), we simply write H∞
α , or, if α = 0, H∞ for H∞

α (B(U, Y ))
and H∞(B(U, Y )), respectively. For α ∈ R, we define the exponentially weighted
Lp-space Lp

α(R+, X) := {f ∈ Lp
loc(R+, U) : f(·) exp(−α ·) ∈ Lp(R+, U)}. The

Laplace transform is denoted by L.

2 Well-posed linear systems with nonlinear feedback

There are a number of equivalent definitions of well-posed systems, see, for example,
[11, 13] and the references therein. We will be brief in the following and refer the
reader to the literature for more details. Throughout, we shall be considering a well-
posed system Σ with state-space X , input space U and output space Y , generating
operators (A, B, C), input-output operator G and transfer function G. Here X ,
U and Y are separable (complex) Hilbert spaces, A is the generator of a strongly



continuous semigroup T = (Tt)t≥0 on X and B ∈ B(U, X−1) and C ∈ B(X1, Y ),
respectively, are admissible control and observations for T. The spaces X1 and
X−1, respectively, are interpolation and extrapolation spaces associated with X :
X1 = dom(A) (the domain of A), endowed with the graph norm of A, whilst X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(ξI − A)−1x‖,
where ξ ∈ %(A), the resolvent set of A (different choices of ξ lead to equivalent
norms) and ‖ · ‖ denotes the norm on X . The control operator B is said to be
bounded if it is so as a map from the input space U to the state space X , otherwise
is said to be unbounded; the observation operator C is said to be bounded if it can
be extended continuously to X , otherwise, C is said to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛz = lim
s→∞, s∈R

Cs(sI − A)−1z,

with dom(CΛ) (the domain of CΛ) consisting of all z ∈ X for which the above
limit exists. The transfer function G has the property that G ∈ H∞

ω (B(U, Y ))
for every ω > ω(T), where ω(T) denotes the exponential growth constant of T.
Moreover, the input-output operator G : L2

loc(R+, U) → L2
loc(R+, Y ) is continuous

and shift-invariant; for every ω > ω(T), G ∈ B(L2
ω(R+, U), L2

ω(R+, Y )) and

(L(Gu))(s) = G(s)(L(u))(s), ∀ s ∈ Cω, ∀u ∈ L2
ω(R+, U).

In the following, let s0 ∈ Cω(T) be fixed, but arbitrary. For x0 ∈ X and u ∈
L2

loc(R+, U), let x and y denote the state and output functions of Σ, respectively,
corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +

∫ t

0
Tt−τBu(τ)dτ for all t ∈ R+, x(t)− (s0I −A)−1Bu(t) ∈ dom(CΛ)

for a.e. t ∈ R+ and

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, a.e. t ∈ R+,

y(t) = CΛ

(

x(t) − (s0I − A)−1Bu(t)
)

+ G(s0)u(t), a.e. t ≥ 0.
(1)

Of course, the differential equation in (1) has to be interpreted in X−1. In the
following, we identify Σ and (1) and refer to (1) as a well-posed system.

We say that (1) is exponentially stable if ω(T) < 0 and we say that (1) is input-

output stable if G ∈ H∞(B(U, Y )) or, equivalently, if G ∈ B(L2(R+, U), L2(R+, Y )).
Furthermore, (1) is said to be optimizable, if for every x0, there exists u ∈ L2(R+, U)

such that the function t 7→ Ttx
0 +

∫ t

0
Tt−τBu(τ)dτ is in L2(R+, X). Writing

X∗
−1 := (X∗)−1, we have that X∗

−1 = (X1)
∗ and C∗ ∈ B(Y, X∗

−1) is an admissible
control operator for the adjoint semigroup T∗ = (T∗

t )t≥0. We say that (1) is
estimatable if for every x0, there exists u∗ ∈ L2(R+, Y ) such the function t 7→

T∗
t x

0 +
∫ t

0
T∗

t−τC∗u∗(τ)dτ is in L2(R+, X).
In the following, we will consider the closed-loop system obtained by applying

the nonlinear feedback
u = v − Φ(y) (2)

to the well-posed linear system (1), where v ∈ L∞(R+, U) and the nonlinear op-
erator Φ : dom(Φ) ⊂ L2

loc(R+, Y ) → L2
loc(R+, U) is causal. To define the concept



of a (local) solution of the feedback system given by (1) and (2), we first need to
show that Φ can be “localized” in the sense that it can be “extended” to spaces of
functions with a finite time horizon. To this end, let 0 < σ ≤ ∞ be arbitrary and
set

domσ(Φ) := {w ∈ L2
loc([0, σ), Y ) : ∀ τ ∈ (0, σ) ∃wτ ∈ dom(Φ) s.t. w = wτ on [0, τ ]} .

Trivially, dom∞(Φ) = dom(Φ). For w ∈ domσ(Φ) with σ < ∞, we define Φ(w) by

(Φ(w))(t) = (Φ(wτ ))(t), 0 ≤ t ≤ τ < σ ,

where wτ ∈ dom(Φ) such that w = wτ on [0, τ ]. By causality of Φ, this definition
does not depend on the choice of τ and thus Φ(w) is a well-defined element in
L2

loc([0, σ), U).
A solution on [0, σ) (where 0 < σ ≤ ∞) of the feedback system given by (1)

and (2) is a pair (x, y) ∈ C([0, σ), X) × domσ(Φ) such that, with u given by (2),

x(t) = Ttx
0 +

∫ t

0

Tt−τBu(τ)dτ, ∀ t ∈ [0, σ), (3)

y(t) = CΛ

(

x(t) − (s0I − A)−1Bu(t)
)

+ G(s0)u(t), a.e. t ∈ [0, σ). (4)

If σ = ∞, then we say that (x, y) is a global solution. Let S denote the set of all
(x0, v) ∈ X × L∞(R+, U) for which the feedback system given by (1) and (2) has
at least one global solution. If (x0, v) ∈ S, then the notation (x(· ; x0, v), y(· ; x0, v))
is used to denote any global solution corresponding to the initial condition x0 and
the closed-loop input v. Furthermore, a routine argument based on Zorn’s lemma
shows that every solution (x, y) can be extended to a maximal solution, that is, to
a maximally defined solution which cannot be extended any further. The interval
on which a maximal solution is defined is called the maximal interval of existence of
the solution. We say that the feedback system given by (1) and (2) has the blow-up

property if for every maximal solution (x, y) defined on a finite maximal interval of
existence [0, σ), the L2-norm of y blows up, that is, ‖y‖L2(0,τ) → ∞ as τ ↑ σ. In
this paper, we are mainly concerned with stability properties of the feedback system
given by (1) and (2): whilst of fundamental importance, the question of existence
of solutions is not the main concern here; this question requires addressing on a
less general basis, taking into account relevant features of the particular system
or subclass of systems under consideration (see [6] for further comments in this
context).

3 The sector condition and input-to-state stability

First, we introduce a sector condition on the class of nonlinearities (in due course,
this condition will be weakened to a generalized sector condition).

Definition 1. A nonlinearity Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U) satisfies a
sector condition if there exist operators K1, K2 ∈ B(Y, U) such that

Re 〈(Φ(w))(t) − K1w(t), (Φ(w))(t) − K2w(t)〉 ≤ 0, ∀w ∈ dom(Φ), a.e. t ∈ R+.
(5)
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Figure 2. Sector-bounded static nonlinearity ϕ

Example 2 (Static nonlinearities). Let ϕ : Y → U be continuous and assume
that there exist K1, K2 ∈ B(Y, U) such that

Re〈ϕ(ξ) − K1ξ , ϕ(ξ) − K2ξ〉U ≤ 0 ∀ ξ ∈ Y. (6)

With ϕ we may associate the Němyckĭı operator Φ : L2
loc(R+, Y ) → L2

loc(R+, U),
defined by Φ(w) := ϕ ◦ w. This operator satisfies the sector condition (5). Such
operators provide a simple prototype class for the general nonlinearities considered
in this section: at the simplest illustrative level, static sector-bounded scalar non-
linearities ϕ : R → R of the type shown in Figure 2 (ubiquitous in the literature
on the classical circle criterion) are subsumed by the formulation. This observa-
tion extends mutatis mutandis to encompass time-dependent static nonlinearities
ϕ : R+ × Y → U . 3

Anticipating Sections 4 and 5 below, we will also consider static nonlinearities for
which the inequality in (6) is assumed to hold only outside some bounded set E ⊂ Y
(see Figure 3). To accommodate these and more general nonlinearities, in Section
4 we will introduce a generalized sector condition and remark here that the gen-
eralized formulation encompasses a large class of hysteresis operators, including
hysteresis of Preisach type.

Let K1, K2 ∈ B(Y, U) and define

K :=
1

2

(

K1 + K2

)

, κ := ‖K2 − K1‖
2. (7)

We assemble the following hypotheses on the transfer function G of (1) which will
be variously invoked in the theory presented below.

(H1) There exists α < 0 and an open set Ω ⊂ Cα such that Cα \ Ω is discrete in



Cα and G is holomorphic on Ω, the frequency-domain condition

G∗(iω)
[κ + δ

4
I − K∗K

]

G(iω) ≤ I + 2 Re
(

KG(iω)
)

, a.e. ω ∈ R. (8)

holds for some δ > 0 and G(I + KG)−1 ∈ H∞(B(U, Y )),

(H2) G ∈ H∞(B(U, Y )) and there exist δ > 0 and ρ < 1 such that (8) holds and

G∗(iω)
[κ + δ

4
I − K∗K

]

G(iω) ≥ −ρI, a.e. ω ∈ R. (9)

(H3) There exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is
holomorphic on Ω, I + KG(s) is invertible for all s ∈ Ω and the frequency-
domain condition

G∗(s)
[κ + δ

4
I − K∗K

]

G(s) ≤ I + 2 Re
(

KG(s)
)

, ∀ s ∈ Ω (10)

holds for some δ > 0.

(H4) There exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is
holomorphic on Ω, KG(s) is compact for all s ∈ Ω and the frequency-domain
condition (10) holds for some δ > 0.

Remark 3. (a) In the case of scalar “sector data”, that is U = Y and there exist
k1, k2 ∈ C such that K1 = k1I and K2 = k2I , the term

κ + δ

4
I − K∗K

appearing on the left-hand sides of (8)-(10) simplifies to (δ/4− Re(k̄1k2))I .
(b) Assume that one of the operators K1 and K2 is the zero operator and that

the other is a scalar multiple of an isometry. Then it is not difficult to show that
(H2) is satisfied, provided that G ∈ H∞(B(U, Y )) and the positive-real condition

εI ≤ I + 2 Re
(

KG(iω)
)

, a.e. ω ∈ R

holds for some ε > 0.

We are now in the position to state the main result of this section.

Theorem 4. Assume that (1) is optimizable and estimatable and that there exist

operators K1, K2 ∈ B(Y, U) such that Φ satisfies the sector condition (5). Let

K ∈ B(Y, U) and κ ≥ 0 be given by (7). If at least one of hypotheses (H1)–(H4)
holds, then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S,

‖x(t; x0, v)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞

)

, ∀ t ∈ R+. (11)

For the above theorem to be non-vacuous, S should be non-empty: thus,
there is a tacit assumption of global existence of solutions. However, if the feedback



system given by (1) and (2) has the blow-up property, then it can be shown that
the assumptions of Theorem 4 imply that every (local) solution can be extended to
a global solution. Furthermore, we emphasize that (11) implies in particular that
the feedback system is input-to-state stable in the sense of Sontag (see [10] for a
recent survey of the theory of input-to-state stability).

Theorem 4 can be considered as a generalization and refinement of the circle
criterion (see, for example, [4, 12]): in particular, it shows that, under the standard
assumptions of the circle criterion (see also Corollaries 5 and 6 below), input-to-state
stability is guaranteed. The proof of Theorem 4 (see [6]) is based on a well-known
exponential weighting technique which has been used to prove stability results of
input-output type (see [4, Section V.3] and the references therein). The application
of this technique in an input-to-state stability context seems to be new (even in
the finite-dimensional case). In particular, whilst the standard text-book version of
the circle criterion for finite-dimensional state-space systems is usually proved using
Lyapunov techniques combined with the positive-real lemma (see, for example, [12,
p. 227]), the approach based on the exponential weighting technique provides a
more elementary alternative.

The following corollary considers the case of scalar “sector data”.

Corollary 5. Assume that (1) is optimizable and estimatable, U = Y and that there

exists an open set Ω ⊂ C0 such that C0 \Ω is discrete in C0 and G is holomorphic

on Ω. Furthermore, assume that there exist k1, k2 ∈ C and ε > 0 such that Φ
satisfies (5) with K1 = k1I and K2 = k2I, I + k1G(s) is invertible for every s ∈ Ω
and

Re
[(

I + k2G(s)
)(

I + k1G(s)
)−1]

≥ εI, ∀ s ∈ Ω. (12)

Then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S, (11)
holds.

For non-zero real numbers k1 and k2, we define

∆(k1, k2) := open disk in C with centre in R and −
1

k1
and −

1

k2
in its boundary.

The next corollary focuses on the single-input-single-output case. In particular, the
classical circle criterion is recovered.

Corollary 6. Assume that (1) is optimizable and estimatable, U = Y = R and

there exist real numbers k1 < k2 such that

(

(Φ(w))(t)−k1w(t)
)(

(Φ(w))(t)−k2w(t)
)

≤ 0, ∀w ∈ dom(Φ), a.e. t ∈ R+. (13)

Then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S, (11)
holds, provided that one of the following conditions is satisfied:

(C1) 0 < k1 < k2, G/
(

1 + [(k1 + k2)/2]G
)

∈ H∞, G(iω) is bounded away

from ∆(k1, k2) for all ω ∈ R for which iω is not a pole of G;

(C2) 0 = k1 < k2, G ∈ H∞ and there exists δ > 0 such that 1+k2ReG(iω) ≥
δ for all ω ∈ R;
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Figure 3. Static nonlinearity ϕ satisfying a generalized sector condition

(C3) k1 < 0 < k2, G ∈ H∞, G(iω) ∈ ∆(k1, k2) for all ω ∈ R and G(iω) is

bounded away from ∂∆(k1, k2) for all ω ∈ R.

Observe that, in this single-input-single-output setting, the sector condition
(13) can be expressed in the equivalent form:

k1w
2(t) ≤ (Φ(w))(t)w(t) ≤ k2w

2(t), ∀w ∈ dom(Φ), a.e. t ∈ R+. (14)

In many situations, the input-output stability condition G/
(

1 + [(k1 + k2)/2]G
)

∈
H∞ (imposed in (C1)) is satisfied, provided that the number of anticlockwise encir-
clements of ∆(k1, k2) by the Nyquist diagram of G is equal to the number of poles
of G in C0, see, for example, [4, 12].

4 Generalized sector condition and input-to-state
stability with bias

Next, we seek to relax the condition (5) to a generalized sector condition. Loosely
speaking, we wish to impose the (pointwise) inequality in (5) only when t ∈ R+

and w ∈ dom(Φ) are such that w(t) ∈ Y \E, where E (the exceptional set) is some
bounded subset of Y . A prototype to bear in mind is the case wherein Φ is the
Němyckĭı operator, given by Φ(w) := ϕ ◦ w, associated with a static nonlinearity
ϕ : R → R, of the form shown in Figure 3 (a nonlinearity with negative resistance),
satisfying a sector condition outside the interval E = [−1, 1]. Extrapolating this
prototype to our abstract setting requires care. The issue is to circumvent the
technical difficulty engendered by the fact that the general operator Φ has domain
dom(Φ) ⊂ L2

loc(R+, Y ) and so Φ acts on equivalence classes of functions R+ →
Y . Let w ∈ L2

loc(R+, Y ) and Z ⊂ Y be arbitrary. Let wr : R+ → Y be any
representative of w and denote the preimage of Z under wr by w−1

r (Z) := {t ∈
R+ : wr(t) ∈ Z}. Let Iw

−1
r (Z) be the indicator or characteristic function of the set

w−1
r (Z) and define χZ(w) ∈ L2

loc(R+, Y ) to be the equivalence class of this function,



that is,
χZ(w) :=

[

Iw
−1
r (Z)

]

.

Every choice of representative wr of w yields the same equivalence class
[

Iw
−1
r (Z)

]

and so χZ(w) is a well-defined element of L2
loc(R+, Y ) for all w ∈ L2

loc(R+, Y ). We
are now in a position to define the requisite generalized sector condition.

Definition 7. A nonlinearity Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U) satisfies
a generalized sector condition if there exist operators K1, K2 ∈ B(Y, U), a bounded
set E ⊂ Y and a constant b ≥ 0 such that, for all w ∈ dom(Φ) and a.e. t ∈ R+,

Re 〈(Φ(w))(t) − K1w(t), (Φ(w))(t) − K2w(t)〉(χY \E(w))(t) ≤ 0 (15)

and
‖(Φ(w))(t)‖(χE(w))(t) ≤ b. (16)

The following result generalizes Theorem 4.

Corollary 8. Assume that (1) is optimizable and estimatable and that there exist

operators K1, K2 ∈ B(Y, U), b ≥ 0 and a bounded set E ⊂ Y such that Φ satisfies

(15) and (16) for all w ∈ dom(Φ) and a.e. t ∈ R+. Let K ∈ B(Y, U) and κ ≥ 0 be

given by (7). If at least one of hypotheses (H1)–(H4) holds, then there exist positive

constants Γ and γ such that, for each (x0, v) ∈ S,

‖x(t; x0, v)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞ + β
)

, ∀ t ∈ R+, (17)

where

β := sup
{

‖(Φ(w) − Kw)χE(w)‖L∞ : w ∈ dom(Φ)
}

≤ b + sup
ξ∈E

‖Kξ‖, (18)

In particular, (17) provides an input-to-state stability estimate with bias β
(input-to-state stability with bias β). Under the additional assumption that the
feedback system given by (1) and (2) has the blow-up property, it can be shown
that the hypotheses of Corollary 8 imply that every maximal solution is global, so
that every (local) solution can be extended to a global solution (to which then the
stability conclusions of Corollary 8 apply).

The following results are generalizations of Corollaries 5 and 6.

Corollary 9. Assume that (1) is optimizable and estimatable, U = Y and that there

exists an open set Ω ⊂ C0 such that C0 \Ω is discrete in C0 and G is holomorphic

on Ω. Furthermore, assume that there exist k1, k2 ∈ C, a bounded set E ⊂ Y and

constants b ≥ 0 and ε > 0 such that, for all w ∈ dom(Φ) and a.e. t ∈ R+. Φ
satisfies (15) and (16) (with K1 = k1I and K2 = k2I), I + k1G(s) is invertible for

every s ∈ Ω and the positive-real condition

Re
[(

I + k2G(s)
)(

I + k1G(s)
)−1]

≥ εI, ∀ s ∈ Ω



holds. Then there exist constants Γ > 0 and γ > 0 such that, for each (x0, v) ∈ S,

(17) holds, where β ≥ 0 is given by (18).

Corollary 10. Assume that (1) is optimizable and estimatable, U = Y = R and

there exist real numbers k1 < k2, a bounded set E ⊂ R and b ≥ 0 such that
(

(Φ(w))(t)−k1w(t)
)(

(Φ(w))(t)−k2w(t)
)

(χY \E(w))(t) ≤ 0, ∀w ∈ dom(Φ), a.e. t ∈ R+

and

|(Φ(w))(t)|(χE (w))(t) ≤ b, ∀w ∈ dom(Φ), a.e. t ∈ R+ .

If at least one of the conditions (C1)–(C3) of Corollary 6 is satisfied, then there

exist Γ > 0 and γ > 0 such that, for each (x0, v) ∈ S, (17) holds, where

β := sup
{

‖(Φ(w)−(k1+k2)w/2)χE(w)‖L∞ : w ∈ dom(Φ)
}

≤ b+ |k1+k2| sup
ξ∈E

|ξ|/2,

(19)

5 Hysteretic feedback systems

Consider again the feedback interconnection of Figure 1, but now in a single-input
(U = R), single-output (Y = R) setting and with a hysteresis operator Φ in the
feedback path. An operator Φ : C(R+) → C(R+) is a hysteresis operator if it is
causal and rate independent. Here rate independence means that Φ(w◦ζ) = (Φw)◦ζ
for every w ∈ C(R+) and every time transformation ζ, where ζ : R+ → R+ is said
to be a time transformation if it is continuous, non-decreasing and surjective.

For simplicity of presentation, henceforth we restrict attention to the class of
Preisach hysteresis operators which model complex hysteresis effects: for example,
nested loops in input-output characteristics. A basic building block for the Preisach
operator is the hysteresis operator Bσ, ξ , the so-called backlash operator with width
σ ≥ 0 and “initial condition” ξ ∈ R. A discussion of the backlash operator (also
called play operator) can be found in a number of references, see for example, [2]
and [8].

Let ξ : R+ → R be a compactly supported and globally Lipschitz function with
Lipschitz constant 1. Let µ be a regular signed Borel measure on R+. Denoting
Lebesgue measure on R by µL, let f : R×R+ → R be a locally (µL ⊗ µ)-integrable
function and let f0 ∈ R. The operator Pξ : C(R+) → C(R+) defined by

(Pξ(w))(t) =

∫ ∞

0

∫ (Bσ, ξ(σ)(w))(t)

0

f(s, σ)µL(ds)µ(dσ)+f0 ∀w ∈ C(R+) , ∀ t ∈ R+ ,

(20)
is called a Preisach operator, cf. [2, p. 55]. It is well-known that Pξ is a hysteresis
operator (this follows from the fact that Bσ, ξ(σ) is a hysteresis operator for every
σ ≥ 0).

Setting f(·, ·) = 1 and f0 = 0 in (20), we obtain the Prandtl operator Pξ :
C(R+) → C(R+) defined by

Pξ(w)(t) =

∫ ∞

0

(Bσ, ξ(σ)(w))(t)µ(dσ) ∀w ∈ C(R+) , ∀ t ∈ R+ . (21)



For ξ(·) = 0 and µ given by µ(S) =
∫

S
I[0,5](σ)dσ (where I[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 4.
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Figure 4. Example of Prandtl hysteresis

The next proposition identifies (rather “mild”) conditions under which the
Preisach operator (20) satisfies a generalized sector bound and hence fits into the
theory developed in Section 4. For simplicity, we assume that the measure µ and
the function f are non-negative (an important case in applications), although the
proposition can be extended to signed measures µ and sign-indefinite functions f .

Proposition 11. Let Pξ be the Preisach operator defined in (20). Assume that

the measure µ is non-negative, a1 := µ(R+) < ∞ and a2 :=
∫ ∞

0 σµ(dσ) < ∞.

Furthermore, assume that

b1 := ess inf(s,σ)∈R×R+
f(s, σ) ≥ 0 , b2 := ess sup(s,σ)∈R×R+

f(s, σ) < ∞

and set

aP := a1b1, bP := a1b2 , cP := a2b2 + |f0| . (22)

Then, for all w ∈ C(R+) and all t ∈ R+,

w(t) ≥ 0 =⇒ aPw(t) − cP ≤ (Pξ(w))(t) ≤ bPw(t) + cP , (23)

w(t) ≤ 0 =⇒ bPw(t) − cP ≤ (Pξ(w))(t) ≤ aPw(t) + cP , (24)

and, furthermore, for every η > 0,

|w(t)| ≥ cP/η =⇒ (aP − η)w2(t) ≤ (Pξ(w))(t)y(t) ≤ (bP + η)w2(t) . (25)

In particular, for every η > 0, the generalized sector conditions (15) and (16) hold

with U = R = Y , E = [−cP/η , cP/η], K1 = (aP − η)I, K2 = (bP + η)I, and

b = (bP/η + 1)cP .
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2001.

[9] H. Logemann and E.P. Ryan, Systems with hysteresis in the feedback loop:
existence, regularity and asymptotic behaviour of solutions, ESAIM: Control,

Optimization and Calculus of Variations, 9 (2003), 169-196.

[10] E.D. Sontag, Input to state stability: basic concepts and results, in P. Nistri and
G. Stefani (eds.) Nonlinear and Optimal Control Theory, pp. 163-220, Springer
Verlag, Berlin, 2006.

[11] O.J. Staffans, Well-Posed Linear Systems, Cambridge University Press, Cam-
bridge, 2005.

[12] M. Vidyasagar, Nonlinear Systems Analysis, 2nd edition, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

[13] G. Weiss, Regular linear systems with feedback, Math. Control, Signals, and

Syst., 7 (1994), 23-57.


	Main Menu
	Symposium Overview
	Program at a Glance
	Detailed Program Listing
	Index of Authors, Chairs, and Organizers


