

 University of Groningen

Towards Variable Service Compositions Using VxBPEL
Sun, Chang-ai; Aiello, Marco

Published in:
International Conference on Software Reuse

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sun, C., & Aiello, M. (2008). Towards Variable Service Compositions Using VxBPEL. In International
Conference on Software Reuse (pp. 257-261). (Lecture Notes in Computer Science; Vol. 5030). Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/d8445981-15c9-427a-b4d0-d1a022d0956f

H. Mei (Ed.): ICSR 2008, LNCS 5030, pp. 257–261, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Variable Service Compositions Using VxBPEL

Chang-ai Sun1 and Marco Aiello2

1 School of Computer and Information Technology, Beijing Jiaotong University
100044, Beijing, P.R. China
casun@bjtu.edu.cn

2 Department of Computing Science, The University of Groningen
Nijenborgh 9, 9747 AG, Groningen, The Netherlands

aiellom@cs.rug.nl

Abstract. The Business Process Execution Language (BPEL) is a widely recog-
nized executable language supporting the specification of process-oriented service
compositions. However, the language is limited in addressing variable require-
ments in the description of business processes. We propose to construct variable
and maintainable Web services compositions with VxBPEL, an extension to BPEL
we developed to define variability in business process specification. We present the
main concepts of VxBPEL and show how to achieve better adaptation and vari-
ability maintenance of service compositions, which is particularly desired in the
context of dynamically changing business goals and processes.

1 Introduction

The growing availability of Web services both on intranets and on the Internet makes
attractive to create Web service compositions to provide value-added functionalities
[8]. Consider a travel agency service, for instance, which may be composed of flight
and accommodation services, provided by third party providers. Since Web services
themselves are deployed and executed in open and dynamic environments, the avail-
ability of service instances at run-time is an issue by itself. A composition should be
flexible enough so that a flight service can be substituted by another one when a given
service instance becomes unavailable. Furthermore, the user may have quite different
requirements, for instance depending on the type of trip. When a traveler is arranging
his/her personal trip to China, he/she would prefer to get the cheapest flight and ac-
commodation. However, if it is a business trip, more expensive solutions may be vi-
able. Obviously, implementing such a business process with a static Web service
composition requires a great deal of recoding and manual work.

VxBPEL[7] is an extension of BPEL [4] to deal with adaptation in Web service
compositions from the perspective of variability management. VxBPEL addresses the
adaptive composition of Web services by providing constructs for explicitly managing
variability at the composition language level, and treats the changes as first-class enti-
ties. This is a novelty with respect to current approaches [2-3,5-6], particularly those
focusing on the implementation level.

In this paper, we propose to construct variable Web service compositions with
VxBPEL and show how such compositions are adaptive and maintainable. We use the
travel agency example for illustrational purposes. In particular, we focus here on the

258 C. Sun and M. Aiello

explicit variability management in those cases involving dependent variation con-
figurations, such as dependency between the flights and accommodation, or depend-
ency between flights and frequent flyer programs.

2 Background

Variability is the ability of a software system or artifact to be extended, changed, cus-
tomized, or configured for use in a specific context [9]. There are two important con-
cepts in variability, namely variation points and variants. Variation points are locations
in the design or implementation at which variations will occur, and variants are the
alternatives that can be selected at variation points. Variability management includes
the design, use, and maintenance of variability [1].

In order to introduce variability management into service compositions, VxBPEL
extends BPEL with the constructs for defining and managing the variability. During the
development of constructs for variants, variation points, and their associations,
VxBPEL employs the COVAMOF variability framework [9] and adapts it to the con-
text of Web services. The choice of COVAMOF is based on its prominent features,
including treating variation points and dependencies as first-class citizens, tool support
and its validation in industry.

3 Constructing Variable Compositions with VxBPEL

Let us consider the travel agency example again and model the variability with
VxBPEL. There are usually several airlines which can provide a flight service required
by the customer. This means that there may exist variation with the invocation of flight
services. During the service composition design, we need to introduce the variation
point at the place where the flight service is invoked. Fig. 1 depicts the modified BPEL
process, where the activity <invoke> in the original BPEL process is replaced by the
variation configuration. Without loss of generality, we consider two airlines, namely
LH and CA. The choice between two variants is determined by the current configura-
tion of the process.

VxBPEL supports complex realization dependencies during the service compositions.
For example, an airline may have hotel partners offering discounts to the travelers. In this
situation, the travel agency needs to specify the association between airlines and hotels, in
order to provide the cheapest travel services to the customers who are concerned with the
total travel cost. During the service composition, one can use ConfigurableVariationPoint
for specifying the dependencies of such a complex service composition. Fig. 2 depicts the
major segments for specifying the dependency realization between airlines and hotels. In
the example, CA is the higher level variant and a set of hotel services are lower level
variants for providing the discounted accommodation.

With VxBPEL, designers can focus on the main logic of business processes and, at the
same time, specify the variable elements during service compositions. The specifications
of VxBPEL clearly integrate main business logic and adaptation of process elements.
Such service composition specifications are easily adapted, because the variability
management will enable the selection of alternative variants at runtime. This is often the

 Towards Variable Service Compositions Using VxBPEL 259

<vxbpel:VariationPoint name= “selecting an airline service”>
<vxbpel:Variants>

<vxbpel:Variant name= “CA”>
 <vxbpel:VPBpelCode>

 <invoke inputVariable="FlightRequest" name="processingRequest "
operation= "processRequest" outputVariable="requestResponse"
partnerLink="AirlinesCA" portType="AirlinesCA:FlightProcessing">

 <target linkName="Airlines-to-Agent"/>
 <source linkName="Agent-to-Airlines/>

</invoke>
</vxbpel:VPBpelCode >

</vxbpe:Variant>
<vxbpel:Variant name= “LH”>

<vxbpel:VPBpelCode>
 <invoke inputVariable="FlightRequest" name="processingRequest "

operation= "processRequest" outputVariable="requestResponse"
partnerLink="AirlinesLH" portType="AirlinesLH: FlightProcessing">

 <target linkName="Airlines-to-Agent"/>
 <source linkName="Agent-to-Airlines/>

</invoke>
</vxbpel:VPBpelCode >

</vxbpel:Variant>
</vxbpel:Variants>

</vxbpel:VariationPoint>

Fig. 1. The travel agency composition with variant configuration points

<vxbpel:ConfigurableVariationPoint id="1" defaultVariant="default">
<vxbpel:Name>... </vxbpel:Name>
<vxbpel:Rationale>...</vxbpel:Rationale>
<vxbpel:Variants>

<vxbpel:Variant name="default ">
<vxbpel:VariantInfo> Airline CA and its partner hotels includes the default, hotelA,

and hotelB which provide discounts.
</vxbpel:VariantInfo>

<vxbpel:RequiredConfiguration>
<vxbpel:VPChoices>

<vxbpel:VPChoice vpname="VP1" variant="default"/>
<vxbpel:VPChoice vpname="VP2" variant="hotelA"/>
<vxbpel:VPChoice vpname="VP3" variant="hotelB"/>

</vxbpel:VPChoices>
</vxbpel:RequiredConfiguration>

</vxbpel:Variant>
<!-- Another variant i.e. LH and its dependent services can be defined here. -->

</vxbpel:Variants>
</vxbpel:ConfigurableVariationPoint>

Fig. 2. The illustration of service compositions with complex realization dependencies

case in the world of Web services where requirements change frequently and there is
loose control over the components. The variation is supported both at compile-time and at
run-time. The latter is achieved by implementing an extension to a BPEL engine to in-
terpret the variability constructs. One may thus claim that service compositions with the
VxBPEL achieve better adaptation than those with standard BPEL.

We argue that the variation of service compositions with VxBPEL is easier to un-
derstand since one can identify variation points and variants just by their prefixes. A
variability management tool can aid the designer to comprehend the variation involved
in service compositions. This is particularly useful when the variation of service

260 C. Sun and M. Aiello

compositions is complex enough. Additionally, one can change variability manage-
ment of service compositions by altering the variation configuration. For example, if
the airline CA has more than one partner hotel (or needs to change its partner hotels),
one just has to alter vxbpel:VPChoices to adapt to the new situation. In this sense, we
claim that service compositions with VxBPEL have better maintainability than those
with standard BPEL in terms of support of variation.

With VxBPEL, one can specify more variable and flexible service compositions,
which thereby are able to address various dynamic changes within business processes.
VxBPEL consists of BPEL native constructs and variability constructs. For a variable
service composition instance, these two parts are seamlessly integrated in a VxBPEL
file. Developers use BPEL native constructs for the normal service composition while
the latter is used to specify the variable parts within the service composition. When
these variability constructs with the prefix vxbpel are used, the namespace defining the
VxBPEL elements must be included.

4 Concluding Remarks

Constructs provided by the current version of BPEL can be used to define fixed service
compositions by specifying activities and interactions between activities. Although some
structured activities such as the switch, may be used to select different execution paths,
the selection is limited to the predefined enumerative choices and hence the configuration
supported is static. When a service cannot satisfy a given QoS requirement or is un-
available, it needs to be replaced. When this occurs, the dependent services must be
replaced correspondingly. Such replacement is not possible automatically with current
standards. VxBPEL, on the other hand, is designed so that new variants can be introduced
and managed at runtime. This allows for run-time reconfiguration and significant com-
position flexibility to be available within a VxBPEL process.

Acknowledgements

We thank all the contributors of the COVAMOF and the VxBPEL platforms, and Elie
El-Khoury for comments. The research is partially supported by the Science and
Technology Foundation of Beijing Jiaotong Univ. (Grant No. 2007RC099) and the EU
Integrated Project SeCSE (IST Contract No. 511680).

References

[1] Bachmann, F., Bass, L.J.: Managing variability in software architectures. In: Proceedings of
ACM SIGSOFT Symposium on Software Reusability, pp. 126–132 (2001)

[2] Charfi, A., Mezini, M.: AO4BPEL: An Aspect-Oriented Extension to BPEL. World Wide
Web Journal: Recent Advances on Web Services (special issue) 10(3), 309–344 (2007)

[3] Colombo, M., Nitto, E.D., Mauri, M.: SCENE: a service composition execution environment
supporting dynamic changes disciplined through rules. In: Proceedings of ICSOC 2006.
LNCS, vol. 4292, pp. 191–202. Springer, Heidelberg (2006)

 Towards Variable Service Compositions Using VxBPEL 261

[4] Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Weerawarana, S.: Business process
execution language for Web services, Version 1.1 (2003)

[5] Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of Com-
posite Services, http://www.cs.fiu.edu/~sadjadi/Publications/TechRep-
FIU-SCIS-2006-06-02-TRAP-BPEL.pdf

[6] Erradi, A., Maheshwari, P.: AdaptiveBPEL: a Policy-Driven Middleware for Flexible Web
Services Compositions. In: Proceedings of Middleware for Web Services (MWS) (2005)

[7] Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting variability for Web
services in BPEL. In: Information and Software Technology. Elsevier, Amsterdam, http://
dx.doi.org/10.1016/j.infsof.2007.12.002

[8] Papazoglou, M.P.: Web services technologies and standards. ACM Computing Surveys
(submitted, 2006), http://infolab.uvt.nl/pub/papazogloump-2006-97.pdf

[9] Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF derivation process. In: Morisio, M.
(ed.) ICSR 2006. LNCS, vol. 4039, pp. 101–114. Springer, Heidelberg (2006)

	Towards Variable Service Compositions Using VxBPEL
	Introduction
	Background
	Constructing Variable Compositions with VxBPEL
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

