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Abstract. The Business Process Execution Language (BPEL) is a widely recog-
nized executable language supporting the specification of process-oriented service 
compositions. However, the language is limited in addressing variable require-
ments in the description of business processes. We propose to construct variable 
and maintainable Web services compositions with VxBPEL, an extension to BPEL 
we developed to define variability in business process specification. We present the 
main concepts of VxBPEL and show how to achieve better adaptation and vari-
ability maintenance of service compositions, which is particularly desired in the 
context of dynamically changing business goals and processes.  

1   Introduction 

The growing availability of Web services both on intranets and on the Internet makes 
attractive to create Web service compositions to provide value-added functionalities 
[8]. Consider a travel agency service, for instance, which may be composed of flight 
and accommodation services, provided by third party providers. Since Web services 
themselves are deployed and executed in open and dynamic environments, the avail-
ability of service instances at run-time is an issue by itself. A composition should be 
flexible enough so that a flight service can be substituted by another one when a given 
service instance becomes unavailable. Furthermore, the user may have quite different 
requirements, for instance depending on the type of trip. When a traveler is arranging 
his/her personal trip to China, he/she would prefer to get the cheapest flight and ac-
commodation. However, if it is a business trip, more expensive solutions may be vi-
able. Obviously, implementing such a business process with a static Web service 
composition requires a great deal of recoding and manual work. 

VxBPEL[7] is an extension of BPEL [4] to deal with adaptation in Web service 
compositions from the perspective of variability management. VxBPEL addresses the 
adaptive composition of Web services by providing constructs for explicitly managing 
variability at the composition language level, and treats the changes as first-class enti-
ties. This is a novelty with respect to current approaches [2-3,5-6], particularly those 
focusing on the implementation level.  

In this paper, we propose to construct variable Web service compositions with 
VxBPEL and show how such compositions are adaptive and maintainable. We use the 
travel agency example for illustrational purposes. In particular, we focus here on the 
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explicit variability management in those cases involving dependent variation con-
figurations, such as dependency between the flights and accommodation, or depend-
ency between flights and frequent flyer programs.     

2   Background 

Variability is the ability of a software system or artifact to be extended, changed, cus-
tomized, or configured for use in a specific context [9]. There are two important con-
cepts in variability, namely variation points and variants. Variation points are locations 
in the design or implementation at which variations will occur, and variants are the 
alternatives that can be selected at variation points. Variability management includes 
the design, use, and maintenance of variability [1].  

In order to introduce variability management into service compositions, VxBPEL 
extends BPEL with the constructs for defining and managing the variability. During the 
development of constructs for variants, variation points, and their associations, 
VxBPEL employs the COVAMOF variability framework [9] and adapts it to the con-
text of Web services. The choice of COVAMOF is based on its prominent features, 
including treating variation points and dependencies as first-class citizens, tool support 
and its validation in industry.  

3   Constructing Variable Compositions with VxBPEL 

Let us consider the travel agency example again and model the variability with 
VxBPEL. There are usually several airlines which can provide a flight service required 
by the customer. This means that there may exist variation with the invocation of flight 
services. During the service composition design, we need to introduce the variation 
point at the place where the flight service is invoked. Fig. 1 depicts the modified BPEL 
process, where the activity <invoke> in the original BPEL process is replaced by the 
variation configuration. Without loss of generality, we consider two airlines, namely 
LH and CA. The choice between two variants is determined by the current configura-
tion of the process.  

VxBPEL supports complex realization dependencies during the service compositions. 
For example, an airline may have hotel partners offering discounts to the travelers. In this 
situation, the travel agency needs to specify the association between airlines and hotels, in 
order to provide the cheapest travel services to the customers who are concerned with the 
total travel cost. During the service composition, one can use ConfigurableVariationPoint 
for specifying the dependencies of such a complex service composition. Fig. 2 depicts the 
major segments for specifying the dependency realization between airlines and hotels. In 
the example, CA is the higher level variant and a set of hotel services are lower level 
variants for providing the discounted accommodation.  

With VxBPEL, designers can focus on the main logic of business processes and, at the 
same time, specify the variable elements during service compositions. The specifications 
of VxBPEL clearly integrate main business logic and adaptation of process elements. 
Such service composition specifications are easily adapted, because the variability 
management will enable the selection of alternative variants at runtime. This is often the 
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<vxbpel:VariationPoint name= “selecting an airline service”> 
<vxbpel:Variants> 

<vxbpel:Variant name= “CA”> 
 <vxbpel:VPBpelCode> 

               <invoke inputVariable="FlightRequest" name="processingRequest "  
operation= "processRequest" outputVariable="requestResponse"  
partnerLink="AirlinesCA" portType="AirlinesCA:FlightProcessing"> 

            <target linkName="Airlines-to-Agent"/> 
            <source linkName="Agent-to-Airlines/> 

</invoke> 
</vxbpel:VPBpelCode > 

</vxbpe:Variant> 
<vxbpel:Variant name= “LH”> 

<vxbpel:VPBpelCode> 
               <invoke inputVariable="FlightRequest" name="processingRequest "  

operation= "processRequest" outputVariable="requestResponse"  
partnerLink="AirlinesLH" portType="AirlinesLH: FlightProcessing"> 

                   <target linkName="Airlines-to-Agent"/> 
                   <source linkName="Agent-to-Airlines/> 

</invoke> 
</vxbpel:VPBpelCode > 

</vxbpel:Variant> 
</vxbpel:Variants> 

</vxbpel:VariationPoint> 

Fig. 1. The travel agency composition with variant configuration points 

<vxbpel:ConfigurableVariationPoint id="1" defaultVariant="default"> 
<vxbpel:Name>... </vxbpel:Name> 
<vxbpel:Rationale>...</vxbpel:Rationale> 
<vxbpel:Variants>   

<vxbpel:Variant name="default "> 
<vxbpel:VariantInfo> Airline CA and its partner hotels includes the default, hotelA,  

and hotelB which provide discounts.  
</vxbpel:VariantInfo> 

<vxbpel:RequiredConfiguration> 
<vxbpel:VPChoices> 

<vxbpel:VPChoice vpname="VP1" variant="default"/> 
<vxbpel:VPChoice vpname="VP2" variant="hotelA"/> 
<vxbpel:VPChoice vpname="VP3" variant="hotelB"/> 

</vxbpel:VPChoices> 
</vxbpel:RequiredConfiguration> 

</vxbpel:Variant> 
<!-- Another variant i.e. LH and its dependent services can be defined here. --> 

</vxbpel:Variants> 
</vxbpel:ConfigurableVariationPoint> 

Fig. 2. The illustration of service compositions with complex realization dependencies 

case in the world of Web services where requirements change frequently and there is 
loose control over the components. The variation is supported both at compile-time and at 
run-time. The latter is achieved by implementing an extension to a BPEL engine to in-
terpret the variability constructs. One may thus claim that service compositions with the 
VxBPEL achieve better adaptation than those with standard BPEL.  

We argue that the variation of service compositions with VxBPEL is easier to un-
derstand since one can identify variation points and variants just by their prefixes. A 
variability management tool can aid the designer to comprehend the variation involved 
in service compositions. This is particularly useful when the variation of service 
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compositions is complex enough. Additionally, one can change variability manage-
ment of service compositions by altering the variation configuration. For example, if 
the airline CA has more than one partner hotel (or needs to change its partner hotels), 
one just has to alter vxbpel:VPChoices to adapt to the new situation. In this sense, we 
claim that service compositions with VxBPEL have better maintainability than those 
with standard BPEL in terms of support of variation.  

With VxBPEL, one can specify more variable and flexible service compositions, 
which thereby are able to address various dynamic changes within business processes. 
VxBPEL consists of BPEL native constructs and variability constructs. For a variable 
service composition instance, these two parts are seamlessly integrated in a VxBPEL 
file. Developers use BPEL native constructs for the normal service composition while 
the latter is used to specify the variable parts within the service composition. When 
these variability constructs with the prefix vxbpel are used, the namespace defining the 
VxBPEL elements must be included.  

4   Concluding Remarks 

Constructs provided by the current version of BPEL can be used to define fixed service 
compositions by specifying activities and interactions between activities. Although some 
structured activities such as the switch, may be used to select different execution paths, 
the selection is limited to the predefined enumerative choices and hence the configuration 
supported is static. When a service cannot satisfy a given QoS requirement or is un-
available, it needs to be replaced. When this occurs, the dependent services must be 
replaced correspondingly. Such replacement is not possible automatically with current 
standards. VxBPEL, on the other hand, is designed so that new variants can be introduced 
and managed at runtime. This allows for run-time reconfiguration and significant com-
position flexibility to be available within a VxBPEL process. 
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