

 University of Groningen

Case Study
Telea, Alexandru; Voinea, Lucian

Published in:
2009 5TH IEEE INTERNATIONAL WORKSHOP ON VISUALIZING SOFTWARE FOR UNDERSTANDING AND
ANALYSIS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Voinea, L. (2009). Case Study: Visual Analytics in Software Product Assessments. In M.
Lanza, M. Storey, & H. Muller (Eds.), 2009 5TH IEEE INTERNATIONAL WORKSHOP ON VISUALIZING
SOFTWARE FOR UNDERSTANDING AND ANALYSIS (pp. 65-72). (IEEE International Workshop on
Visualizing Software for Understanding and Analysis VISSOFT). IEEE (The Institute of Electrical and
Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/b8869b40-c89d-491d-b7f9-42769b510e51

Case Study: Visual Analytics in Software Product Assessments

Alexandru Telea∗

Institute for Math. and Computer Science
University of Groningen, the Netherlands

Lucian Voinea†

SolidSource BV
Eindhoven, the Netherlands

Abstract

We present how a combination of static source code analysis, repos-
itory analysis, and visualization techniques has been used to effec-
tively get and communicate insight in the development and project
management problems of a large industrial code base. This study
is an example of how visual analytics can be effectively applied to
answer maintenance questions and support decision making in the
software industry. We comment on the relevant findings during the
study both in terms of used technique and applied methodology and
outline the favorable factors that were essential in making this type
of assessment successful within tight time and budget constraints.

1 Introduction

Industrial software projects encounter bottlenecks due to many fac-
tors: improper architectures, exploding code size, bad coding style,
suboptimal team structure, or mis-estimation of the requirements.
Understanding the causes of such problems helps taking corrective
measures for ongoing projects or choosing better development and
management strategies for new projects.

In research contexts, software analysis techniques such as static
and dynamic program analysis and software visualization are fre-
quently advocated as effective in getting insight into large soft-
ware systems. Many visualization tools have been proposed to
this end, an overview of which is given in [Diehl 2007; Spence
2006; Ware 2004]. However, there is a tendency in some visual-
ization papers to focus on presenting novel techniques and tools,
rather than describing in detail how these tools have actually been
used to answer concrete questions in the software industry. Some
prominent researchers have voiced concerns on the development of
such trends in the fields of software visualization and information
visualization. They pointed out to a strong need for work that ex-
plains how research-grade tools and methods are actually used in
answering such concrete questions, and the need for low-cost, shal-
low learning-curve solutions that can be (and are) adopted by the
industry [Reiss 2005; Koschke 2003; Lorensen 2004].

We present here such a case study that describes how a set of visu-
alization and static data analysis tools was used to understand the
causes of development and maintenance problems in an industrial
project. Rather than proposing novel visual metaphors, we pro-
pose novel combinations of existing visualization and static anal-
ysis methods to answer a number of concrete questions from the
management team of a large software project. The uncovered facts
helped the team leadership to understand the causes of past prob-
lems, rule out false suppositions and validate earlier suspicions, and

∗e-mail:a.c.telea@rug.nl
†lucian.voinea@solidsource.nl

assisted them in deciding further project course. Our solution fits
into the emerging visual analytics discipline [Wong and Thomas
2004], as it uses information visualization to support the analytical
reasoning about data mined from code repositories.

Section 2 gives a short description of the premises of our analysis
and the goals of the stakeholders. Section 3 outlines the analy-
sis method used and the constraints we had to face, and details on
the several types of analyses done: metrics, modification requests,
team identities, dependencies, code duplication, and documenta-
tion. Section 4 details the obtained results, involving visual analy-
sis of the repository’s modification requests, code metrics evolution,
code dependencies and duplication, and documentation. Section 5
discusses the results from both the stakeholders’ and the analysts’
perspective. Section 6 concludes the paper.

2 Software Project Description

The studied software was developed in the embedded industry by
three teams located in Western Europe, Eastern Europe, and Asia1.
All code is written in Keil C166, a special C dialect with con-
structs that closely supports hardware-related operations [Keil, Inc.
2008]. The development took six years (2002-2008) and yielded 3.5
MLOC of source code (1881 files) and 1 MLOC of headers (2454
files) in 15 releases. In the last 2 years, it was increasingly felt that
the project could not be completed on schedule, within budget, and
that new features were very hard to introduce. The team leaders
were not sure what went wrong, so an investigation was performed
at the end (2008).

The main questions raised were: why the project went beyond
schedule (was it because of bad architecture, design, or manage-
ment); why it was hard to add new features to the existing software;
and how a follow-up should continue (start from scratch or continue
with the existing code). As findings were obtained, these questions
were further refined, as described in the following.

3 Analysis Method

The investigation, performed by the authors, had two parts: a pro-
cess analysis and a product (code) analysis. We describe here only
the latter.

3.1 Tooling

The only input for the analysis was the source code and documenta-
tion, stored in a Source Control Management (SCM) system. First,
we performed static analysis on each version of each source file, us-
ing a heavyweight C/C++ analyzer able to handle incorrect and in-
complete code by using a flexible GLR grammar [Telea and Voinea
2008a]. We were able to easily modify this grammar (within two
work days) to make it accept the Kyle C dialect. The analyzer cre-
ates a fact database that contains static constructs, e.g. functions
and dependencies, and several software metrics, for each version of
each analyzed file. We applied the above process to all files in all
15 releases. Given the high speed of the analyzer, the entire static
analysis took under 10 minutes on a standard Linux PC.

1The exact details of the project have been removed to preserve
anonymity.

65978-1-4244-5026-8/09/$25.00 ©2009 IEEE

Next, we visualized the trends (evolution) in both the analyzed data
and in the modification requests (which couple the requirements
with their actual implementation), commits, and authors informa-
tion available in the SCM system. For this, we used an implemen-
tation of dense-pixel evolution visualization proposed in [Voinea
and Telea 2007]. This tool provides both mechanisms to extract
such information from the SCM system, as well as several visual-
izations such as two-dimensional evolution views, treemaps, table
lens views [Telea 2006], and classical time series graphing. Each
visualization looks at different aspects of the code, so their combi-
nation aims to correlate these aspects into one coherent decision-
making conclusion.

3.2 Constraints

Several constraints existed during this analysis process. First and
foremost, the entire process, from data acquisition to findings in-
terpretation, was limited to a few days, both for cost and efficiency
reasons, so there was very little room for experimentation. Sec-
ondly, the analyzed software was entirely unknown (both as struc-
ture and functionality) to the researchers doing the analysis. Third,
the actual customers were not familiar with any of the visualization
metaphors used. Fourth, the questions (as can be seen from above)
were relatively high-level and involved multiple process and prod-
uct parameters. Last but not least, the results had to be presented
in an understandable form both to domain specialists (architects)
as well as the management team, as consensus on the findings and
way to go had to be built.

The visualizations, presented in the next section, were interactively
shown to the stakeholders, who were asked to comment on the find-
ings, their relevance, and their usefulness for understanding the ac-
tual causes of the development problems. During these discussions,
the main questions were refined by the customers and sub-questions
were answered, during the discussions, based on the obtained anal-
ysis and visualization results. The entire visual analysis session
took under five hours (see Sec. 5).

4 Analysis Results

In this section, we describe a selected subset from the different
types of visual analyses performed on the provided code base. We
focused here on those analyses which are the most relevant for the
points made in this paper, and which can be described without en-
tering in details about particularities of the analyzed software.

4.1 Modification Request Analysis

Figure 1 shows two images of the project structure, depicted as a
three-level treemap (packages, modules and files). Treemaps have
been used in many software visualization applications to show met-
rics over structure [Balzer and Deussen 2005]. The smallest rect-
angles are files, colored by various metrics, and scaled by file size
(LOC)2. The top image shows the number of modification requests
(MRs) per file. Files with more than 30 MRs (red) appear spread
over many packages. The bottom image shows the same structure,
colored by team identity. We see that most high-MR files (red in
the top image) are developed by Team A (red in the bottom image),
which is located in Asia. Seeing this image, the customer realized
that this was a potential problem cause, as it was known that this
team had communication issues with the other two teams, located
in Europe. A proposed better work division was to reassign Team
A to work on a single, low-MR-rate, package, or at least to shift the
high-MR packages away from that team.

We further analyzed the MR records. Figure 2 left shows the MR
distribution over project and time for a subset of files in a pack-
age of interest. Files are drawn as dark gray horizontal pixel lines,

2We recommend viewing this paper in full color

Figure 1: Team assessment: number of MRs (top), with high-
activity modules marked, and team structure (bottom)

stacked in creation order from bottom to top. The x axis shows time
(years 2002 to 2008), following the visualization model in [Voinea
and Telea 2006]. Red dots show the location (file and time) of the
MRs. We see that less than 15% of the files have been created in
the second project half, so code size explosion could not have been
the cause of the project’s failure to complete on time.

However, we also see that most MRs in this second half address
older files, so the late work mainly tried to fix, or satisfy, old re-
quirements. Stronger, the MRs in the last year, outlined in yel-
low in the image, where activity was quite intense, address for
their greatest majority files created more than three years ago. The
right image supports this hypothesis: each horizontal bar indicates,
with a graph, the number of file changes related to one MR range.
Here, MRs are functionally grouped per range (100 MRs per range),
where the oldest ones, shown at the top, have the lowest IDs and
the newest, shown at the bottom, the highest IDs. The x axis shows
again time. We see that older MRs have large activity spreads over
time. For example, in mid-2008, developers still try to address MRs
introduced in 2005-2006 (!). Clearly, new features are hard to in-
troduce if most work has to deal with old MRs. This correlates pos-
itively with the suboptimal team communication and assignment,
which leads to increased average MR closure time, i.e. time from
the first to the last file change related to an MR. Ideally, we would
like to see in this image a band-like structure, i.e. that all MRs are
definitively closed after a given time interval.

Figure 3 shows the average closure time of an MR. This image also
correlates with Figure 1. That is, critical MRs, involving Team A,
took quite long to close. This partially explains the encountered
delays and further supports the idea of reassigning critical MRs to
other teams.

4.2 Code Metric Analysis

We next analyzed the evolution in time of several software metrics
(see Fig. 4). Although more metrics were computed such as pack-
age cohesion, comment density, and usage of potentially dangerous
code constructs, we focus here on the simpler ones (fan-in, fan-out,

66

Figure 2: MR evolution per file (left) and per range of MRs (right)

Figure 3: Average MR closure time (red: over 90 days)

functions and function calls counts, and average and total cyclo-
matic complexity) as these were easier to interpret and supported
answering the relevant questions. These metrics were also included
as developers mentioned that understanding, changing, and testing
existing code was quite hard. The question was whether this was
due to a bad code structuring or other (e.g. team-related) factors.

The graphs show a relatively low increase of project size (functions
and function calls) and, roughly, and overall stable dependency
count (fan-in) and code complexity, especially in the second half
of the project lifetime. The fan-out and number of function calls
increases more visibly. This supports our supposition that main-
tenance problems were not caused by an increase in code size or
complexity, as is the case in other projects. The sharp jumps of
complexity and fan-out visible around the first third of the project
are correlated with the sharp increase of code in the same period
(Fig. 2 left) and also high documentation check-in in the same pe-
riod (see Fig. 10, further discussed in Sec. 4.5).

However, we see in Fig 4 that the average cyclomatic complexity
per function is very high (over 20). It is well known that such val-
ues of complexity correspond to code that is hard to maintain and/or
test. This led us to further analyze the distribution of metrics over
the project structure. Figure 6 shows this distribution, again using
treemaps colored by metric values. Comparing this with Figure 1,
we see that the modules having the largest number of lines of text,
actual lines of code, and complexity are also those with the highest
MR counts. This further enhanced the conviction of the stakehold-
ers that the most complex MRs, which arguably caused the largest
and most complex implementations, were assigned incorrectly to
the suboptimal team. Moreover, the fact that the complexity metric
was high from relatively early in the project, and next stayed con-
stant, supported the explanation that long MR closure times were
due to early suboptimal development patterns, which next needed a

Figure 4: Evolution of static analysis metrics

lot of fixes and work.

The graphs discussed above are useful to have a global overview of
how one, or several, metrics evolve in time over the entire software
system. However, after getting this type of global insight, it is often
useful to restrict the comparison to a subset of modules. For exam-
ple, when studying a complexity metric, it is useful to see how the
complexity evolved in time and which are the subsystems which are
(increasingly) highly complex. To facilitate this analysis, we pro-
pose a combination of treemaps and graphs (see Fig. 5), along the
lines of the enhanced treemap technique discussed in [Telea 2006].
The treemap shows the system structure, much like in Fig. 1. For
illustration variation, we now also show function definitions within
files (these are the treemap leaves) and we use a strip layout as op-
posed to the squarified layout used before. Atop of each module,
we draw the graph of the evolution in time of a selected metric of

67

interest, computed on the artifacts in that module. This allows us
to compare the evolution of that metric over different parts of the
system.

Figure 5: Metric evolution graphs correlated with system structure

4.3 Dependency Analysis

As the stakeholders settled with the conclusion that the project
problems were early created by the improper team assignment, the
next question was whether the latest version of the code could be
refactored to continue development in a new project with differ-
ent teams. To assess this, we extracted a number of dependencies
using the C/C++ analyzer. We visualized these using the bundled
edge method proposed in [Holten 2006], which shows hierarchy
relations (file in module in package) as a set of nested concentric
rings, each ring sector being a software element, and dependencies
as curves grouped according to the hierarchy.

Figure 7 shows the inter-file dependencies - more precisely, depen-
dencies between source (implementation) files. Here, we consider
that a file A depends on a file B if it directly uses any kind of sym-
bol declared by B. In C, these are function, type, and extern
variable declarations, as well as macros. We considered all these
dependencies, and not just usage of function prototypes declared in
headers, since modification of any of these symbols in a public in-
terface would cause ripple effects into the clients of the interface, as
the code makes extensive use of macros and typedefs from headers
throughout the implementation. Defining dependencies differently
is very easy, as the C/C++ analyzer provides complete AST and
semantic (type) information on the input code [Telea and Voinea
2008b; Telea and Voinea 2008a]. Getting this information with
other C static analyzers, such as CScout [Spinellis 2008], is more
difficult, due to the particular C dialect used in this project.

Analyzing this image reveals whether the overall product is mod-
ular. The left image shows all file-to-file dependencies. Edges are
colored dark red at files providing symbols and light red at files
using (referring to) symbols. Due to the bundling, we quickly dis-
cover three dominant, concentrated interface providers: the pack-
ages interface, plaform, and basicfunctions. These contain pub-
lic interfaces, so dependencies towards them is allowed. The right
image shows all dependencies after the allowed ones, mentioned
above, have been filtered away. To make this image easier to use,
we filtered away modules that did not have any undesired depen-
dencies - in other words, we zoomed in on that subset of modules
that exhibits undesired dependencies. We are now left with a small,
though significant, set of unwanted dependencies. These include,
among others, references to extern global variables or macros not
placed in the public interfaces. The conclusion drawn from this was
that refactoring by replacing problem modules should be relatively
easy from an interface perspective, as there are relatively few un-
wanted dependencies, and we can see where they are.

Next, we analyzed the function call graph (Fig. 8) The left image
shows a quite complex call pattern. We see few intra-package calls

Figure 6: Distribution of text size, lines of code, and complexity
over structure. Modules with high values are marked.

and many inter-package calls. This indicates that it would be hard
to test the system during a potential refactoring, as all implementa-
tions (modules) need to be in place for the whole to work. To further
determine if incremental refactoring would be easy, we produced
the right image, which shows only those modules which are mutu-
ally call-dependent. Such modules have to be refactored as a whole.
The involved architects also quickly noticed, on the mutual call de-
pendency image, a number of previously unknown violations, i.e.
mutually dependent modules that were supposed to be part of a lay-
ered architecture with a strict top-to-bottom dependency. Similar
insights can be obtained with different visualizations, e.g. the ma-
trix view in [Abello and van Ham 2004]. However, from our past
experiences, where we used both the matrix view and bundled edge
view, we noticed the latter to be much easier to understand by soft-
ware engineers than the former - possibly due to their familiarity
with node-link visual representations. The fact this view was easy
to understand, in a matter of minutes, also proved true in the current
project.

Overall, the dependency analysis results were interpreted by the
stakeholders as follows: the system had an originally clean design,
consisting of a layered architecture and a clearly defined small set
of public interfaces. As the project progressed, this architecture
degraded. Rapid ’hacks’ were introduced to fix important change
requests, yielding undesired dependencies not taking place via the
public interfaces, and also mutual dependencies violating the layer-

68

Figure 7: Dependency graphs: complete set (left); subset of unde-
sirable dependencies (right)

Figure 8: Call graphs: complete system (left); mutual dependencies
only (right)

ing principle. The ’hack’ hypothesis was checked by looking at the
names of the modules exhibiting dependency problems, and asso-
ciating them with the teams who worked on those parts of the code
and with prior knowledge on how and what these teams performed.
This is one of the several examples stressing the need to active in-
volve the stakeholders in the analysis, as such information would
not have been available to an external party.

4.4 Code duplication analysis

At this point of the overall study, the consensus appeared that an
iterative refactoring would be doable, though not easy. This pro-
cess would inevitably have to involve the implementations of all
modules containing, e.g., violations of the layered architecture or
usage of non-public interfaces. To further assess the risks of such
a proposal, we next performed a code duplication analysis. Specif-
ically, we looked for duplicate code blocks both within the same
file (internal duplication) and duplicate blocks across files (external
duplication). Identifying such blocks and correlating them with the
previous findings can help in several ways. First, if a duplicated
block is modified during refactoring, then we should examine if its
duplicates for refactoring too. Second, code modifications caused
by insight found during testing and debugging should be done con-
sistently across duplicated code. Of course, the best scenario is to
remove duplicates altogether, if possible.

To answer the question whether code duplication may create prob-
lems during refactoring, we computed both internal and external
code duplication using the clone detector from [Wettel and Mari-
nescu 2005]. This clone detector was preferred as it is very easy
to configure, works at a lexical-syntax level (as opposed to more
complex clone detectors that need semantic analysis), is robust, and
freely available. For the clone detector, and a minimal duplication
block size of 20 lines - that is, similar blocks of smaller size are not
considered to be duplicated, but coincidentally similar. Figure 9

Figure 9: Code duplication: external (top) and internal (bottom).
Duplication appears to be minimal.

shows the results. The top image shows those files from the file-
folder-module hierarchy which contain external duplication. The
arcs connect files sharing duplicated blocks. The results look good.
First and foremost, there is little external duplication. Secondly, du-
plicated blocks are shared among a few (2..3) files, not more, i.e. the
same block is not found to be duplicated across many files. Thus,
removing them altogether should not be very hard. Finally, about
half of the files sharing duplicated blocks are located in the same
modules - this is visible as the short curved edges in Figure 9 top.
All in all, the conclusion drawn was that external duplication is not
a serious problem for system-wide refactoring or testing.

The bottom image in Figure 9 shows internal duplication. The color
map indicates the number of duplicated blocks per module, red be-
ing all modules with 60 or more duplicated blocks, and green being
modules with a single duplicated block. Gray indicates modules
with no duplication. This image is less positive than for external
duplication: about half of the modules have at least one duplicated
block, and around 10 of them have duplication levels above 30
blocks per module. Also, notice the high correlation between mod-
ules containing duplicated blocks and modules having many lines
of text or code, and a high complexity (Fig. 6).

4.5 Documentation analysis

After the duplication analysis, the consensus strengthened that
refactoring would be doable. However, given the architectural de-
cay and team and communication problems mentioned before, the
question appeared: how easy would it be to actually understand
what is in the code to refactor? We performed a documentation
analysis to shed some light on the state of documentation. For this,
we used the visual evolution analysis tool and methods described
in [Voinea and Telea 2007; Voinea and Telea 2006]. After load-
ing all file versions in the tool, we first clustered files by type in
two groups: documents (.doc, .html) and all other files. Fig-
ure 10 top shows these two groups. Within each group, files are

69

bottom-up in creation order (that is, older files at the bottom). Red
dots indicate file changes. We see now that documents represent
over a third of all files in the project (which is a quite high propor-
tion for a code base).The number of documents increases in sync
with the number of other files, but with a slight delay (see the fig-
ure), which is expectable. A very good sign is that document files
appear to be well maintained - the red dots indicating change are
relatively as frequent in the document set as in the non-document
file set.

Figure 10: Documentation evolution. Top image: changes in docu-
ments (yellow) vs other files (gray) sorted by time. Bottom: docu-
ments sorted top-down by activity

The bottom image in Fig. 10 shows a zoom-in on the document
files only. The files are sorted in this view in inverse order of ac-
tivity, that is, files at the top changed the most while files at the
bottom changed the least. This is also visible in the density of the
red dots. This image seems to be split in two parts: the top part
of about 40% of all files, i.e. the area in the image having a very
high concentration of red dots, shows a set of documents which are
all modified very often, over the entire project duration. The rest
60% files, i.e. the area being mainly yellow and having few red
dots, is modified very sporadically, except during the early period
of documentation creation. This suggests two sets of documents:
and up-to-date one which can be used immediately during refactor-
ing, and a passive one, which is not maintained, and which should
better not be used during refactoring as it does not contain updated
information. We explain this as follows: Since virtually all source
code files are heavily modified throughout the entire project (see
Fig. 2), there is a high chance that their documentation (which is
not modified for many of them, as seen in Fig. 10) has gotten out
of sync. Thus, care should be taken when considering this unmain-
tained documentation during refactoring.

5 Discussion

Below we discuss the most important insights gathered during our
study.

5.1 Findings

Recapitulating from Section 4, the main conclusions drawn by the
stakeholders, based on our analysis, were as follows:

• the project’s evolution had two main phases. Phase 1 (first
two years roughly) showed sustained development, the cre-
ation of over 75% of the total code and documentation, and
a relatively good overall progress. Phase 2 (last four years)
showed mainly work on closing old modification requests, lit-
tle introduction of new features, increased lagging behind the
deadlines, and a deterioration of the initial ’clean’ architecture
and design.

• a main cause of the suboptimal progress was the assignment
of critical requests and most complex subsystems to a team
which had communication issues and apparently also less per-
formant skills than the other two teams.

• all studied indicators show a stagnation of the development in
the last years; activity mainly tries to fix problems from the
past

• the architecture, code quality, and documentation level of the
final product are not ideal, but it is clear where the structural
problems are. Refactoring and code quality improvement is
possible with limited effort.

Overall, the stakeholders decided that the current software product
is close to the desired end target. To complete the product within
time, refactoring and code cleanup steps would be taken to remove
the detected problems; and a different team assignment would be
done to focus the highest-quality workforce on the most critical
parts. All in all, the conclusion was that the root cause of the sub-
optimal evolution was a process problem (team assignment), which
created the product problems (code and architecture).

5.2 Methodology

Given strong time and cost pressure (decisions had to be taken
quickly and with little investment), we could not approach this as-
sessment by doing an in-depth analysis of the process and product.
Moreover, the quite specific nature of the developed software would
have made such an assessment hard for most outsiders. Hence, we
chose a different path. We extracted all static and evolution in-
formation from the repository and contained code, and prepared a
number of visualizations, as the ones shown in the previous sec-
tion. Next, we presented these visualizations during an interactive
workshop involving both technical and non-technical stakeholders
(designers, architects, and managers).

We specifically refrained from drawing our own conclusions from
these images, and limited our comments on the visualizations to
explaining what kind of data is shown, and how to interpret the
drawings. At that point, the stakeholders started having specific
comments and questions on the shown images, for example the re-
quest to zoom in specific parts or show other attributes or relations
in a view. Given that a) all static data were extracted upfront; and b)
the involved visualization tools allow quick, interactive changing of
the attributes shown and other visual parameters, it was quite easy
to answer such requests in a matter of minutes.

Once we noticed that the stakeholders formed some clear hypothe-
ses or early conclusions, we tried to generate new views (with
other attributes, metrics, or visual correlations) to (in)validate these
points. This iterative process was quite fast. The result discussion
took around 5 hours, out of which about two were actually spent
after the conclusions were drawn, on determining which is the best
way to continue.

We believe this way of working to be more efficient and effective
than other possibilities. In the literature, we mainly encounter two

70

other assessment methodologies, as follows:

• giving the analysis and visualization tools to the customers
(classical tool vendor scenario)

• assessing the product/process offline, and showing the con-
clusions to the customers (classical consultant scenario)

We see important risks in both above cases. Giving the tools to
the customers may look attractive as it theoretically permits them
to create any investigation scenarios they want (in the limit of the
tool support, of course). However, this also poses a high burden
on the time investment of the stakeholders; and requires them to be
highly familiar with the tools and all their options and limitations.
This solution works well if there is an in-house tool expert in the
stakeholder organization. If not, tools tend often to be mis-used
or even not used at all after initial adoption (we have encountered
numerous such cases). Assessing the data offline by a consultant
and presenting conclusions is also risky, as it implies that such con-
clusions can be reliably drawn from the available data. More often
than not, a project’s context is very complex and involves a lot of
factors which are hard, if not impossible, to extract purely from a
process/product analysis. Presenting a wrong conclusion to a cus-
tomer is highly risky, as it will decrease the customer’s confidence
in the analysis method, tools, or third-party (consultant).

Apart from these points, we noticed an additional factor that fa-
vors the methodology used by us. During decision-making or post-
mortem project analyses in organizations, often different parties are
involved, e.g. management and technical people in our case. Such
parties may have different, conflicting interpretations of existing
data or past events. Having an external party provide the analysis
(but not draw the conclusions), like we did, increases the chances of
acceptance within the organization, and decreases the time and cost
of the assessment. Using a visual analysis increases the commu-
nication bandwidth between technical and non-technical stakehold-
ers. Effectively, this way of working empowers the stakeholders to
have the data they need to draw conclusions, but does not force the
conclusions upon them.

5.3 Simplicity

Although this may be a controversial point, we strongly believe
from this case study and other similar ones we have done in the
past (not presented here for space limitations but sharing the same
tool combination and tool usage pattern), that simplicity is the key
to making visualization gain wider acceptance in software engineer-
ing at large. Visualization is not a core technique in the field, like
e.g. compilers, profilers, debuggers or other tools of the trade, but
rather an ’underdog’, if we can use this expression. As such, it has
to provide clear benefits with limited investment. To achieve this, it
has to be easy and fast to use. This involves, among others, a per-
fect and quick integration with the overall tooling environment; the
possibility to generate comprehensive overview images in virtually
no time; and the ease to pose queries and execute drill-down actions
on such images. The types of views we used here, i.e. treemaps,
dense Cartesian 2D pixel layouts, and hierarchically bundled edges,
all meet these requirements. In particular, the presets of all these vi-
sualizations work well - it is only when drilling down or selecting a
subset of the data that the user has to do any parameter setting.

5.4 Feedback from customers

It is insightful to detail the customer context and feedback, as fol-
lows. The persons involved in the analysis can be split into two
types: management and technical. It is important to note that most
of the low-level findings, e.g. individual dependencies between spe-
cific files, the identity of developers working on specific project
components, changes done to the documentation, and even the iden-
tity of the most complex, or largest, components in the system were

quite well known before we showed the images.

However, the project owners stated unanimously that they found
this type of analysis, and way of working, useful. In this case, the
question may come: What was the added value of our analysis?
The customers mentioned the following points as being the major
added values:

• a combination of process data (teams, modification requests,
evolution data) and product data (dependencies, code dupli-
cation, static code metrics) is very useful as it addresses more
involved questions than just one data type at a time;

• seeing as much data as possible on a single screen, but also
allowing drill-down, is good as it supports the ’plenary meet-
ing’ type of discussion but also allows specific questions to be
answered directly during such meetings;

• having the stakeholders draw the conclusions, rather than hav-
ing them served by the external analyzing party, is absolutely
essential;

• clear (and low) cost-and-time limits on the entire assessment
are vital for getting them accepted by higher-level manage-
ment.

Also, the stakeholders stated that using such types of analyses con-
tinuously, and from the beginning of, new projects would be of
clearly added value in early detection and discussion of problems.
To do this, all above points have to be met from the very beginning,
otherwise the apparent added value of visualization may exceed its
benefits.

We also noted that the visualizations, and result presentation
method used, was extremely instrumental in helping the two types
of customers (management and technical) communicate and reach
an agreement. After our assessment and presentation, it became to
us apparent that some of the insights were actually known to part
of the team, but not universally accepted by the others. As such,
the visualizations were instrumental in showing objective evidence
and helping all stakeholders reach a consensus. Of added value
was, again, keeping the visualizations simple, so they could be un-
derstood with little or no explanations by both management and
technical persons.

As limitations of our (visual) analytics method, we note the follow-
ing points. First and foremost, questions such as ”what to do from
now on to solve our problems” are well-known to any consultant.
Visualizations can only give support, but not answer such questions
directly. Secondly, ”what if” scenarios need a tighter combination
of interactive analysis and presentation. For example, users would
like to know what would happen if a given refactoring were done.
Performing such what-if scenarios in near-real time is however ex-
tremely challenging, and it requires novel ways to empower users to
specify code or design modifications quickly (ideally, on the images
themselves), execute those on the code, redo the static analysis, and
redraw the images. Last but not least, management mostly thinks
in terms of value and waste, not lines of code, dependencies, and
changes. Although value and waste are well-known terms to the
newly emerging agile and lean development communities, there are
still no automated ways (models and tools) that allow mining and
visual presentation of such metrics in correlation with, and based
on, solely data stored in software repositories. Designing such tool-
ing support would be of a huge value in making visual analysis tools
more accepted, and actually more useful, in software-intensive or-
ganizations.

5.5 Threats to validity

There are several threats to the validity of the presented methodol-
ogy. Here, we focus specifically on the threats to the proposed anal-
ysis method in general, i.e. not specific to the concrete project on

71

which we applied it. This type of insight should be more valuable
to the re-application of the proposed methodology in other projects.

Concerning the validity of the data, there is a non-negligible pos-
sibility that the modification requests (MRs) are not fully reliable
in a software project in general. In our specific case here, however,
the team stated that the MRs (date, affected file, person filing them
etc) were carefully maintained, as this is a company policy. Al-
though this cannot be independently verified, the sheer amount of
MRs stored in the configuration management system, and a manual
examination of several MRs chosen by us at random, strongly sug-
gests that a disciplined approach was used here and that this data
is of good quality. Moreover, note that our analysis is not sensitive
to small-scale outliers e.g. a few incorrectly filed or missing MRs.
What is essential is noticing strong trends defined by cumulating
individual MRs.

Concerning the preciseness of the analysis (metrics, C/C++ code
analysis, dependency extraction), the analyzer we have used, which
is of our own construction, was extensively tested on very large
software projects containing complex code [Telea and Voinea
2008a], as well as on the gcc testsuite. We are confident that the
delivered results are correct - incorrect results, if present, would
have been signaled as parse or type checking errors.

6 Conclusions

In this paper, we presented the process of using a combination of
static and evolution analysis and visualization tools for supporting
decision-making in the framework of large-scale industrial soft-
ware projects. Our aim has been to demonstrate how the utiliza-
tion of existing static analysis and visualization tools and methods
can be highly cost-and-time effective in helping decision making in
the management of software projects. The case presented here is
typical in several respects, including the involved data (typical in-
dustrial C source code stored in a mainstream source control man-
agement system), the process (multisite development of a mid-size
embedded software product over several years), and the goals (plan
the future project course based on data mined from the past, with
a minimal time and cost investment). Correlating evolution and
static analysis data, presenting this via scalable, dense-pixel visu-
alizations, but letting the actual stakeholders draw the conclusions,
seems to be a very effective way for software visualization to bring
measurable contributions in a budget-tight industrial context.

We are currently testing this methodology on several other indus-
trial projects, with preliminary good results. Furthermore, we want
to study the possibility of simplifying the assessment process by
assembling even higher-level visualizations from existing compo-
nents, thereby targeting a larger spectrum of concrete analyses.

References

ABELLO, J., AND VAN HAM, F. 2004. MatrixZoom: A visual
interface to semi-external graphs. In Proc. IEEE InfoVis, IEEE
Press, 183–190.

BALZER, M., AND DEUSSEN, O. 2005. Voronoi treemaps for the
visualization of software metrics. In Proc. ACM Softvis, 165–
172.

DIEHL, S. 2007. Software Visualization - Visualizing the Structure,
Behaviour, and Evolution of Software. Springer.

HOLTEN, D. 2006. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE TVCG 12, 5, 741–
748.

KEIL, INC. 2008. The Keil C166 compiler reference manual.
http://www.keil.com.

KOSCHKE, R. 2003. Software visualization in software mainte-
nance, reverse engineering, and re-engineering: a research sur-
vey. Journal of Software Maintenance: Research and Practice
15, 2, 87–109.

LORENSEN, B. 2004. On the death of visualization: Can it survive
without customers? In Proc. NIH/NSF Fall 2004 Workshop on
Visualization Research Challenges, NIH/NSF Press.

REISS, S. P. 2005. The paradox of software visualization. In Proc.
VISSOFT, IEEE Press, 59–63.

SPENCE, R. 2006. Information Visualization. ACM. Press.

SPINELLIS, D. 2008. The CScout C extractor.
http://www.spinellis.gr.

TELEA, A., AND VOINEA, L. 2008. An interactive reverse en-
gineering environment for large-scale C++ code. In Proc. ACM
SoftVis, 67–76.

TELEA, A., AND VOINEA, L. 2008. SOLIDFX: An interactive
reverse-engineering environment for C++. In Proc. CSMR, 320–
322.

TELEA, A. 2006. Combining enhanced table lens and treemap
techniques for the visualization of large data tables. In Proc.
EuroVis, IEEE Press, 13–20.

VOINEA, L., AND TELEA, A. 2006. Multiscale and multivari-
ate visualizations of software evolution. In Proc. SoftVis, ACM,
115–124.

VOINEA, L., AND TELEA, A. 2007. Visual assessment of software
evolution. Science of Computer Programming 65, 3, 222–248.

WARE, C. 2004. Information Visualization, Second Edition: Per-
ception for Design. Elsevier.

WETTEL, R., AND MARINESCU, R. 2005. Archeology of code du-
plication: Recovering duplication chains from small duplication
fragments. In Proc. Intl. Symp. on Symbolic and Numeric Al-
gorithms for Scientific Computing (SYNASC), IEEE Press, 201–
209.

WONG, P. C., AND THOMAS, J. 2004. Visual analytics. Computer
Graphics and Applications 24, 5, 20–21.

72

