

 University of Groningen

Defining Execution Viewpoints for a Large and Complex Software-Intensive System
Callo Arias, Trosky B.; America, Pierre; Avgeriou, Paris

Published in:
2009 JOINT WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE AND EUROPEAN
CONFERENCE ON SOFTWARE ARCHITECTURE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Callo Arias, T. B., America, P., & Avgeriou, P. (2009). Defining Execution Viewpoints for a Large and
Complex Software-Intensive System. In 2009 JOINT WORKING IEEE/IFIP CONFERENCE ON
SOFTWARE ARCHITECTURE AND EUROPEAN CONFERENCE ON SOFTWARE ARCHITECTURE (pp.
1-10). IEEE (The Institute of Electrical and Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/5463ca38-f9e8-4ace-8999-792ffa2bd3c6

Defining Execution Viewpoints for a

Large and Complex Software-Intensive System

Trosky B. Callo Arias
1
, Pierre America

2
, and Paris Avgeriou

1

1
Department of Mathematics and Computing Science - University of Groningen

2
Philips Research and Embedded Systems Institute

The Netherlands

trosky@cs.rug.nl, pierre.america@philips.com, paris@cs.rug.nl

Abstract

An execution view is an important asset for develop-
ing large and complex systems. An execution view

helps practitioners to describe, analyze, and communi-

cate what a software system does at runtime and how it

does it. In this paper, we present an approach to define

execution viewpoints for an existing large and complex

software-intensive system. This definition approach
enables the customization and extension of a set of

predefined viewpoints to address the requirements of a

specific development organization. The application of

this approach has helped us to identify a set of execu-

tion viewpoints that we are currently using to construct

execution views of an MRI system, a large software-
intensive system in the healthcare domain.

1. Introduction

The usage of multiple views is a common practice

to construct and document the architecture of large

software-intensive systems [4, 8]. The ISO/IEC 42010

standard provides a widely accepted conceptual defini-

tion of architectural views, viewpoints and models [8]:

- An architectural view is a representation of a set of

system elements and relations associated with them,

conforming to a specific viewpoint.

- An architectural viewpoint addresses particular con-

cerns of the system stakeholders and consists of the

conventions for the construction, interpretation, and

use of an architectural view.

- A view may consist of one or more architectural
models. Each such architectural model is developed

using the conventions and methods established by its

associated viewpoint. An architectural model may

participate in more than one view.

In this paper, we focus on the stakeholder con-

cerns related to system evolvability and the corres-

ponding views that can address them. As part of our

research on the evolvability of large software-intensive

systems [16], we observed that suitable architectural

views are important assets to facilitate system evolu-

tion [11, 12]. Such views help practitioners to under-

stand the existing system, to plan and evaluate intended

changes, and to communicate them to others.

In particular, we are interested in execution views,

which consist of a set of models that describe and doc-

ument what a software system does at runtime and how
it does it. The term runtime refers to the actual time

that the software system is functioning (during testing

or in the field). Obviously, it is very important to un-

derstand this runtime behavior of the software, but in

practice documenting it often does not receive enough

attention. Thus, our particular focus is to support prac-

titioners in how to construct execution views for large

and complex software-intensive systems. Such systems

often have a heterogeneous implementation and consist

of multiple processes, each with multiple threads, dep-

loyed across several computers.

In our initial work, we constructed an execution

view of an existing large software system [2], which

addressed specific stakeholder concerns. However, a

development organization of such a large and complex

system has several stakeholders with numerous con-

cerns. Therefore, the organization needs to be able to

define a number of execution viewpoints addressing

the needs and matching the characteristics of its partic-

ular system. To achieve this, an organization may ei-

ther reuse the predefined viewpoints available in the

literature (e.g. [3, 5, 11, 14]) or define new ones.

1978-1-4244-4985-9/09/$25.00 c©2009 IEEE

In this paper, we present an approach to define ex-

ecution viewpoints to address the requirements of a

specific organization developing a large and complex

software-intensive system. This approach includes the

identification of the organization’s requirements (in

terms of concerns related to system evolvability and

development activities) and the definition of a set of

specific execution viewpoints. The organization’s re-

quirements are derived from interviews with key prac-

titioners. The specific execution viewpoints are defined

(including the customization and extension of some

predefined viewpoints) to address the derived require-

ments.

We have applied this approach as part of the do-

cumentation of the execution architecture of a Magnet-

ic Resonance Imaging (MRI) system. This system is a

representative large and complex software-intensive

system, developed by Philips Healthcare [1]. This ap-

plication has helped us to identify how to use (custom-

ize and extend) predefined viewpoints and to extend

our approach to construct execution views, supporting

more practitioners by extending our initial set of mod-

els. We expect that other organizations and researchers

can reuse our definition approach as well as some of

the execution viewpoints we define here.

The organization of the rest of this paper is as fol-

lows. In Section 2, we summarize how we identified

some predefined viewpoints from the literature. In Sec-

tion 3, we describe the interviews to identify the re-

quirements of a particular development organization.

Section 4 summarizes the identified concepts and con-

cerns to define execution viewpoints. In Section 5, we

present a set of specific viewpoints resulting from the

application of this approach. Finally, in Section 6, we

provide some conclusions and future work.

2. Predefined execution viewpoints

In this section we describe our motivation to search

for predefined viewpoints and the result of our search.

2.1. Motivation

To define specific execution viewpoints, we

searched the literature for predefined viewpoints that

address somehow what a system does at runtime and

how it does. In doing so we conform with the concep-

tual model from the ISO/IEC 42010 standard [8]. Fig-

ure 1 illustrates the part of the conceptual model that

describes the definition of specific viewpoints, the

concepts of viewpoints, views and models with respect

to execution. According to this model an execution

viewpoint can cite a predefined viewpoint, in the sense

that the former can be defined reusing (customizing or

extending) the latter.

Predefined

viewpoint

Execution

View

Execution

Viewpoint 1

Conforms to

1

0..1Cites 0..1

Execution

Model

1..n1..n1..n

Sanctions

1..n

Figure 1. Reuse of predefined viewpoints for

an execution viewpoint

2.2. Identified predefined viewpoints

Our search of predefined viewpoints resulted in the

identification of five candidates, which are the most

comprehensive and elaborated available predefined

viewpoints that can be reused to define specific execu-

tion viewpoints. Table 1 lists these predefined view-

points along with their names, as presented in the lite-

rature, and the set of concerns and system elements

that their execution models describe. These predefined

viewpoints can be classified into two groups based on

their concerns:

The first group includes:

- The concurrency viewpoint of [14], which describes

the concurrency structure of the system, mapping func-

tional elements to concurrency units to clearly identify

the parts of the system that can execute concurrently

- The behavior description of [3], which proposes a

language-independent way to document behavioral

aspects of the interactions among system elements

The second group includes:

- The deployment viewpoint of [14], which addresses

how to describe the environment into which the system

will be deployed including the dependencies the sys-

tem has with its runtime environment

- The deployment style of [3], which also addresses

how to describe the allocation of components and con-

nectors to execution platforms

In addition, another predefined viewpoint is the execu-

tion architecture of [5], which spans the two groups,

describing the mapping of functionality to physical

resources and the runtime characteristics of the system.

2 2009 IEEE/IFIP WICSA/ECSA

Table 1. Predefined viewpoints for execution views

Viewpoint What it describes (concern) System elements

Concurrency

[14]

- Task structure and mapping of functional elements to tasks

- Inter-process communication and state management

- Synchronization and integrity

- Startup, shutdown, task failure, and reentrancy

Processes, process groups,

threads, inter-process

communication

Behavior

description

[3]

- Types of communication

- Constraints on ordering

- Clock-triggered stimulation

Use cases, structural

elements, processes, states,

applications, and objects.

Deployment

[14]

- Hardware required (specification and quantity)

- Third-party software requirements and technology compatibility

- Network requirements and capacity and physical constrains

Processing and client nodes,

network links, hardware

components, and processes.

Deployment

style [3]

- Allocation, migration, and copy relations between software ele-

ments and computing hardware.

- Properties of computing hardware, e.g., bandwidth, and resource

consumption.

Software elements

(processes) and computing

hardware (processor,

memory, disk, etc.)

Execution

architecture

[5]

- Execution configuration and its mapping to hardware devices

- Dynamic behavior of configuration

- Communication protocol

- Description of runtime entities and their instances

Processes, tasks, threads,

clients, servers, buffers,

message queues, and classes

3. Identifying the organization’s require-

ments for execution views

Asking stakeholders for their concerns should be a

common practice, especially for choosing views [3]

and identifying which views to recover from an exist-

ing system [17]. In order to identify the requirements

for execution views, we conducted a series of inter-

views with key experts of our industrial partner using

specific questionnaires. In this section, we summarize

the key aspects of the questionnaire design and inter-

views.

3.1. Questionnaire design

The main goal of the specific questionnaires was

to collect information on which execution views to

create, what to describe in a particular model, how to

choose the abstraction level, and how it should be de-

scribed. Often, asking these broad questions to practi-

tioners does not provide precise or useful answers. To

overcome this, we designed two types of question-

naires (overview and model-specific). To design them,

we summarized predefined viewpoints in the literature

and our own research observations, and applied guide-

lines on reviewing software architecture descriptions

[13].

Overview questionnaires help us to estimate the

value of an execution viewpoint and get an insight on

how a given interviewee may use it. To focus the ques-

tionnaire, we centered the questions on a set of existing

documents containing some execution models that

were authored or often used by the interviewee.

Model-specific questionnaires help us to assess

how a specific execution model created or often used

by the interviewee aligned to descriptions of similar

models of predefined viewpoints. Thus, with each

model-specific questionnaire we attached at least two

models: the one used or created by the interviewee and

a related example from the literature. Table 2 summa-

rizes the group of questions for both types of question-

naires, overview and model-specific. For an example

of a full questionnaire, see appendix I.

Table 2. Questionnaires structure

Group of questions Overview Model-

specific

1. Authors and contributors X X

2. Creation and maintenance X X

3. Intended and actual users X X

4. Usage in daily activities

(predefined viewpoint)
X X

5. Usage in other activities

(observations & experience)
 X

6. Description of concerns

(predefined viewpoint)
 X

7. Representation language

and level of detail
 X

3.2. Interviews

To conduct the series of interviews, and keep them

manageable and productive, it is necessary to identify a

2009 IEEE/IFIP WICSA/ECSA 3

set of representative practitioners. We initially in-

volved two stakeholders of the development organiza-

tion who are actual consumers and producers of execu-

tion views. First, a senior designer who documented an

execution view in the past using as a main reference

the 4+1 View Model [10] aiming to support the analy-

sis of the system performance. Second, an architect in

charge of architecting and designing software interfac-

es for system-specific hardware devices. Later, we

selected additional stakeholders who were mentioned

as major contributors or actual users of the chosen

document for the interview, e.g., other software archi-

tects, designers, platform support engineers, and man-

agers. After conducting an interview, we validated the

collected information sending the questionnaire (with

answers and comments) to the interviewee who cor-

rected and sometimes extended the captured informa-

tion.

4. Identified concepts and concerns

Functional

Mapping

Concurrency Resource

Usage

Deployment

Source of

Information

Construction

Technique

1..n
Use
1..n

Stakeholder Development

Activity1..n

Involves

1..n

Execution

Viewpoint

1..n
Requires

1..nConcern

1..n
Holds

1..n

Metamodel

Execution

Model

1..n
Support
1..n

1..n
Sanctions
1..n

1..n
Frames
1..n

1

1..n

Instantiates

1

1..n

Execution View

1
Conforms to

1

1..n

As Is

1..n 1..n

To Be

1..n

Figure 2. Conceptual model to define execu-

tion views and viewpoint

Through the series of interviews, we identified a

set of concepts and relationships between them. Figure

2 illustrates the concepts and their relationships. This

conceptual model is based on the model presented by

the standard [8], but here we limit ourselves to execu-

tion views, models, and viewpoints instead of general

architectural views, models, and viewpoints from the

standard. The functional mapping, deployment, con-

currency, and resource usage viewpoints are specific

viewpoints that we will describe in Section 5. In addi-

tion, we include concepts such as development activity,

metamodel, and construction technique to illustrate

how execution views and viewpoints fit within the de-

velopment organization based on the identified re-

quirements. In the rest of this section, we focus on the

descriptions of the main concepts (execution model

and metamodel) and the identified major concerns re-

lated to system evolvability within development activi-

ties. Construction techniques and sources of informa-

tion are presented in our previous work [2].

4.1. Execution models

From the results (answers and comments) of ques-

tions in groups 1-4, we identified that a development

organization often needs to construct ‘As Is’ and ‘To

Be’ execution models to build an execution view. The

concept of ‘As Is’ and To Be’ are also applicable to

models of other architectural views, but to keep the

focus of this paper, we describe these concepts for

models of an execution view.

’As Is’ models describe the execution of the cur-

rent system. These models are often created to support

the acquisition of knowledge about key execution sce-

narios or the interactions between key system compo-

nents. A ‘To Be’ model describes the execution of a

system that does not yet exist. Such models are typical-

ly created to design and evaluate one or more alterna-

tives for a future system and to communicate the cho-

sen alternative to the implementers. After implementa-

tion, a new ‘As Is’ model can be created and compared

to the chosen ‘To Be’ model. Since nowadays a system

is rarely ever designed from scratch but is typically

based on existing systems (i.e. Brownfield site [6]), it

is often a good idea to construct a ‘To Be’ model by

modifying or taking as a reference an existing ‘As Is’

model.

4.2. Metamodel of system execution elements

When identifying the information needs of the

practitioners, we found it very useful to describe the

various elements that play a role in system execution in

a metamodel, which defines a number of concepts that

occur in the execution models. Figure 3 shows such a

metamodel with system execution elements and rela-

tionships between them. We developed this in our ear-

lier work [2] and validated and refined it during the

interviews. Most predefined viewpoints (see Table 1)

also use several of these elements, e.g., processes and

threads, to create execution models. Our metamodel

extends the concepts of the predefined viewpoints,

including elements and relationships to address the

organization’s requirements that we identified to con-

struct execution views of a large software system. The

particular extensions that we introduce are elements

such as execution scenario, task, software component,

and activity. These extensions are meant to cope with

three major issues: complexity and size of the system,

explicit links with other system views, and analysis of

resource usage. In section 5, we describe these exten-

sions in more detail in the discussion of the identified

viewpoints. We also provide a detailed description of

4 2009 IEEE/IFIP WICSA/ECSA

the elements and relationships of this conceptual model

in [2].

Note that the metamodel does not apply to an in-

dividual execution model, but is shared among the

execution models. In this way, it indicates important

relationships between the models and can help to es-

tablish consistency among the models. We expect that

using a single, shared metamodel not only in the ex-

ecution views but also across all architectural views

may contribute significantly to their mutual consisten-

cy.

Procedure

Call
Data

Sharing

Code

Utilization

Code

Load/Execute

Data

access

Persistent

Data

Access

Interaction

Platform

Resource

Platform

Utilization

Use

Execution

Coordination

Activity

1..n1..n

Execution

Scenario

Thread

1..n1..n

Performs

Task

1..n1..n

Process 1..n1..n

Software

Component

1..n1..n
Require

1..n1..n

Interact

1..n1..n

Processing

Node

1
Deployed in

1

Figure 3. Metamodel of system execution ele-

ments

4.3. Concerns related to system evolvability

Based on the result of questions in groups 2-5, we

found that the construction of execution models is a

goal-driven and often problem-driven activity to

evolve an existing system. This means that the con-

cerns of the stakeholders relate to the activities they

perform within a given development project towards

specific goals. The major stakeholder’s concerns and

the development activities that need support of execu-

tion views are listed in Table 3 and elaborated in the

following paragraphs:

- System understanding: In addition to the result of

questions in groups 2-5, our own observations helped

us to identify two aspects of how an execution view

supports acquisition of system knowledge. On the one

hand, execution models support system-specific educa-

tion and training of new developers. Often new devel-

opers are exposed to execution models before they can

start reading and writing code. This practice helps new

developers to create a mental model of the overall sys-

tem, the system components they develop, and their

relations (dependencies) with the rest of the system

components. On the other hand, ’As is’ execution mod-

els help all practitioners to constantly refresh, validate,

and extend their mental models, in particular to support

system corrective maintenance activities that aim to

improve the existing run-time structure and manage

unpredicted system behavior.

- Project planning: Practitioners need to construct

‘To be’ execution models to support two particular

activities. On the one hand, these models are needed to

distinguish and analyze the difference between consi-

dered alternative or future architectures and designs

that aim to improve quality attributes such as reliability

[15], dependability, and safety [7]. This is important,

as it is often not obvious how the realization of the

alternative design may affect the structure and behavior

of the system at runtime and therefore influence other

system quality attributes. On the other hand, as we

described in Section 4.1, execution models are neces-

sary to describe the overall system structure, its com-

ponents, and their interactions that make up the system

functionality of interest. Often system components are

mapped to development units within or outside the

organization. Thus describing the involved system

components enables the identification of the involved

units, and therefore the planning and budgeting of re-

sponsibilities, if possible, as a downstream process.

- Communication: Another goal of describing the

architecture of a software system is to support the

communication between system stakeholders. In par-

ticular, we identified that besides the mental models

that practitioners may have, they need explicit evi-

dence in a common language (i.e. diagrammatic repre-

sentations of execution models) to supports three links

of communication within the development organiza-

tion. First, execution models are useful to transfer

technical knowledge of the system design and imple-

mentation. This supports the communication of design-

ers and developers with architects and managers.

Second, execution models are needed to describe how

the system uses third-party components at runtime.

These models will enable the communication of devel-

opment units (external or internal) with customer de-

signers, developers, and testers. Third, execution mod-

els are needed to describe how the software system

interacts with and uses the resources of its runtime

platform. These models will enhance the communica-

tion of the design and implementation units with the

(internal or external) unit supporting the system run-

time platform.

- Conformance of design and implementation:
Large and complex software-intensive systems have

strict constraints on their non-functional properties

such as reliability, safety, and performance. Ideally, the

architecture and design should describe how to achieve

those requirements, but often the implementation de-

viates from these requirements at runtime. This usually

2009 IEEE/IFIP WICSA/ECSA 5

happens when the implementation uses third party or

off-the-shelf components, facilities provided by the

implementation technology and the runtime platform,

such as dynamic loading of shared libraries, plug-in

mechanisms, and mechanisms to manage memory

access. Thus, to verify non-functional requirements

and properly test the system, it is often necessary to

construct ’As is’ execution models to describe changes

in the access and utilization of resources such as shared

memory, shared code libraries, communication paths,

and power consumption. Thus, ’To be’ models can be

updated, extended, and analyzed.

Table 3. Concerns and development activities
supported by execution models

Concern Development activity

System

understanding

Education and training, dependency

analysis, and corrective maintenance

Project Planning
Analysis of alternative and future

architecture and design.

Communication
Between development units or teams

and with customers and providers

Conformance of

design and

implementation

Architecture documentation,

verification of non-functional

requirements, and testing

5. Execution viewpoints

The results of questions in groups 5-7 showed that

the predefined viewpoints listed in Table 1 are useful

to define execution views. However, they do not opti-

mally address all stakeholder concerns, in particular in

dealing with the complexity and size of the system, in

making explicit links with other system views, and in

describing and analyzing actual resource usage. There-

fore, we defined four specific viewpoints addressing

the requirements for the execution views. Two view-

points are based on predefined viewpoints (concurren-

cy and deployment) and two are additional viewpoints

(functional mapping and resource usage). In this sec-

tion, we describe these four viewpoints including some

of their sanctioned models.

5.1. Functional mapping

The functional mapping viewpoint addresses the

concern about the relation between the system functio-

nality, system functional components, and execution

elements. Thus, it shows how to describe the mapping

of the runtime elements (including software and hard-
ware elements) to the functional system components
that interact together to deliver the system functionali-
ty. For a large and heterogeneous system, this view-

point should show how to describe the mapping consis-
tently and without being overwhelmed by the size and

complexity of the system. To achieve this, the set of
most important execution scenarios should be chosen
and for each of these a functional mapping model
should be constructed. Moreover, for each such model,
the most relevant elements should be determined, so
that the others can be filtered out.

The model in Figure 4 is sanctioned by this func-

tional mapping viewpoint. It shows how the individual
tasks in a scenario are supported by a set of software
components and how the processes that belong to them
perform activities, such as data access and code utiliza-
tion. We observed that models like this one support all

concerns and development activities in Table 3. For

instance, functional mapping models are necessary to
enable practitioners that are less familiar with execu-

tion elements to understand the system execution. Cer-
tain practitioners, such as managers and architects are

typically more familiar with the functionality and the

main components of the system. By contrast, designers

and platform support engineers are often more familiar

with processes and threads. A functional mapping

model such as Figure 4 helps them to relate these con-

cepts to other, less familiar ones.

Functionality

Software
Component

Processes

Code
and
Data

Activity

Figure 4. Execution model of the functional

mapping viewpoint

5.2. Deployment

This viewpoint is a customization of predefined

deployment viewpoints [3, 14]. This viewpoint ad-

dresses the concern about the allocation of system ex-

ecution elements to processing nodes and the environ-

ment into which the system is deployed. Compared to

predefined deployment viewpoints, the requirements

that we identified indicate that such a deployment view

should show additional information on three aspects

(see Figure 5):

a) Detail of processing nodes: Boxes that describe

processing nodes in a deployment model should de-

scribe more consistent and useful information. For in-

stance, the predefined deployment viewpoint [3], de-

6 2009 IEEE/IFIP WICSA/ECSA

scribes that runtime platform and network models

should include information about the characteristics of

the processing nodes and the functional elements inside

them. To do this for a complex system, while keeping

an overview, we decided to represent functional ele-

ments with software components (groups of processes)

thereby reducing complexity when the number of

processes is large and details are not necessary. In ad-

dition, we identified that it is required to describe the

allocation of important code libraries, data repositories,

and system-specific hardware devices to processing

nodes, making explicit distinctions between these ele-

ments and software components.

b) Detail of links between processing nodes: Often

deployment models use lines to describe links between

processing nodes such as network or communication

lines. However, these links often lack descriptions

about what they actually serve for at runtime. We iden-

tified that for an execution view, links should describe

at least three aspects: the function of the link, the link’s

technology characteristics, and the capacity or band-

width the system requires from the link.

c) Organization of processing nodes: We identi-

fied that the diagrammatic representation of a deploy-

ment model should resemble as much as possible the

actual physical and geographical distribution of the

system. This is particularly required to make some

design decision explicit, such as safety issues and rules

to manage the influence of physical phenomena (e.g.

magnetism) on processing nodes. For instance, the

diagram can indicate how processing nodes and the

software components they contain can be located close

to user interface elements or scanner control devices.

status

serial

control / status

~10 MB/s

proprietary

control / status
serial

raw data
BDAS 10 MB/s, CDAS 80 MB/s proprietary link

e-net

s
c
a

n
n

e
r

d
e

v
ic

e
s

PatSup

Physio

Magnet

RF TX

Gradient

RF RX

Host

Windows XP

CDAS SBC /
BDAS BCP

VxWorks

Reconstructor

Windows XP

Graphical
User-Interface

 control
CDAS 100 Mb/s e-net

BDAS SCSI

images

1 Gb/s e-net

PatCom

DVD-Box

Windows XP

firewire

IAP

GyroView

Spectro

Autoview

Navigator

Status

Monitoring

Physio

Q manage

VT

MIP-MPR

PrServer

shared
image

memory

Interactive

DatMon
Viewer

IAP

AutoviewMIP-MPR

PrServe

shared
image

memory

Figure 5. Customized deployment model for
an execution view

5.3. Resource usage

This viewpoint addresses the concerns how to en-

sure and adequate resource usage. This includes the

metrics, rules, protocols, and budgets that define and

describe how the system actually accesses or uses

available resources such as data, system code artifacts

(software), and runtime platform resources (hardware

and software). Describing resource usage is different

from describing required resources, which is covered

by the deployment viewpoint. For instance, usual dep-

loyment models describe network connections with the

capacity of the physical network link. Instead, the re-

source usage viewpoint shows how to describe the ac-

tual capacity used overtime. Thus, it enables the analy-

sis of the difference between the required (budgeted)

network capacity and the provided capacity.

Figure 6 presents an execution model that de-

scribes CPU time usage. The resource usage in the

scenario is described together with the activity of the

two main functions (scan and reconstruction) of the

system subject of our research. Resource usage can be

described in terms of the processes or threads, especial-

ly when performing a top-down analysis. For instance,

we constructed models like this one to analyze the dif-

ference between alternative designs of the major sys-

tem functionality. There, we observed that the main

activities supported by models sanctioned by a re-

source usage viewpoint are analysis of alternative ar-

chitectures, conformance of design and implementa-

tion, and communication (in particular between de-

signers and platform support engineers).

Figure 6. Resource usage models to analyze

alternative designs

To construct resource usage models, it is expected

that a system architecture and design should provide

benchmarks and budgets for resource usage, e.g., CPU

usage, but this is not often the case in current practice.

Thus, this viewpoint should also show how to create

and describe benchmarks and budgets to steer the con-

struction and analysis of resource usage models. A set

of ‘As Is’ execution models of stable execution scena-

rios, preferably obtained from measurements on an

actual system, can serve as benchmarks for resource

usage. Based on those, budgets for future designs can

be expressed as ‘To Be’ models. Our experience is that

this helps practitioners to agree on benchmarks and to

2009 IEEE/IFIP WICSA/ECSA 7

define budgets based on specific context and actual

system information.

5.4. Concurrency

This viewpoint is a customization of the prede-

fined concurrency viewpoint [14]. For the execution

view, we identify that it is required that the main con-

cern that a concurrency model should address is the

actual control flow and data flow between software

components. On the one hand, control flow defines the

order of execution and synchronization between soft-

ware components to use or access the various system

resources. On the other hand, data flow describes how

data is processed and flows through software compo-

nents and other system elements such as data reposito-

ries. Together control and data flow creates the runtime

behavior of a system in terms of order of interactions,

situations of concurrency, communication channels,

and time-based interaction dependencies between

processes, threads and other system elements, such as

data repositories and the runtime platform.

For a large system, this viewpoint shows how to

describe actual control and data flow at an overview

level (software components) and a process and thread

level of detail. We identified that to describe control

and data flow between software components, it is ne-

cessary to define abstractions at the level of software

components to represent the types of interactions be-

tween them, such as data sharing, procedure call, and

execution coordination (see Figure 3). In addition,

those abstractions should be mapped to actual execu-

tion activities performed by the corresponding

processes or threads of the interacting software com-

ponents. In this way, it is possible to construct control

and data flow models at the process and thread level of

detail.

Figure 7 illustrates the control flow and dataflow

for a given execution scenario. In this model, control

flow and dataflow is described between processes

(grey boxes) and threads (parallelograms). The control

and data flow edges between threads are labeled with

numbers (1 to 4), which identify the tasks of the scena-

rio.

Figure 8 shows a matrix model that describes situ-

ations of concurrency for the same scenario, but at the

overview level. In this matrix model, the tasks of the

scenario are distributed horizontally representing the

time dimension and software components are distri-

buted vertically. The value in each cell is the number

of active threads, which might be interacting creating

control and data flow.

Figure 7. Control and data flow model be-

tween processes and threads

Figure 8. Overview of concurrency between

software components

Practitioners will often decide for informal repre-

sentations [5, 14], but we have identified that most

practitioners will associate boxes and lines with soft-

ware components or processing nodes rather than

processes and threads. Therefore, when constructing

diagrammatic representations of concurrency models at

the detail of processes and threads, it is required to use

distinctive notations, e.g., using stereotypes in UML

diagrams or representing threads with parallelograms

instead of boxes (as in Figure 7).

6. Conclusions and future work

We described how to define a set of execution

viewpoints to support the construction of execution

views for an existing large software-intensive system

8 2009 IEEE/IFIP WICSA/ECSA

based on the requirements of its development organiza-

tion. The contribution of our approach is three-fold.

First, we have shown and conceptualized how to use

(customize and extend) predefined viewpoints in prac-

tice. Second, the definition approach using predefined

viewpoints is a valuable complement (e.g., to scope

and guide) to more general-purpose definition methods

such as [9]. Moreover our approach is repeatable in

other organizations and research groups. This was va-

lidated by the key practitioners involved in the ap-

proach: they confirmed that a similar approach could

be used to upgrade or define other viewpoints for

views of their specific system. Third, our set of defined

specific execution viewpoints can be reused or cited to

construct views in other organizations, because they

address specific concerns that stakeholders may have.

We have shown how execution views can be con-

structed as useful sources of information that describe

what a software system does at runtime and how it

does it. On the one hand, such a view describes the

actual realization of the design and implementation on

the targeted platform (in ‘As Is’ models). On the other

hand, the view describes the desired behavior of a

possible future system at runtime (in ‘To Be’ models).

As part of our future work, we aim at investigating and

reporting how such execution views can be efficiently

maintained and used to support specific architecting

and design activities. Moreover, we intend to study

how execution views can be related to other architec-

tural views, with special emphasis on identifying or

preferably avoiding inconsistencies.

Acknowledgments

We would like to thank the Software Architecture

Team and the software designers of the MRI system in

Philips Healthcare, in particular Krelis Blom and Dan-

ny Havenith. We also extend our gratitude to Rob van

Ommering, Wim van der Linden, and our Darwin col-

leagues for their feedback and joint work.

This work has been carried out as a part of the

Darwin project at Philips Healthcare under the respon-

sibility of the Embedded Systems Institute. This

project is partially supported by the Dutch Ministry of

Economic Affairs under the BSIK program.

References

[1] Philips Healthcare - Magnetic Resonance Imaging,

http://www.healthcare.philips.com/main/products/mri/i

ndex.wpd, 2009, Visited February 2009

[2] T. B. Callo Arias, P. Avgeriou, and P. America, Ana-

lyzing the Actual Execution of a Large Software-

Intensive System for Determining Dependencies, pre-

sented at 15th Working Conference on Reverse Engi-

neering, 2008.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,

R. Little, R. Nord, and J. Stafford, Documenting Soft-

ware Architectures. Views and Beyond: Addison Wes-

ley, 2002.

[4] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A.

Ran, and P. America, A general model of software ar-

chitecture design derived from five industrial approach-

es, Journal of Systems and Software, vol. 80, pp. 106-

126, 2007.

[5] C. Hofmeister, R. Nord, and D. Soni, Applied Software

Architecture. Boston: Addison-Wesley, 1999.

[6] R. Hopkins and K. Jenkins, Eating the IT Elephant:

Moving from Greenfield Development to Brownfield:

IBM Press, 2008.

[7] G. Hunt, M. Aiken, P. Barham, M. Fähndrich, C. Haw-

blitzel, O. Hodson, J. Larus, S. Levi, N. Murphy, B.

Steensgaard, D. Tarditi, T. Wobber, and B. Zill, Sealing

OS processes to improve dependability and safety, pre-

sented at 2nd ACM SIGOPS/EuroSys European Confe-

rence on Computer Systems, 2007.

[8] ISO/IEC-JTC1/SC7, ISO/IEC 42010 Systems and

Software Engineering - Recommended Practice for

Architectural Description of Software-Intensive Sys-

tems 2007.

[9] H. Koning and H. van Vliet, A method for defining

IEEE Std 1471 viewpoints, The Journal of Systems &

Software, vol. 79, pp. 120 - 131, 2006.

[10] P. Kruchten, The 4+1 View Model of Architecture,

IEEE Software, vol. 12, pp. 42-50, 1995.

[11] G. Muller, CAFCR: A Multi-view Method for Embed-

ded Systems Architecting; Balancing Genericity and

Specificity, PhD Thesis, Technical University Delft,The

Netherlands, 2004

[12] G. Muller, Gaudí System Architecting - A Reference

Architecture Primer,

http://www.gaudisite.nl/info/ReferenceArchitecturePri

mer.info.html, 2007, Visited April 2009

[13] H. Obbink, P. Kruchten, W. Kozaczynski, R. Hilliard,

A. Ran, H. Postema, D. Lutz, R. Kazman, W. Tracz,

and E. Kahane, Report on Software Architecture Re-

view and Assessment version1.0,

http://philippe.kruchten.com/architecture/SARAv1.pdf,

Visited November 2008

[14] N. Rozanski and E. Woods, Software Systems Architec-

ture: working with stakeholders using viewpoints and

perspectives: Addison Wesley 2005.

[15] H. Sozer and B. Tekinerdogan, Introducing Recovery

Style for Modeling and Analyzing System Recovery,

presented at 7th Working IEEE/IFIP Conference on

Software Architecture, 2008.

[16] P. van de Laar, P. America, J. Rutgers, S. van Loo, G.

Muller, T. Punter, and D. Watts, The Darwin Project:

Evolvability of Software-Intensive Systems, presented

at 3rd International IEEE Workshop on Software Evol-

vability 2007.

[17] A. van Deursen, C. Hofmeister, R. Koschke, L. Moon-

en, and C. Riva, Symphony: View-Driven Software Ar-

chitecture Reconstruction, presented at 4th Working

IEEE/IFIP Conference on Software Architecture, 2004.

2009 IEEE/IFIP WICSA/ECSA 9

APPENDIX I. Example of a model-specific questionnaire

AD Project name: Building the Execution Architecture of the MRI System Date:

Domain: Team:

Activity: Review of Execution Architecture Documentation

Purpose of the activity:

Review Session: Runtime Structure or Concurrency Models
In this session, we review in detail the section Runtime structure of the document Execution Architecture and the concurrency or behavior viewpoints from the literature. The
review is centered in discussing in detail the concerns addressed by this section and some of the diagrams of the runtime structure of the MRI system execution.

1. Creation and maintenance overview:
- Is there any specific contributor or source of information?
- Besides the guidelines of the 4+1 model, what triggered the creation of this section?
- What was the validation of the information of this section?
- How often is this section going to change?

2. Intended audience: (roles*)
Hardware and Software designers and architects

3. Actual audience: (roles*)
* Roles within PH-MRI e.g. architect, designer, implementer, maintainer, etc.

4. Usage w.r.t. architecting and design activities
The tailoring of the list of activities is based on the overview review (previous session)

Activity Intended Actual Desired Comments and brief answers on how the activity is addressed

Communication among development units

Conformance of downstream design and development

Analysis & Design workflow

Education and training

Communication with customers and/or providers

Analysis of system quality attributes

Analysis of alternative architectures/designs

Other specific activities for an improved version of this section

Planning and creation of vision and roadmaps

5. Usage w.r.t. specific (architectural and design) concerns addressed by a concurrency viewpoint
Concerns are collected from the literature, nevertheless we expect that the interviewee may add some specific concerns

Concern Intended Actual Desired Comments or brief answers on how the concern is addressed

Process/Thread Structure

Show the mapping of functional elements to
Process/Thread(s)

Describe the mapping of functional elements to Process

Explain the mapping of functional elements to Process

Inter-process communication (Which are/why)

State management (states, transitions, causes, and effects)

Synchronization and integrity (e.g. mutex and shared data)

Startup and shutdown of unit and the aggregate system

Failure (Thread level and process crash) and propagation

Reentrancy and priorities (critical sections, shared code)

Notes:

6. Description and representation of information
(in the provided runtime views: Figure 1 and Figure 2)

Question Possible alternatives Comments and brief answers

What is the abstraction level of the diagram? System Overview Detail

Do you recognize the type or class of elements described by edges and nodes?

Do you recognize interactions between elements?

Do you understand what happened due to interactions?

Do you identify the sequence of interactions

Do you recognize what is inside of the nodes?

Can you describe the reason for grouping elements inside nodes?

Can you recognize the semantic of the different edges?

Additional Comments

• Attached models (System level, Overview level, Detail level)

10 2009 IEEE/IFIP WICSA/ECSA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

