

 University of Groningen

Fast heuristics for a dynamic paratransit problem
Cremers, M.L.A.G.; Klein Haneveld, W.K.; van der Vlerk, M.H.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cremers, M. L. A. G., Klein Haneveld, W. K., & van der Vlerk, M. H. (2008). Fast heuristics for a dynamic
paratransit problem. (SOM Research Reports; Vol. 08004). University of Groningen, SOM research school.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/ecb44238-ff10-48f0-9a6c-35f692d479c3

Fast heuristics for a dynamic paratransit problem

Maria L.A.G. Cremers∗ Willem K. Klein Haneveld
Maarten H. van der Vlerk

Department of Operations
University of Groningen

P.O. Box 800, 9700 AV Groningen
The Netherlands

January 9, 2009

Abstract

In a previous paper we developed a non-standard two-stage recourse
model for the dynamic day-ahead paratransit planning problem. Two
heuristics, which are frequently applied in the recourse model, contain
many details which leads to large CPU times to solve instances of relatively
small size. In this paper we simplify both heuristics to decrease CPU
time considerably while maintaining the quality of the obtained solutions
as much as possible. Numerical experiments on (semi-)realistic instances,
inspired by practice, show that our recourse model with fast heuristics
provides acceptable solutions within reasonable time.

1 Introduction

The Dynamic Day-ahead Paratransit Planning (DDaPP) problem concerns the
planning of transportation requests of elderly and disabled people for the next
day. Already today, one day before the day of operation, many requests are
known at the transportation company. Moreover, it is already known that there
are not enough own vehicles to serve all requests, especially during peak hours.
In this phase the decision is at stake which of these early requests to serve with
own vehicles and which ones to assign to subcontractors, under uncertainty of
the late requests arriving tomorrow, during the day of operation. Subcontract-
ing day-ahead can be profitable since it is less expensive than during the day of
operation. Besides the uncertainty with respect to the late requests, clustering
(combining) of requests is an important aspect of the DDaPP problem. It en-
sures that less vehicles are necessary to serve all requests. Since subcontracting

∗Email: m.l.a.g.cremers@rug.nl

1

is more expensive than using an own vehicle, clustering actually ensures that
less requests will need to be subcontracted.

In a previous paper [1] we studied the DDaPP problem and developed a non-
standard two-stage recourse model in which both important problem aspects
are included in detail. In the first stage, modeling today, all early requests are
clustered and subsequently assigned to own vehicles or those of subcontractors.
The second-stage problem, modeling tomorrow, is a dynamic problem in which
the late requests arrive one-by-one. A discrete event simulation is applied in
which two heuristics are repeatedly used, each generating a type of decision:
clustering of requests and assignment to vehicles. Both heuristics contain many
details which results in rather large CPU times for instances of relatively small
size.

In this paper, our goal is to apply our model to (semi-)realistic instances
of large size. However, using the recourse model CPU times to solve one large
instance are up to 90 hours. Therefore, simplifications are needed in the time-
consuming clustering and assignment heuristics, without deteriorating the qual-
ity of the solutions too much. As we will see, a small adjustment in the as-
signment heuristic leads to a large decrease in the number of calls, and hence
in CPU time. For the clustering heuristic various simplifying, fast alternatives
will be developed since it is less obvious how to decrease CPU time while main-
taining the quality of the obtained solutions as much as possible. To choose
the alternative which is the best compromise between CPU time and quality,
experiments have been performed with small instances. For these instances the
model with accurate, elaborate heuristics can be used to find solutions of high
quality and serve as a benchmark for the quality of the various alternatives.

In Section 2 we briefly describe the DDaPP problem, recourse model and
original heuristics to generate decisions in the discrete event simulation. Section
3 contains a description of the various alternative heuristics and the results of
the experiments to determine which alternative is the best compromise between
quality of the obtained solutions and CPU time. In Section 4 we present the
various practical settings and the results of our experiments. A summary and
conclusions can be found in Section 5.

2 Summary preceding paper

A description of the DDaPP problem can be found in Section 2.1. Section 2.2
contains the non-standard two-stage recourse model. In the second stage, a
discrete event simulation is applied in which two heuristics are used to generate
the clustering and assignment decisions. Both heuristics are described in Section
2.3.

For the motivations and detailed descriptions we refer the interested reader
to [1].

2

2.1 Problem description

In the DDaPP problem today a (pre)planning decision is made for tomorrow,
the day of operation. Two sets of requests are considered: early and late. Early
requests are known today and late requests are gradually revealed during the
day of operation, but at least a certain time before they start. All requests need
to be served, either by own vehicles or by those of subcontractors.

There are two kinds of passengers: ambulatory and those in a wheelchair,
and three types of vehicles: cars, vans, and taxis. Cars and vans belong to
the own vehicle fleet, while taxis are vehicles of subcontractors. Ambulatory
passengers can be served by all vehicle types, and wheelchair passengers only
by vans and taxis which have convertible seats. For cars and vans the available
number of vehicles is given, which can vary during the day. Furthermore, the
capacity of all vehicle types is given, as well as the costs per distance unit.

For each request the number and the kind of passengers is given, as well as
the pickup and delivery location (origin and destination), and a desired pickup
or delivery time from which time windows for pickup and delivery are derived.

Requests can be clustered and served with one vehicle in order to reduce
the number of vehicles required to serve all requests. Since the number of own
vehicles is fixed and subcontracting is more expensive than using an own vehicle,
clustering ensures that less requests will need to be assigned to subcontractors.
For requests to be combined, the vehicle capacity, time windows, and maximum
excess ride time (due to the detour) need to be respected. The excess ride time
is defined as the actual minus the direct ride time. Clustered requests are called
a route.

We neglect the time to drive empty from the destination of a request to the
origin of the next one. This assumption reduces the complexity of the problem
considerably and is acceptable in our view since we are concentrating on a day-
ahead problem which does not require the actual vehicle routes to be made.

The objective of the DDaPP problem is to minimize the expected costs
of serving all requests, both early and late. For the own vehicles only the
operational costs are taken into account, which are proportional to the distance
driven. For subcontracting, besides the operational costs, a fixed fee needs to be
paid for each request. Furthermore, subcontracting during the day of operation
is more expensive than before, as discounted rates have been agreed with the
subcontractors for timely knowing which requests to serve.

2.2 Two-stage recourse model

Figure 1 contains a schematic overview of the two-stage recourse model in which
ideas from stochastic programming and online optimization are combined. The
first stage, modeling today, consists of two consecutive optimization problems.
First, all early requests are clustered into routes. For this purpose, a clustering
heuristic, based on certain problem characteristics, is developed and described
in [2]. After clustering, the obtained routes are assigned to own vehicles and
taxis. Subcontracting is a permanent decision, and hence, subcontracted routes

3

do not appear in the second-stage problem. In contrast, the assignment of routes
to own vehicles is tentative and can be reconsidered during the day of operation.

early
requests

Clustering 1st-stage
assignment

routes

routes
assigned
to taxis

routes
assigned
to own
vehicles

late
requests

First stage

Second stage

 Next
event ?

Arrival single
late request

Partial route
assignment

Clustering of
late request

 More
events ? End

no

yes

Figure 1: Schematic overview of the two-stage recourse model.

The objective of the DDaPP problem is to find the first-stage assignment
with minimal total (expected) costs. The costs of an assignment consists of
two parts: the costs of assigning routes to taxis today and the expected costs
of assigning the remaining routes and all late requests to vehicles tomorrow.
Thus, in both stages only the costs of the permanent assignments are taken into
account.

In the second stage, modeling tomorrow, for a given first-stage assignment
and observing a sequence of realized late requests a discrete event simulation is
carried out. In this simulation, two types of decisions are made. First, every
time a late request arrives, immediately an attempt is made to cluster the late
request with a tentatively assigned route. Second, routes are given a permanent
assignment. This occurs as late as possible so that more late requests may arrive
and better decisions can be made. In Section 2.3 the heuristics generating each
type of decision are described.

2.3 Heuristics of the discrete event simulation

For both the clustering and assignment heuristics the CPU time per call is
small. However, both heuristics are called many times which gives rise to large
total CPU times: the clustering heuristic is called for every late request of every
sequence of realizations and the assignment heuristic for every time a route
needs to be given a permanent assignment. Hence, adjustments to be made
have to reduce CPU time per call (even further) or the number of calls.

The clustering heuristic attempts to combine one late request with a
tentatively assigned route. Routes with a permanent assignment are disregarded
since they are not allowed to be changed anymore.

The set of routes is divided into subgroups based on common locations since
in paratransit transport some locations like hospitals and elderly homes occur
frequently. The late request is attempted to be combined with the routes of

4

only one subgroup. For simplicity reasons the other subgroups are ignored. If
no combination satisfying the clustering conditions, specified in Section 2.1, can
be found, the late request will not be clustered, but forms a new route instead.

In the assignment heuristic a number of routes is permanently assigned to
own vehicles or taxis. Routes which already have a permanent assignment are
considered implicitly since they diminish the number of available own vehicles.
Moreover, also tentatively assigned routes starting within a certain look-ahead
period, but not yet receiving a permanent assignment, are considered.

All routes under consideration are assigned one-by-one to own vehicles or –
whenever this is not possible – to taxis. To determine whether a route can be
assigned to an own vehicle, time is discretized in periods of equal length and
a relaxed feasibility test is used: for each time period the route needs to be
served, it is checked whether an own vehicle (of certain type) is still available.
Thus, the assignment decision neglects scheduling aspects, but is suitable for
the preplanning decision we want to make.

3 Alternatives for the heuristics

CPU time to solve the model with the elaborate clustering and assignment
heuristics is rather large. For small instances with in total 55 – 75 requests
CPU time is 25 – 70 minutes and for large instances with approximately 700
requests it can be up to 90 hours1. The cause of these large CPU times is the
numerous calls of the clustering and assignment heuristics in the discrete event
simulation. Hence, to decrease CPU time, simplifying adjustments to one or
both heuristics have to be made, which decrease the number of calls, CPU time
per call, or both. The challenge is to find adjustments which not only reduce
CPU time considerably, but also maintain the quality of the obtained solutions
on an acceptable level.

In the elaborate version of the assignment heuristic it is obvious how to
realize a large decrease in the number of calls: just reduce the look-ahead period
to zero. Initially, we expected to improve the assignment decision by not only
considering the routes that need to be assigned permanently, but also routes
starting during the look-ahead period. However, experiments showed that the
improvement is only minor. If the look-ahead period is equal to zero, for every
observed sequence of realizations of late requests only one call of the heuristic
is needed instead of numerous calls. In this one call all routes are assigned
permanently, while in the other case every time a subset of routes is assigned,
some tentatively, others permanently. The one call can be achieved by ordering
the routes in increasing start time.

For the clustering heuristic it is less obvious how to decrease CPU time
without risking solutions of poor quality. Hence, various alternatives have been
developed. Experiments with small problem instances are used to select the
alternative which is the best compromise between CPU time and quality of the

1On a 2.33 Ghz Intel Core 2 Duo.

5

obtained solutions. The latter is determined by comparison to the (supposedly)
high quality solutions of the model with the accurate, elaborate heuristics.

In Section 3.1 we describe the various alternatives for the clustering heuris-
tic. In fact, two categories are considered: alternatives which reduce the number
of calls and alternatives which decrease CPU time per call. To select one alter-
native, to be used in experiments with (semi-)realistic instances, experiments
with small problem instances have been performed. The data of these instances
can be found in Section 3.2, while Section 3.3 contains the parameter setting of
the assignment heuristic and the genetic algorithm which is used to solve the
entire recourse model. In Section 3.4 we present the results of the experiments
with the small instances and select the alternative which appears to be the best
compromise between CPU time and quality.

3.1 Description of alternatives for the clustering heuristic

We consider two categories of alternatives for the clustering heuristic. In the
first category the late requests are not combined at all and hence the number
of calls of the heuristic is reduced to zero. By not clustering the late requests,
however, the number of routes which need to be outsourced increases. In an
attempt to compensate for this disadvantage, virtual vehicles are added to the
own fleet as used in the assignment heuristic. The number is chosen carefully
in order to subcontract approximately the same number of routes. The cost
structure remains the same.

In the second category, CPU time per call of the heuristic is decreased by
simplifying the clustering decision. Instead of applying the clustering heuristic
described in Section 2.3, we simply assume that the proportion of combinations
is the same in both stages. To this end, we estimate the clustering probability
based on information of the first-stage clustering, in several ways. Since the
early requests are still combined with the accurate, elaborate heuristic and the
only difference in the characteristics of both types of requests is the arrival
time, we expect the information from the first-stage combinations to be valuable
when clustering the late requests. Obviously, this approach is rather crude, and
invalid combinations might result, but we expect that a reasonable estimate of
the proportion of combinations to be made is more important than knowing the
details of the actual combinations.

Below, the alternatives of both categories are explained in detail.
The first category comprises alternatives in which the late requests are not

combined and virtual vehicles are used for compensation. The alternatives in
this category differ in how the number of virtual vehicles is determined.

1a. No virtual vehicles. We do not expect this alternative to perform very
well since on the day of operation not enough own vehicles are available
to serve the additional routes caused by not clustering the late requests.
Consequently, too many early requests will be assigned to taxis as sub-
contracting today is less expensive than tomorrow.

6

1b. The number of virtual vehicles is fixed. Several numbers have been tested
and only the best result, obtained with 2 virtual cars and no extra vans,
will be presented. If this alternative will be chosen for the experiments
with the realistic instances, it might be hard to determine the number of
virtual own vehicles since we did not find a relation between the required
number of virtual cars and vans and the parameters of the problem.

1c. The number of virtual vehicles varies during the day of operation and it
also depends on the observed sequence of realized late requests. Ideally, the
number of virtual cars and vans should be equal to the shortage originating
from not clustering the late requests. This way the late requests which
would have been combined can be served with virtual vehicles and the
first-stage decision does not need to be changed.

To estimate the number of virtual cars and vans for every realization and
time period, first the probability of combining a late request is estimated.
Then it is multiplied by the number of late car and van requests, respec-
tively. In time period t and realization r, let actr and avtr be the additional
number of own cars and vans and nctr and nvtr the number of late car
and van requests. Furthermore, let p̂2 be the estimated probability of
combining a late request. Then

actr = dp̂2 · nctre ,

avtr = dp̂2 · nvtre .

In order to estimate the probability of combining a late request, linear
regression is used with two independent variables: the observed clustering
probability of the early requests and the ratio of the expected number of
early requests to the total expected number of requests, fraction of early
requests for short. As argued above, we expect the probability of early
requests that are combined to be a reasonable estimator for the cluster-
ing probability of late requests. Moreover, also the (relative) numbers of
requests in both stages are relevant, since combining becomes harder in
case there are only few requests. Thus, if there are few early and many
late requests the probability of combined early requests might be a too
low estimate; if there are many early and few late requests the estimate
might be too high. Hence, we have included the fraction of early requests
in the regression. This fraction has a negative effect on the probability of
combining a late request, whereas the clustering probability of the early
requests has a positive effect. Let p1 be the observed clustering probability
of the early requests and f the fraction of early requests. Then, using the
data set of Section 4.1, we find

p̂2 = 0.294 + 0.965p1 − 0.173f with R2 = 0.925. (1)

In the second category of clustering alternatives information from the com-
bined early requests, in the form of probabilities, is used to cluster the late

7

requests. Using this information is faster than checking the clustering condi-
tions. We expect good results since the early requests are still combined by
the accurate, elaborate heuristic and the data of both types of requests are
drawn from the same distributions which is also reasonable from a practical
viewpoint. In our implementation, three different (groups of) probabilities need
to be specified. First, the probability that a late request is clustered. Second, if
a combination occurs, probabilities are needed for all tentatively assigned routes
to determine with which route the late request is clustered. Third, the data of
the chosen route (e.g. time windows and costs) needs to be updated according
to probabilities. Since the clustering conditions are not checked, invalid combi-
nations might be formed. Hence, instead of calculating the changes in the data
of the chosen route, probabilities are used for this purpose. The alternatives in
this category differ in the way the three (groups of) probabilities are determined.

Clustering probability

1. The probability is the same as in alternative 1c, see (1). The probability
only depends on information from the first stage. It is the same for all
first-stage assignments and all observed sequences of realized late requests.

2. For part of the late requests – in our case the first third of each sequence
– the elaborate clustering heuristic is used, from which we calculate a
probability to cluster the remainder. Hence, the clustering probability
might be different for every first-stage assignment and every sequence of
realizations of late requests.

3. The advantage of 2 is the learning effect, but CPU times will probably
remain too high. To mitigate this, we use the elaborate clustering heuris-
tic only for some of the sequences of realized late requests, namely the
first quarter of sequences. For the remaining ones, the average cluster-
ing probability over the first quarter of sequences is calculated and used.
Hence, the probability might be different for every first-stage assignment,
but only for the first quarter of sequences of realized late requests.

The numerical implementation of alternatives 2 and 3 above (i.e., 1/3 and 1/4,
respectively) is obtained by performing in-depth analyses of our earlier experi-
ments with small instances.

Route probabilities

a. Every tentatively assigned route obtains the same probability to be com-
bined with the late request under consideration. Since the number of
tentatively assigned routes varies during the discrete event simulation,
also the route probabilities vary.

b. The route probability depends on the number of requests in the route: the
higher the number of requests, the higher the probability of the route, as
routes consisting of many requests are more likely to combine with.

8

c. In b, the capacity of vehicles is not taken into account. In this alternative,
as soon as a route uses full capacity of the vehicle, it is excluded from
further combining by setting its route probability to zero. Thus, contrary
to b, every resulting route is feasible with respect to vehicle capacity.

Data probabilities

i. The data probabilities, used to update data of a route, are determined
by ourselves using our experience of the DDaPP problem derived from
numerous experiments.

ii. The data probabilities are calculated from an in-depth analysis of some
small instances for which the elaborate clustering heuristic is used to com-
bine the late requests.

In total, there are 18 alternatives in the second category, labeled according
to their clustering, route and data probabilities. For example, 2 1bii is the
alternative of the 2nd category with clustering probability 1, route probabilities
b and data probabilities ii.

3.2 Data of the small instances

All 48 data instances are equal to those used in [1]. They are randomly gener-
ated, contain 50 early requests and the number of late requests varies between
5 and 25.

Pickup time 7 – 10 AM
Delivery time until noon
Capacity car 3
Capacity van 6
Number of passengers per request 1
Probability wheelchair passenger 0.125
Operational costs car 0.8 per grid unit per route
Operational costs van 1 per grid unit per route
Operational costs taxi 1 per grid unit per request
Fixed fee subcontracting 3 per request
Surcharge subcontracting tomorrow 20%

Table 1: Part of the data of the small instances.

Table 1 contains part of the data of the instances. Furthermore, the capacity
of the own vehicles does not depend on the customer type. Until 10 AM, 10 cars
are available, thereafter 4, and the entire day 3 vans are available. All vehicles
have a speed of 8 grid units per hour. The locations lie on a 7 × 7-grid and
have an equal probability to be chosen, except for two special locations (e.g.
hospitals) which have a higher probability: 0.05, 0.1, or 0.3. Moreover, requests
need to be subcontracted at least one hour in advance.

9

The 48 data instances can be divided into four classes of 12 instances each.
The classes differ in the number of late requests and the probability on a special
location. Table 2 contains the specifications and names of the four classes.

FewLate ManyLate LowClust HighClust
Number of late requests 5 – 10 20 – 25 8 – 14 8 – 14
Prob. on special location 0.1 0.1 0.05 0.3

Table 2: Specifications of the four small instance classes.

3.3 Parameter setting of the heuristics

In the assignment heuristic of the discrete event simulation, the time periods
have a length of 15 minutes and the look-ahead period is equal to zero.

To find a good first-stage assignment of routes to vehicles a genetic algorithm
is used. For a description of the algorithm, we refer the reader (again) to [1].
Here, we will only discuss briefly the parameters of the genetic algorithm, with
which the algorithm consistently finds solutions of similar quality, as tests have
indicated.

The population size is set equal to 30. The initial members are constructed
by reserving some capacity today to be able to serve the late requests arriving
tomorrow. Tests have indicated that the algorithm converges faster to a good
solution compared to starting with a random initial population.

The genetic algorithm stops after the generation of 500 feasible, non-duplicate
children, since beyond this number the best solution found appears to improve
only marginally.

To estimate the total costs of a solution, a sample of 200 sequences of realiza-
tions for the late requests is used. Then, the half-length of the 95% confidence
interval for the estimated costs of the best solution found is approximately 1%
(of the estimated costs), which we think is reasonable.

3.4 Choice of alternative

We want to compare the various alternatives for the clustering heuristic to each
other and to the elaborate heuristic. To be able to make a fair comparison,
for each alternative the cheapest solution found by the genetic algorithm is
evaluated in the model with the elaborate heuristics, from now on referred to as
the elaborate model. These ‘true’ estimated costs are compared to those of the
cheapest solution of the elaborate model by calculating the relative difference
with respect to the latter. To determine the quality of each alternative, we use
three indicators:

• the average relative difference in estimated costs over all instances,

• the average relative difference in estimated costs per instance class, and

10

• the minimum and maximum relative difference in estimated costs over all
instances.

Table 3 shows for each alternative the three quality indicators and CPU time in
seconds per instance. The order of the instance classes is FewLate, ManyLate,
LowClust, and HighClust. CPU time to solve the elaborate model is 1555 –
4138 seconds per instance, all on a 2.33 Ghz Intel Core 2 Duo.

Alt. Av. diff. Per instance class Min. – Max. CPU time
1a 1.48 0.93 – 2.10 – 0.82 – 2.05 -0.81 – 5.91 80 – 156
1b 0.80 0.77 – 0.95 – 1.02 – 0.49 -0.68 – 3.30 83 – 152
1c 0.55 0.46 – 0.94 – 0.33 – 0.49 -0.76 – 3.37 92 – 157
2 1ai 0.87 0.50 – 1.19 – 0.49 – 1.28 -0.80 – 3.92 197 – 525
2 1aii 0.76 0.32 – 0.95 – 0.52 – 1.24 -0.76 – 2.97 207 – 521
2 1bi 0.70 0.40 – 0.92 – 0.37 – 1.13 -0.42 – 4.17 209 – 523
2 1bii 0.91 0.66 – 0.91 – 0.53 – 1.55 -0.35 – 3.94 214 – 522
2 1ci 0.62 0.46 – 0.87 – 0.37 – 0.80 -0.55 – 3.82 211 – 528
2 1cii 0.79 0.49 – 0.95 – 0.53 – 1.18 -0.69 – 2.97 217 – 539
2 2ai 0.52 0.28 – 0.77 – 0.30 – 0.74 -0.23 – 1.87 722 – 2145
2 2aii 0.61 0.37 – 0.79 – 0.21 – 1.06 -0.58 – 3.68 731 – 2153
2 2bi 0.70 0.36 – 1.21 – 0.37 – 0.87 -0.87 – 2.60 725 – 2159
2 2bii 0.61 0.27 – 0.94 – 0.45 – 0.80 -0.41 – 3.03 726 – 2162
2 2ci 0.66 0.21 – 0.99 – 0.46 – 0.96 -0.58 – 2.72 741 – 2205
2 2cii 0.67 0.38 – 1.27 – 0.02 – 1.01 -0.78 – 2.97 737 – 2207
2 3ai 0.67 0.61 – 1.07 – 0.33 – 0.68 -0.31 – 2.52 355 – 936
2 3aii 0.83 0.73 – 1.08 – 0.48 – 1.04 -0.45 – 2.35 353 – 943
2 3bi 0.76 0.35 – 1.17 – 0.45 – 1.08 -0.68 – 2.64 360 – 958
2 3bii 0.73 0.31 – 1.26 – 0.47 – 0.88 -1.00 – 2.62 362 – 968
2 3ci 0.69 0.52 – 1.23 – 0.23 – 0.77 -0.87 – 2.58 371 – 977
2 3cii 0.65 0.38 – 0.95 – 0.49 – 0.80 -0.47 – 2.27 374 – 973

Table 3: The quality indicators and CPU time of the various alternatives for
the clustering heuristic.

We need to choose one alternative which is the best compromise between
quality of the obtained solutions and CPU time. Since the quality indicators,
especially the average relative difference over all instances and per instance class,
do not differ much and CPU time does, the focus by choosing an alternative
is on the latter. That is, an alternative from the first category (using virtual
vehicles) will be chosen. Since alternative 1c has the best quality indicators in
this category, we select alternative 1c to apply to (semi-)realistic instances.

A more detailed discussion of the results in Table 3 supporting our choice
follows.

First of all, all average relative differences over all instances are less than
2%, twice the half-length of the 95% confidence interval for the estimated costs
of a solution. Hence, on average all alternatives provide solutions which are not

11

significantly more expensive. Moreover, all alternatives are on average much
better than other fast models like the myopic model2. This naive model, which
can be solved in seconds, does not reserve capacity today for the late requests
arriving tomorrow. In Section 4.3 the myopic model is discussed in more detail.
We conclude that the quality of almost all alternatives is reasonably good.

Furthermore, there is not one alternative which is clearly better than the
others on all three quality indicators and CPU time. The variation in the
average relative difference, both over all instances and per instance class, is in
general low. Differences in CPU time are considerable, but for all alternatives
CPU time is less than for the elaborate model, which is 1555 – 4138 seconds
per instance. Notice that the minimum relative difference is always negative,
indicating that each alternative finds, for at least one instance, a solution with
lower estimated costs, compared to the solution of the elaborate model. This is
caused by a small number of instances for which the solution of the elaborate
model is probably not very good.

In the first category of alternatives the most sophisticated alternative (1c),
in which the number of additional own vehicles varies during the day of opera-
tion and per sequence of realizations, is clearly the best. The average relative
difference over all instances and per instance class is smallest for alternative
1c, whereas the minimum and maximum relative difference and CPU time are
almost equal to the best of the alternatives in this category. As we expected,
the quality of alternative 1a, in which no additional own vehicles are available,
is low compared to all other alternatives. In this alternative, the results show
that too many early requests are subcontracted today, compared to the solution
of the elaborate model. Subsequently, during the day of operation own vehicles
remain unused while a day earlier requests have been subcontracted, which is
more expensive than using an own vehicle.

In the second category of alternatives differences in the three indicators are
in general quite small, while those in CPU time are large. The variation in
CPU time is caused by the elaborate clustering heuristic, which is either not
applied, for approximately one in twelve late requests, or for a third of all late
requests. We expected the alternatives to provide solutions of higher quality if
more late requests are combined by the elaborate clustering heuristic. This is
barely visible in the results since the variation in the average relative difference is
only small. However, we conclude that the use of a more sophisticated clustering
probability is not worth the increase in CPU time. The alternatives with the
elementary clustering probability, which is the same for all solutions and all
observed sequences of realized late requests, perform slightly worse than the
other alternatives in this category, but with (much) lower CPU time.

2The average relative difference in ‘true’ estimated costs over all instances between the
solution of the myopic model and the cheapest solution of the elaborate model is 2.15%.

12

4 Numerical experiments

The model with the simplified, fast clustering and assignment heuristics is now
applied to (semi-)realistic instances. In Section 4.1 the data of the realistic in-
stances of large size is presented. Section 4.2 contains the parameter setting of
the genetic algorithm since the values of some parameters have been changed
to fine-tune the algorithm for the realistic instances. In Section 4.3 we present
the results for the realistic instances. Generally speaking, the results of the
recourse model with fast heuristics are better than those of the naive, myopic
model, but the differences in ‘true’ estimated costs are rather small. This could
be explained by the intuition that for these problem instances, differences be-
tween the estimated costs of the myopic model and the elaborate model may be
small too, leaving little room for improvement. Of course, we are interested to
see how our model with fast heuristics performs on more challenging problem
instances. To this end, we constructed semi-realistic instances by including ar-
tificial penalty costs in the second stage. Section 4.4 contains the results of the
experiments with these instances.

4.1 Data of the realistic instances

All data instances are randomly generated, but inspired by practice. Contrary
to the small instances, the total expected number of requests is fixed since in
practice the total number of requests is known approximately from history and
experience. The total expected number of requests is approximately equal to
700, with either few early and many late requests, as many early as late requests,
or many early and few late requests.

The number of requests per hour is non-homogeneously Poisson distributed.
Thus, peaks in the number of requests to serve may occur. Table 4 shows
the expected number of requests per hour for the three partitions of the total
number of requests. Notice that late requests are not allowed to start before 7
AM since requests need to be subcontracted at least one hour in advance. The
begin times of the pickup time windows are uniformly distributed per hour.

a. Many early, few late b. As many early as late c. Few early, many late

Time period Early Late Early Late Early Late
6.00 – 7.00 20 – 15 – 5 –
7.00 – 10.00 70 12 40 40 12 70

10.00 – 15.00 30 6 18 20 5 35
15.00 – 18.00 60 10 35 35 10 60
18.00 – 22.00 10 1 5 5 1 10
Total 600 100 350 345 100 605

Table 4: The expected number of early and late requests per hour.

Table 5 contains part of the data of the realistic instances. All locations lie
on a 10 × 10-grid and have an equal probability to be chosen, except for two

13

special locations (e.g. hospitals) which have a higher probability of either 0.05,
0.15, or 0.25. The capacity of the own vehicles does not depend on the customer
type. All vehicles have a speed of 20 grid units per hour so that the ride time
between any origin-destination pair is at most one hour. Furthermore, there is a
delay in the availability of the number of own vehicles (not changing at the hour,
but 15 minutes later) since the beginning of the pickup time window is used to
determine the time windows. The actual pickup time will (probably) be later,
implying a delay in the number of vehicles needed, to which we have adapted
the availability of own vehicles. Parameter choices are inspired by practice to
some extent, and partly chosen to obtain interesting instances (based on trial
and error).

Pickup time 6 AM – 10 PM
Delivery time until midnight
Capacity car 3
Capacity van 6
Number of passengers per request 1 with prob. 0.8

2 with prob. 0.18
3 with prob. 0.02

Probability wheelchair passenger 0.125
Operational costs car 0.8 per grid unit per route
Operational costs van 1 per grid unit per route
Operational costs taxi 1 per grid unit per request
Fixed fee subcontracting 3 per request
Surcharge subcontracting tomorrow 50%

Time period Number of cars Number of vans
6.00 – 7.15 7 1
7.15 – 10.15 35 4

10.15 – 15.15 15 2
15.15 – 18.15 30 3
18.15 – 22.15 7 1
22.15 – 24.00 1 1

Table 5: Part of the data of the realistic instances.

Since there are three partitions of the total number of requests and three
probabilities on a special location, nine classes of instances result. These classes
will be indicated by names reflecting the amount of early requests and the
probability on a special location, e.g., FewLow for few early (and hence many
late) requests and a low probability on a special location; analogously, we de-
fine FewMedium, FewHigh, EqualLow, EqualMedium, EqualHigh, ManyLow,
ManyMedium, and ManyHigh.

14

4.2 Parameter setting of the heuristics

In the assignment heuristic of the discrete event simulation, the time periods
have a length of 15 minutes.

As for the small instances, a genetic algorithm is used to find a good first-
stage assignment of routes to vehicles; only the values of some parameters are
adjusted.

The genetic algorithm stops if for 750 feasible, non-duplicate children no im-
provement in the estimated costs of the cheapest solution has been found, where
no improvement is defined as a difference in estimated costs smaller than 0.1%.
Tests have shown that the number of generated children varies considerably
among the classes, but also that the estimated costs of the cheapest solution
found decrease only marginally if more children are generated.

A sample of 100 sequences of realizations for the late requests is drawn
to estimate the costs of a solution. With this sample size it will appear that
our model provides for most classes and instances significantly better solutions
than the myopic model, on the 95%-level. Here, significancy is determined by
constructing a confidence interval for the relative improvement in estimated
costs.

Besides the sample size also the randomness of the genetic algorithm itself
influences the accuracy of the results. Since the genetic algorithm is a random
heuristic, equally good solutions might not always be found. To test this effect,
we ran the genetic algorithm 10 times on the same instance, for a small number
of instances from different classes. We found that the difference in estimated
costs was at most 0.63%, which is small enough to conclude that the genetic
algorithm consistently finds solutions of similar quality.

4.3 Results realistic instances

To determine the quality of the alternative clustering heuristic for realistic in-
stances, we introduce two solutions: the heuristic solution and the myopic so-
lution. The first is obtained by solving our non-standard two-stage recourse
model with fast heuristics with the genetic algorithm. The solution with the
lowest estimated costs is called the heuristic solution. The myopic solution is
the simple or naive approach which we want to beat. It is obtained by solving
the myopic model in which the late requests are ignored. That is, the early
routes are greedily assigned to own vehicles, or – whenever this is not possible –
to subcontractors. Consequently, the myopic solution does not reserve capacity
today to be able to serve the late requests, arriving tomorrow, with own vehicles.
In this respect, the myopic solution can also be called the optimistic solution,
contrary to the pessimistic solution in which all early requests are subcontracted
for fear of future costs.

For all nine classes 12 instances have been generated and solved. For each
instance, the estimated costs of the heuristic and myopic solution are calculated
by evaluating them in the most realistic model we have developed: the model
with the accurate heuristics. Moreover, the relative improvement with respect

15

to the estimated costs of the myopic solution is determined. For both solutions
the number of subcontracted early routes is reported, as well as the total number
of early routes. For each class the averages over the 12 instances of the results
mentioned above are presented in Table 6. Furthermore, the average CPU time
in seconds per instance and the average number of generated children in the
genetic algorithm is listed. Both refer to the heuristic solution; the myopic
solution is obtained in a couple of seconds.

Estimated costs nSub early
Class Heuristic Myopic Improve (%) nRoutes Heuristic Myopic time nChild

FewLow 4682 4738 1.18 84 21 1 702 1522
FewMedium 4157 4197 0.94 79 13 1 619 1385
FewHigh 3775 3798 0.58 74 9 0 523 1126
EqualLow 4318 4506 4.19 313 77 19 1377 3129
EqualMedium 3852 3929 1.94 270 43 14 936 2271
EqualHigh 3589 3618 0.80 228 22 11 762 1759
ManyLow 4073 4165 2.20 513 101 73 1133 2603
ManyMedium 3625 3647 0.58 438 67 56 709 1902
ManyHigh 3380 3382 0.05 361 47 44 456 1216

Table 6: The average results over 12 instances per class, for realistic instances.

For all classes, the estimated costs of the heuristic solution are on average
lower than those of the myopic solution. The relative improvement in estimated
costs of both solutions is on average between 0.05% and 4.19%. Thus, by solv-
ing our recourse model with the modified clustering and assignment heuristics
instead of the myopic model, the estimated costs decrease on average up to
4.19%. For class ManyHigh the relative improvement of most instances is not
significant at the 95%-level, for the remaining classes almost all improvements
are significant. Hence, we recommend to solve all classes, except ManyHigh,
with our recourse model instead of the myopic model. In ManyHigh there are
only few late requests which can be relatively easily combined. Hence, taking
into account the late requests is not very important here, and the quality of the
myopic solution is relatively good. CPU time varies between 9 and 23 minutes
per instance, which we think is reasonable to solve a day-ahead decision problem
for a large instance.

The estimated costs of both solutions, as well as their relative improvement,
decrease if the probability on a special location increases. A higher probability
implies that more combinations of requests are made. Hence, less routes need to
be assigned to vehicles in the second stage, and also the expensive subcontractors
are used less. This leads to a decrease in the estimated costs. The relative
improvement decreases since it is less important to take the late requests into
account when more combinations are made. Furthermore, not only the number
of early routes decreases, but also the number of subcontracted early routes,
both in the heuristic and myopic solution. In the heuristic solution this is
caused by the lower number of routes that need to be assigned to vehicles in the
second stage. In the myopic solution less early routes need to be assigned to the

16

same number of own vehicles implying less early subcontracted routes. Also the
number of generated children decreases if the probability on a special location
increases. Since the number of early routes decreases, less possible solutions
exist allowing the genetic algorithm to find a good solution faster. CPU time is
approximately linear in the number of generated children and hence, also CPU
time decreases if more combinations can be made.

The estimated costs of the heuristic and myopic solution decrease if more
early requests and less late requests arise, since less requests will need to be
subcontracted during the day of operation, which is 50% more expensive than
before. The relative improvement in estimated costs of both solutions is largest
when there are approximately the same number of early and late requests. This
is the outcome of two opposite effects. First, the more late requests arrive, the
more important it is to take them into account, as only the heuristic solution
does, and hence the relative improvement becomes larger. On the other hand,
many late requests implies few early requests, and hence also few early routes.
Since some routes might not be profitable to subcontract due to e.g. the large
number of combinations made, relatively few routes are suitable for subcon-
tracting today, causing the heuristic solution not to perform very well. When
there are approximately the same number of early and late requests, there are
enough early requests that are profitable to subcontract today and enough late
requests to make it worthwhile to take them into account. In short, for such in-
stances choices do make a difference. Consequently, the relative improvement in
estimated costs between both solutions is largest. For the same reason, for these
classes the largest number of children is generated and CPU time is highest.

To conclude, for realistic instances the gain in estimated costs by solving our
recourse model with fast heuristics instead of the myopic model is on average
(over all instances of classes) 1.38%, and can be as high as on average 4.19%.
For most instances of most classes the relative improvement is significant at the
95%-level. Only when there are few early (and hence many late) requests and a
high probability on a special location the myopic solution is competitive. CPU
times of up to 23 minutes to solve a day-ahead planning problem for a large
instance are acceptable.

4.4 Results semi-realistic instances

Although we have concluded that it is profitable to solve most classes of realistic
problem instances with our recourse model with fast heuristics instead of the
myopic model, the relative improvements in estimated costs are in general not
very large. However, we are interested to see how our model with fast heuristics
performs on instances for which we expect that a larger relative improvement
can be obtained. To this end, semi-realistic instances have been constructed
by introducing penalty costs for subcontracting during the day of operation,
instead of the earlier surcharge. By varying the penalty costs the degree of
aversion to subcontracting tomorrow can be reflected.

Besides the heuristic and myopic or optimistic solution, we make a compari-
son to the pessimistic solution in which all early routes are subcontracted today

17

for fear of future costs for the late requests arriving tomorrow. We expect the
pessimistic solution to perform better as the value of the penalty costs becomes
higher. Indeed, if subcontracting tomorrow is undesirable due to high costs, it
can be profitable to subcontract today all early routes to have more own vehicles
available for the late requests arriving tomorrow.

In our experiments, the same data instances are used as in Section 4.3, except
for the penalty costs for subcontracting tomorrow, for which we consider four dif-
ferent values: 1.5 (the original one), 15, 150, and 1500. We analyzed all classes,
but results are only presented for the classes FewMedium, EqualMedium, and
ManyMedium since the number of early and late requests has much more influ-
ence on the results than the probability on a special location. Table 7 contains
per class (averaged over 12 instances): the average number of subcontracted
early routes for the four heuristic solutions with different penalty costs, the
myopic solution, and the pessimistic solution. Notice that for the myopic and
pessimistic solution the number of subcontracted early routes is independent of
the value of the penalty costs.

Class H 1.5 H 15 H 150 H 1500 Myopic Pessimistic
FewMedium 13 34 48 56 1 79
EqualMedium 43 76 89 96 14 270
ManyMedium 67 88 99 103 56 438

Table 7: Number of subcontracted early routes for various solutions.

The number of subcontracted early routes is lowest for the myopic solu-
tion and highest for the pessimistic solution, as these solutions are obtained
by assigning to subcontractors as few early routes as possible and all early
routes, respectively. For the heuristic solutions the number of subcontracted
early routes increases with the value of the penalty costs: the more expensive
subcontracting tomorrow is relative to today, the higher the profits will be of
reserving capacity for tomorrow. For extremely high penalty costs, one would
expect all early routes to be subcontracted. However, it appears that the chosen
number of virtual vehicles to compensate for not clustering the late requests is
too large, which results in too few subcontracted early routes. This adverse
effect becomes only noticeable in this extreme setting, to the extent that the
pessimistic solution outperforms the heuristic solution.

Figure 2 shows for the same three classes the increase in the estimated aver-
age costs of the heuristic, myopic, and pessimistic solution, as a function of the
penalty costs. In general, for instances with realistic penalty costs, the recourse
model with fast heuristics provides the best solution, followed by the myopic
model and the pessimistic model. If the aversion to subcontracting tomorrow as
measured by the penalty costs increases, the pessimistic model becomes better
and better. Contrary to our expectations and as explained above, for the two
largest values of the penalty costs the pessimistic model (clearly) outperforms
the recourse model, which in turn outperforms the myopic model (by far).

18

Class ManyMedium

1000

10000

100000

1000000

1 10 100 1000 10000

Penalty costs

Es
tim

at
ed

 C
os

ts

Heuristic
Myopic
Pessimistic

Class FewMedium

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

Penalty costs

Es
tim

at
ed

 C
os

ts
Class EqualMedium

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

Penalty costs

Es
tim

at
ed

 C
os

ts

Figure 2: Influence of penalty costs on estimated costs of various solutions.

For the class FewMedium the estimated costs of all three solutions are almost
equal, independent of the value of the penalty costs. Since in this class there are
only few early and many late requests, subcontracting tomorrow is inevitable
and the variation in the number of routes subcontracted during the day of
operation is low. Hence, also the variation in the estimated costs is low.

For the class EqualMedium subcontracting tomorrow is also inevitable, but
since there are approximately as many early as late requests, the variation in
the number of routes subcontracted tomorrow can be larger. Thus, for higher
penalty costs, in the heuristic solution much more capacity is reserved compared
to the myopic solution. In the pessimistic solution by definition all capacity is
reserved for tomorrow, which for high penalty costs yields better results than
the myopic solution, comparable to the heuristic solution. This effect is even
stronger for the class ManyMedium.

To conclude, for semi-realistic instances, in which subcontracting tomorrow
is (very) undesirable, it is very profitable to solve our recourse model with fast
heuristics instead of the myopic model. Our second benchmark, the pessimistic
model, can be a fast competitor of the recourse model, especially if the value of

19

the penalty costs is high.

5 Summary and conclusion

In a previous paper we developed a non-standard two-stage recourse model for
the dynamic day-ahead paratransit planning problem. In the second stage a
discrete event simulation is applied in which two heuristics are used to generate
decisions. Both heuristics contain many details which results in large CPU
times for instances of relatively small size. In this paper we have simplified both
heuristics to decrease CPU time without sacrificing the quality of the results
too much and solve instances of (semi-)realistic size within reasonable time.

In the assignment heuristic the reduction of the look-ahead period to zero
leads to a large decrease in the number of calls of the heuristic, and hence in CPU
time to solve the entire model. To simplify the clustering heuristic without dete-
riorating the quality too much, various alternatives have been developed which
either reduce CPU time per call or the number of calls. The alternative which
results in the best compromise between CPU time and quality of the solutions is
used to solve (semi-)realistic instances. In this alternative late requests are not
clustered; to compensate, virtual vehicles are added in the assignment heuristic
so that approximately the same number of routes needs to be subcontracted.

The results are promising. For realistic instances, inspired by practice, our
recourse model with fast heuristics almost always outperforms the myopic model
in which the late requests are ignored. The improvement in estimated costs of
solving our recourse model instead of the myopic model is up to 4.19%. Only
for instances with many early and few late requests and a high probability on a
special location the quality of the myopic solution, which is obtained in seconds,
is relatively good. CPU time of solving the recourse model is 9 – 23 minutes
per instance, which we think is acceptable.

For semi-realistic instances, in which the costs of subcontracting during the
day of operation is increased, the improvement in estimated costs becomes (very)
high. Thus, when subcontracting tomorrow is not desirable, our recourse model
outperforms the myopic model by far. If subcontracting is very undesirable
the pessimistic model, in which all early routes are subcontracted, is a fast
competitor of our recourse model.

References

[1] M.L.A.G. Cremers, W.K. Klein Haneveld, and M.H. van der Vlerk. A dy-
namic day-ahead paratransit planning problem. To appear in IMA Journal
of Management Mathematics. http://mally.eco.rug.nl/papers/DDaPP.
htm.

[2] M.L.A.G. Cremers, W.K. Klein Haneveld, and M.H. van der Vlerk. A two-
stage model for a day-ahead paratransit planning problem. To appear in
Mathematical Methods of Operations Research, 2009.

20

