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Abstract

Investigating program dependencies such as function calls is chal-
lenging for very large systems. We present here an integrated
pipeline for extraction and visualization of call-and-hierarchy
graphs for C/C++ programs. We present several adaptions and en-
hancements of a recent visualization method for large call graphs
and compare its effectiveness with classical node-link diagrams.
Examples are given on large real-world code bases such as bison,
Mozilla and oink.

1 Introduction

Software systems contain large and complex sets of dependencies
between their components, such as call and inheritance graphs, and
data flow and type dependency graphs. Analyzing such dependen-
cies is arguably one of the most important tasks of maintenance
processes such as reverse engineering and reengineering. A good
understanding of such data supports decisions for code refactoring,
removing code clones, identification of design patterns, and debug-
ging.

However, understanding large dependency sets is challenging. Vi-
sualization is a method of choice, given the inherent difficulty for
understanding large, abstract graphs. Although numerous methods
are being proposed for visualizing dependency graphs in the in-
formation visualization (InfoVis), software visualization, (SoftVis),
and graph drawing (GD) communities, it is still unclear how such
methods are received by software practitioners in the field, and how
they compare when one must accomplish tasks in program compre-
hension.

In this paper, we focus on a subset of these activities, and look at the
problem of understanding call graphs extracted from software sys-
tems which have a hierarchical structure. As we aim to understand
the effectiveness of such methods in practice, several aspects are
relevant besides the visualization method chosen, e.g. the availabil-
ity of a robust method to extract the call graphs; the perfect integra-
tion of data extraction and visualization [Koschke 2003]; and the
scalability of the entire pipeline to real-world systems of hundreds
of KLOC.

We describe here an entire tooling pipeline that covers static code
analysis, extraction of calls and hierarchy data and their attributes,
and visualization. Our focus here is on C/C++ code bases. For
this, we implemented a standalone call graph extractor based on
the OINK framework [OINK 2008], one of the most complete, ro-
bust, and scalable open-source static analyzers for C/C++. Our call
graph extractor enhances the OINK framework with several anal-
yses important for call graph extraction, such as linking declara-
tions to definitions across multiple translation units, and detecting
the potential set of called candidates for virtual functions and func-
tion pointers. Besides calls, our extractor also delivers hierarchy
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data (folders, files, classes, methods) and various attributes thereof,
such as the call type (static, virtual, by pointer or reference), and
details over the function definitions (signature data, access rights,
and source code location). The extracted data is saved in several
easily importable formats.

For visualization, we needed a scalable, understandable, and easy
to use method. As a candidate, we considered the recently pub-
lished hierarchical edge bundling (HEB) technique, which was very
well received in both the InfoVis and SoftVis communities [Holten
2006; Cornelissen et al. 2007]. However, a main question is: How
does this technique compare with classical, more accepted, tech-
niques such as node-link diagrams (NLDs)? Such a comparison
lacks, and is needed, for large-scale graphs, as the author of the
HEB technique also points out. To this end, we performed a study
that compares our own implementation of the HEB which adds sev-
eral enhancements we found useful, and several classical NLD lay-
outs provided in the Tulip graph visualization framework [Auber
2009].

For this comparison and also to test our entire pipeline, we analyzed
several large software systems written in C, C++, and a mix of the
two, such as bison, Mozilla Firefox, and the OINK static analysis
framework itself. The analyses were done by developers experi-
enced in software engineering in general and C/C++ in particular,
but had no knowledge of the analyzed systems. They had to answer
several questions solely based on the two visualizations. We com-
pared the results with the aim of drawing conclusions on the two
types of visualizations.

Overall, we can describe our work using the 5-dimensional model
of Marcus et al [Marcus et al. 2003]: our task is to analyze how two
different visual metaphors support the visual understanding of call
relations in large source code bases; the audience includes software
developers, designers, and architects; the target is a graph contain-
ing attributed call and hierarchy data; the medium consists of two
different visualization tools, the Tulip framework and our own en-
hanced HEB method; finally, the representation consists of vari-
ous types of node-link diagrams and the hierarchical edge bundle
metaphor.

This paper is structured as follows. In Section 2, we overview re-
lated efforts on static analysis of C/C++ with a focus on call de-
pendencies, as well as visualizing call graphs in general. Section 3
presents our call dependency extractor for C/C++. Sections 5.1,5.3
and [OINK 2008] present the results obtained when visualizing call
graphs extracted from the bison, Mozilla Firefox, and OINK open-
source code bases. In this part, we also introduce the various en-
hancements we added to the original HEB technique. Section 5.5
discusses the results found in this study. Section 6 concludes the
paper.

2 Related Work

Our goal is to analyze ways to visually explore call dependencies
of large-scale C/C++ code bases (Sec. 1). Hence, related work ad-
dresses two topics: extraction of the dependencies from source code
and visualizing the extracted data.
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For data extraction, several so-called static analyzers exist both in
the research and industry arenas. Here, we focus only on tools sup-
porting both C and C++ programming languages, which can scale
to real-world systems of millions of LOC. C++ programs are par-
ticularly interesting for visualization, as they have a deeper hierar-
chical structure (folders, files, namespaces, classes, nested classes,
methods), whereas C program hierarchical structure is limited to
folders, files, and functions. Moreover, object-oriented code is sup-
posed to be more modular than classical procedural code, so a good
visualization may be able to emphasize the presence (or absence)
of such modularity.

Two main classes of C++ fact extractors exist. Lightweight ex-
tractors, e.g. SRCML [Collard et al. 2003], SNIFF+, GCCXML,
and MCC, do only partial parsing and type-checking and produce
only a fraction of the entire static information. Heavyweight ex-
tractors, e.g. DMS [Baxter et al. 2004], ASF+SDF [van den Brand
et al. 1997], CPPX [Lin et al. 2003], ROSE [Panas et al. 2007],
OINK [McPeak 2006; McPeak ], COLUMBUS [Ferenc et al. 2004],
and SOLIDFX [SolidSource BV 2008] perform (nearly) full pars-
ing and type checking. For call data extraction from C and specif-
ically C++, a heavyweight extractor is mandatory, as we need full
semantic (type) information, as well as a full implementation of
the C++ lookup rules, to be able to correctly link calls to func-
tion declarations and those further to function definitions, for all
types of functions including constructors, destructors, and opera-
tors. Heavyweight extractors can be further classified into strict
ones, based on a compiler parser which halts on lexical or syntax er-
rors, e.g. CPPX; and tolerant ones, based on fuzzy parsing or Gen-
eralized Left-Reduce (GLR) grammars, e.g. COLUMBUS, OINK or
SOLIDFX. Such extractors are typically run in batch mode. Their
output is examined with text-based tools, or, more rarely, visualiza-
tion tools.

Dependency and call graph visualization is a well-known research
area. For very large systems, visualizing only call relations is of
limited use, as these have to be correlated with the system structure.
As such, many visualization methods combine call and hierarchy
information into so-called compound digraphs. Here, hierarchy de-
scribes the function containment in a tree-like structure modeling
the system decomposition.

Currently several methods exist to visualize containment and as-
sociation relations together [Neumann et al. 2005]. SHriMP views
and similar methods show containment as nested boxes and associa-
tions using the classical node-link model atop of the nesting [Storey
and Müller 1995; Bertault and Miller 1999; Raitner 2004]. Varia-
tions hereof are well known and used in SoftVis as shown by sev-
eral toolsets, e.g. Rigi [RIGI 2008], CodeCrawler [Lanza 2004],
VCG [Lemke and Sander 1994] and SoftVision [Telea 2004]. Al-
though intuitive, such methods have scalability limitations. For
large systems, association relations tend to clutter the nested layout,
as any two elements in the hierarchy can be connected. ArcTrees
draw containment as nested rectangles and associations as curved
arcs connecting the elements [Neumann et al. 2005]. However,
they have similar association edge cluttering problems as SHriMP
views. Curved edges showing associations can also be overlaid on
treemaps [Fekete et al. 2003], having however the same cluttering
issues. Matrix views remove the clutter by showing associations
as an adjacency matrix and hierarchy as tree views or icicle plots
along the matrix edges [van Ham 2003]. However, matrix views
are less intuitive than node-link diagrams and also are less effective
in visually showing modularity, i.e. if associations (calls) from a
subsystem are mainly directed at a few other subsystems [Ghoniem
et al. 2004; van Ham 2003].

For very large graphs, optimizations of both the layout algorithms
and graph data management are essential to usability. One system

providing these is the graph visualization framework Tulip, which
offers a wide range of search, layout, visualization, and interaction
features, as well as high scalability for graphs of hundreds of thou-
sands of elements [Auber 2009]. Although less known in the Soft-
Vis community, Tulip is well-known in the InfoVis community, has
a development of over 8 years, a large user base, and is arguably one
of the most sophisticated graph visualization frameworks available.

Hierarchical edge bundles (HEBs) are a recent advance in dis-
playing large compound digraphs [Holten 2006; Cornelissen et al.
2007]. Containment is compactly shown as a circular icicle plot.
Associations are drawn as splines, routed to follow the contain-
ment hierarchy. When the analyzed system exhibits modularity
in the sense mentioned above, the drawn edges get ’bundled’ to-
gether making it possible to see this modularity. Visual edge clut-
ter is interpreted as a sign of limited modularity. HEBs have been
used in visualizing call graphs in various applications [Cornelis-
sen et al. 2007]. However, as the authors mention themselves, a
study on the effectiveness of this method for large-scale software
systems, as compared to other dependency visualizations, is still to
be done [Holten 2006]. This is one of the aims of the current paper.

3 Call Data Extraction

As mentioned in Sec. 2, we need a call graph extractor able to accu-
rately detect the various types of function calls occurring in C and
C++ source code bases, and is also scalable for real-world systems.
After analyzing the available options, we choose to build such a tool
atop of the OINK static analysis framework. OINK includes a full-
fledged C/C++ parser based on GLR technology. Parsing produces
possibly ambiguous abstract syntax trees (ASTs), which are next
disambiguated and merged by a semantic analysis pass in a single
annotated syntax graph (ASG). The semantic analyzer implements
the full C/C++ lookup rules, operator overloading disambiguation,
type conversions, and all other operations that determine the type of
a symbol and associate it with its declaration. The output of OINK

is an ASG of the program, i.e. an AST annotated with type infor-
mation. A major advantage of OINK is that it is open source, and
also has a fine-grained API to investigate the produced ASG. This
allowed us to implement a call graph extractor atop of the basic
static analyzer with relative ease, as follows.

3.1 Location of calls and definitions

The first step is to locate the constructs denoting function calls.
This is easy, as OINK provides a visitor by which we can find all
AST node types denoting function calls. These are ’classical’ func-
tion calls, constructors, destructors, and operators (including con-
versions and new operators). OINK will also provide implicit func-
tion calls that do not appear as explicit syntax in the program, e.g.
calls of base class constructors in derived class constructors and
calls of destructors of local stack objects when a scope is exited.
Such information has equal importance to ’classical’ function calls
in refactoring analyses.

Second, we locate all function definitions, i.e. functions having a
body. This is equally easy using the AST visitor of OINK. As for
calls, all types of function definitions are located, including inline
functions and template functions.

Third, for each function call and function definition, we locate its
declaration. For function definitions, this is trivial, as a definition is
its own declaration. For function calls, the type information in the
ASG output by the semantic analysis provides us with the unique
declaration of the called function within its translation unit.
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3.2 Linking

C/C++ programs consist of multiple translation units assembled by
a linker which links function declarations from a unit with the cor-
responding (unique) definitions provided by another unit. We im-
plemented this step atop of OINK as follows. For each translation
unit, we save the definitions and declarations of all externally vis-
ible functions (i.e., functions that do not have static linkage) in a
temporary file. Next, we scan all declarations without definitions
in all such files and match them to definitions. This step is mas-
sively simplified as OINK provides APIs to check that two function
signatures match, according to the full specification of the C/C++
languages. Function declarations for which no definition is found,
e.g. because they are implemented in binary system libraries, are
left unmatched.

3.3 Special cases

The output of the linking step is a program-wide call graph whose
nodes are function calls and function definitions (or declarations,
for functions having no definitions) and whose edges are the calls.
However, some complications exist. In C/C++, functions can be
called via pointers, and C++ has virtual functions. In such cases, the
previously described method would only find the declarations of the
called functions, but not their definitions. We can provide more spe-
cific information, as follows. For functions called via pointers, we
construct a set of candidates over the entire program which could be
the targets of the respective call. This involves all function defini-
tions whose signature matches the call and which do not have static
linkage. For virtual C++ functions, we do the same, this time con-
sidering all public virtual methods declared in each class hierarchy.
This yields a conservative set of candidates for each call via point-
ers or virtual functions. Although such candidate sets may seem to
be overly large, they are quite small in practice (5..15 functions), as
signature variability and static linkage limit the number of potential
candidates. It is possible to further restrict this set by using more
sophisticated data flow analyses. The OINK framework provides
APIs that could be used to implement this, albeit with more effort.

3.4 Hierarchy

Apart from function calls, we also extract a program hierarchy. This
contains nodes that describe the containment of function definitions
(or declarations when no matching definitions were found), and has
several levels: directories, files, namespaces, classes, and methods,
as well as ’free’ (file-scope) global functions. Constructing this
hierarchy is easy, since OINK provides for each AST node its exact
source code location.

Overall, the output of our entire analysis is a program-wide com-
pound digraph containing calls and containment relations. Besides
this, we also save data attributes for each node, e.g. its name, func-
tion details (method, signature, location in the code, access spec-
ifiers) and call details (static, virtual, by pointer, and whether the
call is exact or determined via our conservative analysis outlined
above). Producing such a graph from a given code base is easy:
one can simply run an existing makefile, substituting the compiler’s
name with our extractor, with no further changes. The resulting
graph is the input for the visualizations described next.

4 Methodology

To compare the two types of visualizations we target, i.e. node-
link diagrams (NLD) and hierarchical edge bundles (HEB), we pro-
ceeded as follows. First, we extracted several call graphs from in-
creasingly large systems, as described in Sec. 3, among which we

mention the bison parser generator, the OINK C/C++ static analysis
framework, and the Mozilla Firefox browser. Next, five developers
with no prior knowledge on the analyzed systems were introduced
to the NLD and HEB visualization methods to be used, and were
given the opportunity to use these systems for a few days, on small
datasets, until they were comfortable with their operation. Next, the
developers used the NLD and HEB visualizations to answer a num-
ber of generic questions on the analyzed systems, e.g.: which are
the main components in the system; how these components com-
municate with each other; whether the system is highly modular or
not; where is dead code (uncalled functions); and how is the use
of polymorphic interfaces (i.e. function pointers and virtual func-
tions) spread over the system. Next, several specific questions were
asked, e.g.: which interfaces (i.e. sets of functions declared in the
same component) does a specific component call, or provide; and
where is a given interface used. The answers, as well as additional
comments and remarks on the operations performed to achieve the
answers, and the ease-of-use of the respective visualizations, were
recorded. A sixth person with detailed knowledge on the analyzed
systems performed the study separately and also checked the an-
swers of the other five. Finally, conclusions were drawn using the
analyzed answers.

5 Case study 1: The bison parser

5.1 Node-link visualizations

The first type of visualization we analyzed is the classical node-link
visualization. Nodes are function definitions or containers (direc-
tories, files, classes) and edges show calls. For visualization, we
used the Tulip framework for several reasons. First, Tulip provides
a wide range of functions including many node-link layouts, search
and select functions, interactive navigation, and visual customiza-
tion of colors, shapes, textures, and labels. Second, Tulip is highly
memory and speed optimized for very large graphs. Last but not
least, all operations are directly accessible via a well-documented
user interface (menus, dialogs), making it usable with zero pro-
gramming effort. This is essential for us, as we assume our users
are programmers who want to quickly investigate a large call graph,
and have no time or experience to develop their own visualization
code.

Figure 1 shows several snapshots produced using the NLD layouts
of Tulip on the bison call graph (868 functions, 5535 calls). From
the recorded procedure, we saw that all users first aimed at obtain-
ing a simple hierarchy view, the reason being to get an idea of the
system size, number of layers, and which are the largest subsys-
tems. Images (a) and (b) in Fig. 1 show the two layouts which were
found best for this task: the bubble tree layout, which arranges child
subtrees in a circle around their parent node [Grivet et al. 2004] and
the classical directed tree layout. For this and the other systems
analyzed, the bubble tree layout was found easier to comprehend,
as it yields layouts with good aspect ratios, and also lets one com-
pare the relative sizes of subsystems quite easily (circle size versus
length of a row of nodes in the tree layout).

The next step was to bring the calls in the picture. For this, the
first attempt was to add them to the existing hierarchy visualiza-
tions. Figure 1 c shows the complete compound graph with the
bubble tree layout. Calls are drawn as thin yellow (light) lines,
containments are drawn as thick (dark) black lines 1. Node colors
and shapes show their type: directories (blue, squares), files (green,
squares), and functions (red, circles). As suspected upfront, the re-
sult is quite cluttered. At this scale, the only conclusion that was
drawn is that the system is quite tightly connected; its three main

1We recommend viewing this paper in full color.
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a) b)

d) e)

c)

Figure 1: Visualizations of the bison call graph using Tulip: hierarchy only using bubble trees (a) and directed trees (b); hierarchy and calls
using bubble trees (c) and dendrograms (d); force-directed layouts of hierarchy and calls using HDE embedder (e) and GEM (f)

subsystems lib, src and include, i.e. the top-left, top-right,
and bottom large circles respectively, are all strongly interacting.
Another observation achieved with this view is that functions are
not uniformly spread over files: some green squares are surrounded
by many red circles. These are files containing many functions,
whereas others have only one or a few such circles. These are files
containing few used functions, e.g. the include subsystem.

Alternative types of tree layouts provided by Tulip were explored to
show both hierarchy and calls, as well as various layout parameter
settings. Most of them did not produce useful results, due to the
high clutter caused by the call edges. For example, Fig. 1 d shows
a dendrogram layout overlaid with call edges drawn as splines. It
might be argued that this layout is useful in comparing call depths
between different subsystems, by looking at the height of the red
dot sequences (functions) in the lower part of the image. However,
showing the actual call edges is not useful, as they produce just
clutter.

Further, several force-directed layouts were tried out. Figures 1 e
and f show the compound graph drawn using the HDE embed-
der [Harel and Horen 2002] and GEM [Frick et al. 1994] layouts
of Tulip. These are optimized versions of the original publica-
tions, which add several heuristics and speed enhancements to de-
liver higher quality in less computational time (see [Auber 2009]
for details). The HEB layout is able to pull the hierarchy nodes (di-
rectories and files, shown in blue, respectively green) apart from the
function nodes (shown in red, in the middle). For example, we see
the files in the src directory being isolated in the upper-left part
of the image. However, the function nodes, strongly connected by
many calls, form a cluster in the middle which is not understand-
able. Figure 1 f shows a layout using an enhanced version of the
well-known GEM spring embedder. This layout is able to pull apart
the include subsystem, which contains system functions used by
the bison core, but cannot separate well the lib and src subsystems,
as these are tightly coupled.

Overall, the bubble layout was considered to be the best for the

generic comprehension tasks, as it exhibits a stable, regular node
placement pattern. For the specific comprehension tasks (see
Sec. 4), the built-in search-by-attribute-value and path highlighting
functions of Tulip were used. Although these functions are eas-
ily accessible via Tulip’s GUI, the high visual clutter caused by
the dense call pattern in bison severely limits the effectiveness of
the node-link visualizations. Here again, the bubble tree performed
best. The reason seems to be the fact that this layout strongly em-
phasizes the hierarchy, which is used as a visual guide when ana-
lyzing specific call relations.

5.2 Hierarchical edge bundling visualizations

For the second type of visualization, we used SOLIDSX, our own
implementation of the HEB method with several enhancements, de-
scribed next2. The design of SOLIDSX is minimalist: all operations
are available within a single interface, the main visualization. There
are no extra buttons or menus except pop-ups. All operations are
accessible with the smallest number of mouse clicks possible. The
main HEB idea is simple: hierarchy is drawn as a set of concentric
rings divided in sectors, each sector being the container of inner ring
sectors corresponding to it; calls are drawn as splines between their
corresponding ring sectors; splines are further bundled according to
the containment hierarchy, as described in [Holten 2006].

Figure 2 a is an overview of the same bison call graph. Several
points were made when comparing this image with the NLD layouts
in Fig. 1. Showing containment as concentring rings was very easy
to understand. The fact that node labels are, at least on the larger
rings, readable was seen as a great advantage compared to the NLD
label display. Although great effort was done in Tulip to eliminate
label overlaps and provide an automatic level-of-detail control of
the label size, this was not seen as highly effective. Labels still
overlap call edges, and the level-of-detail feature makes labels pop

2SOLIDSX is available for academic or commercial users from www.

solidsourceit.com/products
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in and out the view depending on the zoom level in a disturbing
way.

We enhanced the concentric ring design to display attributes. Each
node in SOLIDSX’s input graph can have any number of data at-
tributes, stored as (name,value) pairs, the values being string, nu-
merical, or boolean. We map these values to node colors. A pop-up
widget displays all different attribute names present in the input
(Fig. 2 a top-right). Attributes can be sorted by name or num-
ber of different values they take in the input data. Simply mov-
ing the mouse over the listed attributes (brushing) changes the
colormapped attribute. For numerical and boolean attributes, we
use a simple blue-to-red colormapping based on range. Strings
are mapped based on alphabetical ordering. Overall, one can see
which attributes are available, and quickly change the one shown to
compare different attributes over the same dataset, with one single
mouse click and mouse stroke. An identical mechanism is provided
for edge attributes, which are mapped to edge colors.

Looking at the overview of bison in Fig. 2 a, we quickly locate
the main interactions between the three subsystems: src-lib (1),
src-include (2), and lib-include (3). Due to the bundling
effect, visual clutter is much smaller than in the NLD visualizations
in Fig. 1. It was easy to find the many functions which do not get
called: these are the innermost circle segments which have no edges
connected to them. Doing this task in the NLD visualizations was
only possible using Tulip’s search functions, but not the images.

Assessing the usage of ’polymorphic’ interfaces3 was easy, by col-
oring edges based on call type. In Fig. 2 a, static function calls
are red, and pointer calls are blue. Clearly, the pointer calls are a
minority. Many such calls exist in the bitset.h file (below in
the image). We added to SOLIDSX the ability to show only calls
related to a given node, by clicking on that node. When clicking on
bitset.h, the file and all its contained functions are displayed
in black outline (Figure 2 b). We see that this file has many blue
edges going to itself, two blue edges going to bitset.c to its
left, and a few red edges going to various other parts of the system.
This is interpreted as follows: bitset.h provides many function
declarations, which have equivalent signatures (the loop-like edges
atop bitset.h); these are only called via pointers; there are only
few clients who call such function pointers (the red edges going
outwards from bitset.h); and there are only two function defi-
nitions, in bitset.c, which can implement these interfaces. This
is precisely the type of information stored in the candidate sets of
the pointer-call analysis (Sec. 3).

Adding color to the function definitions in SOLIDSX brings addi-
tional insight. In Fig. 2, we show the static linkage attribute of
a function. Green indicates static functions, while blue shows
functions visible by a linker. Interestingly, all function declarations
in bitset.h are static. Hence, access to these ’polymorphic’ fea-
tures of bison can only be done via pointers to them.

5.3 Case Study 2: Mozilla Firefox

In this second, example, we analyzed the Mozilla Firefox code
base. Given space limitations, we will only discuss two plugins
of the entire system. Figure 3 a,b show the entire call graphs of the
libgklayout plugin (11817 functions, 21167 edges), visualized us-
ing SOLIDSX and Tulip’s GEM layout. Directory nodes are drawn
blue, files are yellow, classes are green, and functions are blue.
Static calls (edges) are red, virtual calls are cyan. At this scale, the
GEM layout is clearly not able to disentangle the calls. However,
the HEB layout is reasonably easy to read, due to the edge bundling
and edge aggregation. For example, we see that almost all virtual

3By this, we mean C functions called via pointers in bison

calls are directed at a few functions in a single file, nsCOMPtr.h,
outlined in black in the upper-left of Fig. 3 a. The virtual calls are
only visible as a blue spot in the GEM layout (Fig. 3 b).

This figure illustrates also a further enhancement we added to the
basic HEB idea. In SOLIDSX, we allow users to show or hide en-
tire hierarchy layers by simple mouse operations. Hidden layers,
usually the top-level ones in the system, are drawn as very thin
outer rings, as opposed to the regular visible layers, which are thick.
Hiding layers saves screen space for the inner layers in deep hier-
archies. Still, one can see the color of the hidden (thinly drawn)
layers, and count them, thereby getting a cue of how deep one is
in the hierarchy. The width of the hidden rings, regular rings, and
leaf-node (functions) ring can be also controlled explicitly by the
user, if desired. A zoom-in on a small sector of Fig. 3 a is shown in
Fig. 4. We see here 10 hidden hierarchy layers which take up only
the space needed by a single layer in the big picture.

hidden nodes leafsregular nodes

Figure 4: Zoom-in on Fig. 3 a illustrating the hierarchy hiding

Figure 3 c,d shows a much smaller plugin, libembed (677 nodes,
936 edges). At this scale, both the NLD and HEB layouts perform
comparatively. The users detected here quite easily, in both images,
that this plugin contains only a single virtual function (marked by a
circle and arrow in the images), called 7 times. This figure shows
yet another enhancement of the original circular layout: Instead of
rendering all nodes on the same level as contiguous segments on the
same circle, we leave gaps between neighbor segments which corre-
spond to nodes which do not have the same parent. In other words,
contiguous circle segments indicate siblings, and gaps separate sub-
trees. This view helps emphasizing the software’s hierarchical tree
structure, at the expense of a small space trade-off.

5.4 Case Study 3: The OINK Framework

In this third and last example, we analyzed the OINK C/C++ static
analysis framework itself. OINK contains around 350 KLOC writ-
ten mainly in C++, with small parts in C, developed over 6 years by
a team of 10 people. The architecture of OINK is quite elaborate. It
consists of a lexer (implemented using flex), a GLR parser (imple-
mented using the elkhound parser-generator library—[McPeak ]),
an ast class library for the over 180 C/C++ grammar nodes, and a
semantic analyzer (elsa). Our expert programmer, who worked for
over 2 years on OINK development, stated that the lexer, parser gen-
erator, and AST class library are rather modular and reusable sub-
systems, in line with the intentions of the OINK developers to make
these reusable for a family of languages; however, the semantic
analyzer is a much more complex subsystem, with tight couplings
throughout the entire system. The question was if this kind of in-
sight could be obtained by the other users using only dependency
visualizations.

The OINK call graph, extracted as described in Sec. 3, has 23497
function definitions, 242132 calls, and 2060371 attribute values.
This is two orders of magnitude larger than all systems visualized
so far with the HEB method [Cornelissen et al. 2007]. At this scale,
all NLD layouts in Tulip break down - some only produce fully
cluttered images, some abort with no result. Since showing all these

85



1
2

3

a) b)

Figure 2: Visualizations of the bison call graph using SOLIDSX: entire system (a); selected subsystem with most function-pointer calls (b)

a) b) c) d)

Figure 3: Call graphs of Mozilla plugins: libgklayout (a,b) and libembed (c,d). Color emphasizes virtual calls.

calls at once may be sometimes too much information even for the
HEB layout, we added support in SOLIDSX to allow to navigate the
input graph by hierarchy layers. Clicking on nodes allows expand-
ing or collapsing a node. Collapsed nodes aggregate all their calls
from/to outside nodes ni and display a single thick edge per node
ni. If the attributes of all aggregate edges have the same value, then
this value is used to color the edge, else the edge is colored gray.
Figures 5 a-c show the call dependencies of the entire OINK system
at file level (a), class level (b), and method level (c). Only three
clicks are needed to produce these three views - each click further
expands a deeper hierarchy level. Directory nodes are drawn blue,
files are yellow, classes are green, and functions are blue.

In Fig. 5 a, the ast and elhound systems, visible by their white back-
ground and thick black borders, were selected by clicking as ex-
plained in Sec. 5.2. We see that these systems have few calls from
the analyzer’s core, elsa. This suggests a potentially good separa-
tion of these three subsystems. The next image, Fig. 5 b, shows
the entire system one level deeper, i.e. at class level. The inner-
most ring is predominantly blue, which means function definitions
(blue) are directly contained in implementation files. The few green
spots denote private implementation classes, which are thus only
sparsely used in this system. The next image, Fig. 5 c zooms one
level deeper, showing all functions in the system. As the number of
functions in this case is far larger than the amount of available pix-
els, we chose a simple solution: we render only the nodes involved
in the relations with the selected nodes, and render the remainder
of the nodes in gray (see Fig. 4 for a detail zoom-in corresponding
to the image in Fig. 3 a). These are shown in green on the inner
circle in Fig. 5 c. Here, we see that, although the two selected sub-

systems ast and elkhound have very strong internal cohesion (many
self edges), their communication with the system’s core (elsa) is
indeed quite limited. This is a good sign for modularity.

Figure 5 c also shows the relative sizes of OINK’s components.
Files containing many functions occupy a larger part of the circular
layout. We see that these are the files of the semantic analyzer:
the scoping environment (cc scope.cc), the template analy-
sis code (template.cc), the type system classes (variable,
cc type.cc). To analyze how modular the semantic analyzer is,
we select its components by clicking (see Fig. 5 d-f). We now see
not only that these are large, but also have much more connections
with large parts of the entire system than the ast and elkhound sub-
systems - compare the amount of green segments on the innermost
ring and number of edges in Figs. 5 d-f with those in Fig. 5 c. This
finding correlates with the expert programmer’s experience: OINK

is modular with respect to the ast and elkhound parser generator, but
its semantic analyzer is over half of its code, and a tightly coupled
one for that matter.

Finally, to assess the polymorphism of the OINK code base, we use
again edge coloring. In Fig. 5, red denotes static function calls, and
blue denotes virtual calls. We see relatively few virtual calls - this
is in line with the OINK design documentation, which stresses a
minimal use of virtual methods for optimal performance.
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d) scoping e) variable (types) f) template

Figure 5: OINK framework: multilevel visualization of calls on the level of files (a), classes (b), and functions (c); Main semantic analysis
subsystems: the scoping environment (d), variables (e), and template analysis code (f). Selected subsystems are shown in black

5.5 Discussion

5.5.1 Usability comparison

We distilled several points from the reports provided by the five
users in this study. All users strongly agreed that the HEB layout is
overall vastly superior to node-link diagrams (NLDs) for navigat-
ing call-and-hierarchy graphs larger than a few hundred nodes, for
virtually all considered tasks, because:

1. HEBs show more data on the same amount of screen space

2. edges in HEBs are much less cluttered

3. hiding/showing nodes changes HEB layouts less than NLDs

4. the circular layout draws parent nodes naturally larger

5. HEBs show more node labels with less clutter than NLDs

6. interaction in HEB is always near-real-time, while some
NLDs take long to compute

However, some advantages of NLDs were mentioned too:

1. NLDs allow more freedom in manual layout editing

2. NLDs make it easier to follow a path than the HEB

3. the HEB circular layout places sometimes unrelated nodes
close to each other

For our tasks of interest, the advantages of HEB compensated the
advantages of NLDs. Although not rigorously timed, we noticed
users of HEBs being 3..5 times faster in accomplishing the same
task than when using NLDs, the average task in HEB being 1..3
minutes. The search and select functions of both tools used are
comparable in effectiveness and simplicity, so the difference can be
attributed to the visualization part. For instance, obtaining a view
as Figs. 2 or 5 takes around 1.5 minutes and around 10-15 mouse

clicks, including loading the data. Obtaining a similar image in
Tulip takes around 5 minutes and a few tens of clicks and selections.
In both cases, we used no custom application presets.

5.5.2 Performance comparison

Both Tulip and SOLIDSX are highly engineered for performance,
which is important for graphs of hundreds of thousands of elements
and attributes. For example, the OINK dataset (Sec. 5.4) takes 178
MB to store in Tulip and 395 MB in SOLIDSX. The difference
is explained by Tulip’s special memory management which uses
custom bit-level allocation to limit memory waste [Auber 2003].
All Tulip tree-like layouts are of comparable, near-real-time, per-
formance as the HEB layout. The HDE embedder and GEM are
considerably slower, taking e.g. about 2 minutes on the relatively
small bison dataset (Sec. 5.1) on a 2.8 GHz PC.

5.5.3 Threats to validity

For our comparison of visualization methods for call-and-hierarchy
data, the following points are important. First, we only compared
a limited number of NLD layouts with the HEB layout. Other
layouts, e.g. SHriMP-like ones, could perform better than those
studied here. There are, however, reasons to believe the opposite.
SHriMP-like layouts are effective in showing containment, but they
do not scale well in number of associations. These tend to occlude
the containment drawing, and also are hard to distinguish among
themselves (see e.g. [Lanza and Marinescu 2006; Telea 2004]).
Such layouts are effective for top-level architecture-like views, but
not for massive call graphs. However, we could not test all possible
NLD layouts in existence. The choice for Tulip was explicitly done
from an end-user perspective: choose a scalable, documented, user-
friendly, highly optimized NLD visualization tool, compare it with
a HEB implementation sharing the same features, and see which
one is better accepted by users.
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5.6 Availability

The entire toolset, including the C/C+ call-and-hierarchy extractor,
the SOLIDSX visualization tool, and the extracted call graphs in
Tulip and SQL formats, are available from the authors upon request.
Additional components to our toolset, not discussed here, include
plug-ins to automatically extract dependencies, syntactic informa-
tion, and metrics from Visual C++ projects and .NET assemblies.

6 Conclusions

We have presented a study that compares the usage of node-link
diagram (NLDs) and hierarchical edge bundle (HEB) layouts for
the visualization of large call-and-hierarchy graphs of software sys-
tems. To perform this, we have constructed a fully automatic
pipeline for extracting call graphs from C/C++ programs, includ-
ing a call static analyzer, and an enhanced implementation of the
HEB method for navigating very large graphs. The study points
out an important advantages of the enhanced HEB method for typ-
ical comprehension tasks involving call-and-hierarchy data, and
demonstrates the applicability of such methods for the understand-
ing of large, real-world, programs.

We are currently working on extending our call-and-hierarchy vi-
sualization with additional views to support investigation of addi-
tional graphs, e.g. class hierarchies, usage of types, and data flow,
as well as visualizing multiple attributes in a single view, e.g. static
type information, type matching, and source code metrics. It is also
interesting to study how some of the perceived advantages of NLD
layouts could be merged with the HEB views to obtain a visualiza-
tion that combines the benefits of both methods.
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