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Abstract—In this paper we develop a mathematical model
for the dynamics of a linear plate with piezoelectric actuation.
This model can then be used to design controllers with the goal
of achieving a desired shape of the plate. This control scheme
can be used for several applications, e.g., vibration control in
structures or shape control for high precision structures like
inflatable space reflectors. The starting point of the control
design is modeling for control. We will do this in the framework
of port-Hamiltonian (pH) modeling, since the pH modeling
framework has very nice properties which can be exploited
if one wants to design a controller for a specific task. One
property for example is that it facilitates modeling multi physics
systems or systems which consist of several systems by first
modeling all parts separate and then interconnecting them. This
is possible because any interconnection of pH systems yields
again a pH system. Hence, the pH framework is useful for our
multi-domain modeling purpose.

I. INTRODUCTION

Inflatable structures are a very promising technology for
space applications [3]. With this emerging technology one is
able to build bigger space crafts, which are cheaper in terms
of costs but still use the same space in the orbiting device.
As a consequence, the developments may enable us to build
bigger solar panels and reflectors.
Due to the fact that any inflatable structure is built out

of a polymer casing, an inflatable structure cannot have the
same surface accuracy as a rigid body. As a possibility for
changing the shape of a reflector one could use smart ma-
terials which have the possibility to change their properties
on demand, e.g., piezoelectric polymers [14]. This means
that with smart materials it is actually possible to change the
shape of an element by means of an applied voltage.

Fig. 1. An inflatable space reflector test setup of the company L’garde
(www.lgarde.com)

In this paper we consider a state-of-the-art inflatable space
reflector such as the one illustrated in Figure 1. The structure
consists of an inflatable torus to which an inflatable lens is

fixed. The torus itself is then attached to the space craft by
three or more inflatable booms. Note that one side of the
surface of the lens is transparent to the reflected radiation,
hence this side has no requirements on surface accuracy. The
other side of the lens is coated with a reflecting surface, e.g.,
a very thin aluminum coating. This surface will then be used
to focus the radiation we want to observe (e.g., the light of
a star) to the sensor array, which is mounted to the satellite.
But in order to ensure that the radiation is focused exactly on
the sensor array the reflecting surface has to have a specific
surface accuracy. To achieve the required surface accuracy
we need active control.
To be able to change the shape of the reflector one can

use several hundred actuators patches, made of piezoelectric
polymers, which are bonded to the actual reflective shell
(here after we call the shell of the reflector also the base
layer). Moreover, in order to be able to change the shape of
the reflecting surface locally, the actuators are spread out over
the whole surface. If one applies a current to the actuators,
the piezoelectric material will change its length and due
to the bonding to the shell of the reflector the reflecting
surface will bend locally. The final goal is then to develop
a control algorithm which uses the piezoelectric effect to
remove disturbances on the surface. But to be able to do
this one needs a mathematical model which describes the
dynamics of the real world object to be controlled.
In this paper we show how to develop a model for a linear

plate with piezo actuation in the port-Hamiltonian (pH) mod-
eling framework [13], [7]. Note that we choose as modeling
framework the pH framework due to its excellent properties.
For example a system in pH form is automatically passive,
and hence it does not generate any energy. Note that passive
systems with dissipation and no external influences have the
property that they converge to their equilibrium. One can
then exploit the interconnection and the equilibrium property
of pH systems to design a controller. One of the most
important properties of pH systems is that the interconnection
of pH models is done by describing the energy flow between
the two systems. This makes the pH modeling framework
very useful if one wants to model multi-physics phenomena
and/or very complex systems. Hence, one can model one
simple domain/subsystem of the total system, e.g., model
the mechanical domain of an electromechanical system. Then
one determines the energy exchange of that subsystem, e.g.,
via constitutive equations. From the description of the energy
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exchange between the systems one can easily determine an
interconnection law to interconnect all subsystems. Note that,
since one only uses the description of energy flow between
the systems, it is also possible to model mixed finite-infinite
dimensional systems like flexible link manipulators. This
leads to a very efficient way to model complex systems in a
rather simple way, by dividing the complex model in several
simple models which are then interconnected in an energy
conserving manner.
The framework of pH systems has been successfully used

to model mechanical, electrical, chemical, and electrome-
chanical systems for both finite dimensional and infinite
dimensional phenomena, see [12], [6], [1]. Of course a model
in pH form will be equivalent to models in other frameworks,
but they do not share the properties which make models in
pH framework so suitable for control.
In this paper we show how to model a purely piezoelectric

plate. In the past we also developed a model for a nonlin-
ear Euler-Bernoulli beam [16] and a nonlinear Timoshenko
beam [15]. Although the beam models were a good starting
point due to their lower complexity, these models were just
examples to show that our modeling and control strategy
works in practice. In [5] a model for a Mindlin plate with
linear deformations was derived. The approach proposed here
differs from the one presented in [5], since we derive a model
which uses the piezoelectric effect for actuation. Additionally
we derive the equations of motion by using the generalized
Hamiltonian’s principle, see [8].
The paper is organized as follows. In Section II we

introduce shortly the physics that we use to derive the 2-
D model of a piezoelectric composite in the linear plate
framework. Next in Section III we show how to derive a
model of a linear piezoelectric plate with a dynamic electrical
field in the pH framework.
Note that the proposed model can also be used for model-

ing other structures, namely any flexible structure with piezo
actuation, e.g., for vibration control in civil engineering.

II. BACKGROUND ON CONTINUUM DYNAMICS AND THE
PIEZOELECTRIC EFFECT

In this section we briefly introduce the physics to be used
in the following sections. We focus on linear materials and
large deformations [11]. The reason why we consider large
deformations in combination with linear materials is that we
want to derive a model which can be used for control design.
If one designs a controller it is desired that the controller is
robust. Robustness (in the area of control) means that the
controller is able to achieve the goal with a certain accuracy
even if the mathematical model which was used to design
the controller is not an exact representation of the real world
situation. Hence, the usage of linear material properties is a
valid assumption for modeling in the case of control design,
since the controller will be able to handle the modeling errors
which are caused by using linear material properties. For the
sake of simplicity of notation we will omit the spatial and
time dependency if it is clear from the context.

We start by defining the strain ε of the plate which is
a measure of deformation of the plate. The strain ε in
the plate is related to the deformation u of the plate. The
deformation of the plate is described as a vector which gives
the deformation in the z1 direction (u1), z2 direction (u2)
and z3 direction (u3). Moreover, the deformation is defined
for any point in the plate, hence u = [u1,u2,u3]! depends
on the position z = [z1, z2, z3]! in the plate. The strain of
the plate is

εij =
1

2

(
∂ui

∂zj
+

∂uj

∂zi
+

3∑

k=1

∂uk

∂zi

∂uk

∂zj

)
(1)

where i, j ∈ {1, 2, 3}. Hence, the strain at a given point
consists of 9 components but only 6 of the components are
unique since it holds that ε31 = ε13, ε21 = ε12 and ε23 =
ε32. So, we are able to write the strain in a 6 dimensional
vector.

ε = [ε11, ε22, ε33, ε13, ε12, ε23]
!

where ε11, ε22, and ε33 are the normal strains in z1, z2 and
z3 direction respectively and ε13, ε12, and ε23 are the shear
strains. Every element of the strain vector is a continuous
scalar function of space, i.e. εij ∈ C0 : R3 → R.
At any point where the plate is deformed (ε #= 0) a stress

will be present. For example if the plate is stretched in the
z1 direction the strain ε11 will be positive. This stretching
yields a stress also in the z1-direction which we denote as
σ11. Hence, there exists a relation between stress and strain.
The stress in the plate at a certain position is described in the
same way as the strain, so it consists of 6 components where
the first 3 describe the normal stresses and the last 3 describe
the shear stresses at a given point

(
σij ∈ C0 : R3 → R

)
.

Here we use linear material properties (Hooke’s Law) for
the relation between stress and strain which can be stated as

σ = Cε

where C ∈ R6×6 is the material stiffness matrix which
relates stress and strain. In this paper we assume only
homogeneous materials, so the matrixC is a constant matrix.
For piezoelectric materials the piezoelectric effect can

induce an additional stress in the material which is caused
by an electrical field (actuation property). Similarly the
deformation of the piezoelectric element also changes the
electrical field in the element (sensing property). These
properties result into coupled constitutive relations for piezo-
electric materials [10] and can be described as

[
σ
E

]
=

[
C −h!

h εe

] [
ε
D

]
(2)

here D = [D1, D2, D3]! is the electrical displacement
and E = [E1,E2,E3]! is the electrical field in the piezo
element at a specific point in space. Each element of the
electrical displacement and the electrical field is an element
of C0 : R3 → R. The parameter εe ∈ R3×3 is the electrical
permittivity matrix and describes the relation between the
electrical displacement and the electrical field. The piezo-
electric constant matrix h ∈ R3×6 of the material describes
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the relation between the electrical displacement D and the
stress σ. We assume that all material property matrices are
constant and so spatially independent.
In this paper we derive the equations of motion for the

model via the generalized Hamilton’s principle [8]. This
principle states that for a piezoelectric material it must hold
that

δ

ˆ t1

t0

(K − P +W )dt = 0 (3)

where K is the kinetic energy, P is the potential energy and
W is the external energy of the plate. We will simplify (3)
until we obtain the equations of motions in a form which
is similar to the one which is used in classical mechanical
literature, e.g. [9]. For all these energies V is the volume
of the structure and B expresses the surface. We denote
by
´
V ◦dV the volume integral and by

¸
B ◦dB the surface

integral of the given structure.

III. PH MODELING OF A LINEAR PIEZOELECTRIC PLATE
WITH A DYNAMIC ELECTRICAL FIELD

In this section we derive a linear infinite dimensional pH
model of a piezoelectric plate. The model that we derive is
different than the one derived in [5] as follows. In [5] the
authors treat a classical mindlin plate which is the simplest
plate model. The model that we derive here can be easily
extended to very complex plate models. Additionally, the
authors of [5] treat a purely mechanical plate with bound-
ary actuation. Although boundary actuation is sufficient for
several applications, we are focusing on a piezoelectric plate
with an in-plane actuation, due to the actuation limitations in
space. The addition of piezoelectric elements then introduces
nontrivial electromechanical coupling issues.
The derivation of the pH model is performed similar to

the derivation of the beam models presented in [15] and can
be split in four parts as follows: we first derive the strain and
the geometry of the piezoelectric plate, secondly we define
the stored energy, thirdly we derive the equations of motion,
and, finally, we derive the interconnection structure. Due to
the fact that these four steps are quite evolving for the 2-
D case we will first derive a model for a plate without a
piezoelectric effect and then add the piezo effect.
Now we determine the strain in the plate which is caused

by its deformation. This is the first step that has to be taken
in order to determine a distributed pH model for a plate.
The strain will then be used to calculate the strain energy
(potential energy) stored in the plate which is induced due
to deformation. For a plate it is in general assumed that the
following displacement takes place

u =




u0(z1, z2)− z3φu(z1, z2)
v0(z1, z2)− z3φv(z1, z2)

w(z1, z2)





where u0(z1, z2) and v0(z1, z2) are the displacements of
a material point at the neutral line of the plate in z1 and
z2 direction, respectively. The deformation in z3 direction
is given by w(z1, z2). The rotation of the cross section in

z1 and z2 direction is given by φu(z1, z2) and φv(z1, z2),
respectively.
Next we apply (1) to our deformation vector. Because we

treat a linear plate, we assume that ui,j & 1 for all i, j ∈
{1, 2, 3}, we neglect all quadratic terms in our strain. Hence,
we obtain the following simplified strains

ε11 = u0,1 − z3φu,1

ε22 = v0,2 − z3φv,2

ε12 = u0,2 − z3φu,2 + v0,1 − z3φv,1

ε13 =
1

2
(w1 − φu)

ε23 =
1

2
(w2 − φv) (4)

where the subscript , 1 and , 2 are used to denote a spatial
derivative in z1 and z2 coordinate respectively, e.g. u0,1 =
∂

∂z1
u0. We define the geometry of the plate as follows (see

also Figure 2). Let L1 be the length of the piezoelectric plate
in the direction z1, so, z1 ∈ [0, L1]. Let L2 be the length of
the piezoelectric plate in the direction z2, so, z2 ∈ [0, L2].
Finally, let h be the height of the plate, so, we assume that
z3 ∈ [0, h]. Furthermore, we define the upper surface of the
plate as Au =

´ L1

0

´ L1

0 dxdy = L1 · L2.

deformed

undeformed
z1

z3

z2

(0, 0) (L1, 0)

(0, L2) (L1, L2)

h

Fig. 2. Geometry of the considered plate

A. Hamiltonian of a plate
The general Hamiltonian of a purely mechanical plate is

the same as the Hamiltonian of the beam models [15] and
has the following general form

H(u, ε) =
1

2

ˆ
V

ρ ‖u̇‖2 + σ!εdV.

The Hamiltonian is defined as a volume integral, but since
we want to describe a plate it is clear that the z3 dimension
is obsolete. The reduction to 2-D can be performed by
integrating over the coordinate that the strain variables are
not depending on. Hence, we integrate over the z 3 coordinate.
We split the derivation of the simplified version in two parts.
1) Kinetic energy: The Kinetic energy of a plate is given

by
K =

1

2

ˆ
V

ρ ‖u̇‖22 dV (5)

here ρ is the density of the used material and u̇ is the velocity
of a specific atom. By integrating (5) over the height of the
beam we obtain

K =
1

2

ˆ
Au

ρ
(
hu̇2

0 − 2I0u̇0φ̇u + Iφ̇2
u + hv̇20

−2I0v̇0φ̇u + Iφ̇2
u + hẇ2

)
dAu
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with I =
´ h
0 z23dz , I0 =

´ h
0 z3dz. Now we can redefine the

kinetic energy in a quadratic form

K(p) =
1

2

ˆ
Au

p!M−1pdAu (6)

where

p := M
∂

∂t
˙̃u = ρ





h 0 0 −I0 0
0 h 0 0 −I0
0 0 h 0 0

−I0 0 0 I 0
0 −I0 0 0 I









u̇0

v̇0
ẇ0

φ̇u

φ̇v




.

The matrixM is also called the mass matrix and ˙̃u is the vec-
tor of velocity parameters defined as ˙̃u =

[
u̇0, v̇0, ẇ, φ̇u, φ̇v

]
.

The momenta vector p consists of the following elements:
p1 which is the moment in the z1 direction, p2 which is
the moment in the z2 direction, p3 which is the moment
in the z3 direction, p4 which is the angular moment of the
cross section around the z1 axis, and p5 which is the angular
moment of the cross section around the z2-axis.
2) Potential energy: The potential energy stored in the

plate can be described as

P =
1

2

ˆ
Au

ˆ h

0
σ!εdz3dAu.

The constitutive equations (2) relate the stresses and fluxes
in the plate as follows

σ11 = C11ε11 + C12ε22

σ22 = C12ε11 + C22ε22

σ12 = Gε12, σ13 = Gε13

σ23 = Gε23.

Hence, the potential energy is given by

P =
1

2

ˆ
Au

ˆ h

0
(σ11ε11 + σ22ε22 + 2σ12ε12+ (7)

2σ13ε13 + 2σ23ε23) dz3dAu.

Recall εij = εji, ∀i #= j. Now we are able to state the total
stored energy in the mechanical plate.
3) Simplified Hamiltonian of a plate: Combining the two

results (6) and (7) yields the simplified Hamiltonian

H =
1

2

ˆ
Au

p!M−1p+

ˆ h

0
σ11ε11 + σ22ε22 (8)

+2σ12ε12 + 2σ13ε13 + 2σ23ε23dz3dAu

The expression of the here defined Hamiltonian will be used
in Section III-C for the definition of the pH model.
4) Variational derivative of the Hamiltonian: Next we

have to derive the variational derivative with respect to the
momenta p and the chosen strain parameters ε̃. This step is
necessary since we want to define the pH model of the plate
by using the generalized Hamiltonian’s principle (3). We are
using the following strain parameters

ε̃ = [u0,1, u0,2, v0,1, v0,2, w,1, w,2,φu,φu,1,φu,2,φv,φv,1,φv,2]
!

Note that since these calculations are quite evolving we are
splitting them into several parts. We start by deriving the
variational derivative with respect to the momenta. To this
aim, we first define

p̃ = p+ δp = p+ ξϕ

where ξ > 0 and ϕ is an arbitrary function which is zero at
the boundary of Au. Substituting this into (6) and using a
Taylor expansion yields then

K(p̃) =
1

2

ˆ L

0
p̃!M−1p̃dz1 =

ˆ L

0
Fk(p̃)dz1

=

ˆ L

0
Fk(p) +

∂Fk

∂p
ξϕ +O(ξ2)dz1

= K(p) + δK(p).

So, we obtain that

δK(p) =
1

2

ˆ L

0

∂

∂p

(
p!M−1p

)
δpdz1

=

ˆ L

0
M−1pδpdz1.

Furthermore, since it holds that δK =
´ L
0

δK
δp δpdz1 we

obtain that the variational derivative of K with respect to
p is given by

δK

δp
= M−1p =





u̇
v̇
ẇ
φ̇u

φ̇v




. (9)

The next step is to derive the variational derivatives with
respect to the strain parameters ε̃. The derivation of the
variational derivative of the potential energy is exactly the
same as for the kinetic energy, so we skip the derivation here.
Also, due to the complexity of the variational derivative we
present here only the variational derivative with respect to
u0,1

δP

δu0,1
=

ˆ h

0
σ11dz3 (10)

and leave the rest to the interested reader. This concludes the
computation of the variational derivative of the Hamiltonian.

B. Equations of motion of a 2-D plate
The equations of motion for a plate which is pressurized

from below are derived with the method of extended Hamil-
tonian principle [8]. Note that since the principle of least
action must hold the variation of the stored energy has to be
equal to zero. So,

δ(K − P +W ) = 0. (11)

Next we have to calculate the variational derivatives of the
kinetic (6) and the potential energy (7) of the plate with re-
spect to displacements parameters ũ = [u0, v0, w,φu,φv]

!.
Since the Hamiltonian (8) corresponding to a 2-D plate has a
complex expression, for the sake of simplicity of explanation
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we split the derivation of its variational derivatives into
several parts. We start by deriving the variational derivative
of the kinetic energy (6).

1) Variation of the kinetic energy: To be able to derive the
variation of the kinetic energy we have to define variations
of the velocities, e.g. for the velocity in the z1-direction

˙̃u0 = u̇0 + δu̇0 = u̇0 + ξϕu

where ξ > 0 and ϕu is an arbitrary function which is
assumed to be equal to zero at the boundaries of Au. All
other variations are defined similarly. By substituting the
variations into the kinetic energy equation and by using the
Taylor expansion we obtain

K =

ˆ
Au

FK( ˙̃u0, ˙̃v0, ˙̃w, ˙̃φu,
˙̃φv)dAu

=

ˆ
Au

FK(u̇0, v̇0, ẇ, φ̇u, φ̇v) +
∂FK

∂u̇0
ξϕu +

∂FK

∂v̇0
ξϕv

+
∂FK

∂φ̇u

ξϕφu +
∂FK

∂φ̇v

ξϕφv +
∂FK

∂ẇ
ξϕw +O(ξ2)dAu.

Hence, the variational derivative is given by

δK = M ˙̃uδ ˙̃u.

Moreover, in order to be able to derive the equations of
motions we have to derive the variational derivative with
respect to the displacements. This can be accomplished when
using integration by parts and when using the fact that
δũ = 0 at the boundary of Au as follows

ˆ t1

t0

δKdt =

ˆ t1

t0

pδ ˙̃udt = −
ˆ t1

t0

ṗδũdt.

This is the first step towards deriving the equations of motion
for a purely mechanical plate. The next step is to derive the
variational derivative of the potential energy.

2) Variation of the potential energy: Now derive the
variational derivative of the potential energy with respect to
the deformation so that later on we will be able to derive
the equations of motion. However, since the variation of the
potential energy is quite complex, but straightforward, and is
essentially the same as for the kinetic energy we just present
here the results.
The variation of the potential energy with respect to the

deformations is given by

δP =

ˆ
Au

(
−∂1

ˆ h

0
σ11dz3 − ∂2

ˆ h

0
σ12dz3

)
δu0

+

(
−∂2

ˆ h

0
σ22dz3 − ∂1

ˆ h

0
σ12dz3

)
δv0

+

(
−∂1

ˆ h

0
w,2σ12dz3 − ∂2

ˆ h

0
w,1σ12dz3

−∂1

ˆ h

0
σ13dz3 − ∂2

ˆ h

0
σ23dz3

)
δw

+

(
−∂1

ˆ h

0
−z3σ11dz3 − ∂2

ˆ h

0
−z3σ12dz3

−
ˆ h

0
σ13dz3

)
δφu +

(
−∂2

ˆ h

0
−z3σ22dz3

−∂1

ˆ h

0
−z3σ12dz3 −

ˆ h

0
σ13dz3

)
δφvdAu.

Note that we used ∂i with i ∈ {1, 2} to express ∂
∂zi
. The

last step before we can state the equations of motion is to
calculate the variation of the external influences. We assume
here that the plate is pressurized from below and all other
sides have no external influences. Then we obtain

δW =

ˆ
Au

fu δu1|z3=0 + fv δu2|z3=0 + fw δu3|z3=0 dAu

ˆ
Au

fuδu0 + fvδu0 + fwδwdAu.

To fulfill (11) the variation of the total energy has to be
zero at any point (z1, z2) in the plate. So, the terms in the
integrand have to be zero at every point (z1, z2) ∈ Au which
yields the following equations of motion for a plate

ṗ1 = ∂1

ˆ h

0

σ11dz3 + ∂2

ˆ h

0

σ12dz3 + fu (12)

ṗ2 = ∂1

ˆ h

0

σ12dz3 + ∂2

ˆ h

0

σ22dz3 + fv

ṗ3 = ∂1

ˆ h

0

w,2σ12dz3 + ∂2

ˆ h

0

w,1σ12dz3

+∂1

ˆ h

0

σ13dz3 + ∂2

ˆ h

0

σ23dz3 + fw

ṗ4 = ∂1

ˆ h

0

−z3σ11dz3 + ∂2

ˆ h

0

−z3σ12dz3 +

ˆ h

0

σ13dz3

ṗ5 = ∂2

ˆ h

0

−z3σ22dz3 + ∂1

ˆ h

0

−z3σ12dz3 +

ˆ h

0

σ13dz3

These equations describe the dynamics of the mechanical
plate. However we also have to define the equations of
motion corresponding to the strain parameters. But, since
their derivation is straightforward we just state the equation
of motion for u0,1

u̇0,1 =
∂

∂z1
u̇0 (13)

and leave the rest to the interested reader. These equations
of motion are used in the next section to define the intercon-
nection structure for the pH model of the plate.
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C. Interconnection structure of a 2-D plate
Now we use the results of the last subsections to derive

an interconnection structure which is able to represent the
equations of motion of the system in pH form.
As state of the pH system we choose the momenta and the

strain parameters, so x = [p, ε̃]!. The variational derivative
of the Hamiltonian (8) with respect to the state is given by

δxH =

[
δpH
δε̃H

]

where δpH is the variational derivative of the Hamiltonian
with respect to the momenta p, defined by (9) and δε̃ is the
variational derivative with respect to the strain parameters ε̃,
defined by (10).
So, using the state variables and the variation of the

Hamiltonian we can rewrite (12) and (13) in terms of δxH .
For example for the equation of motion of p1 we obtain

ṗ1 = ∂1
δP

δu0,1
+ ∂2

δP

δu0,2
+ fu

We do this for all equations of motions. Then we can write
the following pH model

[
ṗ
˙̃ε

]
=

[
0 Jm

−J∗
m 0

]
δxH +Bm




fu
fv
fw



 (14)

y = B!
m∇H

where

Jm =





d 0 0 0 0 0
0 d 0 0 0 0
0 0 d 0 0 0
0 0 0 −I2 D1 D2





B!
m =

[
I3 0

]

d =
[

∂1 ∂2

]

D1 = diag(∂1, ∂2)

D1 = diag(∂2, ∂1)

Now that we have derived the equations of motion for a
purely mechanical plate. Next we add the piezoelectric effect
so that later on we can to actuate the system.

D. Adding the piezoelectric effect with a dynamic electrical
field
Before we can determine the piezoelectric effect in the

material we have to define the geometry of the piezoelectric
element. This has to be done so that afterwards we are
able to describe the electromagnetic field which is used to
actuate the system. We assume that the piezoelectric layer
that we consider here has two electrodes bonded to it. These
electrodes are then used to induce the electromagnetic field.
Note that since we have assumed that our plate is laying
in the z1z2 plane, the obvious choice is to assume that the
electrodes are also in the z1z2 plane. This means that we can
assume, similar to a plate capacitor, that the electrical field E
has only the z3 component. Hence, E1 = E2 = 0. Then we

derive the dynamics of the electromagnetic field by using 2-D
Maxwell’s equations, see e.g. [4]. For the interaction between
the mechanical and the electrical domain we assume that
the constitutive equations (2) hold. Different to the standard
definition of piezoelectric material [10] we do not neglect
the magnetic field by assuming a quasi static electrical field.
The reason for this is that we can show for the case of a
piezoelectric beam [?], that neglecting the dynamics of the
magnetic field yields a system which cannot be stabilized by
means of piezoelectric actuation.
1) 2-D version of Maxwell’s equations: To derive the

dynamics of the electromagnetic field which will be used
to actuate the system we use as base Maxwell’s equations.
But because we assumed that E1 = E2 = 0, we start
with a simplification of Maxwell’s equations. Due to this
assumption we can transform Maxwell’s equations given by

∂

∂t
D = ∇×Hm

− ∂

∂t
Bm = ∇×E

into a simpler form

−Ḃm,1 =
∂

∂z2
E3

−Ḃm,2 = − ∂

∂z1
E3

Ḋ3 =
∂

∂z1
Hm,2 −

∂

∂z2
Hm,1.

Hence, the magnetic field has only a z1 and z2 component
(H3 = 0). It holds that Bm,1 = µHm,1, Bm,2 = µHm,2, and
D3 = εeE3, with µ the permeability and εe the permittivity
of the piezoelectric material. These equations must still
hold for any point in the plate. But since we treat a 2-D
plate we want to express the Maxwell’s equations in a two
dimensional way by reducing one dimension. To simplify
the calculations we neglect for the moment the coupling
between the mechanical and electrical domain and treat the
independent Maxwell’s equations. We start with calculating
the charge and the flux induced by the D and Bm field on
the cross sectional areas which are penetrated by the field as
follows:

q =

ˆ
Au

D · dAu

φe
1 =

ˆ
A1

Bm · dA1

φe
2 =

ˆ
A2

Bm · dA2

where A1 is the cross section laying in the z1z3 plane and A2

is the cross section laying in the z2z3 plane. If we integrate
over the penetrated surfaces we obtain

q = L1 · L2 ·D3

φe
1 = −h · L1 · Bm,1

φe
2 = −h · L2 · Bm,2.
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From this result it follows that the charge and the flux
densities on the surface Au can be described as follows

q = D3, φe
1 = −hBm,1, φe

2 = −hBm,2.

Then we can rewrite the energy function in terms of charge
and flux distribution

H =
1

2

ˆ
Au

ˆ h

0
Hm,1Bm,1 +Hm,2Bm,2 +D3E3dz3dAu

=
1

2

ˆ
Au

1

µh
φe2

1 +
1

µh
φe2

2 +
h

εe
q2dAu.

The variational derivative of the transformed energy function
is given by

δH

δφe
1

=
1

µh
φe
1,

δH

δφe
2

=
1

µh
φe
2

δH

δq
=

h

εe
q.

Next we have to express the Maxwell’s equations in the new
coordinates (φe

1, φe
2, q). To be able to do this we integrate the

first two equations of motions over the height and substitute
the variational derivatives

−hḂm,1 =
∂

∂z2
hE3 ⇒ φ̇e

1 =
∂

∂z2

δH

δq

−hḂm,2 = − ∂

∂z1
hE3 ⇒ φ̇e

2 = − ∂

∂z1

δH

δq

Ḋ3 =
∂

∂z1
Hm,2 −

∂

∂z2
Hm,1

⇒ q̇ = − ∂

∂z1

1

µh
(−hBm,2) +

∂

∂z2

1

µh
(−hBm,1)

= − ∂

∂z1

δH

δφ2
+

∂

∂z2

δH

δφ1

Then we recast the equations of motion of the 2-D Maxwell’s
equations in the following pH system




φ̇e
1

φ̇e
2

q̇



 =




0 0 ∂2

0 0 −∂1

∂2 −∂1 0









δH
δφe

1
δH
δφe

2
δH
δq



 .

We will use the new derived coordinates to update the energy
function of the coupled system.
2) Hamiltonian of the coupled system: The stored energy

of the 2-D piezoelectric plate can be stated as follows

H =

ˆ
V

ρ ‖u‖22 + σ!ε +BmHm +DEdV.

The energy function describes the energy stored in the
whole volume. So, because we want to describe the plate
as a 2-D object we will integrate over the thickness of
the plate and also replace the electromagnetic fields with
the derived charge and flux densities. For simplicity we
neglect the kinetic energy

´
V p!M−1p+BmHmdV which

is unchanged by the coupling of the two PDEs.

P =
1
2

ˆ
V

C11

(
u0,1 − zφu,1 +

1
2
w2

,1

)2

(15)

+C22

(
v0,2 − zφv,2 +

1
2
w2

,2

)2

+2C12

(
v0,2 − zφv,2 +

1
2
w2

,2

)(
u0,1 − zφu,1 +

1
2
w2

,1

)

+2G

(
1
2
(u0,2 − zφu,2 + v0,1 − zφv,1 + w,1w,2)

)2

+2G

(
1
2
(w,1 − φu)

)2

+ 2G

(
1
2
(w,2 − φv)

)2

dV

−2h31q

ˆ h

0

(
u0,1 − zφu,1 +

1
2
w2

,1

)
dz3

−2h32q

ˆ h

0

(
v0,2 − zφv,2 +

1
2
w2

,2

)
dz3 +

1
εe

q2dB

The variational derivatives we can calculate in the same way
as for the purely mechanical plate (10). So we are only going
to state here the first variational derivative with respect to
u0,1

δH

δu0,1
=

ˆ h

0
C11ε11 + C12ε12dz3 − h31hq

and leave the other variational derivatives to the interested
reader. Note that the variational derivative of the kinetic
energy is unchanged.
3) Equations of motion and pH model: Now we derive the

equations of motion. We first define the mechanical potential
energy

Pmech =
1

2

ˆ
V
(C11ε11 + C12ε22 − h31q) ε11

+(C12ε11 + C22ε22 − h32q) ε22

+σ23ε23 + σ13ε13 + σ12ε12dV.

Next, to derive the equations of motions, we have to recalcu-
late the variations of the potential energy for every direction
separately. But since the piezoelectric effect influences only
the strains ε11 and ε22 it is sufficient to update only these.

a) Stress-strain z1 direction:

δP11 =

ˆ
Au

− ∂
∂z1

ˆ h

0

C11ε11 + C12ε22 − h31qdz3δu0

− ∂
∂z1

ˆ h

0

−z3 (C11ε11 + C12ε22 − h31q) dz3δφudAu

b) Stress-strain z2 direction:

δP22 =

ˆ
B

− ∂
∂z2

ˆ h

0

(C12ε11 + C22ε22 − h32q) dz3δv0

− ∂
∂z2

ˆ h

0

−z3 (C12ε11 + C22ε22 − h32q) dz3δφvdAu

Using this result as we did for the derivation of (12) we
obtain the following equations of motion of a piezoelectric
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plate with a dynamic electromagnetic field

ṗ1 =
∂

∂z1

δP

δu0,1
+

∂

∂z2

δP

δu0,2
+ fu

ṗ2 =
∂

∂z2

δP

δv0,2
+

∂

∂z1

δP

δv0,1
+ fv

ṗ3 =
∂

∂z1

δP

δw,1
+

∂

∂z2

δP

δw,2
+ fw

ṗ4 =
∂

∂z1

δP

δφu,1
− δP

δφu
+

∂

∂z2

δP

δφu,2
+ hminfu

ṗ5 =
∂

∂z2

δP

δφv,2
− δP

δφv
+

∂

∂z1

δP

δφv,1
+ hminfv

Note that the equations of motions for the strain are un-
changed. However, we still have to derive the equations of
motion for the electromagnetic field. To this aim we substi-
tute the constitutive equations into the Maxwell’s equations
and use the defined flux and charge density to describe them

φ̇e
1 =

∂

∂z2

(
−h31

ˆ h

0
ε11dz3 − h32

ˆ h

0
ε22dz3 +

h

εe
q

)

=
∂

∂z2

δH

δq

φ̇e
2 = − ∂

∂z1

(
−h31

ˆ h

0
ε11dz3 − h32

ˆ h

0
ε22dz3 +

h

εe
q

)

= − ∂

∂z1

δH

δq

q̇ = − ∂

∂z1

1

µh
(−hBm,2) +

∂

∂z2

1

µh
(−hBm,1)

= − ∂

∂z1

δH

δφ2
+

∂

∂z1

δH

δφ1

Hence, we can now write the system in the following pH
form

ẋ =





0 Jm 0 0
−J∗

m 0 0 0
0 0 0 Je

0 0 −J∗
e 0



 δxH +





I3
0
0
0



u(16)

ym =
[
I3 0 0 0

]
δxH

where Bm and Jm are the same matrices as for the purely
mechanical model and

Je =




0 0 ∂2

0 0 −∂1

∂2 −∂1 0



 , φe =

[
φe
y

φe
x

]
.

Note that the coupling between the mechanical and the
electromagnetic domain is done only via the Hamiltonian
and not via the interconnection structure.

IV. CONCLUSION
In this paper we have derived the port-Hamitonian (pH)

model for a linear plate, both purely mechanical and with
piezo actuation. This model can now be used to derive
a shape controller for an inflatable space structure. We
choose the early lumping approach — control design based
on a spatial discretized model. We have used a spatial

discretization scheme [2] which preserves the pH structure
of the model. We have implemented one of the so derived
finite dimensional system which approximates the dynamics
of the plate on one finite element. Further, we will use an
inteconnection of several finite dimensional systems to derive
a discretization of a full plate. This finite dimensional model
is then the basis for the design of a shape controller.
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