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Disturbance Decoupling of
Switched Linear Systems

E. Yurtseven W.P.M.H. Heemels M.K. Camlibel

Abstract— In this paper we consider disturbance decoupling
problems for switched linear systems. We will provide neces-
sary and sufficient conditions for three different versions of
disturbance decoupling, which differ based on which signals
are considered to be the disturbance. In the first version the
continuous exogenous input is considered as the disturbance,
in the second the switching signal and in the third both of
them are considered as disturbances. The solutions of the three
disturbance decoupling problems will be based on geometric
control theory for switched linear systems and will entail both
mode-dependent and mode-independent static state feedback.

Index Terms— Disturbance decoupling, switched linear sys-
tems, invariant subspaces, geometric control theory

I. INTRODUCTION

Geometric control theory for linear time-invariant systems
has a long and rich history, as is evidenced by the availability
of various textbooks on the topic [2, 6, 18]. In particular,
for solving disturbance decoupling problems (DDPs) for
linear systems the usage of geometric theory turned out to
be extremely powerful. Also solutions to various problems
for smooth nonlinear systems using a nonlinear geometric
approach are available in the literature, see, e.g., [3, 7, 11].
However, outside the context of linear or smooth nonlinear
control systems, the number of results on DDPs is rather
limited. This is specifically surprising for hybrid dynamical
systems or subclasses such as switched systems [9], as they
have been studied extensively over the last two decades.

Only a few results are available on geometric control
theory and solutions to DDPs for switched systems. In [8] the
largest controlled invariant set for switched linear systems
(SLSs) is studied in which both the switching (discrete
control input) and the continuous input can be manipulated
as control inputs. In the context of linear parameter-varying
(LPV) systems various parameter-varying (controlled and
conditioned) invariant subspaces are introduced in [1] and
various algorithms are presented to compute them. Based on
[1] first results in the direction of applying these concepts
to DDPs with respect to continuous disturbances are given
in [14] using parameter-dependent state feedback. Recently,
in [12] the DDP for switched linear systems using mode-
dependent state feedback control is solved and combined
with results on quadratic stabilizability [4, 17]. Also for
reachability problems for SLSs invariant subspaces played
an important role. In particular, in [15, 16] it was shown
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that the reachable set of an SLS is equal to the smallest
controlled invariant set containing the subspace spanned by
all the input matrices of the individual subsystems. For
switched nonlinear systems, the only work known to the
authors is [20]. In [20] local versions of DDP with respect
to continuous disturbances are solved using both mode-
dependent and mode-independent static state feedback.

The objectives of this paper are to provide complete
answers to DDPs for SLSs using various new controlled
and conditioned invariant subspaces for SLSs. We first
assume that the control input is absent and analyze the
disturbance decoupling properties of a SLS. In contrast
with the above mentioned references, which only study
disturbance decoupling (DD) with respect to continuous
exogenous disturbances, we consider three variants of DD as
will be formally defined in Section II, namely DD with the
disturbances being either (i) the exogenous continuous distur-
bances, (ii) the switching signal, or (iii) both the continuous
disturbances and the switching signal. In Section III we will
fully characterize these three DD properties. In Section IV
we will add continuous control inputs to the problem and
solve the DDP using state feedback controllers that may
be both mode-dependent and mode-independent. We will
allow for direct feedthrough terms of the control input into
the to-be-decoupled output variable, a situation that was not
considered in the aforementioned references. Note also that
variant (ii) and (iii) are in the present paper for the first
time. In Section V we provide algorithms to compute the
largest common controlled invariant subspaces using both
mode-dependent and mode-independent feedback, which can
be used to verify the characterizations of the solvability of the
DDPs provided in Section IV and also to construct feedbacks
solving the DDPs. For space reasons we omit all proofs,
which can found in [19].

II. PROBLEM FORMULATION

A switched linear system (SLS) without control inputs is
described by the following equations

ẋ(t) = Aσ(t)x(t) + Eσ(t)d(t) (1a)

z(t) = Hσ(t)x(t) (1b)

where x(t) ∈ Rnx , d(t) ∈ Rnd and z(t) ∈ Rnz denote the
state variable, the exogenous input and output, respectively,
at time t ∈ R+ := [0,∞). For each i ∈ {1, . . . ,M},
Ai ∈ Rnx×nx , Ei ∈ Rnx×nd and Hi ∈ Rnz×nx are
matrices describing a linear subsystem. Switching between
subsystems (modes) is orchestrated by the switching signal
σ. We assume that σ lies in the set S of right-continuous
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functions R+ → {1, . . . ,M} that are piecewise constant
with a finite number of discontinuities in a finite length
interval. Particular switching signals are the constant ones
σi ∈ S, i = 1, . . . ,M , which are defined as σi(t) = i
for all t ∈ R+. We assume that the exogenous signal d
is locally integrable, i.e. d ∈ Lloc1 (R+,Rnd). Clearly, the
SLS (1) has for each d ∈ Lloc1 (R+,Rnd), initial condition
x(0) = x0 ∈ Rnx and switching signal σ ∈ S a unique
solution xx0,σ,d and a corresponding output zx0,σ,d.

We will consider the following three variants of distur-
bance decoupling, which differ based on which signals are
considered to be the disturbance.

Definition II.1 The SLS (1) is called disturbance decoupled
(DD) with respect to d if

zx0,σ,d1 = zx0,σ,d2 (2)

for all x0 ∈ Rnx , σ ∈ S and d1, d2 ∈ Lloc1 (R+,Rnd).

Definition II.2 The SLS (1) is called disturbance decoupled
(DD) with respect to σ if

zx0,σ1,d = zx0,σ2,d (3)

for all x0 ∈ Rnx , σ1, σ2 ∈ S and d ∈ Lloc1 (R+,Rnd).

Definition II.3 The SLS (1) is called disturbance decoupled
(DD) with respect to both σ and d if

zx0,σ1,d1 = zx0,σ2,d2 (4)

for all x0 ∈ Rnx , σ1, σ2 ∈ S and d1, d2 ∈ Lloc1 (R+,Rnd).

Remark II.4 DD with respect to continuous disturbances d
is commonly studied and well motivated within the context
of linear systems [2, 6, 18] and nonlinear systems [3, 7, 11].
DD with respect to σ or both σ and d is typical for switched
systems as studied here. These variants of DD are relevant in
situations where the switching signal σ is uncontrolled and
we would like to design a (closed-loop) system in which σ
does not influence certain important performance variables
z. In particular, when σ models certain faults in the system
such as breakage of pipes, actuators, sensors, etc. and thus
each mode i ∈ {1, . . . ,M} corresponds to one of these
discrete fault scenarios, it would be desirable to decouple
z from σ (and possibly other continuous disturbances d).
Hence, as such these variants of DD constitute fundamental
problems in the area of fault-tolerant control [10]. Another
motivation for DD with respect to both σ and d are DD
problems for piecewise linear systems, which is discussed in
detail in [19].

III. DISTURBANCE DECOUPLING CHARACTERIZATIONS

To provide characterizations for the above mentioned
DD properties, we need to introduce some concepts and
a technical lemma. We call a subspace V ∈ Rnx A-
invariant for A ∈ Rnx×nx , if AV ⊆ V . We call a subspace
{A1, . . . , AM}-invariant Ai ∈ Rnx×nx , i = 1, . . . ,M , if
AiV ⊆ V for all i = 1, . . . ,M . Given a matrix A ∈ Rnx×nx

and a subspace W ∈ Rnx , let 〈A|W〉 denote the smallest
A−invariant subspace that contains W , i.e.,

〈A|W〉 =W +AW + . . .+Anx−1W (5)

For a set of matrices {A1, . . . , AM} and a subspace W ,
the smallest {A1, . . . , AM}-invariant subspace that contains
W , denoted by Vs(W), is uniquely defined by the following
three properties:
1) W ⊆ Vs(W);
2) Vs(W) is {A1, . . . , AM}-invariant;
3) For any subspace V being {A1, . . . , AM}-invariant with
W ⊆ V , it holds that Vs(W) ⊆ V .

Calculation of Vs(W) can be done using the recurrence
relation

V1 =W; Vi+1 =
M∑
j=1

〈Aj |Vi〉

Since Vi ⊆ Vi+1 for i = 1, 2, . . . and Vp = Vp+1 implies
Vq = Vp for all q ≥ p, it holds that Vq = Vs(W) for all
q ≥ nx, see, e.g., [1, 16].

The reachable set of (1) is defined as R := {x0,σ,d(T ) | T
∈ R+, σ ∈ S and d ∈ Lloc1 (R+,Rnd)} being the set of states
that can be reached from the origin in finite time for some
σ and d.

Lemma III.1 For the SLS (1),

R = Vs(
M∑
i=1

im Ei)

See [15, 16] for the proof of this lemma.

A. Disturbance decoupling with respect to d

In this section we consider DD with respect to d. Before
giving the main result of this subsection, we would like to
give a motivating example which shows that this is not a
trivial problem.

Example III.2 Consider a bimodal SLS as in (1) with the
first subsystem described as

ẋ1(t) = 0 ẋ2(t) = d(t) z(t) = x1(t) (6)

and the second subsystem as

ẋ1(t) = d(t) ẋ2(t) = 0 z(t) = x2(t) (7)

It is obvious that both the linear subsystems are DD with
respect to d. However, under the switching signal σ(t)
described as

σ(t) =

{
1 0 ≤ t < t1

2 t1 ≤ t
(8)

the output at t1 is given by

z(t1) = x20 +
∫ t1

0

d(τ)dτ

showing that the SLS is not DD with respect to d. Therefore,
this example shows that it is not sufficient that the subsystems
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of an SLS are DD with respect to d for the SLS itself to be
DD with respect to d.

The observation in the above example is consistent with
the following theorem.

Theorem III.3 The SLS (1) is DD with respect to d if and
only if an {A1, . . . , AM}-invariant subspace V exists such
that

M∑
i=1

im Ei ⊆ V ⊆ ker

H1

...
HM

 (9)

Example III.4 Reconsidering the bimodal SLS in Exam-
ple III.2, one can see that

2∑
i=1

im Ei = R2 ker
[
H1

H2

]
= {0}

Clearly, there cannot be a subspace V that satisfies

2∑
i=1

im Ei ⊆ V ⊆ ker
[
H1

H2

]
Therefore, the SLS in Example III.2 is not DD with respect
to d according to Theorem III.3, which agrees with our
previous observation based on computing the output of the
SLS explicitly.

B. Disturbance decoupling with respect to σ

In this section we consider DD with respect to σ in
which we will use Ni being the unobservable subspace
corresponding to the pair (Hi, Ai), i.e., Ni = kerHi ∩
kerHiAi∩. . .∩kerHiA

nx−1
i . Note that Ni is also the largest

Ai-invariant subspace contained in kerHi, i ∈ {1, . . . ,M}.

Theorem III.5 The SLS (1) is DD with respect to σ if and
only if for all (i, j) ∈ {1, . . . ,M}×{1, . . . ,M} the following
conditions hold

(i) Hi = Hj;
(ii) Ni = Nj;

(iii) im(Ai −Aj) ⊆ Ni;
(iv) im(Ei − Ej) ⊆ Ni.

Based on Theorem III.5, we can also derive an alternative
characterization of DD with respect to σ, which is more
geometric in nature.

Corollary III.6 The SLS (1) is DD with respect to σ if and
only if there exists an {A1, . . . , AM}-invariant subspace V
such that for all (i, j) ∈ {1, . . . ,M} × {1, . . . ,M}

(i) Hi = Hj

(ii) im (Ai −Aj) ⊆ V ⊆ kerHi

(iii) im (Ei − Ej) ⊆ V

C. Disturbance decoupling with respect to σ and d
Using the above results, we will characterize DD with

respect to σ and d now.

Lemma III.7 The SLS (1) is DD with respect to both σ and
d if and only if it is DD with respect to σ and DD with
respect to d.

Theorem III.8 The following statements are equivalent:
1) The SLS (1) is DD with respect to σ and d.
2) The conditions

(i) Hi = Hj = H ,
(ii) Ni = Nj = N ,

(iii) im(Ai −Aj) ⊆ N , and
(iv) imEi ⊆ N

hold for all (i, j) ∈ {1, . . . ,M} × {1, . . . ,M}.
3) There exists an {A1, . . . , AM}-invariant subspace V

such that
(i) Hi = Hj = H ,

(ii) im(Ai −Aj) ⊆ V ⊆ kerH , and
(iii) imEi ⊆ V
for all (i, j) ∈ {1, . . . ,M} × {1, . . . ,M}.

IV. DDP BY STATE FEEDBACK

In the previous section we provided full characterizations
of DD properties. Now we will consider if and how we
should choose control inputs in order to render a SLS
disturbance decoupled in some sense. In order to do so,
consider the SLS

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Eσ(t)d(t) (10a)

z(t) = Hσ(t)x(t) + Jσ(t)u(t) (10b)

where we included now a control input u(t) ∈ Rnu at time
t ∈ R+. As before we denote the solution corresponding
to x0 ∈ Rnx , σ ∈ S , d ∈ Lloc1 (R+,Rnd) and u ∈
Lloc1 (R+,Rnu) by xx0,σ,d,u and the corresponding output by
zx0,σ,d,u. We are now interested in finding conditions under
which controllers can be found such that the closed-loop
system is DD with respect to d, to σ, or to both. We start
with static state feedback controllers.

A. Solution of DDP with respect to d by mode-dependent
state feedback
Problem IV.1 The disturbance decoupling problem with re-
spect to d (DDPd) by mode-dependent state feedback for SLS
(10) amounts to finding Fi ∈ Rnu×nx , i = 1, . . . ,M such
that

ẋ(t) = (Aσ(t) +Bσ(t)Fσ(t))x(t) + Eσ(t)d(t) (11a)

z(t) = (Hσ(t) + Jσ(t)Fσ(t))x(t) (11b)

is DD with respect to d.

Note that the SLS (11) results from putting the system
(10) in closed loop with u(t) = Fσ(t)x(t), which requires
knowledge of the active mode σ(t) at time t ∈ R+.
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Definition IV.2 Consider the SLS (10) with
d = 0. A subspace V is called output-nulling
{(A1, B1), . . . , (AM , BM )}-invariant if for any x0 ∈ V and
σ ∈ S there exists a control input u ∈ Lloc1 (R+,Rnu) such
that xx0,σ,0,u(t) ∈ V and zx0,σ,0,u(t) = 0 for all t ∈ R+.

Sometimes an output-nulling {(A1, B1), . . . , (AM , BM )}-
invariant subspace is called a common output-nulling con-
trolled invariant subspace for (10).

Definition IV.3 Given a linear subspace V ⊆ Rnx , we
define the extended subspace e(V) ⊆ Rnx+nz as

e(V) = V × {0}

Theorem IV.4 Consider the SLS (10) with d = 0. Let V be
a subspace of Rnx . The following statements are equivalent.

(i) V is common output-nulling controlled invariant.

(ii)
[
Aj
Hj

]
V ⊆ e(V) + im

[
Bj
Jj

]
for all j = 1, . . . ,M .

(iii) There exist Fj ∈ Rnu×nx , j = 1, . . . ,M , such that
(Aj + BjFj)V ⊆ V ⊆ ker (Hj + JjFj) for all j =
1, . . . ,M .

Let {Vj | j ∈ J } be a collection of common output-
nulling controlled invariant subspaces for the SLS (10). It
follows from Definition IV.2 that

∑
j∈J
Vj is common output-

nulling controlled invariant. Therefore, the set of all common
output-nulling controlled invariant subspaces admits a largest
element. The largest common output-nulling controlled in-
variant subspace for a given SLS plays a crucial role in the
solution of DDPd by mode-dependent feedback.

Definition IV.5 Consider the SLS (10) with d = 0. We
define V∗md as the largest common output-nulling controlled
invariant subspace for the SLS (10) that is

(i) V∗md is common output-nulling controlled invariant;
(ii) if V is a common output-nulling controlled invariant

subspace for the SLS (10), then V ⊆ V∗md.

Theorem IV.6 Consider the SLS (10). DDPd by mode-
dependent feedback is solvable if and only if

M∑
i=1

im Ei ⊆ V∗md (12)

In case (12) is satisfied a mode-dependent feedback u(t) =
Fσ(t)x(t) that renders (11) DD with respect to d is char-
acterized by (Ai + BiFi)V∗md ⊆ V∗md ⊆ ker (Hi + JiFi),
i ∈ {1, . . . ,M}.

In Section V we will provide an algorithm to compute
V∗md for a given SLS.

Remark IV.7 For the special case that Ji = 0, i =
1, . . . ,M , this problem was solved also in [12]. In [12] the
DDP with respect to d by mode-dependent state feedback was
combined with the question of quadratic stability. Sufficient
conditions were given exploiting known results for quadratic

stabilization as in [4, 17]. These stability conditions can
also be added to the theorems that we present here, but
unfortunately, they are, just as in [12], not so trivial to
verify, certainly for a high number of subsystems. Indeed, the
sufficient conditions that guarantee solvability of DDP with
quadratic stability (DDPQS) according to Theorem 3.2 in
[12] are the existence of Fj , j = 1, . . . ,M , such that (Aj +
BjFj)V∗md ⊆ V∗md ⊆ ker (Hj + JjFj) for all j = 1, . . . ,M
and there exists a convex combination

∑
αj(Aj+BjFj) with∑M

j=1 αj = 1 and αj ≥ 0, j = 1, . . . ,M , being a Hurwitz
matrix. Since a parameterization of all Fj , j = 1, . . . ,M ,
satisfying (Aj + BjFj)V∗md ⊆ V∗md ⊆ ker (Hj + JjFj) is
hard to come by in the first place, and one has to search
for both αj and Fj , j = 1, . . . ,M , which is a non-convex
problem, these conditions are not easy to verify. Also for the
satisfaction of the stabilization condition it is unclear if using
V∗md instead of another common output-nulling controlled
invariant subspace containing

∑M
i=1 im Ei is introducing

conservatism into the conditions. Another difference with
respect to [12], is that DDP with respect to d by mode-
independent state feedback was not considered in [12], while
we treat this problem in the next section.

B. Solution of DDP with respect to d by mode-independent
state feedback

Problem IV.8 The disturbance decoupling problem with re-
spect to d (DDPd) by mode-independent feedback for SLS
(10) amounts to finding F ∈ Rnu×nx such that

ẋ(t) = (Aσ(t) +Bσ(t)F )x(t) + Eσ(t)d(t) (13a)

z(t) = (Hσ(t) + Jσ(t)F )x(t) (13b)

is DD with respect to d.

Note that the SLS (13) results from putting the system (10)
in closed loop with u(t) = Fx(t). The latter state feedback
controller does not require knowledge of the active mode
σ(t) at time t ∈ R+.

Definition IV.9 Consider the SLS (10) with
d = 0. A subspace V is called output-nulling
{(A1, B1), . . . , (AM , BM )}-invariant under mode-
independent control if for any x0 ∈ V there exists a
control input u ∈ Lloc1 (R+,Rnu) such that xx0,σ,0,u(t) ∈ V
and zx0,σ,0,u(t) = 0 for all σ ∈ S and for all t ∈ R+.

Sometimes a subspace that is output-nulling
{(A1, B1), . . . , (AM , BM )}-invariant under mode-
independent control is called a common output-nulling
controlled invariant subspace under mode-independent
control for (10).

Theorem IV.10 Consider the SLS (10) with d = 0. Let V be
a subspace of Rnx . Define the matrices As ∈ RM(nx+nz)×nx
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and Bs ∈ RM(nx+nz)×nu

As =


A1

H1

...
AM
HM

 , Bs =


B1

J1

...
BM
JM

 (14)

and e(V)M as e(V)M =

M times︷ ︸︸ ︷
e(V)× e(V)× . . .× e(V). The

following statements are equivalent.
(i) V is common output-nulling controlled invariant under

mode-independent control.
(ii) AsV ⊆ e(V)M + imBs.

(iii) There exists F ∈ Rnu×nx such that (Aj + BjF )V ⊆
V ⊆ ker (Hj + JjF ) for all j = 1, . . . ,M .

Definition IV.11 Consider the SLS (10) with d = 0. We
define V∗mi as the largest common output-nulling controlled
invariant subspace under mode-independent control for the
SLS (10), that is

1) V∗mi is common output-nulling controlled invariant un-
der mode-independent control;

2) if V is common output-nulling controlled invariant un-
der mode-independent control for the SLS (10), then
V ⊆ V∗mi.

Theorem IV.12 Consider the SLS (10). DDPd by mode-
independent feedback is solvable if and only if

M∑
i=1

im Ei ⊆ V∗mi (15)

In case (15) is satisfied a mode-independent feedback u(t) =
Fx(t) that renders (13) DD with respect to d is char-
acterized by (Ai + BiF )V∗mi ⊆ V∗mi ⊆ ker (Hi + JiF ),
i ∈ {1, . . . ,M}.

In Section V we will present an algorithm to compute the
largest common output-nulling controlled invariant subspace
using mode-independent feedback for a given SLS.

C. Solution of DDP with respect to σ by mode-dependent
state feedback

Consider the SLS (10).

Problem IV.13 The disturbance decoupling problem with
respect to σ (DDPσ) by mode-dependent state feedback
amounts to finding Fi ∈ Rnu×nx , i = 1, . . . ,M such that
the SLS (11) is DD with respect to σ.

Before giving the theorem for the solvability of Prob-
lem IV.13 we need to introduce the following lemma.

Lemma IV.14 Consider the SLS (10). DDPσ by mode-
dependent feedback is solvable if and only if there exist
a common output-nullling controlled invariant subspace V
and Fk ∈ Rnu×nx , k = 1, . . . ,M , with (Ak + BkFk)V ⊆

V ⊆ ker (Hk + JkFk), k = 1, . . . ,M , such that the fol-
lowing three conditions hold for all (i, j) ∈ {1, . . . ,M} ×
{1, . . . ,M}:

(i) Hi + JiFi = Hj + JjFj ,
(ii) im (Ai +BiFi −Aj −BjFj) ⊆ V ,

(iii) im (Ei − Ej) ⊆ V .

Theorem IV.15 Consider the SLS (10). DDPσ by mode-
dependent feedback is solvable if and only if there exist
Gi ∈ Rnu×nx , i = 1, . . . ,M , such that for all (i, j) ∈
{1, . . . ,M} × {1, . . . ,M} it holds that

(i) Hi + JiGi = Hj + JjGj ,
(ii) im (Ai +BiGi −Aj −BjGj) ⊆ V∗md,

(iii) im (Ei − Ej) ⊆ V∗md.
In case the above conditions are satisfied a mode-dependent
feedback u(t) = Fσ(t)x(t) that renders (11) DD with respect
to σ can be constructed by letting {v1, v2, . . . , vnx} be a
basis for Rnx such that {v1, . . . , vq} is a basis for V∗md and
defining

Fivk =

{
F̃ivk k ∈ {1, 2, . . . , q}
Givk k ∈ {q + 1, q + 2, . . . , nx}

in which F̃i satisfies (Ai + BiF̃i)V∗md ⊆ V∗md ⊆
ker (Hi + JiF̃i), i ∈ {1, . . . ,M}.

D. Solution of DDP with respect to d and σ (DDPdσ) by
mode-dependent state feedback

Consider the SLS (10).

Problem IV.16 The disturbance decoupling problem with
respect to d and σ (DDPdσ) by mode-dependent state
feedback amounts to finding Fi ∈ Rnu×nx , i = 1, . . . ,M
such that the SLS (11) is DD with respect to d and σ.

Theorem IV.17 Consider the SLS (10). DDPdσ by mode-
dependent feedback is solvable if and only if there exist
Gi ∈ Rnu×nx , i = 1, . . . ,M such that for all (i, j) ∈
{1, . . . ,M} × {1, . . . ,M} it holds that

(i) Hi + JiGi = Hj + JjGj ,
(ii) im (Ai +BiGi −Aj −BjGj) ⊆ V∗md,

(iii) im Ei ⊆ V∗md.
In case the above conditions are satisfied a mode-dependent
feedback u(t) = Fσ(t)x(t) that renders (11) DD with respect
to d and σ can be constructed by letting {v1, v2, . . . , vnx}
be a basis for Rnx such that {v1, . . . , vq} is a basis for V∗md
and defining

Fivk =

{
F̃ivk k ∈ {1, 2, . . . , q}
Givk k ∈ {q + 1, q + 2, . . . , nx}

in which F̃i satisfies (Ai + BiF̃i)V∗md ⊆ V∗md ⊆
ker (Hi + JiF̃i), i ∈ {1, . . . ,M}.

Remark IV.18 In Theorem IV.15 and Theorem IV.17, if
V∗md is replaced with V∗mi and Gi = Gj for all (i, j) ∈
{1, . . . ,M} ×{1, . . . ,M}, then the characterizations of
solvability of DDPσ and DDPdσ by mode-independent
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feedback, respectively, are obtained. The construction of
the disturbance decoupling feedbacks have to be adapted
accordingly, see [19] for more details.

V. ALGORITHMS TO TEST THE HYPOTHESES OF THE
SOLUTIONS TO THE DDP

A. Algorithm for Theorem IV.6

In this subsection we will present an algorithm to find the
largest common output-nulling controlled invariant subspace
for the SLS (10).

Algorithm V.1
V0 = Rnx ; (16a)

Vi+1 =
M⋂
j=1

{x | ∃u Ajx+Bju ∈ Vi, Hjx+ Jju = 0}

(16b)

From this recurrence relation it follows that Vi+1 ⊆ Vi for all
i = 0, 1, . . ., and if Vk = Vk+1 for some k, then Vi = Vk for
all i ≥ k. Let q be the smallest k ∈ N such that Vk = Vk+1.
Obviously, q ≤ nx. We claim that Vq = V∗md.

Theorem V.2 Consider the SLS (10) and Algorithm V.1.
Then, Vq = V∗md with q := min{k ∈ N | Vk = Vk+1} ≤ nx.

B. Algorithm for Theorem IV.12

In this subsection we will present the algorithm to find
the largest common output-nulling controlled invariant under
mode-independent control for the SLS (10).

Algorithm V.3 Define the matrices As and Bs in the same
way as in Theorem IV.10.

V0 = Rnx ; Vi+1 = {x | Asx ∈ e(Vi)M + im Bs} (17)

As above, it holds that Vi+1 ⊆ Vi for all i = 0, 1, . . . and
if Vk = Vk+1 for some k, then Vi = Vk for all i ≥ k. Let
q be the smallest k ∈ N such that Vk = Vk+1. Obviously,
q ≤ nx. We claim that Vq = V∗mi.

Theorem V.4 Consider the SLS (10) and Algorithm V.3.
Then, Vq = V∗mi with q := min{k ∈ N | Vk = Vk+1} ≤ nx.

Remark V.5 The algorithm of Section V-A to obtain the
largest common controlled invariant subspace (with mode-
dependent feedback) for a SLS inside another subspace is
related to the algorithm presented before in [1, 14] for LPV
systems for the special case that Ji = 0, i = 1, . . . ,M . The
algorithm in Section V-B for mode-independent feedback was
not presented in the literature before.

Remark V.6 A mode-dependent measurement feedback
based solution of DDPd is provided in [19].

VI. CONCLUSIONS

In this paper three different disturbance decoupling (DD)
properties for switched linear systems were analyzed. The
difference between the three properties is induced by which
signals are considered as the disturbances: (i) the continuous
exogenous signal, (ii) the switching signal, or (iii) both the
continuous exogenous signal and the switching signal. Com-
plete geometric characterizations for these properties were
given, which were used to solve also disturbance decoupling
problems (DDPs) by suitable choice of controllers. Both
mode-dependent and mode-independent static state feedback
controllers were considered for the three instances of the
DDP. We used common controlled and common condi-
tioned invariant subspaces to characterize these properties.
Algorithms to compute these subspaces were provided as
well, so that these results can be applied by straightforward
computations.
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