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New Results on the Equivalence of Rational Representations of
Behaviors

Sasanka V. Gottimukkala*, Harry L. Trentelman*, Shaik Fiaz*

Abstract— This article deals with the equivalence of represen-
tations of behaviors of linear differential systems. In general, the
behavior of a given linear differential system has many different
representations. In this paper we restrict ourselves to kernel
and image representations. Two kernel representations are
called equivalent if they represent one and the same behavior.
For kernel representations defined by polynomial matrices,
necessary and sufficient conditions for equivalence are well-
known. In this paper, we deal with the equivalence of rational
representations, i. e. kernel and image representations that are
defined in terms of rational matrices. As the main result of this
paper, we will derive a new condition for equivalence of rational
kernel representations of possibly noncontrollable behaviors.
This paper also deals with the equivalence of polynomial as
well as rational image representations.

I. INTRODUCTION

An important issue in the behavioral approach to systems
and control is the issue of representation. In the behavioral
approach, a system is defined in terms of its behavior, which
is the set of all time trajectories that are compatible with
the laws of the system (see [5]). In the context of linear,
finite-dimensional, time-invariant systems this leads to the
concept of linear differential system. A linear differential
system is defined to be a system whose behavior is equal
to the set of solutions of a finite number of higher order,
linear, constant coefficient differential equations. This set
of differential equations is then called a representation of
the behavior, often called a kernel representation. It is well
known that the behavior of a given linear differential system
admits many different kinds of representations. Apart from
higher order linear differential equations, the behavior of
a linear differential system can be represented for example
in terms of finite-dimensional state space models, possibly
(but not necessarily) even distinguishing between inputs and
outputs (see [5], [10], [9]). Also, if it is controllable, it
can be represented as the image of a polynomial differen-
tial operator (we then speak of an image representation).
Traditionally, kernel and image representations of linear
differential systems involve polynomial matrices. Recently,
in [12], the concept of rational representation was defined
and elaborated, extending the class of representations to
kernel, hybrid, and image representations involving rational
matrices.

As noted above, a given linear differential system ad-
mits many different representations. Two representations are
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called equivalent if they represent the same behavior. The
issue of equivalence of representations of behaviors has
been studied before, in an input-output framework in [6],
[7], [4], [13], [2] and [1], and in a behavioral framework
in [5], [10], [8] and [3]. In the present paper, we will
study the equivalence of kernel representations and image
representation in terms of rational matrices. In particular, we
consider the question how the rational matrices appearing in
equivalent rational kernel representations and rational image
representations are related.

The outline of this article is as follows. In the remainder
of this section we will introduce the notation, and review
some basic material on polynomial and rational matrices. In
Section II we will review linear differential systems and their
polynomial and rational kernel and image representations.
In Section III we formally state the problem that we are
addressing in the current paper. In Section IV we review the
problem of equivalence of polynomial kernel representations.
We establish new results here, and obtain, for two given
polynomial kernel representations, separate conditions under
which their controllable parts are equal, and their sets of
autonomous parts are equal. Combining these conditions,
we reobtain the well-known “classical” result on the equiv-
alence of polynomial kernel representations. In section V
we will apply these results to obtain up to now unknown
conditions under which rational representations of possibly
uncontrollable behaviors are equivalent. In section VI we
consider the equivalence of image representations. Due to
space limitations, some of the proofs have been omitted. For
detailed proofs we refer to the forthcoming journal version
of this paper.

As announced, first a few words about the notation and
nomenclature used. We use the standard symbols for the
fields of real and complex numbers R and C. C− will
denote the open left half complex plane. We use Rn, Rn×m,
etc. for the real linear spaces of vectors and matrices with
components in R. C∞(R,Rw) denotes the set of infinitely
often differentiable functions from R to Rw.

R(ξ) will denote the field of real rational functions in the
indeterminate ξ. R[ξ] will denote the ring of polynomials
in the indeterminate ξ with real coefficients. We will use
R(ξ)n,R(ξ)n×m, R[ξ]n,R[ξ]n×m, etc. for the spaces of vectors
and matrices with components in R(ξ), and R[ξ] respectively.
If one, or both, dimensions are unspecified, we will use
the notation R(ξ)•×m, R(ξ)n×• or R(ξ)•×•, etc. Elements
of R(ξ)n×m are called real rational matrices, elements of
R[ξ]n×m are called real polynomial matrices.
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II. LINEAR DIFFERENTIAL SYSTEMS

In this section we will review the basic material on
linear differential systems and their polynomial and rational
representations.

In the behavioral approach to linear systems, a dynamical
system is given by a triple Σ = (R,Rw,B), where R is the
time axis, Rw is the signal space, and the behavior B is a
linear subspace of C∞(R,Rw) consisting of all solutions of
a set of higher order, linear, constant coefficient differential
equations. Such a triple is called a linear differential system.
The set of all linear differential systems with w variables is
denoted by Lw.

For any linear differential system Σ = (R,Rw,B) there
exists a real polynomial matrix R with w columns, i. e. R ∈
R[ξ]•×w, such that B is equal to the space of solutions of

R( d
dt )w = 0. (1)

If a behavior B is represented by R( d
dt )w = 0 (or: B =

ker(R)), with R(ξ) a real polynomial matrix, then we call
this a polynomial kernel representation of B. If R has p
rows, then the polynomial kernel representation is said to be
minimal if every polynomial kernel representation of B has
at least p rows. A given polynomial kernel representation,
B = ker(R), is minimal if and only if the polynomial matrix
R has full row rank (see [5], Theorem 3. 6. 4). The number
of rows in any minimal polynomial kernel representation of
B, denoted by p(B), is called the output cardinality of B.
This number corresponds to the number of outputs in any
input/output representation of B. For a detailed exposition
of polynomial representations of behaviors, we refer to [5].

Recently, in [12], representations of linear differential
systems using rational matrices instead of polynomial ma-
trices were introduced. In [12], a meaning was given to the
equation R( d

dt )w = 0, where R(ξ) is a given real rational
matrix. In order to do this, we need the concept of left
coprime factorization over R[ξ].

Definition 2.1: Let R be a real rational matrix. The pair
of real polynomial matrices (P,Q) is called a left coprime
factorization of R over R[ξ] if

1) det(P ) 6= 0,
2) R = P−1Q,
3) the matrix (P (λ) Q(λ)) has full row rank for all λ ∈

C.
A meaning to the equation

R( d
dt )w = 0, (2)

with R(ξ) a real rational matrix is then given as follows: Let
(P,Q) be a left coprime factorization of R over R[ξ]. Then
we define:

Definition 2.2: Let w ∈ C∞(R,Rw). Then we define w
to be a solution of (2) if it satisfies the differential equation
Q( d

dt )w = 0.
It can be proven that the space of solutions defined in this
way is independent of the particular left coprime factor-
ization. Hence (2) represents the linear differential system
Σ = (R,Rw, ker(Q)) ∈ Lw.

Since the behavior B of the system Σ is the central item,
often we will speak about the system B ∈ Lw (instead of Σ ∈
Lw). If a behavior B is represented by R( d

dt )w = 0 (or: B =
ker(R)), with R(ξ) a real rational matrix, then we call this
a rational kernel representation of B. If R has p rows, then
the rational kernel representation is called minimal if every
rational kernel representation of B has at least p rows. It
can be shown that a given rational kernel representation B =
ker(R) is minimal if and only if the rational matrix R has full
row rank. As in the polynomial case, every B ∈ Lw admits a
minimal rational kernel representation. The number of rows
in any minimal rational kernel representation of B is equal
to the number of rows in any minimal polynomial kernel
representation of B, and therefore equal to p(B), the output
cardinality of B. In general, if B = ker(R) is a rational
kernel representation, then p(B) = rank(R). This follows
immediately from the corresponding result for polynomial
kernel representations (see [5]).

It is well-known that a behavior B ∈ Lw is controllable
if and only if there exists a real polynomial matrix M ∈
R[ξ]w×• such that

B = {w ∈ C∞(R,Rw) | ∃` ∈ C∞(R,R•) s.t w = M( d
dt )`}.

(3)
The representation (3) is called a polynomial image represen-
tation of B, and we will write B = im(M). It can be shown
that the polynomial matrix M can be chosen of full column
rank. Even more, M can be chosen to be right prime over
R[ξ], equivalently, M(λ) has full column rank for all λ ∈ C.
In that case, in (3) the latent variable ` is uniquely determined
by the manifest variable w, and the image representation is
called observable.

In [12], the concept of rational image representation was
introduced. We will give a brief review here. Let H(ξ) be a
real rational matrix , and consider the equation

w = H( d
dt )`. (4)

Of course (4) should be interpreted as(
I −H( d

dt )
) (

w
`

)
= 0,

in the context of (2). If H = D−1N is a left coprime
factorization over R[ξ] then D−1 (D −N) is a left coprime
factorization of (I −H) and therefore (w, `) satisfies (4)
if and only if D( d

dt )w = N( d
dt )`. For a given B ∈ Lw, the

representation

B = {w ∈ C∞(R,Rw) | ∃` ∈ C∞(R,R•) s.t w = H( d
dt )` },

(5)
with H ∈ R(ξ)w×•, is called a rational image representation.
In that case, we write B = im(H). It was shown in [12] that
B ∈ Lw admits a rational image representation if and only
if it is controllable.

III. PROBLEM FORMULATION

In this section, we shall state the problems addressed in
this paper.
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Problem 1: Let B1,B2 ∈ Lw. Let G1, G2 ∈ R(ξ)•×w

have full row rank. Let B1 = ker(G1) and B2 = ker(G2).
Find necessary and sufficient conditions on G1 and G2 so
that B1 = B2.

Problem 2: Let B1,B2 ∈ Lw be controllable. Let
H1, H2 ∈ R(ξ)w×• have full column rank. Let B1 = im(H1)
and B2 = im(H2). Find necessary and sufficient conditions
on H1 and H2 so that B1 = B2.

IV. EQUIVALENCE OF POLYNOMIAL KERNEL
REPRESENTATIONS

In this section, we discuss the equivalence of polynomial
kernel representations in a slightly different perspective com-
pared to that discussed in [5], and arrive at conditions which
we shall use in addressing the issue of equivalence of rational
kernel representations.

Before proceeding, we recall the concepts of autonomous
behavior and controllable behavior. We state the following
definitions from [5]:

Definition 4.1: A behavior B is called autonomous if for
all w1, w2 ∈ B, w1(t) = w2(t) for t ≤ 0 implies w1(t) =
w2(t) for all t.

Definition 4.2: Let B ∈ Lw. It is called controllable if for
any two trajectories w1, w2 ∈ B, there exists a t1 ≥ 0 and
a trajectory w ∈ B with the property that w(t) = w1(t) for
t ≤ 0, and w(t) = w2(t− t1) for t ≥ t1.
We denote the set of all autonomous linear differential sys-
tems with w variables by Lw

aut and the set of all controllable
linear differential systems with w variables by Lw

contr.
Given a behavior B ∈ Lw, it can be decomposed into

the direct sum of the controllable part Bcontr, and an
autonomous part Baut, i.e. B = Bcontr ⊕ Baut. This is
dealt with, in detail in [5]. In fact, it is also shown in [5]
that, for a given behavior, an autonomous part is not unique.
Let

A(B) = {P ∈ Lw
aut | P⊕Bcontr = B} (6)

denote the set of all autonomous direct summands of Bcontr

in B. Similarly, it is also proved in [5] that, for a given be-
havior the controllable part is unique. The following theorem
interprets the equality of behaviors from a set theoretic point
of view.

Lemma 4.3: Let B1,B2 ∈ Lw. Then B1 = B2 if and
only if

1) B1,contr = B2,contr and
2) A(B1) = A(B2).

Proof: (only if):
This part of the proof is obvious.
(if): We have B1 = P1 ⊕B1,contr = P1 ⊕B2,contr, for

some P1 ∈ A(B1). Since A(B1) = A(B2), we have P1 ∈
A(B2), hence P1 ⊕B2,contr = B2.

�

Kernel representations of the behaviors in A(B1) and A(B2)
are discussed in [5]. For the sake of completeness, we
shall re-state the following lemma, which describes kernel
representations of the controllable as well as the autonomous
parts of a given behavior.

Lemma 4.4: Let B ∈ Lw. Let B = ker(R) be a
minimal polynomial kernel representation, and let R =
U

[
D 0

]
V be a Smith form of R, where D =

diag(z1, z2, . . . , zr) and U, V unimodular over R[ξ]. Then
we have:

1) Bcontr = ker
([

I 0
]
V

)
and

2) P ∈ A(B) if and only if P = ker
([

D 0
0 I

]
WV

)
,

for some W , unimodular over R[ξ], satisfying[
D 0

]
=

[
D 0

]
W .

The characterization of W is also dealt with in [5], in
Excercise 5.6.

Remark 4.5: Let B = ker(R) be a minimal polynomial
kernel representation, and let R = U

[
D 0

]
V be a

Smith form of R, where D = diag(z1, z2, . . . , zr) and U, V
unimodular over R[ξ]. From the above theorem, it is clear
that P ∈ A(B) if and only if it admits a minimal polynomial
kernel representation

ker
([

D 0
F S

]
V

)
, (7)

where F is an arbitrary polynomial matrix of appropriate
dimensions, and S is an arbitrary unimodular matrix over
R[ξ].

Equivalence of polynomial kernel representations has been
dealt with in [5] before. We recall the following proposition
from [5], Theorem 3.6.2:

Proposition 4.6: Let B1,B2 ∈ Lw. Let R1, R2 ∈ R[ξ]•×w

be such that R1( d
dt )w = 0 and R2( d

dt )w = 0 are minimal
polynomial kernel representations of B1 and B2 respec-
tively. Then B1 = B2 if and only if there exists a unimodular
polynomial matrix U such that R1 = UR2.

In order to proceed, we have the following theorem:
Theorem 4.7: Let B1,B2 ∈ Lw. Let B1 = ker(R1) and

B2 = ker(R2) be minimal polynomial kernel representations
of B1 and B2 respectively. Then B1,contr = B2,contr if and
only if there exist M,N ∈ R[ξ]•×•, square and non-singular,
such that MR1 = NR2.
Proof: We skip the proof due to space limitations. �

From Lemma 4.3, it is clear that the above theorem gives
only a necessary condition in terms of R1 and R2 for B1 =
B2. The following theorem is the main result of this section.
It gives additional conditions on the M and N of Theorem
4.7 so that the sets of autonomous parts are also equal.

Theorem 4.8: Let Bi ∈ Lw, Bi = ker(Ri), for i= 1,2 be
minimal polynomial kernel representations. Let B1,contr =
B2,contr, and let M,N ∈ R[ξ]•×• be square and non-
singular such that MR1 = NR2. Then A(B1) = A(B2)
if and only if M−1N is unimodular over R[ξ].

Proof: Let R1 = U1

[
D1 0

]
V1 and R2 =

U2

[
D2 0

]
V2 be Smith forms of R1 and R2 respectively.

From Lemma 4.4, we have B1,contr = ker(
[
I 0

]
V1),

and B2,contr = ker(
[
I 0

]
V2).

(only if): Let MR1 = NR2. Assume A(B1) = A(B2).
From Lemma 4.3 it is clear that B1 = B2, therefore from
Proposition 4.6 we have R1 = UR2, where U is unimodular
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over R[ξ]. Further we have R1 = M−1NR2. Since R1 and
R2 are minimal kernel representations, it is clear that U =
M−1N .

(if): This part of proof is more involved. We skip the
details due to space limitations. �

By combining Theorem 4.7 and Theorem 4.8 we now obtain
the following corollary:

Corollary 4.9: Let B1,B2 ∈ Lw. Let B1 = ker(R1), and
B2 = ker(R2) be minimal polynomial kernel representa-
tions. Then B1 = B2 if and only if there exist nonsingular
polynomial matrices M,N such that MR1 = NR2 and
M−1N is unimodular over R[ξ].

Oviously, this is a restatement of Proposition 4.6. How-
ever, it shows the origin of the unimodular matrix U .
The corollary is derived in two stages. Firstly, it is shown
that equality of the controllable parts of a given behavior
is equivalent to the existence of square and non-singular
matrices M and N . Secondly, unimodularity of M−1N is
equivalent to equality of the sets of autonomous parts of the
behavior.

V. EQUIVALENCE OF RATIONAL KERNEL
REPRESENTATIONS

In this section we address the question of equivalence of
minimal rational kernel representations. We will first recall
the concepts of polynomial and rational annihilators of a
given behavior from [12], Section 7.

Definition 5.1: Let B ∈ Lw.
1) n ∈ R[ξ]1×w is called a polynomial annihilator of B

if n( d
dt )w = 0 for all w ∈ B.

2) n ∈ R(ξ)1×w is called a rational annihilator of B if
n( d

dt )w = 0 for all w ∈ B.
We denote the set of polynomial annihilators of B ∈ Lw by
B⊥R[ξ] . The set of rational anihilators of B is denoted by
B⊥R(ξ) . The set of rational anihilators of Bcontr is denoted
by (Bcontr)⊥R(ξ) . It is a well-known result that for B ∈ Lw,
B⊥R[ξ] is a finitely generated submodule of the R[ξ]-module
R[ξ]1×w. Moreover, if B = ker(G) is a minimal polynomial
kernel representation, then this submodule is generated by
the rows of G. In the context of rational representations one
needs to impose controllability:

Theorem 5.2: Let B ∈ Lw. Then B⊥R(ξ) is a subspace of
the R(ξ)-linear vector space R(ξ)1×w if and only if B is
controllable. As a consequence, (Bcontr)⊥R(ξ) is a subspace
of the R(ξ)-linear vectorspace R(ξ)1×w. If G( d

dt )w = 0 is a
minimal rational kernel representation of B, then the rows
of G form a basis of (Bcontr)⊥R(ξ) .
Proof: We skip the proof due to space limitations. �

The following theorem is an immediate consequence of the
above Theorem:

Theorem 5.3: Let B1,B2 ∈ Lw. Let B1 = ker(G1) and
B2 = ker(G2) be minimal rational kernel representations.
Then the following statements are equivalent:

1) B1,contr = B2,contr.

2) There exists a nonsingular rational matrix W such that
G1 = WG2.

3) There exist nonsingular polynomial matrices M and
N such that MG1 = NG2.

Proof: The equivalence of (2) and (3) is obvious. We first
prove the implication (1)⇒ (2). As B1,contr = B2,contr we
have (B1,contr)⊥R(ξ) = (B2,contr)⊥R(ξ) =: L. From Lemma
5.2, the rows of G1 and G2 both form a basis for the subspace
L of R(ξ)1×w. Then, from basic linear algebra, there exists a
square, nonsingular rational matrix W such that G1 = WG2.

Conversely, assume G1 = WG2. Let G1 = P−1
1 Q1 and

G2 = P−1
2 Q2 be left coprime factorizations over R[ξ] of G1

and G2. Let W = M−1N be a left coprime factorization
over R[ξ] of W . Then both M and N are nonsingular. By
definition we have B1 = ker(Q1) and B2 = ker(Q2). Then,

G1 = WG2 ⇐⇒ P−1
1 Q1 = M−1NP−1

2 Q2

⇐⇒ Q1 = P1M
−1NP−1

2 Q2

Now factorize P1M
−1NP−1

2 = M̃−1Ñ . Then we have
M̃Q1 = ÑQ2. From Theorem 4.7, (1) follows. �

Evidently the above Theorem only gives a necessary condi-
tion on G1 and G2 for their behaviors to be equal. However,
we would like to obtain conditions that are necessary and
sufficient.

In case of polynomial kernel representations, statement 3
of the above Theorem 5.3 together with unimodularity of
M−1N serves the purpose. Hence, a first guess is to check
whether this also holds true for rational representations.
However, the following simple counter example shows this
is not the case.

Example 5.4: G1(ξ) = 1 and G2(ξ) = 1
ξ . These are

equivalent representations since they both represent the
{0}−behavior. For all M,N such that MG1 = NG2, we
have M−1N = 1

ξ , which is not even a polynomial.
In order to proceed we need following definition:
Definition 5.5: A greatest common left divisor (gcld) of

two matrices P,Q ∈ R[ξ]m×• is any square polynomial
matrix D such that P = DP1 and Q = DQ1, and with
the property that for all square polynomial matrices D1 such
that P = D1P1 and Q = D1Q1, there exists F such that
D = D1F .
If

[
P Q

]
has full row rank, then their gcld is a non-

singular polynomial matrix. In that case any two gclds are
related by post-multiplication with a unimodular matrix over
R[ξ].

Now, the following Theorem is the first main result of
this paper. The Theorem states that the additional conditions
on M and N so that the autonomous parts of ker(G1) and
ker(G2) are also equal involves the greatest common left
divisor matrices gcld(M,MG1) and gcld(N,NG2). More
precisely:

Theorem 5.6: Let B1,B2 ∈ Lw. Let B1 = ker(G1)
and B2 = ker(G2) be minimal rational kernel rep-
resentations. Assume B1,contr = B2,contr, and let
M,N ∈ R[ξ]•×• be square and nonsingular such that
MG1 = NG2. Then we have A(B1) = A(B2) if
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and only if MG1 and NG2 are polynomial matrices, and
gcld(M,MG1)−1gcld(N,NG2) is unimodular over R[ξ].
Proof: (only if): Let Gi = UiΠ−1

i

[
Di 0

]
Vi, for i=1,2

be Smith-McMillan forms of G1 and G2 respectively,
where U1, U2, V1, V2 are unimodular matrices over R[ξ],
Di = diag(z1i, z2i, . . . , zri) and, Πi = diag(π1i, π2i, . . . , πri)
for i=1,2. Let MG1 = NG2. Assume A(B1) = A(B2).
Then from Remark 4.5, P ∈ A(B1) admits a polynomial

kernel representation ker
([

D1 0
F1 S1

]
V1

)
, similarly

it also admits a polynomial kernel representation

ker
([

D2 0
F2 S2

]
V2

)
, where F1, F2 are arbitrary

polynomial matrices of appropriate dimensions and
S1, S2 are unimodular matrices over R[ξ]. From Proposition
4.6, there exists a U , unimodular over R[ξ], such that[

D1 0
F1 S1

]
V1 = U

[
D2 0
F2 S2

]
V2 holds.

It is easily verified that U must be of form

U =
[
U11 0
U21 U22

]
, where U11 and U22 are unimodular

over R[ξ]. Therefore we have[
D1 0
F1 S1

]
V1 =

[
U11 0
U21 U22

] [
D2 0
F2 S2

]
V2,

which implies[
Π1U

−1
1 U1Π−1

1

[
D1 0

]
V1[

F1 S1

]
V1

]
=

[
U11 0
U21 U22

] [
Π2U

−1
2 U2Π−1

2

[
D2 0

]
V2[

F2 S2

]
V2

]
Define M := Π1U

−1
1 and N := U11Π2U

−1
2 . Then we

have[
M 0
0 I

] [
G1[

F1 S1

]
V1

]
=

[
N 0

U21Π2U
−1
2 U22

] [
G2[

F2 S2

]
V2

]
.

It is evident from the above equation that MG1 and NG2

are polynomial matrices such that MG1 = NG2 holds.
Define L = MG1 = NG2. Then we have gcld(M,L) =
I =: R1, and similarly gcld(N,L) = U11 =: R2. Hence, it
is evident that R−1

1 R2 = U11 is unimodular over R[ξ].
(if): Let gcld(M,L) = R1 and gcld(N,L) = R2. Let

G1 = P−1
1 Q1 and G2 = P−1

2 Q2 be left coprime factor-
izations of G1 and G2 over R[ξ]. Let MG1 = NG2 be a
polynomial matrix. Denote it by L. It can be shown that
L = R̃1Q1, and similarly L = R̃2Q2, where R̃1, R̃2 ∈
R[ξ]•×• are square and nonsingular. Further it can be verified
easily that R̃1 and R̃2 are the gclds of

[
M L

]
and[

N L
]

respectively. Also, since M and N are square and
nonsingular,

[
M L

]
and

[
N L

]
have full row rank.

Consequently, we have R1 and R2 nonsingular. Therefore
there exists polynomial unimodular matrices U1 and U2 such
that R1 = R̃1U1 and R2 = R̃2U2 . Define M̃ := R1U1,
Ñ := R2U2. Then we have, M̃Q1 = ÑQ2, and M̃−1Ñ =

U , which is unimodular over R[ξ]. Therefore, from Lemma
4.8, we have A(B1) = A(B2). �

The following Theorem is our second main result. It gives
necessary and sufficient conditions on the rational matrices
G1 and G2 for ker(G1) and ker(G2) to be equal. In fact by
combining Theorems 5.3 and 5.6 we obtain:

Theorem 5.7: Let B1,B2 ∈ Lw. Let B1 = ker(G1) and
B2 = ker(G2) be minimal rational kernel representations.
Then B1 = B2 if and only if there exist M,N ∈ R[ξ]•×•,
square and non-singular such that

1) MG1 = NG2 is a polynomial matrix and
2) gcld(M,MG1)−1gcld(N,NG2) is unimodular over

R[ξ].
Theorem 5.7 is illustrated below in the following examples.

Example 1: G1(ξ) = 1, G2(ξ) = 1
ξ represent the same

behavior:
1) MG1 = NG2 with N(ξ) = ξ, M(ξ) = 1 nonsingular

polynomial,
2) MG1 = NG2 = 1 is polynomial and

gcld(N,NG2) = gcd(ξ, 1) = 1, gcld(M,MG1) =
gcd(1, 1) = 1

Example 2: G1(ξ) = (ξ ξ), G2(ξ) = (1
ξ

1
ξ ) do not

represent the same behavior:
1) their controllable parts are the same: MG1 = NG2

with N(ξ) = ξ2, M(ξ) = 1 nonsingular polynomial,
2) for any M,N such that MG1 = NG2 we must

have N(ξ) = ξ2M(ξ). Hence gcld(M,MG1) =
gcd(M, ξM, ξM) = M , while gcld(N,NG2) =
gcd(ξ2M, ξM, ξM) = ξM .

Remark 5.8: We note that, in the case that G1 and G2

are polynomial matrices, Theorem 5.7 immediately yields
Corollary 4.9. Indeed, in that case gcld(M,MG1) = M and
gcld(N,NG2) = N so condition (2) becomes: M−1N is
unimodular over R[ξ].

VI. EQUIVALENCE OF RATIONAL IMAGE
REPRESENTATIONS

A given behavior B ∈ Lw admits a polynomial image
representation if and only it is controllable. In fact, we quote
Theorem 9 from [12]:

Theorem 6.1: Let B ∈ Lw. Then the following statements
are equivalent:

1) B is controllable,
2) B admits a polynomial image representation,
3) B admits a polynomial image representation B =

im(M) with M ∈ R[ξ]w×• right prime over R[ξ],
4) B admits a rational image representation,

We will now study the problem of equivalence of image
representations. For this, the following result will be useful.
The result states that right coprime factorization of a rational
image representation leads to a polynomial image represen-
tation.

Lemma 6.2: Let B ∈ Lw
contr. Let H ∈ R(ξ)w×• be such

that B = im(H). Let H = MP−1 be a right coprime
factorization over R[ξ]. Then B =im(M).
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Proof: We skip the proof due to space limitations.
�

We will now first study the question under which conditions
two polynomial image representations are equivalent, i. e.
represent the same behavior.

Theorem 6.3: 1) Let B1,B2 ∈ Lw
contr. Let M1,M2 ∈

R[ξ]w×• have full column rank, and be such that B1 =
im(M1) and B2 = im(M2). Then B1 = B2 if and
only if there exists a nonsingular rational matrix R
such that M2 = M1R.

2) Let B1,B2 ∈ Lw
contr. Let M1,M2 ∈ R[ξ]w×• be right

prime over R[ξ], and such that B1 = im(M1) and
B2 = im(M2). Then B1 = B2 if and only if there
exists a unimodular polynomial matrix U such that
M2 = M1U .

Proof: We first prove the ’only if’ part of statement 2. By
right primeness, both M1(λ) and M2(λ) have full column
rank for all λ ∈ C, so correspond to observable image
representations. From B1 = B2 it follows that also the
orthogonal complements coincide, i. e. B⊥1 = B⊥2 (see
[11]). By observability we have B⊥i = ker(M∼i ), where
M∼i (ξ) := M>i (−ξ) (i = 1, 2). By Proposition 4.6 there
exists a unimodular polynomial matrix V such that M∼2 =
VM∼1 . This implies M2 = M1U , with U := V ∼ again
unimodular.

Next, we prove the ’only if’ part of statement 1. Both
M1 and M2 have full column rank. Hence, we can factorize
Mi = M iRi, with Mi right prime over R[ξ] and Ri a
nonsingular polynomial matrix (i = 1, 2). By nonsingularity,
Ri( d

dt ) is surjective, and therefore im(Mi) = im(M i) (i =
1, 2). Consequently, B1 = B2 implies im(M1) = im(M2).
Then, by the ’only if’ part of statement 2, there exists a
unimodular polynomial matrix U such that M2 = M1U .
This implies M2 = M1R, with R := R−1

1 UR2.
Finally we prove the ’if’ part of statement 1. Asssume

that M2 = M1R with R a nonsingular rational matrix.
Let R = KL−1 be a right coprime factorization of R
obver R[ξ]. Then we have M2L = M1K, with K and L
nonsingular polynomial matrices. Again by surjectivity of
L( d

dt ) and K( d
dt ), we obtain B1 = im(M1) = im(M1K) =

im(M2L) = im(M2) = B2. This also proves the ’if’ part
of statement 2. �

Next, we consider controllable behaviors represented by
rational image representations.

Theorem 6.4: Let B1,B2 ∈ Lw
contr. Let H1, H2 ∈

R(ξ)w×• have full column rank, and be such that B1 =
im(H1) and B2 = im(H2). Then B1 = B2 if and only
if there exists a nonsingular rational matrix R such that
H2 = H1R.
Proof: Let Hi = MiP

−1
i be a right coprime factorization

over R[ξ]. Then by Lemma 6.2, Bi = im(Mi) (i = 1, 2).
By Theorem 6.3, B1 = B2 implies that there exists a
nonsingular rational matrix R such that M2 = M1R. Thus
H2 = H1R, with R := P1RP

−1
2 nonsingular. Conversely,

if H2 = H1R then M2 = M1P
−1
1 RP2. Then, by Theorem

6.3, im(M1) = im(M2) so B1 = B2. �

VII. CONCLUSION

In this paper we have addressed the question of equiv-
alence of rational representations of a given behavior. We
have obtained necessary and sufficient conditions for the
equivalence of rational kernel representations of controllable
as well as uncontrollable behaviors. We also have derived
new conditions for the equivalence of polynomial kernel
representations of a given behavior in terms of the control-
lable parts and the sets of autonomous parts of the behaviors
associated with the two kernel representations. Further we
have obtained necessary and sufficient conditions for the
equivalence of image representations in the context of both
polynomial and rational representations.
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