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4.1 Introduction

In many engineering applications, processes are described by increasingly complex models that are
difficult to analyze and difficult to control. Reduction of the order of the model may overcome some
of these difficulties, but it is quite possible that model reduction incurs a significant loss of accuracy.
Therefore, the system has to be analyzed in a manner that is useful for the application purpose. Sim-
plification of the model based on this analysis usually results in a model of lower complexity which is
easier to handle, and in a corresponding simplification of synthesis procedures for control and filtering
problems. Furthermore, the simplification decreases the computational effort. Every application has its
own demands, and different model reduction methods have different properties.

In [1] two types of approximation methods for large-scale linear systems are discussed, namely
singular-value decomposition (SVD) and Krylov methods. The Krylov methods are based on match-
ing the moments of the impulse response of the linear system up to a certain level. This can be interpreted
in terms of the series expansions of the transfer function; see, for example, [1] and the references therein.
The key to the success of these methods is that they can be implemented iteratively and are able to handle
much higher-order systems than the SVD methods. Nevertheless, they are not always resulting in models
that are useful for control, for example, stability may not be preserved, and no a priori error bounds for
the reduced order system can be given. Furthermore, an extension of these methods to nonlinear systems
is still largely unexplored. Only recently, the first steps toward such extension is presented by [2]. The
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4-2 Control System Advanced Methods

SVD methods based on balanced realizations, on the other hand, offer a clear structure for analysis of the
system based on controllability and observability properties, and model reduction by balanced truncation
does preserve stability and other properties and does have an a priori error bound for the reduced order
system. Furthermore, the extension of balancing to nonlinear systems has been studied in the past two
decades as well.

Kalman's minimal realization theory (e.g., [27]) offers a clear picture of the structure of linear systems.
However, the accompanying algorithms are not very satisfactory, since they are only textbook algorithms,
which are numerically deficient. Moore [32] showed that there are very useful tools that may be used to
cope with this problem. He used the principal component analysis which was introduced in statistics in
the 1930s to analyze a linear system, and specifically to apply it to model reduction. The most important
contribution of [32] is the introduction of balancing for stable minimal linear systems. The balancing
method offers a tool to measure the contribution of the different state components to the past input and
future output energy of the system, which are measures of controllability and observability. The algo-
rithmic methods corresponding to the balancing theory nowadays are standard toolboxes in simulation
packages like MATLAB®.

In the theory of continuous-time linear systems, the system Hankel operator plays an important role
in a number of realization problems. For example, when viewed as a mapping from past inputs to future
outputs, it plays a direct role in the abstract definition of state. It also plays a central role in minimality
theory, in model reduction problems, and related to these, in linear identification methods. Specifically,
the Hankel operator supplies a set of similarity invariants, the so-called Hankel singular values, which can
be used to quantify the importance of each state in the corresponding input-output system. The Hankel
operator can also be factored into the composition of an observability and controllability operator, from
which Gramian matrices can be defined and the notion of a balanced realization follows. The Hankel
singular values are most easily computed in a state-space setting using the product of the Gramian
matrices, though intrinsically they depend only on the given input-output mapping. For linear systems,
the Hankel operator offers an immediate relation with the frequency domain setting of balancing for
linear systems, for example, [63].

Furthermore, these methods have proved to be very useful for application purposes. To mention a
few older applications, we refer to [16,62]. Reference [62] successfully applies methods based on bal-
anced realizations on the controller design of the Philips CD player. In [16], several balanced controller
designs and algorithms for sensor and actuator placement based on balanced realizations are given and
demonstrated for the NASA Deep Space Network Antenna.

For nonlinear systems, the first step toward extension of the linear balancing methods has been set
in [45], where a balancing formalism is developed for stable nonlinear continuous-time state-space sys-
tems based on the idea that state components that correspond to low control costs and high output energy
generation (in the sense of L2 energy in a signal) are important for the description of the dynamics of
the input-output behavior of the system, while state components with high control costs and low out-
put energy generation can be left out of the description. Since then, many results on state-space balancing,
modifications based on sliding time windows, and modifications based on proper orthogonal decompo-
sition (POD), and computational issues for model reduction and related minimality considerations for
nonlinear systems have appeared in the literature; for example, [18,20,28,37,38,58,59,64]. The relations
of the original nonlinear balancing method of [45] with minimality are later explored in [47], and a
more constructive approach that includes a strong relation with the nonlinear input-output operators,
the nonlinear Hankel operator, and the Hankel norm of the system is presented in [10,12,48]. Model
reduction based on these studies is recently treated in [13,14].

Here we first review the Hankel operator, balancing and balanced truncation for stable linear systems.
Then unstable systems and closed-loop balancing are reviewed for linear systems. Finally, the extension
of the linear theory to nonlinear systems is treated, based on balancing procedures in a neighborhood
(possibly large, almost global) of an equilibrium point.
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4.2 Linear Systems

In this section, we briefly review the well-known linear system definitions of the system Hankel matrix;
the Hankel operator; the controllability and observability operators, Gramians and functions; and the
balanced realization and the corresponding model reduction procedure.

4.2.1 The Hankel, Controllability, and Observability Operator
Consider a continuous-time, causal linear input-output system Σ : u → y, with m-dimensional input
space u ∈ U and p-dimensional output space y ∈ Y, and with impulse response H(t). Let

(4.1)

denote its Taylor series expansion about t = 0, where Hk ∈ ℝpxm for each k. The system Hankel matrix
is defined as ^H = [^Hi,}], where ^Hi,j = Hi+j-l for i,j ≥ 1. If Σ is also (bounded input bounded output)
BIBO stable, then the system Hankel operator is the well-defined mapping

(4.2)

mapping the past inputs to the future outputs. If we define the time flipping operator as

then clearly H(û) = (Σo~F)(û); see the illustration in Figure 4.1. The lower side of the figure depicts the
input-output behavior of the original operator Σ. The upper side depicts the input-output behavior of
the Hankel operator of Σ, where the signal in the upper left side is the time-flipped signal of the lower
left side signal. The flipping operator F is defined by F(u(t)) := u( -t). The upper right side signal is
the truncated signal (to the space L2 [0,(0)) of the lower left side signal. The corresponding truncation
operator is given by

and ~F = To F. The definition of a Hankel operator implies that it describes the mapping from the input
to the output generated by the state at t = 0. Hence, we can analyze the relationship between the state and
the input-output behavior of the original operator Σ by investigating its Hankel operator.

When H is known to be a compact operator, then its (Hilbert) adjoint operator, H*, is also compact,
and the composition H*H, is a self-adjoint compact operator with a well-defined spectral decomposition:

(4.3)

(4.4)

where σi2is an eigenvalue of H*H with the corresponding eigenvector ψi, ordered as σ1 ≥ ... ≥ σn >
σn+1 = σn+2 = 0, and called the Hankel singular values for the input-output system Σ.
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FIGURE 4.1 Hankel operator H of Σ.

Let (A, B, C) be a state-space realization of Σ with dimension n, that is, consider a linear system:

X =Ax+Bu,
y=Cx,

(4.5)

where u ∈ ℝm, X ∈ ℝ n, and Y ∈ ℝp. We assume that Equation 4.5 is stable and minimal, that is, control-
lable and observable. Any such realization induces a factorization of the system Hankel matrix into the
form ^H = ÔC, where Ô and C are the (extended) observability and controllability matrices. If the real-
ization is asymptotically stable, then the Hankel operator can be written as the composition of uniquely
determined observability and controllability operators; that is, H = O C, where the controllability and
observability operators are defined as

C:L2m[0,+∞)→ℝn:û→ lee eAtBû(t)dt,

0: ℝn → L2p[0,+00): x → ^y(t) = CeAtx.

Since C and 0 have a finite dimensional range and domain, respectively, they are compact operators; and
the composition 0 C is also a compact operator. From the definition of the (Hilbert) adjoint operator, it
is easily shown that C and 0 have corresponding adjoints

n ' T'c*:ℝ →L2m[0,+00):x→BTeA tx,

0* :L2p[0,+00) → ℝn :y → 1∞ eA1t cT y(t) dt.
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4.2.2 Balanced State-Space Realizations
The above input-output setting can be related with the well-known Gramians that are related to the state-
space realization. In order to do so, we consider the energy functions given in the following definition.

Definition 4.1:

The controllability and observability functions ofa smooth state-space system are defined as

(4.6)

and 11∞Lo(x0) = - II y(t) 112 dt, x(o) = x0, u(t) ≡ 0, ° ≤ t < 00,
2 0

(4.7)

respectively.

The value of the controllability function at X0 is the minimum amount of input energy required to
reach the state X0 from the zero state, and the value of the observability function at X0 is the amount of
output energy generated by the state X0. The following results are well known:

Theorem 4.1:

Consider the system (Equation 4.5). Then Lc(X0) = ½x0TP-1 X0 and Lo(X0) = ½x0TQx0, where P =
∫0∞ eAtBB T eA1tdt is the controllability Gramian and Q = .∫0∞ eA

T tCTCeAt dt is the observability Gram ian.
Furthermore, P and Q are symmetric and positive definite, and are unique solutions of the Lyapunov
equations

AP+PAT = -BBT (4.8)

and
ATQ+ QA = -CTC, (4.9)

respectively.

From the form of the Gramians in this theorem, it follows immediately that for any Xl ,X2 ∈ℝ",

(4.10)

(4.11)

and the relation with the energy functions is given as

(4.12)

(4.13)

The following (balancing) theorem is originally due to [32].
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Theorem 4.2: [32]

The eigenvalues of QP are similarity invariants, that is, they do not depend on the choice of the sate-space
coordinates. There exists a state-space representation where

Σ :=Q=P= (4.14)

with σ1 ≥ σ2 ≥ ... ≥ σn > 0 the square roots of the eigenvalues of QP. Such representations are called
balanced, and the system is in balanced form. Furthermore, the σi 's, i = 1, ... ,n, equal the Hankel singular
values, that is, the singular values of the Hankel operator (Equation 4.2).

Two other representations that may be obtained from Equation 4.14 by coordinate transformations
I I

X = Σ-' x and x = Σ, ¯x, respectively, follow easily from the above theorem.

Definition 4.2: [32]

A state-space representation is an input-normal/output-diagonal representation if P = I and Q = Σ2,

where Σ is given by Equation 4.14. Furthermore, it is an output-normal/input-diagonal representation if
P = Σ2 and Q = I.

The largest Hankel singular value is equal to the Hankel norm of the system, that is,

(4.15)

where G = C(sI - A)-l B is the transfer matrix of the system. This gives a characterization of the largest
Hankel singular value. The other Hankel singular values may be characterized inductively in a similar
way; we refer to [6,15].

So far, we have assumed the state-space representation to be minimal. However, if we consider non-
minimal state-space realizations, that is, the system is not controllable and/or observable, then we obtain
σi's that are zero, corresponding to the noncontrollable or nonobservable part of the system, and thus, to
the nonminimal part of the system. Related to this observation, we have that the minimal realization of
a linear input-output system has a dimension n that is equal to the Hankel rank, or in other words, it
equals the rank of the Hankel matrix. A well-known result related to the latter is the following theorem
for example, [631.

Theorem 4.3:

If (A, B, C) is asymptotically stable, then the realization is minimal if and only if P > 0 and Q > 0.

4.2.3 Model Reduction
Once the state-space system is in balanced form, an order reduction procedure based on this form may be
applied. Thus, in order to proceed, we assume that the system (Equation 4.5) is in balanced form. Then
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the controllability and observability function are Ie (¯xo) = ½ ¯x0T'Σ -1 ¯Xo and Ie (¯xo) = ½ ¯x0TΣ¯xo, respectively.
For small σi, the amount of control energy required to reach the state ¯x = (0, ... ,0, Xi, 0, ... ,0) is large
while the output energy generated by this state ¯x is small. Hence, if σk » σk+ 1, the state components xk+ 1
to xn are far less important from this energy point of view and may be removed to reduce the number of
state components of the model. We partition the system (Equation 4.5) in a corresponding way as follows:

(4.16)

where Σ1 = diag(σ1, ... , σk) and Σ2 = diag(σk+1, ... , σn).

Theorem 4.4:

Both subsystems (Aii, Bi, Ci), i = 1, 2, are again in balanced form, and their controllability and observability
Gramians are equal to Σi, i = 1,2.

The following result has been proved by [43].

Theorem 4.5:

Assume that σk > σk+I' Then both subsystems (Aii, Bi, Ci), i = 1,2, are asymptotically stable.

The subsystem (All, BI, C1) may be used as an approximation of the full order system (Equation 4.5).
The optimality of this approximation in the Hankel and H∞-norm has been studied by [17], and an upper
bound for the error is given. The H∞-norm of G(s) = C(sI - A)-l B is defined as

I

where λmax(G( -jω) T G(jω)) is the square root of the maximum eigenvalue of G( -jω)TG(jω). Denote
the transfer matrix of the reduced order system (A 11,B1, C1) by ~G(s)= C I (sI - All) -I B1, The following
error bound was originally proved in [17]. A number of proofs can be found in [63],

Theorem 4.6: [17]

IIG - ~G||H ≤ IIG - ~G||∞ ≤ 2(σk+1 + ... + σn).

Hence, if we remove the state components Xk+ I, ... ,XI1 that correspond to small Hankel singular values
σk+ 1, ... , σn (small compared to the rest of the singular values, that is, σk » σk+ 1), then the error is small,
and the reduced order system (A 11,B I, C I) constitutes a good approximation in terms of the Hankel norm
to the full order system.

The model reduction method that we gave above consists of simply truncating the model. It is
also possible to reduce the model in a different way see, for example, [8,21]. Instead of setting
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X2 = (Xk+1, ... ,Xn) = 0 we approximate the system by setting x2 = 0 (thus interpreting x2 as a very
fast stable state, which may be approximated by a constant function of xl and u). The resulting algebraic
equation can be solved for x2 as (note that A-221 exists by Theorem 4.5)

X2 = -A-221 (A21XI +B2u).

Substitution in Equation 4.5 leads to a reduced order model (Â, ^B, ^C) defined as

^ -I
A :=AI1 -A12A22 A21'
^ -1B := Bl - A12A22 B2,
^ -1
C := Cl - C2A22 A21,

The system (Â, ^B, ^C) also gives an approximation to the full order system (Equation 4.5). Theorems 4.4
through 4.6 also hold if we replace the system (All, B1, C1) by (Â, ^B, ^C).

4.2.4 Unstable Systems, Closed-Loop Balancing
4.2.4.1 Linear Quadratic Gaussian Balancing

A major drawback of the original balancing method as described in Section 4.2.2 is that it only applies
to stable systems. Furthermore, the method emphasizes the (open-loop) input-output characteristics of
the system, while it is a priori not clear if it yields good approximations in closed-loop configurations. In
this section, we treat (linear quadratic Gaussian) LQG balancing for linear systems, which was introduced
by [25,26] (see also [57]). In [41], this concept is further developed. LQG balancing was introduced
with the aim of finding a model reduction method for a system (not necessarily stable) together with its
corresponding LQG compensator. LQG balancing has been treated from another point of view in [61].
First, we give a review of the formulation of [26,41].

LQG compensation is formulated for a minimal state-space system

x = Ax + Bu + Bd,

y = Cx+v,

(4.17)

where u ∈ ℝm, x ∈ ℝn, y ∈ ℝp, and d and v are independent Gaussian white-noise processes with
covariance functions Iδ(t - τ). The criterion

(4.18)

is required to be minimized. The resulting optimal compensator is given by

·z = Az + Bu + SCT(y - Cz),

U = -BTpz.

(4.19)

Here S is the stabilizing solution (i.e., σ(A - SCT C) C ce-) to the filter algebraic Riccati equation
(FARE)

AS + SAT +BBT - SCTCS = 0, (4.20)

and P is the stabilizing solution (i.e., σ(A - BBT P) C ce-) to the control algebraic Riccati equation
(CARE)

ATp +PA + CTC -PBBTp = o. (4.21)
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Theorem 4.7: [26,41]

The eigenvalues of PS are similarity invariants and there exists a state-space representation where

M :=P=S= (4.22)

with III ≥ 112 ≥ ... ≥ µn > 0. This is called an LQG balanced representation or LQG balanced form.

Jonckheere and Silverman [26] and Opdenacker and Jonckheere [41] argue that if µlk » µk+l then
the state components xl up to Xk are more difficult both to control and to filter than Xk+1 up to Xn and
a synthesis based only on the state components Xl up to Xk probably retains the essential properties of
the system in a closed-loop configuration. Corresponding to the partitioning of the state in the first k
components and the last n - k components, the partitioning of the matrices is done as in (4.16), and the
reduced order system is

x = A11x + B1u + BId,
y=C1x+v.

(4.23)

Theorem 4.8: [26,41]

Assume Ilk > µk+ 1· Then (A 11, B1, CI) is minimal, the reduced order system (Equation 4.23) is again LQG
balanced and the optimal compensator for system (Equation 4.23) is the reduced order optimal compensator
of thefull order system (Equation 4.17).

As explained in Section 4.2.2, the original idea of balancing stable linear systems, as introduced by [32],
considers the Hankel singular values σi, i = 1, ... , n, which are a measure for the importance of a state
component in a balanced representation. This balancing technique is based on the input energy which is
necessary to reach this state component and the output energy which is generated by this state component.
A similar kind of reasoning, using a different pair of energy functions, may be used to achieve the similarity
invariants µi, i = 1, ... , n, as above; see [61]. To follow this reasoning, we consider the minimal system
(Equation 4.17) without noise, that is,

X =Ax+Bu,
y=Cx,

(4.24)

where u ∈ ℝ m, X ∈ ℝn, and y ∈ ℝp. We define the energy functions

K- (xu) is called the past energy and K+ (x0) the future energy of the system in the state X0.
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Theorem 4.9: [61]

K- (x0) = ½X0TS-1 X0 and K+ (X0) = ½x0TPX0, where Sand P are the stabilizing solutions of the FARE and
the CARE, Equations 4.20 and 4.21, respectively.

For the LQG balanced representation of Theorem 4.7, the past and future energy function are K- (X0) =

½ x0TM-1 X0 and K+ (X0) = ½ xl MX0' respectively, where M is diagonal. The importance of the state x =
(0, ... ,0, Xi, 0, ... ,0) in terms of past and future energy may be measured by the similarity invariant µli.

For large µli the influence of the state x on the future energy is large while the influence on the past energy
is small. Hence, if µk» µk+l, the state components Xk+1 to Xn are "not important" from this energy
point of view and may be removed to reduce the number of state components of the model.

4.2.4.2 Balancing of the Normalized Coprime Representation

In [29,39], balancing of the normalized coprime representation of a linear system is treated. Balancing of
the normalized coprime representation was introduced with the aim of finding a model reduction method
for unstable linear systems. In [29], balancing of the normalized right coprime factorization is treated,
while in [39], balancing of the normalized left coprime factorization is treated. Here we provide a brief
review on this subject.

We consider the system (Equation 4.24) and its transfer function G(s) = C(sI - A)-l B. Furthermore,
we consider the stabilizing solution P to the CARE (Equation 4.21) and the stabilizing solution S to the
FARE (Equation 4.20), leading to the stable matrices A := A - BBT P and A := A - SCT C. First we treat
normalized right coprime factorizations and then normalized left coprime factorizations.

We may write any transfer matrix G(s) = C(sI - A)-I B as a right fraction G(s) = N(s)D(s)-1 of stable
transfer matrices N(s) and D(s). If we choose (e.g., [36]),

N(s) := C(sI - ,1)-1 B,

D(s) := I - BT P(sI - ,1)-1 B,

then the factorization is right coprime, that is, N(s) and D(s) have no common zeros at the same place in
the closed right half plane. A state-space realization of the transfer matrix (the so-called graph operator)

(
N(S))
D(s)

is

(4.25)

with wa (fictitious) input variable. Furthermore, we are able to find stable transfer matrices U(s) and
V(s), such that the Bezout identity

U(s)N(s) + V(s)D(s) = I. (4.26)

is fulfilled. Indeed, take U(s) = BTp(sI -A)-ISCT and V(s) = I +BTp(sI -A)-IB (see, e.g., [36,60]).
The fact that we are able to find a stable left inverse of the graph operator, that is, we can find the solutions
U(s) and V(s) to the Bezout identity (Equation 4.26), is equivalent to the factorization being right coprime.
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Furthermore, the graph operator is inner, that is,

II (ND) w|12 = I|w||2

or
N(-s)TN(s) + D(-S)TD(S) = I.

Therefore, the factorization is called normalized. It is easily checked that the observability Gramian of the
system (Equation 4.25) is P. Denote its controllability Gramian by R.

In a similar way, we may write the transfer matrix G(s) as a left fraction G(s) = ~D(s) -I Ñ(s) of stable
transfer matrices ~D(s) and Ñ(s). If we choose (e.g., [36])

Ñ(s) := C(sI - A)-1 B,

~D(s) = C(s1 -Ã)-ISCT -I,

then this is a le}t factorization. Obviously, ^y(s) = G(s)û(s) is equivalent with 0 = Ñ(s)û(s) - ~D(s)^y(s).
Moreover, a state-space realization of the transfer matrix

(Ñ(s) ~D(s))

is

x = (A - SCT C)x + (B SCT) ~w,
z = Cx + (0 -1) ~w.

(4.27)

Ifwe take

~w = (uy)
as the input variable, then the dynamics resulting from setting z = 0 in Equation 4.27 is a state-space
representation of G(s). We are able to find stable transfer matrices such that the Bezout Identity is
fulfilled, that is, there exist stable transfer matrices ~U(s) and ~V(s), such that

Ñ(s)~U(s) + ~D(s)~V(s) = I. (4.28)

Indeed, we may take ~U(s) = BT P(s1 - Â)-1SCT and ~V(s) = I + C(s1 - Â)-l SCT (see, e.g., Vid,Ne). This
proves that the factorization is left coprime. Furthermore (Ñ(s) ~D(s)) is co-inner, that is,

Ñ(s)Ñ( _s)T + ~D(s)~D( -s) T = I,

which means that the factorization is normalized. Hence (Ñ(s) ~D(s)) represents the normalized left
coprime factorization of system (Equation 4.24). The system (Equation 4.27) has as controllability
Gramian the positive-definite matrix S and we denote its observability Gramian by the matrix Q. Note
that the right factorization

(
N(S))
D(s)

can be seen as an image representation of G(s), while the left factorization

(Ñ(s) ~D(s))

can be regarded as a kernel representation of G(s).
The following result follows rather straightforwardly.
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Theorem 4.10:

The Hankel singular values of the right and left factorization (Equations 4.25 and 4.27), respectively, are
the same.

Proof It follows from the Lyapunov Equations 4.8 and 4.9 for the systems (Equations 4.25 and 4.27),
that R = (I + SP)-I Sand Q = (I + PS)-1 P. Now, it is easily obtained that PR and SQ have the same
eigenvalues.

The Hankel singular values of Equation 4.25 (and, hence, of Equation 4.27) are called the graph Hankel
singular values of the original system (Equation 4.24). These singular values have the following property:

Theorem 4.11: [29,39]

The graph Hankel singular values of system (Equation 4.24) are strictly less than one.

Denote the graph Hankel singular values by τi, i = 1, ... , n, and assume τ1 ≥ ... ≥ τn. The relation
between τi, i = 1, ... , n, and the similarity invariants µi' i = 1, ... , n, of Theorem 4.7 is given by the
following theorem:

Theorem 4.12: [39,61]

1
µli = τi(1- τi2)-2 for i = 1, ... , n.

This implies that the reduced model that is obtained by model reduction based on balancing the (left or
right) normalized coprime factorization is the same as the reduced model that is obtained by model reduc-
tion based on LQG balancing. Consider the normalized right coprime representation (Equation 4.25) and
assume that it is in balanced form with

A :=P=R=

Furthermore, assume that τk > τk+1 and define correspondingly A =: diag{Λ I, Λ2}. It follows, [29], that
reducing the order of Equation 4.25 by truncating the system to the first k state components (the parti-
tioning is done corresponding to Equation 4.16) again gives a normalized right coprime representation.

Theorem 4.13: [29]

The reduced order system of Equation 4.25 is of the form

with controllability and observability Gramian ΛI. This system is the normalized right coprime represen-
tation of the system (A II, BI, CI), which is minimal.
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4.2.4.3 Extensions to Other Types of Balancing

The methods described above can be put in a more general setting, and extended to the H∞ case. H 00

balancing for linear systems is introduced in [33-35]. For details, we refer to the latter references. In the
H∞ case, balancing is performed on Qγ- and Qγ+, [46], which are defined as

and

while if γ < 1, then

There is an immediate relation with the solutions to the H∞ Filter and Control Algebraic Riccati equations,
see, for example, [46],

Positive real and bounded real balancing can be done by considering dissipativity with respect to a
quadratic supply rate that depends on the input and the output of the system:

s(u,y) = ½[UT yT]J [uy], (4.29)

, ℝm ℝp ℝ(m+p)×(m+p) Twith U Em", y Em" and J Em" such that J = J ; see, for example, [23,52], The bounded

real balancing case, that is, J = [I 0] is treated in [1,22,39,42]. The positive real balancing case,o -I

that is balancing of strictly passive, asymptotically stable, minimal systems, that is J = [0I I0] is treated

in [1,7,19]. For all these methods it holds that truncation preserves the original balanced structure, and
thus truncation based on bounded real or positive real balancing preserves bounded and positive realness,
respectively. Furthermore, error bounds for model reduction based on several of the above mentioned
methods are available; see, for example, [52].

Additionally, model reduction methods based on balancing methods that preserve some internal
structure of the system currently receive a lot of interest due to applications that require this, such as
electrical circuit simulators. For some results on Hamiltonian structure preservation, and second-order
system structure preservation; see, for example, [30,54,55].

4.3 Balancing for Nonlinear Systems

Balanced realizations and the related model order reduction technique rely on singular-value analysis.
The analysis is important since it extracts the gain structure of the operator, that is, it characterizes the
largest input-output ratio and the corresponding input [51]. Since linear singular values are defined as
eigenvalues of the composition of the given operator and its adjoint, it is natural to introduce a nonlinear
version of adjoint operators to obtain a nonlinear counterpart of a singular value. There has been done
quite some research on the nonlinear extension of adjoint operators, for example, [3,10,48], and the
references therein. Here we do not explicitly use these definitions of nonlinear adjoint operators. We rely
on a characterization of singular values for nonlinear operators based on the gain structure as studied
in [9]. The balanced realization based on this analysis yields a realization that is based on the singular
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values of the corresponding Hankel operator, and results in a method which can be viewed as a complete
extension of the linear methods, both from an input-output and a state-space point of view [12].

The related model order reduction technique, nonlinear balanced truncation, preserves several impor-
tant properties of the original system and the corresponding input-output operator, such as stability,
controllability, observability, and the gain structure [11,14].

This section gives a very brief overview of the series of research on balanced realization and the related
model order reduction method based on nonlinear singular-value analysis. We refer to [13] for more
details.

4.3.1 Basics of Nonlinear Balanced Realizations
This section gives a nonlinear extension of balanced realization introduced in the Section 4.2. Let us
consider the following asymptotically stable input-affine nonlinear system

(4.30)

where x(t) ∈ ℝ", u(t) ∈ ℝm, and y(t) ∈ ℝp. The controllability operator e : U → X with X = ℝ nand
U = L2m'[0, (0), and the observability operator 0: X → Y with Y = Li[O, (0) for this system are defined
by

This definition implies that the observability operator O is a map from the initial condition x(0) = X0 to
the output L2 signal when no input is applied. To interpret the meaning ofe, let us consider a time-reversal
behavior of the e operator as

Then the controllability operator e can be regarded as a mapping from the input L2 signal to the terminal
state x(O) = x0 when the initial state is x( -(0) = O. Therefore, as in the linear case, e and 0 represent the
input-to-state behavior and the state-to-output behavior, respectively, and the Hankel operator for the
nonlinear system Σ in Equation 4.30 is given by the composition of e and 0

H:= ooe. (4.31)

To relate the Hankel, controllability and observability operator with the observability and controllability
functions defined in Equations 4.6 and 4.7, we first introduce a norm-minimizing inverse e† : X → U of
e.

e† : x0 ↦ u:= arg min ||u||
C(u)=x0

The operators e† and 0 yield the definitions of the controllability function Le (x) and the observability
function Lo(x) that are generalizations of the controllability and observability Gramians, respectively



Balanced Realizations 4-15

that is,

(4.32)

(4.33)

For linear systems, the relation with the Gramians is given in Theorem 4.1. Here the inverse of P appears
in the equation for Lc because C† appears in the definition (Equation 4.32), whereas C can be used in the
linear case. In order to obtain functions Lc(x) and Lo(x), we need to solve a Hamilton-Jacobi equation
and a Lyapunov equation.

Theorem 4.14: [45]

Consider the system of Equation 4.30. Suppose that 0 is an asymptotically stable equilibrium point and that
a smooth observability function Lo(x) exists. Then Lo(x) is the unique smooth solution of

with Lo(O)= 0. Furthermore, assume that a smooth controllability function Lc(x) exists. Then Lc(x) is the
unique smooth solution of

with Lc(O)= 0 such that 0 is an asymptotically stable equilibrium point of x = -f(x) - g(x)g(x)T
(∂Lc(x)/∂x)T.

Similar to the linear case, the positive definiteness of the controllability and observability functions
implies strong reach ability and zero-state observability of the system Σ in Equation 4.30, respectively.
Combining these two properties, we can obtain the following result on the minimality of the system.

Theorem 4.15: [47]

Consider the system of Equation 4.30, and assume it is analytic. Suppose that

0< Lc(x) < 00,

0< Lo(x) < 00,

holdfor all x ≠ 0. Then the system is a minimal realization as defined in and under the conditionsfrom, [24].

Le (x) and Lo (x) can be used to "measure the minimality" of a nonlinear dynamical system. Furthermore,
a basis for nonlinear balanced realizations is obtained as a nonlinear generalization of Definition 4.2 in
the linear case. For that, a factorization of Lo(x) into a semi quadratic form needs to be done, that is, in a
convex neighborhood of the equilibrium point 0, we can write

Now, an input-normal/output-diagonal form can be obtained.
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Theorem 4.16: [45]

Consider the system of Equation 4.30 on a neighborhood W of 0. Suppose that  0 is an asymptotically stable
equilibrium point, that it is zero-state observable, that smooth controllability and observability functions
Lc(x) and Lo(x) exist on W, and that (∂2 Lc/∂x2)( 0) >  0 and (∂2 Lo/ ∂x2)( 0) >  0 hold. Furthermore, assume
that the number of distinct eigenvalues of M(x) is constant on W. Then there exists coordinates such that
the controllability and observability functions Lc(x) and Lo(x) satisfy

(4.34)

(4.35)

where τ1 (x) ≥ τ2(X) ≥ ... ≥ τn(x).

A state-space realization satisfying the conditions (Equations 4.34 and 4.35) is called an input-normal
form, and the functions τi(X), i = 1, 2, ... ,n are called singular-value functions. We refer to [45] for the
construction of the coordinate transformation that brings the system in the form of Theorem 4.16. If
a singular value function τi(X) is larger than τj(x), then the coordinate axis Xi plays a more important
role than the coordinate axis Xi does. Thus this realization is similar to the linear input-normal/output-
diagonal realization of Definition 4.2, and it directly yields a tool for model order reduction of a nonlinear
systems. However, a drawback of the above realization is that the the singular-value functions τi(X)'S
and consequently, the corresponding realization are not unique, for example, [18]. For example, if the
observability function is given by

12 2 I 2 2 22Lo(x) = /2(X1τ1(X) +X2τ2(X)) = /2(2x1 +x2 +x1x2),

with the state-space x = (X1, X2)' then the corresponding singular-value functions are

τ1(x)=2+kx22,

τ2(X) = 1+ (1- k)x12,

with an arbitrary scalar constant k. This example reveals that the singular value function are not uniquely
determined by this characterization. To overcome these problems, balanced realizations based on non-
linear singular value analysis is presented in the following section.

4.3.2 Balanced Realizations Based on Singular-Value Analysis
of Hankel Operators

In this section, application of singular-value analysis to nonlinear Hankel operators determines a balanced
realization with a direct input-output interpretation, whereas the balanced realization of Theorem 4.16
is completely determined based on state-space considerations only. To this end, we consider the Hankel
operator H : U -+ Y as defined in Equation 4.31 with U = L2m [ 0, (0) and Y = L2p[ 0,(0). Then a singular-
value analysis based on the differential form, [12], is given by

(dH(v))* H(v) = λ v, λ ∈ℝ,v ∈ U, (4.36)

with λ and v the eigenvalues and corresponding eigenvectors, respectively. Since we consider a singular-
value analysis problem on L2 spaces, we need to find state trajectories of certain Hamiltonian dynamics;
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see, for example, [12]. In the linear case, we only need to solve an eigenvalue problem on a finite
dimensional space X = ℝn to obtain the singular values and singular vectors of the Hankel operator H.
Here we provide the nonlinear counterpart as follows.

Theorem 4.17: [12]

Consider the Hankel operator defined by Equation 4.31. Suppose that the operators C†I and O exist and arc
smooth. Moreover, suppose that λ ∈ ℝ and ξ ∈X satisfy the following equation:

(4.37)

Then A is an eigenvalue of(dH(u)*H(u), and

v:= C†(ξ). (4.38)

That is, v defined above is a singular vector of H.

Although the singular-value analysis problem, [13], is a nonlinear problem on an infinite dimensional
signal space U = L2m' [0,(0), the problem to be solved in the above theorem is a nonlinear algebraic
equation on a finite dimensional space X = ℝn which is also related to a nonlinear eigenvalue problem
on X; see [9].

In the linear case, Equation 4.37 reduces to

ξTQ = λ ξTP-l

where P and Q are the controllability and observability Gramians, and λ and ξ are an eigenvalue and an
eigenvector of PQ. Furthermore, Equation 4.38 characterizes the relationship between a singular vector
v of H and an eigenvector ξ of PQ. Also, in the linear case, there always exist n independent pairs of
eigenvalues and eigenvectors of PQ. What happens in the nonlinear case? The answer is provided in the
following theorem.

Theorem 4.18: [12]

Consider the system Σ in Equation 4.30 and the Hankel operator H in Equation 4.31 with X = ℝ". Suppose
that the Jacobian linearization of the system has n distinct Hankel singular values. Then Equation 4.37 has
n independent solution curves ξ = ξi(S), s ∈ ℝ, i= 1,2, ... ,n intersecting to each other at the origin and
satisfying the condition

IIξi(s)|1 = lsi·

For linear systems, the solutions of Equation 4.37 are lines (orthogonally) intersecting at the origin.
The above theorem shows that instead of these lines, in the nonlinear case n independent curves x = ξi(S),
i = 1, 2, ... , n exist. For instance, if the dimension of the state is n = 2, the solution of Equation 4.37 is
illustrated in Figure 4.2.

We can relate the solutions ξi(S) to the singular values of the Hankel operator H. Let v,(s) and
σi(S) denote the singular vector and the singular-value parameterized by s corresponding to ξi(S). Then
we have

Vi(S):= C†(ξi(S)),
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FIGURE 4.2 Configuration Of ξl (s) and ξ2(S) in the case n = 2.

This expression yields an explicit expression of the singular values σi(S)'S of the Hankel operator H. These
functions σi (s)' s are called Hankel singular values. Without loss of generality we assume that the following
equation holds for i = 1,2, ... , n in a neighborhood of the origin

min{σi(s),σi(-S)} > max{σi+l(S),σi+l(-S)}. (4.39)

As in the linear case, the solution curves ξi(S) play the role of the coordinate axes of a balanced
realization. By applying an isometric coordinate transformation which maps the solution curves ξi(S)'S
into the coordinate axes, we obtain a realization whose (new) coordinate axes Xi are the solution of
Equation 4.37, that is,

(4.40)

(4.41)

Equation 4.41 implies that the new coordinate axes Xi, i = 1, ... , n are the solutions of Equation 4.37 for
Hankel singular-value analysis. Therefore, the Hankel norm can be obtained by

provided the ordering condition (Equation 4.39) holds for all S ∈ ℝ. Furthermore, apply this coordinate
transformation recursively to all lower dimensional subspaces such as (Xl, X2, ... , Xk, 0, ... ,0), then we
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obtain a state-space realization satisfying Equation 4.41 and

(4.42)

This property is crucial for balanced realization and model order reduction. Using tools from differential
topology, for example, [31], we can prove that the obtained realization is diffeomorphic to the following
preciseinput -normal! output -diagonal realization.

Theorem 4.19: [11,14]

Consider the system Σ in Equation 4.30. Suppose that the assumptions in Theorem 4.18 hold. Then there
exists coordinates in a neighborhood of the origin such that the system is in input-normal/output-diagonal
form satisfying

This realization is more precise than the realization in Theorem 4.16 in the following sense: (a) The
solutions of Equation 4.37 coincide with the coordinate axes, that is, Equation 4.40 holds. (b) The ratio
of the observability function Lo to the controllability function Le equals the singular values σi(xi)'S on
the coordinate axes, that is, Equation 4.41 holds. (c) An exact balanced realization can be obtained by a
coordinate transformation

Zi = φi(Xi):= Xi √σi(Xi), (4.43)

which is well-defined in a neighborhood of the origin.

Corollary 4.1: [11,14]

The coordinate change (Equation 4.43) transforms the input-normal realization in Theorem 4.19 into the
following balanced form:

Since we only use the coordinate transformation (Equation 4.43) preserving the coordinate axes, the
realization obtained here also satisfies the properties (a) and (b) explained above. The controllability and
observability functions can be written as
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Here P(z) and Q(z) can be regarded as nonlinear counterparts of the balanced controllability and observ-
ability Gramians, since

P(z) = Q(z) = diag(σ1 (z1), σ2(Z2), ... , σn(zn)).

The axes of this realization are uniquely determined. We call this state-space realization a balanced
realization of the nonlinear system Σ in Equation 4.30. As in the linear case, both the relationship between
the input-to-state and state-to-output behavior and that among the coordinate axes are balanced.

4.3.3 Model Order Reduction
An important application of balanced realizations is that it is a tool for model order reduction called
balanced truncation. Here, a model order reduction method preserving the Hankel norm of the original
system is proposed. Suppose that the system of Equation 4.30 is balanced in the sense that it satisfies
Equations 4.41 and 4.42. Note that the realizations in Theorem 4.19 and Corollary 4.1 satisfy these
conditions. Suppose, that

min{σk(s), σd -s)}» max{σk+l (s), σk+l (-s)}

holds with a certain k (1 ≤ k < n). Divide the state into two vectors x = (xa, xb)

xa := (Xl, ... ,Xk) ∈ ℝk,

b ( ℝn-kX := Xk+I, ... ,X,n)∈ℝ ,

and the vector field into two vector fields accordingly

and truncate the state by substituting xb = O.Then we obtain a k-dimensional state-space model Σa with
the state Xa (with a (n - k)-dimensional residual model Σb with the state xb).

(4.44)

(4.45)

This procedure is called balanced truncation. The obtained reduced order models have preserved the
following properties.

Theorem 4.20: [13,14]

Suppose that the system Σ satisfies Equations 4.41 and 4.42 and apply the balanced truncation procedure
explained above. Then the controllability and observability functions of the reduced order models Σa and
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Σb denoted by Lca, Lcb, Loa, and Lob, respectively, satisfy the following equations:

Lca(xa) = Lc(xa, 0), Loa(xa) = Lo(xa, 0),

Lob(xb) = Lc(O,xb), Lob(xb) = Lo(Oj),

which implies

σia(xia) = σi(Xia), i = 1, 2, ... ,k,

σib(xib) = σi+k(xib), i = 1, 2, ... ,n - k,

with the singular values σa's of the system Σa and the singular values σb of the system Σb. In particular, if
σ1 is defined globally, then

||Σa||H = IIΣI|H.

Theorem 4.20 states that the important characteristics of the original system such as represented by
the controllability and observability functions and Hankel singular values are preserved. Moreover, by
Theorem 4.15, this implies that the controllability, observability, minimality, and the gain property is
preserved under the model reduction. These preservation properties hold for truncation of any realiza-
tion satisfying the conditions (Equations 4.41 and 4.42), such as the realizations in Theorem 4.19 and
Corollary 4.1 [13,14]. Furthermore, concerning the stability, (global) Lyapunov stability and local asymp-
totic stability are preserved with this procedure as well. Note that this theorem is a natural nonlinear
counterpart of the linear theory. However, a nonlinear counterpart of the error bound of the reduced
order model has not been found yet.

4.3.4 Other Types of Balancing for Nonlinear Systems
Asfor linear systems, there exist extensions ofLQG, and coprime balancing [49], Hoc or L2 -gain balancing
[46], and positive/bounded real and dissipativity-based balancing [23]. In fact, in [23] a direct relation is
obtained with Hankel operator analysis for augmented systems.

The presented work treats balanced realizations for nonlinear systems based on balancing in a (possibly
large) region around an equilibrium point, where a relation with the Hankel operator, observability and
controllability operators and functions, and minimality of the nonlinear system is obtained. A drawback
of these methods is the computational effort that is needed to compute the balanced realization. As
mentioned in the introduction, other extensions of the linear notion of balancing can be found in for
example, [20,28,58,59].

4.4 Concluding Remarks

In this Chapter, balanced realizations for linear and nonlinear systems and model reduction based on
these realizations are treated. There exists a vast amount of literature on this topic, and the reference list
in this paper is certainly not complete. For example, some of the basics for linear balanced realizations
can be found in [40], and we did not pay any attention to the balancing methods treating uncertain, and
time- and parameter-varying linear systems; for example, [4,44], behavioral balancing, for example, [53],
or the numerical side of balancing, for example, [5].

Recently, a lot of interest is taken in structure preserving order techniques for both linear and nonlinear
systems, where the additional structure to be preserved is a physical structure, such as port-Hamiltonian
structure, [56], and other physical structures, as mentioned in our linear systems section. For example,
for circuit simulators with continuously growing orders of the models, a need for interpreting a reduced
order model as a circuit is important, such as, [50]. Due to the explicit interconnection (input/output
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like) structure of the circuits, order reduction methods based on balancing are attractive to apply to these
circuits. However, structure preservation and circuit interpretation of the corresponding reduced order
models is not possible yet, and is one of the motivators for further research to both linear and nonlinear
structure preserving order reduction methods.
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