
 

 

 University of Groningen

Stability analysis of piezoelectric beams
Voß, T.; Scherpen, J.M.A.

Published in:
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-
ECC)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Voß, T., & Scherpen, J. M. A. (2011). Stability analysis of piezoelectric beams. In Proceedings of the 50th
IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (pp. 3758-3763).
University of Groningen, Research Institute of Technology and Management.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/57184d57-ad7c-4065-a30f-91c895c50080


Stability analysis of piezoelectric beams

T. Voß and J.M.A. Scherpen

Abstract— Piezoelectric materials are used in many engi-
neering application. When modeling piezoelectric materials the
standard assumption is that the electromagnetic field which is
used to actuate the piezoelectric material is quasi static. In this
paper we show that although the assumption of a quasi static
electrical field is valid when one is interested in simulating a
piezoelectric material, this assumption renders the system non
stabilizable in terms of control. We also show that this issue is
caused by the assumption of a quasi static electrical field and
therefore can be avoided by modeling a dynamical electrical
field.

I. INTRODUCTION

In this paper we analyze the finite dimensional dynamics

of a piezoelectric beam in the port-Hamiltonian (pH) frame-

work. These dynamics have been previously derived using a

structure preserving spatial discretization scheme [3], see [9],

[10]. We will show that although the method proposed in [3]

yields a finite dimensional pH system, it is not guaranteed

that this model can then be used for the design of a controller

because the system may not satisfy a necessary condition for

stabilization. The reason for this could be that the system is

uncontrollable itself. However, in our research, it turns out

that the system is not stabilizable due to an assumption made

when modeling the infinite dimensional system.

We also show two possible problems which render the

finite dimensional model non stabilizable during the spatial

discretization. These problems can be avoided by modeling

the infinite dimensional system in a different manner. The

first problem appears if one treats an infinite dimensional

system which has states that depend on each other — this is

mostly done to avoid non constant interconnection structures.

To overcome this problem we propose an infinite dimensional

coordinate change which is spatially discretized. The second

problem is even more crucial. The standard procedure in

engineering is that very small effects are neglected because

one assumes that they have hardly any influence on the

dynamics of the system. This may be true if one is only

interested in the simulation results of the dynamics. But if

one is interested in controlling the dynamics, neglecting parts

of the dynamics can yield a finite dimensional model which

is non stabilizable. In this paper we first show that neglecting

the magnetic field in a piezoelectric material, and so treating

a quasi static electrical field, results in a non stabilizable

system. Furthermore, we also show that remodeling the
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infinite dimensional system with a dynamical electrical field

yields a stabilizable finite dimensional system.

II. SHORT INTRODUCTION TO FINITE DIMENSIONAL PH

SYSTEMS

In this section we introduce the pH modeling framework,

see [1], [8]. The reason why we use pH systems to do

modeling for control is that these systems have specific

properties which make them suitable for control design.

Moreover, in this framework one can easily model complex

finite dimensional systems by modeling subsystems indepen-

dently and then interconnect the systems. As a consequence,

the modeling effort is much smaller when using this “divide

and conquer” approach. Next we give a brief introduction to

finite dimensional pH systems. For more details we refer the

interested reader to [2].

The pH framework was originally developed for modeling

finite dimensional systems, but was later on extended to the

case of infinite dimensional systems as shown in [4], [5].

A finite dimensional pH system in local coordinates can

be described as

ẋ = (J(x) −R(x))
∂H

∂x
(x) +B(x)u (1)

y = B⊤(x)
∂H

∂x
(x)

where

• x = (x1, . . . , xn) expresses local coordinates in an n-

dimensional state space manifold X ⊂ R
n.

• u ∈ R
m and y ∈ R

m are the inputs and outputs respec-

tively. Together they define the ports of the system.

• J(x) : X → R
n×n is the interconnection matrix and

depends smoothly on x. Also J(x) is skew-symmetric

(J(x) = −J⊤(x)).
• R(x) : X → R

n×n is the resistance matrix and is

symmetric positive semidefinite (R(x) = R⊤(x) ≥ 0).

Also R(x) depends smoothly on x.

• B(x) : X → R
n×m is the input matrix and depends

smoothly on x.

• H(x) : X → R with H(x) > c > −∞∀x ∈ X is the

so called Hamiltonian of the system, H(x) represents

the stored energy in the system.

Note that for a pH system (1) the energy-balancing property

holds

dH

dt
=

∂⊤H

∂x
ẋ =

∂⊤H

∂x

(

(J −R)
∂H

∂x
+Bu

)

(2)

= −
∂⊤H

∂x
R
∂H

∂x
︸ ︷︷ ︸

≥0

+
∂⊤H

∂x
B

︸ ︷︷ ︸

y⊤

u ≤ y⊤u.
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Fig. 1. Cross sectional area of the composite

So, the Hamiltonian is a storage function and therefore a

candidate Lyapunov function for the unforced system. Also

it follows from (2) that the system is passive.

The last property we would like to mention is that the

interconnection of two finite dimensional pH systems yields

again a finite dimensional pH system. This property can

be exploited for finite dimensional control design which is

based on shaping the energy system of the to be controlled

system by interconnecting it to another passive system (the

controller).

III. FINITE DIMENSIONAL MODEL OF THE TIMOSHENKO

BEAM WITH QUASI STATIC ELECTRICAL FIELD

The model we present here was derived in [9], [10] as

follows. We first modeled the infinite dimensional dynamics

of the piezoelectric beam in the pH framework [10] and then

we used the method proposed in [3] to spatially discretize

an infinite dimensional nonlinear piezoelectric Timoshenko

beam while preserving the pH structure [9]. Different to the

very simple system in [3] the model in [9] consists of 8 states

and has a non constant interconnection structure. This yields

some additional problems which we solve in this paper.

To better understand what kind of beam we discuss, we

briefly introduce the geometry of the beam. We consider

a piezoelectric composite beam which consists of a base

layer to which a piezoelectric layer is bonded. The cross

section of the beam is depicted in Figure 1. Moreover, and

without loss of generality, we assume that the base layer has

a constant thickness (2db) and a constant height 2hb, while

its length is L. The piezoelectric layer is bonded on top of

the base layer. Let hp denote the height of the piezoelectric

layer and let the width of this layer be 2dp. Each side of

the piezoelectric layer in the z1z2 plane is covered by an

electrode to which a homogeneous voltage distribution is

applied. The voltage distribution will generate an electrical

field between the electrodes. Hence, due to the piezoelectric

properties, the material will deform. This electrical field can

be controlled and thus we can also control the shape of the

piezoelectric beam.

The spatial discretization scheme proposed in [3] works

as follows. First one divides the beam, which is described

in the interval Z = [0, L], into n subintervals. On each of

these n subintervals, e.g., Zab = [a, b] with 0 ≤ a < b ≤ L,

we spatially discretize the dynamics while considering the

following steps, for more details see [9]:

• approximate the efforts and flows on Zab,

• define the boundary ports over which the elements

exchange energy with neighboring elements,

• discretize the interconnection structure,

• formulate the finite dimensional interconnection struc-

ture,

• discretize the energy function.

All these steps combined yield then a finite dimensional

approximation for the infinite dimensional dynamics of our

piezoelectric composite on the interval Zab. These n finite

dimensional pH models are then interconnected in a physical

way via the boundary ports which are defined during the

spatial discretization scheme. The interconnected model then

approximates the dynamics of the total piezoelectric beam on

the interval Z .

The finite dimensional system which describes the dynam-

ics on the interval Zab is then given by

ẋ = J∇xH +Bintuint +Bextuext

yint = B⊤
int∇xH +Dintuint (3)

yext = B⊤
ext∇xH +Dextuext

where x = [pu, pw, pφ, u
′, w′, φ, φ′, E] represents the

state on the interval Zab . The pi, i ∈ {u,w, φ} are the

momenta in the u, w, and φ direction. The states u′, w′,

φ, and φ′ are the strain parameters which we also denote

as ε = [u′, w′, φ, φ′] — here the prime operator stands for

x′ = ∂x
∂z1

. The last component of the state E is the electrical

field which is generated between the two electrodes. The

energy function H can be stated as

H =
1

2
p⊤M−1p+

1

2
ε⊤C(ε)ε+

1

2
ǫeE2 (4)

where M is the mass matrix of the beam, C is a nonlinear

smooth positive definite matrix which relates the stresses and

the strains in the system and ǫe is the permittivity of the

piezoelectric material.

The matrix J is given by

J =

[
0 K

−K⊤ 0

]

with

K =





1
α

0 0 0 c1(x)
0 1

α
0 0 c2(x)

0 0 − 1
ᾱ

1
α

c3(x)





where α and ᾱ are given non zero constants and the functions

ci(x) depend smoothly on x.

The internal input matrix Bint is used to connect the local

finite dimensional approximation on the interval Zab in a

physical way with neighboring elements via the mechanical

input-output pair (uint, yint), which consists of forces and

velocities at the boundaries of the finite element. From now

on we neglect the terms related to the internal input matrix

and the related input-output pair because these components

cannot be used as control inputs and therefore do not

influence the stabilization properties of the original model.

The external input matrix Bext is used to inject energy

into the system via the input-output pair (uext, yext) and is

defined as

Bext =
[
0 0 0 0 0 0 0 1

ǫeAe

]⊤
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where Ae is the surface of the electrode and the input uext is

the spatially uniform voltage distribution to be applied to the

electrode of the piezoelectric beam. The output yext is the

related uniform current distribution which can be measured

at the electrode. The input-output pair (uext, yext) will be

the only port which can be used to control the dynamics of

the system. In the next section we will show that the finite

dimensional model on the interval Zab cannot be stabilized

by means of active control.

A. Stabilizability of the model

In this section we check whether the spatial discretized

model (3) is stabilizable via the external electrical port. We

first state Proposition 4.2.14 from [7].

Theorem 1: Consider the generalized Hamiltonian system

(1) with equilibrium x0. A necessary condition for asymp-

totic stabilizability around x0 is that for every ε > 0
⋃

‖x−x0‖<ε

[ImJ(x) + ImB(x)] = R
n.

For the proof we refer the interested reader to [7]. Now we

can state the following theorem.

Theorem 1: The system (3) does not fulfill the necessary

condition for stabilizability of Proposition 1 if one considers

the electrical input as the only control input.

Proof: The rank of the external input matrix Bext is

1. The rank of the interconnection matrix J is 6, so, the

interconnection matrix has a six-dimensional image. But to

fulfill the necessary condition of Proposition 1 we need that

Im(J) + Im(Bext) = R
8, which obviously is not the case.

Hence, the system is not stabilizable.

The result is not surprising since φ and φ′ are not indepen-

dent to each other. The reason why we have chosen a model

which depends on φ and φ′ is that it simplifies the spatial

discretization, since it avoids a nonlinear interconnection

structure. To overcome the non-stabilizability problem, we

now first study another choice of coordinates. In particular,

one can define an infinite dimensional coordinate change

between the two different models, one with 4 strain states

and one with 3 strain states, and use the coordinate change

to derive a finite dimensional coordinate change as explained

next.

B. Coordinate transformation

Due to the fact that the derivation of the coordinate

transformation is rather extensive we present here just the

general idea and refer the interested reader to [11]. The

infinite dimensional model we used is a valid pH model.

However, due to the strong relation between the states φ and

φ′ = ∂φ
∂z1

it turns out that the system is not asymptotically

stabilizable. One way to overcome this problem is to define

a system with only 3 nonlinear strain states and find an

infinite dimensional coordinate transformation between the

3 nonlinear strain state model and (3). We are able to derive

such an infinite dimensional coordinate change because the

dynamics of the model are independent to the choice of states

— 3 strain states or 4 strain states. This coordinate change

we use then to construct a finite dimensional coordinate

projection which transforms the system (3) into a system

with states which are independent to each other.

The strains of an infinite dimensional nonlinear Timo-

shenko beam are given by

ε11 = u′
0 +

1

2
(w′)

2
− zφ′ (5)

ε13 =
1

2
(w − φ′) .

Note that the strain determines the energy function. But one

needs to parametrize the strain to be able to define the states

of the dynamical system. Moreover, since the strain (5) is

nonlinear there are several ways to parametrize the strain,

and with this choose the states of the infinite dimensional

system. For the system (3) we have chosen a linear strain

parametrization

ε := [u′
0, w

′, φ, φ′]
⊤

(6)

which results in a linear infinite dimensional interconnection

structure, but yields a finite dimensional system that cannot

be stabilized. Another way to parametrize the strains is to

define the following nonlinear strain states

ε :=
[
ε011, ε

1
11, ε13

]⊤
(7)

where

ε011 :=

(

u′
0 +

1

2
(w′)

2
)

, ε111 := φ′, ε13 :=
1

2
(w − φ′) .

But, a system with this choice of nonlinear strain states

will have a non constant infinite dimensional interconnection

structure. Hence, it is impossible to apply a structure pre-

serving spatial discretization scheme. However, one can use

this parametrization to define a finite dimensional coordinate

change which then renders (3) stabilizable. Although one

can choose different strain states, this has no impact on the

actual dynamics of the beam because we have not changed

the energy function in at all.

Having now two different parametrizations for the strains

one can define an infinite dimensional coordinate transfor-

mation between the two strain state definitions (6) and (7).

This infinite dimensional coordinate transformation can then

be spatially discretized using the same method that we have

used to derive (3). We can now derive a finite dimensional

transformation, z = T (x), z ∈ R
7 and transform the 4 strain

state system (3) into

ż =

[
0 K̃

−K̃⊤ 0

]

∇zH + B̃intuint + B̃extuext

yint = B̃⊤
int∇zH +Dintuint (8)

yext = B̃⊤
ext∇zH +Dextuext

where

K̃ =





1
α

0 0 − 1
α
c1(z)

1
α
c4(z)

1
α

0 − 1
α
c2(z)

0 − 1
2ᾱ − 1

α
− 1

α
c3(z)



 (9)

B̃ext =
[
0 0 0 0 0 0 1

ǫeAe

]⊤
.
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Fig. 2. Interconnection of the ith system with the neighboring systems

The mechanical related part in interconnection matrix has

changed entirely but because the coordinate change is work-

ing on the mechanical domain the external input matrix has

only changed in dimension. Furthermore, note that although

the internal input matrix has also changed we skip its

definition because the internal inputs are not used for control.

Now we can prove that (8) fulfills the necessary conditions

for stabilization.

Theorem 2: The system (8) fulfills the necessary condi-

tion for stabilizability of Proposition 1 if one considers the

electrical input as the only control input.

Proof: The rank of the electrical input matrix B̃ext has

not changed (so, it is still 1). The rank of the interconnection

matrix J̃ is still 6. Hence, the interconnection matrix has a

six-dimensional image. We can also check by calculating the

span of the two matrices that indeed Im(J̃) + Im(B̃ext) =
R

7. Hence, the system now satisfies the necessary condition

for stabilizability via the electrical input.

Note that the result is as expected since we have chosen the

coordinate in such a way to remove the dependency between

the states and render the system stabilizable.

C. Interconnection of the subsystems to achieve global ap-
proximation

With the procedure presented in the past sections we can

calculate n finite dimensional pH systems, also called finite

elements, which describe the dynamics of the beam locally

(on the interval [ai, bi] where it holds that ai = bi−1). In

order to achieve a global approximation for the dynamics of

our beam we have to interconnect the system in a simple

manner.

In (3) we have introduced the internal inputs and outputs

of a local system, forces and velocities, respectively. The

interconnection with the neighboring finite elements is done

in such away that the forces and velocities at the boundaries

of the neighboring elements coincide. So, the ith system is

interconnected to the (i − 1)st and the (i + 1)st system.

This gives us an interconnection of the ith system with the

neighboring systems, as illustrated in Figure 2.

D. Stabilizability of the interconnected model

We have already showed that the model for one element

(8) fulfills the condition of Proposition 1. But this does not

mean that the fully interconnected system also fulfills this

property. We state the following theorem.

Theorem 3: Any interconnection of the systems (8) by

using the procedure described in Section III-C is not stabiliz-

able under the assumption that only homogeneous electrical

input can be used to stabilize the system.

Proof: An interconnection, as described in Section III-

C, of two finite elements S1 and S2 given by (8) will lead

to the following pH system

[
ẋ1

ẋ2

]

=

[
J1 −B1,rB

⊤
2,l

B2,lB
⊤
1,r J2

] [
∇x1

H

∇x2
H

]

+Bintuint +

[
B1

ext

B2
ext

]

uext

yint = B⊤
int

[
∇x1

H

∇x2
H

]

+Dintuint

yext =
[

B1⊤

ext B2⊤

ext

] [
∇x1

H

∇x2
H

]

+Dextuext

where Ji is the interconnection matrix of the system Si,

while Bi,l, and Bi,r are the internal input matrices of the

system Si related to the the left and right side respectively.

We define that Bi
int = [Bi,l, Bi,r]. The matrix Bi

ext is the

external input matrix of the system Si. As already discussed

the only control input we can use is the electrical one uext

and is assumed to be equal for both finite elements since

we consider a homogeneous spatial voltage field. The rank

of the electrical input matrix
[
Be⊤

1 , Be⊤
2

]⊤
is clearly 1. So,

the image of this matrix is one-dimensional. The rank of the

interconnection matrix is given by the sum of the rank of

J1 and J2 because it clearly holds that rank(B1,rB
⊤
2,l) ≤

rankJi. Moreover, since the systems Si (i ∈ {1, 2}) have the

same interconnection structure, it is clear that the rank of

the total interconnection matrix is 2 · rank(J1). It is easy to

see that the rank of J1 is 6. So, we obtain that the image of

the interconnection matrix is 12 dimensional. But Im(J) +
Im(Bext) can never be equal to R

14. Hence, the system is

not stabilizable via an electrical input. Moreover, note that

the proof can easily be extended to the interconnection of n

finite elements.

The result is physically explainable since we have simplified

the model by modeling a quasi static electrical field. This

means that the model only represents the stored electrical en-

ergy and completely neglects the magnetic energy. But since

we neglect the magnetic energy we also neglect the necessary

energy exchange between the two energies (magnetic and

electrical) and thus a crucial part of the dynamics so that we

cannot change the electrical field. This makes it impossible

to control the electrical field. Consequently, one is not able

to control the deformation of the piezoelectric material. One

can circumvent this problem by deriving a model where the

magnetic energy part of the electromagnetic domain is also

modeled. This model has then also the coupling between the

electrical and magnetic energy included, which enables us to

control the dynamics of the electrical field such that we are

able to change the dynamics of the mechanical domain due

to the piezoelectric coupling.

So, we can summarize that neglecting energies in the field

of pH modeling can yield systems which are non stabilizable,

because one neglects crucial dynamics.
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IV. 1-D TIMOSHENKO BEAM WITH DYNAMIC

ELECTRICAL FIELD

In this section we investigate the stability of a discretized

model of a 1-D Timoshenko beam with a dynamic electrical

field, see [11]. The reason for modeling a dynamic electrical

field is that a model with a quasi static electrical field is

non stabilizable, see Section III-D. The derivation of the

model will be done using the same procedure as in [9]

which we have used to derive (3). Then one applies the same

coordinate change which was used to derive [9] in order to

get independent strain states. We skip the details and just

state the result of the spatial discretization and the coordinate

transformation — for more details we refer the interested

reader to [9]. The dynamics of a piezoelectric beam with

dynamical electromagnetic field on the interval Zab can be

described as

ẋ =







0 Jm 0 0
−J⊤

m 0 0 0
0 0 0 Je
0 0 −J⊤

e 0






∇xH (10)

+Bintuint +Bextuext

yint = B⊤
int∇xH +Dintuint

yext = B⊤
ext∇xH +Dextuext

with

J̃m =








1

α
u′
0

b

0 0

1

α
u′
0

b

c4(x)
1

2αw′

b

0

0 − 1
2ᾱ − 1

α
φ′

b







, Je =

1

α
(11)

Bext =

[
0 0 0 0 0 0 − 1

α
0

0 0 0 0 0 0 0 1
α

]

where the αs in the interconnection matrix are nonzero

constants and c4(x) is a smooth function. The mechanical

states of the systems are the same as for the (8), while

the electrical states are now expressing the charge and flux

distribution on the electrode. Hence, instead of one electrical

state, the electrical field, we now have two electrical states.

Again we do not define the internal input matrix and the

related power port since these ports cannot be used for

control. The external inputs are now the current and the

voltage applied at a specific point of the electrodes — the

electrical part now behaves similar to a transmission line.

Next we have to interconnect the finite elements in order to

achieve an approximation of the beam on the whole spatial

domain. This will be done in the same way described in

Section III-C. Then we can state the following theorem.

Theorem 4: The interconnection of systems (10) fulfills

the necessary condition of Proposition 1.

Proof: An interconnection, as described in Section III-

C, of two systems S1 and S2 given by (10) will lead to the

following pH system:
[

ẋ1

ẋ2

]

=

[
J1 −B1,rB

⊤
2,l

B2,lB
⊤
1,r J2

] [
∇x1

H

∇x2
H

]

+Bintuint +

[
B1

ext

B2
ext

]

uext

yint = B⊤
int

[
∇x1

H

∇x2
H

]

+Dintuint

yexy =
[

B1⊤

ext B2⊤

ext

] [
∇x1

H

∇x2
H

]

+Dextuext

where Ji is the interconnection matrix of the system Si,

while Bi,l and Bi,r are the internal input matrices of the

system Si related to the the left and right side respectively.

We have that Bi
int = [Bi,l, Bi,r] . The matrix Bi

ext is the

external input matrix of the system Si. We have that the

only control input that we can use is the electrical input

uext. The rank of the interconnection matrix is given by

the sum of the rank of J1 and J2 because it clearly holds

that rank(B1,rB
⊤
2,l) ≤ rankJi. The systems Si (i ∈ {1, 2})

have the same structure. So, it is clear that the rank of the

total interconnection matrix is 2 · rank(J1). It is easy to see

that the rank of J1 is 8, which means that the image of

the interconnection matrix is 16-dimensional. So, Im(J) +
Im(B) = R

16 no matter what the rank of the electrical input

matrix is. Hence, the system fulfills the necessary condition

for being stabilizable via an electrical input. By induction

the statement can now be proved straight forwardly for the

interconnection of n systems.

A. Comparison between a piezoelectric composite with and
without dynamical electrical field

The difference between the model of a piezoelectric com-

posite with and without dynamical electrical field is that

for the quasi static electrical field we neglect the magnetic

energy of the beam. This is a standard assumption in the

field of piezoelectricity, see [6]. The reason why this is

done is that the effect of the magnetic field is extremely

small. So, the magnetic field has hardly any influence on

the dynamics apart from adding a very small delay in the

electrical dynamics of the system. This assumption is true

if one is only interested in the simulation of the dynamics

of the piezoelectric material. However, if one decides to

control the shape of the piezoelectric material in the pH

framework neglecting the magnetic energy, this results into

a model which cannot be stabilized. The reason for this is

that the magnetic field represents crucial dynamics of the

electromagnetic field. So, if one neglects the magnetic field,

it is impossible to stabilize the electric field around a given

equilibrium. Moreover, recall that the stabilization of the

electromagnetic field around a given equilibrium is the main

actuation force in our beam, due to the fact that we treat

a piezoelectric material. As a consequence, we are then not

able to stabilize the shape around a given equilibrium.

This result is a typical example which shows that some-

times neglecting small details during a modeling process can

yield huge problems if one is interested in controlling the
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dynamics of a given system. Hence, one has to be careful

not to neglect too many details if the goal is to obtain a

stabilizable model.

V. CONCLUSION

In this paper we have first shown that the dependency of

states in infinite dimensional pH modeling, normally done to

avoid non constant interconnection matrices, yields, if one

spatially discretizes the system with the method proposed in

[3], to a finite dimensional system that is non stabilizable. We

have also shown — by using an example of a piezoelectric

composite — how a spatially discretized coordinate transfor-

mation can be utilized to change the system such that the re-

sulting system then fulfills a necessary condition. Moreover,

we have proven that neglecting on first sight unimportant

parts of the system’s energy can yield infinite dimensional pH

systems that are not anymore stabilizable. After adapting the

model, with the changed proposed in this paper, the resulting

finite dimensional system of a piezoelectric composite fulfills

a necessary condition for being stabilizable by means of

active control.
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