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On the internal model principle in formation control and in output
synchronization of nonlinear systems

Claudio De Persis and Bayu Jayawardhana

Abstract— The role of internal model principle is investigated
in this paper in the context of collective synchronization and
formation control problems. In the collective synchronization
problem for nonlinear systems, we propose distributed control
laws for passive systems which synchronize to the solution of
an incrementally passive exosystem. This generalizes the result
from linear systems where the existence of an internal model is
required for the output synchronization of networked systems.
In our second result, a distributed control law that solves a
formation control problem for incrementally passive systems is
proposed based also on the internal model principle.

Keywords: Cooperative control, synchronization, nonlinear
systems, passivity

I. INTRODUCTION

In this paper, we study state synchronization and formation
control for passive nonlinear systems based on the inter-
nal model principle. In the synchronization problem, one
investigates conditions under which the state variables of
all the subsystems asymptotically converge to each other,
while in the formation control problem, one studies the
distributed control laws which ensure that the position or
the velocity of all the subsystems converge to the desired
position or velocity. Passivity ([1], [3], [12], [11]), or the
weaker notion of semi-passivity ([9], [8], [14]), has been
studied in both the synchronization and formation control
problems. In the context of output synchronization, the
notion of incrementally passive nonlinear systems has been
exploited to show that the relative output measurements
in a network suffice to ensure output synchronization, i.e.,
the outputs of all the subsystems asymptotically converge
to each other [12]. Moreover, if one assumes a stronger
notion of strictly incremental passivity for each subsystem,
where the strictness corresponds to the incremental stability
of the autonomous systems, then the output synchronization
implies the state synchronization. In this paper, we relax the
strict incremental passivity assumption of each subsystem by
considering controllers which incorporate exosystems which
communicate with each other. This is motivated by the
recent results in [16] where the existence of an internal
model is both necessary and sufficient condition for output
synchronization of linear networked systems.
The first main contribution of this paper is to show that
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the results of [16] can be extended to the nonlinear case.
In particular, we propose a distributed control law that
uses the local information of the networked exosystems and
the relative output measurements of the subsystems and of
the exosystems. The resulting control approach enforces, in
some sense, a prescribed synchronization on the subsystems
via networked exosystems. In particular, the subsystems
asymptotically converge to an invariant manifold driven by
an autonomous synchronized exosystem.
In the context of formation control, Bai, Arcak and Wen in
[2] have discussed the role of passivity for the coordination
of networked systems. In that framework we consider a
formation control problem in which the followers asymp-
totically track a leader modeled as an incrementally passive
exosystem.

In Section II we provide a few preliminaries about the
class of systems under consideration and the synchronization
problem we are interested in. In Section III the synchroniza-
tion problem using incrementally observable internal models
is studied. The formation control problem in the presence
of incrementally passive leaders is examined in Section IV.
Conclusions are drawn in Section V.

II. PRELIMINARIES

Consider N systems connected over an undirected graph
G = (V,E), where V is a set of N nodes and E ⊆ V × V
is a set of M edges connecting the nodes. The standing
assumption throughout the paper is that the graph G is
connected. Each system i, with i = 1, 2, . . . , N , is associated
to the node i of the graph and the edges connect the nodes
or systems which communicate.

A. Description of the networked exosystems

Throughout the paper, we use networked exosystems
where each exosystem i is described by

Wi :
ẇi = s(wi) + l(wi)vi
ri = c(wi),

(1)

where the state wi ∈ Rn, the input vi ∈ Rp, the output
ri ∈ Rp and the functions s, l, c are assumed to be locally
Lipschitz satisfying s(0) = 0, l(0) 6= 0, c(0) = 0.
When vi = 0, the autonomous system above is the familiar
description of the exosystem that generates the reference
signal in the nonlinear output regulation problem. For each
exosystem Wi, we assume the following:

Assumption 1 There exists a storage function Vi : Rn →
R+ which is positive definite and radially unbounded such
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that for all xi ∈ Rn and ui ∈ Rp

∂Vi(wi)

∂wi

(
s(wi) + g(wi)vi

)
≤ c(wi)

T vi. (2)

Such a system Wi is called a passive system.
The autonomous system Wi (with vi = 0) is called incre-
mentally observable if for every trajectories wi, wj such that
c(wi) = c(wj), then wi = wj . The notion of incremental
observability is a variation to the standard notion of zero-
state observability.
Label one end of each edge in E by a positive sign and the
other one by a negative sign. Now, consider the k-th edge
in E, with k ∈ {1, 2, . . . ,M}, and let i, j be the two nodes
connected by the edge. For the synchronization of networked
exosystems, which is discussed in Subsection II-C, we need
the relative measurements of the signals ri and rj . Thus, let
zk describe the difference between the signals ri and rj and
be defined as follows:

zk =

{
ri − rj if i is the positive end of the edge k
rj − ri if i is the negative end of the edge k .

Recall also that the incidence matrix D associated with the
graph G is the N ×M matrix such that

dik =

 +1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k

0 otherwise.

By the definition of D, the variables z can be concisely
represented as

z = (DT ⊗ Ip)r (3)

where w = [wT
1 . . . w

T
N ]T and the symbol ⊗ denotes the

Kronecker product of matrices (see e.g. [1], [11] for some
basic properties).

B. Description of the networked systems

For the output synchronization problem and the formation
control problem, each subsystem is described by

Σi :

{
ξ̇i = fi(ξi) + gi(ξi)ui
yi = hi(ξi),

(4)

where xi ∈ Rmi , ui, yi ∈ Rq . We assume that for every i
the system Σi is incrementally passive, i.e.

Assumption 2 There exists a regular storage function 1 Si :
Rmi × Rmi → R+ such that

∂Si(ξi, ξ
′
i)

∂ξi

(
f(ξi)+g(ξi)ui

)
+
∂Si(ξi, ξ

′
i)

∂ξ′i

(
f(ξ′i)+g(ξ′i)ui′

)
≤ 〈h(ξi)− h(ξ′i), ui − ui′〉 (5)

for all (ξi, ξ
′
i) ∈ Rmi × Rmi and (ui, u

′
i) ∈ Rq × Rq .

Examples of systems satisfying (5) are found in the literature
[4].
For the synchronization problem, which is briefly reviewed in

1A storage function S(ξk, ξ′k), with S : Rm × Rm → R+, is said to
be regular ([6]) if for any sequence (ξk, ξ

′
k), k = 1, 2, . . ., such that ξ′k is

bounded and ||ξk|| → +∞, we have that S(ξk, ξ′k)→ +∞ as k → +∞.

Section III, we need the relative measurements of the signals
yi and yj . On the other hand, for the coordination problem,
which is detailed in Section IV, the relative measurements
of the integral form

∫ t

0
yi(τ)dτ and

∫ t

0
yj(τ)dτ are used. In

the coordination problem, the signal yi can be considered as
the velocity measurement and thus the integral form defines
the position measurement.
Thus, depending upon specific problems, let ζk describe the
difference between the signals yi and yj (or the difference
between the signals xi(t) :=

∫ t

0
yi(τ)dτ+xi(0) and xj(t) :=∫ t

0
yj(τ)dτ +xj(0) with constants xi(0), xj(0) ∈ R) and be

defined as follows:

ζk =


yi − yj (or xi − xj )

if i is the positive end of the edge k
yj − yi (or xj − xi )

if i is the negative end of the edge k .

Using the incidence matrix D, the variables ζ can also be
concisely represented as

ζ = (DT ⊗ Ip)y

(
or ζ = (DT ⊗ Ip)x

)
(6)

where y = [yT1 . . . y
T
N ]T and x = [xT1 . . . x

T
N ]T .

C. Exosystems synchronization

Let us recall the synchronization for linear systems as
discussed in [11]. In the synchronization problem of [11,
Theorem 4], each system Wi in (1) is assumed to be linear,
identical and passive. For such setting, each (passive) system
Σi is of the form

ẇi = Swi +Bvi
ri = Cwwi i = 1, 2, . . . , N

(7)

where wi ∈ Rn, vi, ri ∈ Rp and the passivity of Wi implies
that the following assumption holds:

Assumption 3 There exists an (n×n) matrix P = PT > 0
such that STP + PS = 0, BTP = Cw .
The synchronization problems can then be stated as design-
ing each control law vi, i = 1, 2, . . . , N , using only the
information available to the agent i such that, for every i,
wi − w0 → 0 where w0 is the trajectory of the autonomous
system ẇ0 = Aw0 which is initialized by the average of the
initial states, i.e., w0(0) = 1

N

∑
i wi(0).

In addition to output synchronization, it is well-known that
the states of interconnected passive systems synchronize
under an observability assumption ([3]). The largest in-
variant set of the interconnected systems when (Cw, S) is
observable, is the set {w ∈ RnN : w1 = . . . = wN}.
The exponential synchronization under static output feedback
control laws and time-varying graphs has been investigated
in [11]. In the following statement, we recall Theorem 4
of [11] specialized to the case of time-invariant undirected
graphs:

Theorem 1 Let Assumption 3 hold and suppose that the
pair (Cw, S) is observable. Let the communication graph
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be undirected and connected, and denote z = (DT ⊗ Ip)r
as in (3) with r = [rT1 . . . r

T
N ]T . Then the solutions of

ẇi = Swi −B
M∑
k=1

dikzk, i = 1, 2, . . . , N (8)

satisfy

lim
t→+∞

∥∥∥∥wi(t)−
1T
N ⊗ In
N

w(t)

∥∥∥∥ = 0 (9)

where w = [wT
1 wT

2 · · · wT
N ]T and the convergence is

exponential. More precisely, the solutions converge expo-
nentially to the solution of ẇ0 = Sw0 initialized to the
average of the initial conditions of the systems (8), i.e.
w0(0) = 1T

N ⊗ Inw(0).

Let w̃ = w − 1N1T
N⊗In
N w = (Π ⊗ In)w, with Π = IN −

1N1T
N

N , be the disagreement vector. From (8), w̃(t) obeys the
equation

˙̃w = [IN ⊗ S − (IN ⊗B)(DDT ⊗ Ip)(IN ⊗ Cw)]︸ ︷︷ ︸
S̃

w̃

(10)
and the convergence result (9) can be restated as
limt→+∞ ||w̃(t)|| = 0. The proof of the result rests on
showing that the Lyapunov function V (w̃) = w̃T (IN ⊗P )w̃
along the solutions of (10) satisfies the inequality V̇ (w̃) ≤
−λ2||(Π ⊗ Ip)r||2, where λ2 is the algebraic connectivity
of the graph, i.e. the smallest non-zero eigenvalue of the
Laplacian L = DDT . Then the thesis descends from the
observability assumption and Theorem 1.5.2 in [10].
The generalization to the nonlinear case is given in the
following proposition.

Proposition 1 Consider the exosystems Wi as in (1). Sup-
pose that for every i, Wi satisfies Assumption 1 and is
incrementally observable. Let the communication graph be
undirected and connected, and denote z = (DT ⊗ Ip)r as in
(3) with r = [rT1 . . . r

T
N ]T . Then for every initial condition

w(0) ∈ RnN , there exists ω0 ∈ Rn such that the solution of

ẇi = s(wi)− l(wi)

M∑
k=1

dikzk, i = 1, 2, . . . , N

satisfies limt→+∞ ‖wi(t)− w0(t)‖ = 0 where w =
[wT

1 wT
2 · · · wT

N ]T and w0 is the solution of ẇ0 = s(w0),
w0(0) = ω0 ∈ Rn.

Proof: Let V (w) =
∑

i Vi(wi) be the Lyapunov
function of the interconnected systems where Vi satisfies (2).
Following the standard passivity argument and the assump-
tions on the graph, we have that

V̇ =
∑
i

∂Vi(wi)

∂wi

(
s(wi)− l(wi)

M∑
k=1

dikzk

)

= −
∑
i

c(wi)

M∑
k=1

dikzk = −rT (D ⊗ Ip)z

= −rT (DDT ⊗ Ip)r ≤ −λ2‖(Π⊗ Ip)r‖2

where Π = IN− 1N1T
N

N . Since V is proper (by the assumption
on each Vi), the above inequality implies that the state
trajectory w stays in a compact set. By the application of
LaSalle invariance principle, w converges to the ω-limit set
Ω(w(0)) where we have that (Π⊗ Ip)r = 0. In the ω-limit
set Ω(w(0)), the trajectory of w is a solution to ξ̇1...

ξ̇N

 =

s(ξ1) · · · 0
...

. . .
...

0 · · · s(ξN )

 ,
 ξ1(0)

...
ξN (0)

 = ξ0,

(11)
such that c(ξ1) = c(ξ2) = . . . = c(ξN ) with an initial
condition ξ0. By the incremental observability of Wi, it
implies that ξ1 = ξ2 = . . . = ξN . Therefore, the trajectory
of w in the ω-limit set can be described by 1N ⊗w0 where
w0 is the solution to ẇ0 = s(w0), w0(0) = ω0.

Example 1 Here we discuss a class of exosystems satisfying
the hypotheses in Proposition 1. Let us consider nonlinear
exosystems described by (we drop the dependence on the
index i to simplify the notation)

ẇ =

[
0 −I
I 0

]
∇V T (w) +

[
0
I

]
v r =

[
0 I

]
∇V T (w),

where V is a positive definite and radially unbounded
function and ∇V (w) := ∂

∂wV (w). Such systems satisfy
the passivity condition (2) and belong to the class of port-
Hamiltonian systems [15]. Suppose that w = [ wa

wb
], wa, wb ∈

Rn and there exists a positive definite function α : R+ → R+

such that∥∥∥∥ ∂

∂wa
V ([ wa

wb
])− ∂

∂w̄a
V (
[
w̄a
w̄b

]
)

∥∥∥∥ ≥ α (‖wa − w̄a‖) (12)∥∥∥∥ ∂

∂wb
V ([ wa

wb
])− ∂

∂w̄b
V (
[
w̄a
w̄b

]
)

∥∥∥∥ ≥ α (‖wb − w̄b‖) (13)

hold for all wa, wb, w̄a, w̄b ∈ Rn. Under such assumptions,
the exosystems are incrementally observable. Indeed, given
two autonomous exosystems with states w1, w2 ∈ R2n

satisfying

ẇ1 =

[
0 −I
I 0

]
∇V T (w1) r1 =

[
0 I

]
∇V T (w1)

ẇ2 =

[
0 −I
I 0

]
∇V T (w2) r2 =

[
0 I

]
∇V T (w2),

if r1(t) = r2(t) for all t, then (13) implies that w1b(t) =
w2b(t) for all t. Since it also holds that ẇ1b = ẇ2b, (12)
implies that w1a(t) = w2a(t) for all t.

Remark 1 The assumption on the symmetry of the graph is
not needed. In fact consider the control law vi =

∑
j aij(rj−

ri), where aij are the entries of the adjacency matrix of
a weight-balanced and weakly connected directed graph2.
Then V̇ = −rT (L ⊗ Ip)r ≤ −λ̃2‖(Π ⊗ Ip)r‖2, where L is
the Laplacian of the graph and λ̃2 is the smallest nonzero

2We recall that a graph is weight-balanced if the out-degree of each node
equals its in-degree. It is weakly connected if for each pair of its nodes
there is a (not necessarily oriented) path connecting the nodes.
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eigenvalue of (L + LT )/2. Then the thesis descends as
before. The assumption can be relaxed even further – see
e.g. [5],[14].

Remark 2 The result is related with others appeared in
recent literature. In [13, Theorem 2], output synchroniza-
tion is proven with no such an assumption as incremental
observability but requiring the systems to be incrementally
output feedback passive and the network to satisfy a strong
coupling assumption (namely, the algebraic connectivity of
the graph should be larger than a certain constant). On the
other hand, incremental observability must be assumed to
prove state synchronization [4]. Strict incremental passivity
for network of systems has been studied in [7] (see also [6])
and used to prove exponential synchronization under integral
coupling in an all-to-all graph.

III. OUTPUT SYNCHRONIZATION VIA INTERNAL MODEL

In this section, we discuss the solvability of the output
synchronization problem using the internal model approach.
This is motivated by the approach that is proposed in [16]
where the existence of an internal model is both a necessary
and sufficient condition for the output synchronization of
linear networked systems. Let us discuss the result of [16]
(see also [2], Section 3.6) adapted to passive linear systems.
Given N heterogeneous passive linear systems

ξ̇i = Fiξi +Giui
yi = Hiξi, i = 1, 2, . . . , N

(14)

with the storage function Hi = ξTi Piξi, Pi = PT
i > 0

such that FT
i Pi + PiFi ≤ 0, PiGi = HT

i , with (Hi, Fi)
detectable and with a graph G (which here, as usual in this
paper, we assume static undirected and connected), find a
feedback control law ui for each system i (i) which uses
relative measurements concerning only the systems which
are connected to the system i via the graph G and (ii) such
that output synchronization is achieved, i.e. limt→∞ ||yi(t)−
yj(t)|| = 0 for all i, j ∈ {1, 2, . . . , N}.
Excluding the trivial case in which the closed-loop system
has an attractive set of equilibria where the outputs are all
zero, the authors of [16] show that the output synchronization
problem for N heterogeneous systems is solvable if and
only if there exist matrices S,Cw such that limt→∞ ||yi(t)−
Cwe

−Stw0|| = 0 for each i ∈ {1, 2, . . . , N}, for some w0.
Moreover, provided that σ(S) ⊂ jR, the controllers which
solve the regulation problem are

ui = −Ki(yi − Cwwi) + Γiwi (15)

where Ki > 0 and wi ∈ Rp are the exosystem states
that synchronize via communication channels. The latter are
described by

ẇ = (IN ⊗ S)w − (IN ⊗B)(D ⊗ Ip)z
z = (DT ⊗ Ip)(IN ⊗ Cw)w,

(16)

where D is the incidence matrix associated to the graph,
the pair (Cw, S) is detectable, the triple (S,B,Cw) satisfies

Assumption 3 and Πi,Γi are matrices which solve the
regulator equations

FiΠi +GiΓi = ΠiS
HiΠi = Cw.

(17)

The controllers (15)–(16) are a modified form of the ones
in [16, Eq. (10)] where in the latter, the local controller
communicates the entire exosystem state wi to its connecting
nodes and the local controller uses both state-feedback and
state-observer.

Proposition 2 The controllers (15)–(16) solve the output
synchronization problem for the N heterogenous passive
systems as given in (14).

In the following, we show that the above result can be
extended to the case of nonlinear incrementally passive
systems.
Consider N heterogenous nonlinear systems connected over
an undirected and connected graph G = (V,E) where each
system Σi, with i = 1, 2, . . . , N , is described as in (4) and Σi

is incrementally passive, i.e., there exists a regular function
Si : Rm × Rm → R+ such that (5) holds. Suppose that for
every i = 1, . . . N , there exists an exosystem Wi as in (1),
with state variable wi and maps s, l and c such that (2) holds.
Suppose also that there exist functions πi(wi), αi(wi) such
that

∂πi(wi)

∂wi
s(wi) = fi(πi(wi)) + gi(πi(wi))αi(wi) (18)

gi(πi(wi)) =
∂πi(wi)

∂wi
l(wi) (19)

hold for all wi ∈ Rn. Finally, let the output maps agree in
such a way that, for i 6= j,

hi(πi(wi)) = hj(πj(wi)) (20)

holds for all wi ∈ Rn. The following result describes the
controllers under which output synchronization is achieved:

Proposition 3 Let Assumptions 1 and 2 and (18)-(20) hold.
Then the response of the interconnected system (1), (4) with
the controllers

vi =
∑M

k=1 dikzk
ui = αi(wi) + vi −Ki

(
yi − hi(πi(wi))

) (21)

where Ki > 0, the local exosystem state wi satisfies (1), and
z = (DT ⊗Ip)r as in (3) with r = [rT1 . . . r

T
N ]T , is such that

limt→+∞ ||yi(t)−yj(t)|| = 0 for each i 6= j. More precisely,
limt→+∞ ||yi(t)−h0(w0(t))|| = 0 for each i = 1, 2, . . . , N ,
where h0 = hi ◦ πi and w0 is the solution of ẇ0 = s(w0),
w(0) = ω0 ∈ Rn.

Proof: Denoting ξ̄i = πi(wi), we can observe that

˙̄ξi = fi(ξ̄i) + gi(ξ̄i)αi(wi) +
∂πi(wi)

∂wi
l(wi)vi

= fi(ξ̄i) + gi(ξ̄i)(αi(wi)− vi), (22)

where we have used (19) in the last equation.
Using Si and (22), it can be computed that Ṡi(ξi, ξ̄i) ≤
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〈hi(ξi)− hi(ξ̄i), ui − αi(wi)− vi〉.
Thus, by assigning ui = αi(wi) + vi −Ki

(
hi(ξi)− hi(ξ̄i)

)
,

we arrive at Ṡi(ξi, ξ̄i) ≤ −Ki‖hi(ξi)− hi(ξ̄i)‖2. Finally, by
defining V (w, ξ) =

∑
i Vi(wi) +

∑
i Si(ξi, πi(wi)), using

the above inequality and following the same argument in the
proof of Proposition 1 on the derivative of

∑
i Vi, we obtain

that

V̇ ≤ −
∑
i

Ki

(
‖hi(ξi)− hi(πi(wi))‖2

)
− λ2‖(Π⊗ Ip)r‖2.

Since the trajectories of w are bounded according to
Proposition 1 and using the regularity of Si, this inequality
implies that the state trajectories ξ are also bounded and
remain in a compact set.
Moreover, by the LaSalle invariance principle, the
state trajectory (w, ξ) converges to the ω-limit set
Ω(w(0), ξ(0)) where both λ2‖(Π ⊗ Ip)r‖2 and∑

i

(
‖hi(ξi)− hi(πi(wi))‖2

)
are equal to zero. Similar to

the arguments in the proof of Proposition 1, the trajectory
of w in the ω-limit set can be described by 1N ⊗w0 where
w0 is the solution to ẇ0 = s(w0), w0(0) = ω0. Since the
output maps agree with each other on the ω-limit set, i.e.,
hi ◦ πi = hj ◦ πj , i 6= j, then the synchronization of wi

implies that the outputs of the heterogeneous nonlinear
system also synchronize.

We note that (18) and (20) are the nonlinear counterparts
of the regulator equations in (17). On the other hand, (19) is
a new condition on the exosystem that facilitates the control
design. In this case, the function l has to be designed such
that (19) holds. Another consequence of (19) is that the
dimension of the input vi is the same as that of ui. In the
case of linear systems (19) becomes GiΠi = ΠiB, which has
to be added to (17). The corresponding control law which
solves the output synchronization for (14) is

ui = −Ki

(
yi −HiΠiwi)

)
+ Γiwi +

∑M
k=1 dikzk

= −Ki

(
yi − Cwwi)

)
+ Γiwi +

∑M
k=1 dikzk,

(c.f., the control law in (15)).

IV. FORMATION CONTROL VIA INTERNAL MODEL

Let us consider again the systems Σi, i = 1, . . . N as in
(4) with hi(ξi) = ξi and let xi(t) :=

∫ t

0
yi(τ)dτ + xi(0). In

this case, each system i can be described by

Si :

ẋi = ξi
ξ̇i = fi(ξi) + gi(ξi)ui
yi = ξi.

We assume that the reference velocity ρ ∈ Rp is generated
by the exosystem

ẇ1 = s(w1), ρ = c(w1), (23)

located at system S1 where s is continuous, w1(0) ∈ W and
W is a bounded forward invariant set for (23). We define
the tracking error as e1 = ξ1 − ρ. The reference signal ρ is
only accessible by system S1. The other systems generate an
estimate ri of the reference signal via the equations (1)

Wi :
ẇi = s(wi) + l(wi)vi
ri = c(wi).

(24)

For i 6= 1, we let ei = ξi − ri. We take the error signals as
the new outputs of the system Si

S̃i :

ẋi = ξi
ξ̇i = fi(ξi) + gi(ξi)ui

ei =

{
ξ1 − ρ i = 1
ξi − ri i 6= 1.

(25)

We assume that the regulator equations hold, namely, given
vi and the corresponding response ri of (24), for i =
2, . . . , N , and given ρ, there exist functions ξ̄i, ūi such that

˙̄ξi = fi(ξ̄i) + gi(ξ̄i)ūi

0 =

{
ξ̄1 − ρ i = 1
ξ̄i − ri i 6= 1.

(26)

Suppose that there exist maps πi(wi) and αi(wi) such that

∂πi(wi)

∂wi
s(wi) =fi(πi(wi)) + gi(πi(wi))αi(wi)

0 =πi(wi)− c(wi)

 (27)

and, for i 6= 1,

gi(πi(wi)) =
∂πi(wi)

∂wi
(−l(wi)). (28)

Moreover, let gi(πi(wi)) be full column-rank for all wi.
Given the input vi, define ξ̄i = πi(wi), with wi the solution
to (24), for i 6= 1, and to (23) for i = 1. Then, ξ̄i = π(wi)
satisfies (26) with ūi = αi(wi) − vi if i 6= 1 and ū1 =
α1(w1).
For each system S̃i, i = 1, 2, . . . , N , we assume that a
slightly stronger property than (5) holds:

Assumption 4 There exists a regular storage function Si :
Rmi × Rmi → R+ such that

∂Si(ξi, ξ
′
i)

∂ξi
(fi(ξi) + gi(ξi)ui) +

∂Si(ξi, ξ
′
i)

∂ξ′i
(fi(ξ

′
i)+

gi(ξ
′
i)u
′
i) ≤ −Wi(ξi − ξ′i) + 〈ei − e′i, ui − u′i〉, (29)

where Wi is a positive definite function.

Inequality (29) defines incremental output strict-passivity of
Si from the input ui to the output ξi. Furthermore, for i =
2, . . . , N , we assume the family of internal models (1) to be
incrementally passive. Namely, we suppose that:

Assumption 5 There exists a regular function Hi : Rn ×
Rn → R+ such that for all (wi, w

′
i) ∈ Rn × Rn

∂Hi(wi, w
′
i)

∂wi

(
s(wi) + l(wi)vi

)
+
∂Hi(wi, w

′
i)

∂w′i

(
s(w′i)+

l(w′i)v
′
i

)
≤ 〈c(wi)− c(w′i), vi − v′i〉 (30)

By the incremental passivity property in (29), given ui, vi
and the solutions ξi, ξ̄i to (25) and (26), respectively, it
follows that

∂Si(ξi, ξ̄i)

∂ξi
(fi(ξi) + gi(ξi)ui) +

∂Si(ξi, ξ̄i)

∂ξ̄i

(
fi(ξ̄i)+

gi(ξ̄i)ūi
)
≤ −Wi(ξi − ξ̄i) + eTi (ui − ūi).
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By (30) with w′i = w1 and v′i = 0, it holds true that for
i 6= 1

∂Hi(wi, w1)

∂wi
(s(wi) + l(wi)vi) +

∂Hi(wi, w1)

∂w1
s(w1)

≤ (ri − ρ)T vi.
(31)

Set ρ̃ := r−1Nρ, where r = (ρ r2 . . . rN ) and H(w,w1) =∑N
i=2Hi(wi, w1). Observe that ρ̃1 = 0. Then Ḣ(w,w1) ≤

ρ̃T v. Recall from (6) that the relative position measurement
between connected systems is given by ζ = (DT ⊗ Ip)x.
The variable ζ satisfies ζ = (DT ⊗ Ip)(e + ρ̃). Hence the
function V (ζ) = 1

2ζ
T ζ fulfills the equality

V̇ (ζ) = ζT (DT ⊗ Ip)(e+ ρ̃).

Let S(ξ, ξ̄) :=
∑N

i=1 Si(ξi, ξ̄i). Then Ṡ =
∑

i Ṡi(ξi, ξ̄i) ≤∑
i[−Wi(ξi − ξ̄i) + eTi (ui − ūi)] = −

∑
iWi(ξi − ξ̄i) +∑

i e
T
i (ui − ūi) = −W (ξ − ξ̄) + eT (u− ū).

The function T (ζ, w,w1, ξ, ξ̄) = V (ζ)+H(w,w1)+S(ξ, ξ̄)
satisfies

Ṫ (ζ, w,w1, ξ, ξ̄) = ζT (DT ⊗ Ip)(e+ ρ̃) + ρ̃T v
−W (ξ − ξ̄) + eT (u− ū).

The choice
vi = −(Di ⊗ Ip)ζ, i = 2, . . . , N
u = ū− (D ⊗ Ip)ζ

with Di the row i of the incidence matrix D, gives Ṫ =
−W (ξ − ξ̄). Observe that by construction

ui =

{
α1(w1)− (D1 ⊗ Ip)ζ if i = 1
αi(wi) if i 6= 1.

(32)

By the regularity of T and the boundedness of w1, (ξ, ξ̄),
(w, w̄) are defined for all t ≥ 0, and then one concludes
that the solutions of the system converge to the largest
invariant set where ξ − ξ̄ = 0. On such invariant set,
0 = g(ξ̄)(u − ū), where g = block.diag(g1, . . . , gN ).
Since gi(ξ̄i) = gi(πi(wi)) is full-column rank for all i, one
concludes that u = ū and therefore (D⊗Ip)ζ = 0. The latter,
along with ζ = (DT⊗Ip)x, implies that ζ = 0. Hence, ζ̇ = 0
and this implies that (DT ⊗ Ip)ρ̃ = 0. Multiplying the latter
on the left by D⊗ Ip shows that ρ̃ must have all the entries
equal. As ρ̃1 = 0, this proves that ρ̃ = 0.
We can summarize the above as follows:

Proposition 4 Consider the systems (25) satisfying Assump-
tion 4 and assume that the reference velocity ρ is generated
by the exosystem (23). Consider also the internal models
(24), with i 6= 1, satisfying Assumption 5. Suppose the
regulator equations (27), (28) are satisfied, with gi(πi(wi))
full-column rank for all i. Let vi in (24) be given by vi =
−(Di⊗Ip)ζ, for i 6= 1 and u in (25) be defined by (32) where
α(w) is as in (27). Then the solution (ξ, ξ̄), (w,w1) of the
closed-loop system is defined for all t ≥ 0 and converges
asymptotically to the set where ξ = ξ̄, ζ = 0 and r = 1Nρ.

Remark 3 Observe that ξ = ξ̄ is equivalent to state that
ẋi = ri = ρ, i.e. all the systems of the network have the

same velocity ρ. It is immediate to check that ζ = 0 implies
that the position variable x for all the systems which are
connected via a link takes on the same value. By connectivity
of the graph this implies that the position variables of all the
systems in the network have the same value.

Remark 4 The controller for the system S1 is

ẇ1 = s(w1)
u1 = α1(w1)− (D1 ⊗ Ip)ζ

whereas the controller for system Si, i 6= 1, is

ẇi = s(wi)− l(wi)(Di ⊗ Ip)ζ
ui = αi(wi)

V. CONCLUSIONS

We have discussed the role of the internal model principle
and of the passivity property in the design of distributed con-
trol laws for nonlinear output synchronization and formation
control problems for networked nonlinear systems.
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synchronization in networks of cyclic biochemical oscillators. In
Proceedings of the American Control Conference, pages 3973–3978,
2007.

[14] E. Steur and H. Nijmeijer. Synchronization in networks of diffusively
time-delay coupled (semi-)passive systems. IEEE Transactions on
Circuits and Systems I: Regular Papers, 58(6):1358–1371, 2011.

[15] A.J. van der Schaft. L2-Gain and Passivity Techniques in Nonlinear
Control. Springer-Verlag, London, 2000.

[16] P. Wieland, R. Sepulchre, and F. Allgöwer. An internal model
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