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Chapter  1

1 General introduction

Growing old is not just the passive effect of the passage of time, but it is an active 
adaptive process in which there is an interplay between increased experience and 
knowledge and the physical declines that are associated with aging. Aging equals change. 
While some cognitive abilities decrease with age, others improve or are not affected by 
aging. On the bright side, older adults often experience higher affective well-being and are 
more skilled at emotion regulation than their younger counterparts (Carstensen & Mikels, 
2005; Scheibe & Carstensen, 2010). Moreover, increased life experience is associated 
with improved and more flexible problem solving in daily life (Blanchard-Fields, 2007) 
as well as improved reasoning about social conflicts due to the ability to take another’s 
perspective, the ability to compromise and the ability to recognize the limits of one’s own 
knowledge (Grossmann et al., 2010). On the downside, aging is associated with a decline 
in a wide range of (complex) cognitive functions (for reviews see: Grady, 2012; Park & 
Reuter-Lorenz, 2009), such as selective attention and working memory. 

Due to an increasing life-span, more and more people reach old age. For this large 
group of older adults, preservation of cognitive functioning is very important. A 
decline in cognitive functioning is directly related to a decline in the experienced well-
being of older adults (Wilson et al., 2013). In addition, age-related declines in cognitive 
functioning can impose high socio-economic costs, related to early retirement and 
health care. An important goal of the studies described in this thesis was to identify the 
neural mechanisms that underlie age-related declines in cognitive functioning. One of 
the approaches we used was to consider individual differences. Age-related changes in 
cognitive functioning are highly variable between individuals. Some older adults are able 
to maintain high levels of cognitive functioning into old age, while others show a much 
more rapid decline. Even in very basic reaction time tasks, inter-individual variability is 
larger in old than in younger participants (Hultsch et al., 2002). By linking the individual 
differences in cognitive functioning to individual differences in underlying mechanisms, 
we can increase our understanding of the origins of the age-related decline in cognitive 
functioning. Identifying the brain mechanisms that enable some older adults to maintain 
high levels of cognitive performance, is a first step towards development of interventions 
that allow other older adults to improve cognitive functioning. Although aging equals 
change, affecting functioning in both positive and negative ways, in this thesis we focus 
on the mechanisms behind the age-related decline in different cognitive functions. 

1.1 Theories of cognitive aging

There has been ample research on the nature of the cognitive changes that accompany 
aging. Based on this research, a number of influential theories have been proposed about 
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cognitive aging. Salthouse (1996) posited that the cognitive decline associated with aging 
can be explained by a general reduction in processing speed. He suggested that when 
processing is slowed, especially the execution of complex cognitive processes, consisting 
of multiple processing stages, will decline. Salthouse demonstrated that slowing of 
information processing can indeed account for a large proportion of the age-related 
variance across a variety of cognitive tasks (Salthouse, 1991; Salthouse, 1996). However, 
general slowing cannot fully account for the age-related changes occurring in cognitive 
functions such as memory or cognitive control (Bugg et al., 2007; Park et al., 1996; Span 
et al., 2004). 

Other researchers have suggested that deficits in suppressing irrelevant information 
(inhibitory deficits) are the driving factor behind age-related changes in cognitive 
functioning. Hasher and Zacks (1988) proposed the inhibitory deficit theory, in which they 
pose that there is an age-related deficit in inhibitory functions (selective attention), that 
normally constrain the contents of working memory. As the ability to filter information 
declines, this also affects other processes besides working memory, such as response 
suppression and task switching. In another theoretical framework, it has been suggested 
that the reduced capacity of working memory itself is an important factor influencing 
age-related declines in other domains (Park et al., 2002; Park et al., 1996). The active 
manipulation of information in mind requires working memory capacity. Therefore, 
reduced working memory capacity can also indirectly affect other functions, such as 
decision making. 

These general theories of cognitive aging suggest that age-related declines in 
functioning are mainly due to decline in a single function. However, such a unitary 
mechanism of age-related decline is not very likely, considering that the rate of decline 
in different cognitive functions typically varies between people. For example, some 
older adults have excellent episodic memory function but impaired cognitive control 
functions, and vice versa (Glisky et al., 1995; Park et al., 1996). Therefore, the effects of 
aging on cognitive functioning should probably be perceived as a complex interplay 
of changes in multiple cognitive functions with varying rates. In addition, the effects of 
cognitive decline in some domains can be mitigated by the large amount of knowledge 
and experience that older adults have acquired over the life span (Park & Reuter-Lorenz, 
2009). 

1.2 Age-related changes in brain structure 

To understand the age-related changes in cognitive functioning, it is important 
to understand the neural mechanisms underlying these changes. The most obvious 
effect of aging is the widespread deterioration in the structural anatomy of the brain. 
Reduced white matter is generally observed in frontal areas of the aging brain, whereas 



10

Chapter  1

gray matter reductions are mainly found in frontal and parietal cortices, as well as in the 
insula and hippocampus (Good et al., 2001; Gunning-Dixon et al., 2009; Madden et al., 
2009; Raz et al., 2005; Resnick et al., 2003). These structural changes have been related 
to age-related decline in cognitive function. In a study by Persson and colleagues (2006) 
for example, a decline in episodic memory was related to both a decline in hippocampal 
gray matter volume and a decrease in fractional anisotropy, a measure of white matter 
integrity, in the anterior corpus callosum. Decreased fractional anisotropy in anterior 
tracts has also been related to poorer performance in cognitive control tasks, while lower 
fractional anisotropy in posterior tracts was associated with decreased visual memory 
(Davis et al., 2009). Although the structural integrity of the brain is crucial for cognitive 
functioning, the number of studies that have established direct links between cognition 
and structural changes in the aging brain is limited (see review, Tisserand & Jolles, 2003) 
and inconsistent results have been reported (e.g. Salami et al., 2012). Therefore, it is not 
enough to understand the effect of aging on brain structure. To find a more direct link 
between age-related effects on brain and behavior, brain function needs to be studied 
as well. 

1.3 Age-related changes in brain function 

Age-related changes in brain function can be studied by examining differences in 
brain activity between older and younger adults in different conditions. While performing 
the same cognitive task, older adults tend to show increased (bilateral) activation in 
comparison to younger participants, mainly in frontal brain regions (e.g. Cabeza et al., 
1997; Cabeza, 2002; Gutchess et al., 2005; Madden et al., 1999; Reuter-Lorenz et al., 2000; 
Vallesi et al., 2011). In addition, activation in more posterior brain regions is often declined 
in older compared to younger participants (Davis et al., 2008). Although this pattern of 
findings is rather reliable, it has provoked extensive discussion in the literature. 

In addition to the different theories on cognitive aging, describe above, three different 
theoretical frameworks have been put forward to explain the age-related increases in 
brain activation (Grady, 2012). The dedifferentiation theory suggests that the enhanced 
activation of brain areas in older adults might be due to a decrease in functional distinction 
between brain areas (Baltes & Lindenberger, 1997; Carp et al., 2011a; Dennis & Cabeza, 
2011; Park et al., 2004). For example, distinct categories of visual stimuli activate areas in 
the visual cortex of older adults less selectively than in young (Park et al., 2004). A related 
framework explains age-related effects in terms of less efficient use of neural resources. 
This theory suggests that increased activation in older adults signals that they are no 
longer able to selectively engage brain regions that are required for task performance 
(Morcom et al., 2007; Rypma et al., 2007; Stevens et al., 2008). This supposedly happens 
because older adults are unable to resolve the competition among brain regions that 
could potentially be useful for task performance (Logan et al., 2002). It is important to 
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note that both of these frameworks portray aging as a process of passive decline. In 
contrast, the compensation theory emphasizes flexibility of the aging brain. This theory 
suggests that increases in task related activation in older adults reflect engagement of 
additional brain areas to maintain task performance at an adequate level despite impaired 
function elsewhere in the brain (Cabeza, 2002; Davis et al., 2008; Park & Reuter-Lorenz, 
2009). Research in which higher levels of activation have been found to be associated 
with increased levels of performance have generally been interpreted as evidence for 
compensation whereas negative associations of brain activation with performance have 
been attributed to dedifferentiation or to less efficient use of neural resources. Because 
there is substantial evidence supporting each of these alternative theoretical frameworks, 
most researchers now take the perspective that all three mechanisms (dedifferentiation, 
less efficient use of neural resources and compensation) may play a role in aging and that 
they are not mutually exclusive.

1.4 Selective attention in the brain

In this thesis, our goal was to extend knowledge on the way in which brain function 
and behaviour are linked in older adults. To this end, we studied one of the core cognitive 
functions that is required for adequate functioning in daily life, and that is found to 
be particularly affected by aging; selective attention. Selective attention enables the 
selection of relevant information from the environment, while ignoring irrelevant 
information. Most of the time, we do not realize that large amounts of information are 
coming in through our senses. It has been estimated that the human retina can send 
around 10 million bits of information to the brain every second (Koch et al., 2006). We 
do not experience an information overload, because our brain very efficiently filters out 
only the information that is relevant to us at any given moment. However, this ability 
to selectively attend to relevant information declines with aging, and may affect the 
ability of older adults to function efficiently in various situations. For example, when 
you are talking to a friend on the phone, the background noise of a television can be 
very distracting. In a more dangerous situation, such as driving a car in crowded traffic, 
being distracted by a billboard on the side of the road can have grave consequences for 
both the driver and other people on the road. In addition to these direct effects, reduced 
selective attention indirectly affects other cognitive functions such as memory and 
decision making (Gazzaley et al., 2005a; Hasher & Zacks, 1988). 

It has been found that there are two separate mechanisms that underlie selective 
attention; suppression of irrelevant information and enhancement of relevant information 
(Gazzaley et al., 2005a; Hillyard et al., 1998). Two brain areas have been suggested to play 
an important role in both suppression and enhancement of information; the frontal eye 
fields (FEF) and the superior parietal lobule (SPL). These brain areas influence the baseline 
firing rates of neurons and neural synchronization in the sensory cortices (Corbetta & 
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Shulman, 2002; Desimone & Duncan, 1995; Kastner & Ungerleider, 2000; Reynolds & 
Chelazzi, 2004). This leads to an increase in the neural responsiveness in the sensory 
cortices when a stimulus is attended. As a result, people are able to detect a stimulus 
better and faster when it is presented at an attended location or when it contains other 
attended features whereas unattended stimuli. For unattended stimuli the opposite 
pattern emerges; neural responsiveness is reduced leading to decreased stimulus 
detection. 

There are strong indications that these two selective attention mechanisms are affected 
differentially by age. Suppression of irrelevant information declines with age, while 
enhancement of relevant information remains intact (de Fockert et al., 2009; Gazzaley et 
al., 2005a; Gazzaley et al., 2008; Haring et al., 2013; Mager et al., 2007). This dissociation is 
nicely illustrated in a study by Gazzaley and colleagues (2005a). In this study, older and 
younger participants performed a working memory task in which they were presented 
with relevant (to be remembered) and irrelevant images. Additionally, there was a passive 
view condition, in which participants were instructed to view the pictures without 
attempting to remember them. In both age groups, brain activation was found to be 
increased for relevant images compared to passive view, while only younger participants 
showed reduced activation for irrelevant images compared to the passive view condition. 
It should be noted that the effects of aging on the enhancement of relevant information 
is still a topic of debate, as other studies have shown a deficit in older adults in the 
enhancement of relevant information when it is accompanied by distractor stimuli (Chee 
et al., 2006; Quigley et al., 2010; Schmitz et al., 2010). Currently, only little is known about 
the mechanisms that underlie this age-related decline in selective attention. One of the 
goals of this thesis (see chapters 5-7) was to gain knowledge about these mechanisms, 
specifically by focusing on the neural underpinnings of individual differences in selective 
attention in young and older adults. 

When studying the brain mechanisms underlying individual differences in selective 
attention, the integration of information (connectivity) between distant brain areas 
should be studied in addition to activation in individual brain areas. Selective attention is 
implemented by connectivity from the FEF and SPL to the sensory cortices. In addition, the 
SPL and FEF need to work together to achieve a common goal, which also requires extensive 
integration of information. Chica and colleagues (2013), for example, demonstrated that 
the integration of information between the FEF and SPL is indeed an important aspect 
of selective attention. They showed that increased connectivity between these areas was 
associated with improved detection of target stimuli at attended locations. Together, the 
bilateral FEF and SPL have been referred to as the dorsal attention network (DAN, Fox et 
al., 2005; Toro et al., 2008). In this thesis we especially focused on the relation between 
connectivity and selective attention and how this is modulated by age. 
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1.5 Age-related changes in functional connectivity

Functional connectivity, that is the association between activity in different brain 
regions, is not only important for selective attention but also for effective cognitive 
functioning in general (Biswal et al., 2010; Kelly et al., 2008; Spreng & Schacter, 2011; Wen 
et al., 2012). Therefore, it is likely that changes in connectivity are an important factor in 
age-related changes in cognitive functioning. There are indeed strong indications that 
functional connectivity is affected by aging (Andrews-Hanna et al., 2007; Damoiseaux et 
al., 2008). One specific functional network, the default mode network (DMN) has received 
a lot of attention in the aging literature. The DMN is a network of brain areas that is 
more active while participants are not engaging in a specific task (i.e. in a resting state) 
than during task performance (Buckner et al., 2008; Greicius et al., 2003; Raichle et al., 
2001). One consistent finding, in both task and resting state studies, is that connectivity 
within the DMN significantly decreases with advancing age (Andrews-Hanna et al., 2007; 
Damoiseaux et al., 2008; Grady et al., 2010; Sambataro et al., 2010). Highly relevant is that 
older adults with a larger decrease in connectivity within the DMN, tend to perform worse 
in processing speed and working memory tasks (Andrews-Hanna et al., 2007; Sambataro 
et al., 2010). 

There are indications that age-related changes in functional connectivity are not limited 
to the DMN. The fronto-parietal control network (FPCN) is a network that is involved in 
cognitive control and maintenance of task goals or task sets in working memory (Braver 
et al., 2009; Spreng et al., 2013; Spreng et al., 2010; Vincent et al., 2008). Rieckmann and 
colleagues (2011) showed that connectivity within the FPCN was reduced in older adults 
during a working memory task. Moreover, connectivity was found to be reduced with 
aging in the DAN and the motor network, as well (Andrews-Hanna et al., 2007; Wu et al., 
2007). 

 The studies mentioned above have demonstrated the importance of studying the 
role of connectivity changes in cognitive aging. However, these studies examined only 
a small part of the age-related changes in functional connectivity; examinations were 
limited to pre-specified networks. Moreover, most studies so far, were constrained to 
connectivity within networks, while connectivity between different functional networks 
has received hardly any attention. Efficient functioning requires integration of information 
within and between different functional networks. Therefore, another important goal of 
this thesis (chapters 2-4) was to study the functional changes in the aging brain in a more 
comprehensive fashion, by examining not only connectivity within different functional 
brain networks, but also between functional networks.
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1.6 Methods to study age-related effects on brain function

To study neural mechanisms underlying the effects of aging on selective attention as 
well as effects of aging on functional connectivity we have used electroencephalography 
(EEG) and functional magnetic resonance imaging (fMRI). EEG is the recording of electrical 
activity from the scalp. EEG measures voltage fluctuations resulting from ionic current 
flows within large assemblies of neurons in the brain. A unique feature of EEG is that 
fluctuations in brain activity can be measured at the millisecond scale. This high temporal 
resolution enables specification of the stages of stimulus processing in which age-
related differences might occur. However, because the EEG signal reflects the summed 
contribution from many different sources in the brain, the spatial resolution of EEG is 
low. The EEG signal is generally subdivided into three categories of constituting signals 
(Tallon-Baudry & Bertrand, 1999). The spontaneous background activity is always present 
and unrelated to the experimental condition. Induced activity is activity that is elicited by 
the experimental condition, however it is not phase locked to the onset of the stimulus. 
In contrast, evoked activity is activity that is precisely phase locked to the onset of the 
stimulus. 

Traditionally, studies have focused on evoked activity in the EEG signal. By stimulus- or 
response-locked averaging over different occurrences of a stimulus, an average pattern 
of evoked activity can be obtained. This is called an evoked or event related potential 
(ERP, Luck & Ford, 1998). The ERP consist of different peaks, or components, which are 
typically related to specific stages of processing or functions. This important characteristic 
of the ERP was utilized in chapter 5 in this thesis, where we investigated in which stage of 
processing age-related impairment in suppression of irrelevant information arises.

Recently, the interest of many researchers has shifted to the oscillatory changes that 
reflect induced activity. One reason is that researchers have realized that oscillatory 
changes are an important mechanism for inter-neuronal communication and for the 
binding of information that is processed in distributed brain areas (Roach & Mathalon, 
2008). The tool that is most often used to study oscillatory changes in brain activity is 
time-frequency analysis. Time-frequency analyses can be used to examine stimulus 
induced changes in oscillatory power. This method was used in chapters 5 and 6 to assess 
how differences in oscillatory power, both before and after stimulus onset, are related 
to perception and attention. By investigating synchronous changes in the power or the 
phase of oscillatory activity at different electrode sites, it is possible to study connectivity. 
In chapter 5, we have used this method to study how integration of information in different 
brain areas is related to the ability to suppress the processing of irrelevant information in 
young and older adults. 

A tool that compliments the results obtained from EEG analysis in many ways is fMRI 
(Logothetis et al., 2001; Ogawa et al., 1990). Whereas EEG directly records the electrical 
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signal generated in the brain, fMRI is an indirect measure of brain activity. The fMRI 
technique uses a strong magnetic field to record the changes in the magnetic properties 
of the blood that are induced by changes in brain activity. More specifically, when a 
brain area becomes more active, there is a local increase in oxygen rich blood that is 
greater than the amount of oxygen that can be used by the brain tissue. This is called 
the hemodynamic response. This response results in a local increase of the proportion 
of oxygenated versus deoxygenated blood. The difference in magnetic properties of 
deoxygenated and oxygenated blood enables the detection of local increases in brain 
activity. The hemodynamic response develops slowly, over the course of 6 to 8 seconds. 
Therefore the temporal resolution of fMRI is limited to the range of seconds. The spatial 
resolution of fMRI depends on the strength of the magnetic field that is used. Using 
a scanner of 3 Tesla, which is a common field strength for neuroscientific studies, the 
resolution is in the order of a few millimeters. 

fMRI data has traditionally been analyzed by comparing brain activity between 
different task conditions. This has allowed researchers to disentangle the function of 
specific brain areas. In chapter 7, we have used this technique to find which brain areas 
are involved in perceiving and responding to target stimuli in younger and older adults. 
fMRI data can also be used to investigate connectivity between brain areas. To this end, 
different analysis methods are available that each have their unique advantages and 
disadvantages. These analysis methods complement each other in the information they 
can provide and therefore, we have used different methods in the different chapters 
of this thesis. Seed based connectivity (Biswal et al., 1995; Fox et al., 2005), uses one or 
more brain areas as seed regions and investigates how these brain areas are functionally 
connected to other parts of the brain (see chapters 2 and 7). Independent component 
analysis (van de Ven et al., 2004) instead uses a data-driven approach to identify a set of 
maximally independent functional networks in the brain (see chapter 4). Graph theory 
(Rubinov & Sporns, 2010) captures the properties of the entire connectivity pattern of a 
large set of brain regions in a relatively small number of complex network measures (see 
chapters 3 and 4). In the different chapters, we illustrated how these different methods 
all contribute to our understanding of the way brain areas communicate and how this is 
affected by aging. 

1.7 Outline of the chapters

The overall aim of the first part of this thesis was to increase the knowledge on the 
effects of aging on functional connectivity, within and between functional brain networks. 
Most aging studies thus far focused on functional connectivity in one or a limited 
number of pre-specified networks. With the study described in chapter 2, we aimed to 
investigate whether connectivity changes are restricted to specific functional networks 
and whether connections between functional networks are affected by aging, as well. 
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We used a combination of seed-based connectivity and cluster analyses to examine 
age-related connectivity changes within and between five different brain networks. The 
results showed that aging is associated with both decreases in specific within-network 
connectivity and increases in between-network connectivity. 

In chapter 3, these functional connectivity changes were analyzed in more detail. To 
this end we used graph theory, a method often used in the analysis of social networks, to 
provide more information about the effects of aging on the efficiency of communication 
within and between different networks. In addition, on account of the results in chapter 
2, we investigated to what extent separable functional networks could still be identified 
in older participants. We showed that efficiency of connectivity is decreased in older 
compared to younger participants and that functional networks become less separable 
in old age. 

Given these changes in the organization of functional networks described in chapters 
2 and 3, we examined in chapter 4 whether these functional connections are still flexible 
in older adults. Are older adults still able to adapt functional connectivity to the demands 
of the task at hand? In this study we combined Independent Component Analysis (ICA) 
and graph theory to answer this question. The results demonstrated that connectivity 
remains flexible in older adults. However, we observed clear differences in the factors that 
drive connectivity changes in old compared to young adults. 

The aim of the second part of this thesis was to study the neural mechanisms that 
underlie changes in selective attention in older adults. In chapter 5, we used combination 
of ERP and time-frequency analysis, thereby considering both power and connectivity 
measures, to get a more in-depth picture of the factors that were related to individual 
differences in suppression of irrelevant information. The results demonstrated a decline 
in suppression of irrelevant information in early perceptual stages of processing in 
a subgroup of older adults. The analysis of the pre-stimulus brain state showed that 
preparation, through top-down control prior to stimulus onset, is an important factor to 
limit the interference from irrelevant information. 

In chapter 6, we investigated the nature and the extent of these effects of pre-stimulus 
brain states on subsequent processing. Participants performed a task in which two 
stimuli were presented in rapid succession. These stimuli were sometimes perceived as 
one integrated percept and sometimes as two separate stimuli. Time-frequency analyses 
revealed that the brain state prior to stimulus was strongly related to how that stimulus 
was perceived. 

The study described in chapter 7 explicitly focused on why suppression of irrelevant 
information but not enhancement of relevant information is affected by aging. This 
dissociation is especially striking because top-down suppression and enhancement 
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are thought to originate from the same fronto-parietal network. In this study we used 
fMRI to investigate the responses to relevant target and salient irrelevant stimuli. Age-
related differences in the underlying selective attention mechanisms were studied using 
a combination of blood-oxygen level dependent (BOLD) activation and seed-based 
connectivity measures. The results demonstrated that older adults recruit additional 
brain areas during detection of target stimuli, whereas no additional brain areas were 
recruited when they suppressed the processing of irrelevant target stimuli. The additional 
recruitment during target detection was related to more accurate detection of target 
stimuli, suggesting that this reflects a compensation mechanism. 

In chapter 8, the different findings of the studies described in this thesis are integrated. 
In addition, critical considerations are presented along with perspectives for future 
research. 
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2 Functional connectivity in the aging brain during task 
performance

2.1 Abstract

The importance of studying connectivity in the aging brain is increasingly recognized. 
Recent studies have shown that connectivity within the default mode network is reduced 
with age and have demonstrated a clear relation of these changes with cognitive 
functioning. However, research on age related changes in other functional networks 
is sparse and mainly focused on pre-specified functional networks. Using functional 
magnetic resonance imaging, we investigated age related changes in functional 
connectivity during a visual oddball task in a range of functional networks. It was found 
that compared to young participants, elderly showed a decrease in connectivity between 
areas belonging to the same functional network. This was found in the default mode 
network and the somatomotor network. Moreover, in all identified networks, elderly 
showed increased connectivity between areas within these networks and areas belonging 
to different functional networks. Decreased connectivity within functional networks 
was related to poorer cognitive functioning in elderly. The results were interpreted as a 
decrease in the specificity of functional networks in older participants. 

2.2 Introduction

Recent research has shown that connectivity between brain areas is crucial for effective 
cognitive functioning (Biswal et al., 2010; Kelly et al., 2008; Spreng & Schacter, 2011; Wen 
et al., 2012). At the same time, it is becoming clear that aging affects connectivity in the 
brain on a large scale (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008). Therefore, 
changes in connectivity might be an important factor underlying the level of cognitive 
decline a person will experience with advancing age. Research on connectivity in the 
brain has identified a number of functional networks; groups of brain areas that show a 
strong correlation in their activation patterns (Sporns et al., 2004). Most research on age 
related changes in connectivity has focused on one of these networks; the default mode 
network (DMN).

The DMN is a network of brain areas that is more active while participants are not 
engaging in a specific task (i.e. in a resting state) than during task performance (Buckner 
et al., 2008; Greicius et al., 2003; Raichle et al., 2001). Brain areas belonging to the DMN are 
the precuneus, the medial prefrontal cortex, the superior frontal gyrus, the angular gyrus, 
the hippocampus and the middle temporal gyrus. Over a range of studies, during both task 
execution and resting state conditions, it has consistently been shown that connectivity 
within the DMN is significantly decreased with advancing age (Andrews-Hanna et al., 
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2007; Damoiseaux et al., 2008; Grady et al., 2010; Sambataro et al., 2010). Moreover, this 
decrease in connectivity within the DMN has been linked to a deterioration in performance 
on processing speed and working memory tasks in elderly (Andrews-Hanna et al., 2007, 
Sambataro et al., 2010). 

In addition, there is evidence, although less consistent, of age related changes in 
other networks. Fronto-parietal connectivity within both the dorsal attention network 
(DAN) and the frontoparietal control network (FPCN) was found to be reduced with aging 
(Andrews-Hanna et al., 2007; Rieckmann et al., 2011), whereas connectivity between 
frontal areas was increased (Rieckmann et al., 2011). These networks were argued to be 
involved in cognitive control (FPCN, Spreng et al., 2010; Vincent et al., 2008) and in overt 
and covert spatial attention and the creation of motor plans based on sensory inputs 
during task execution (DAN, Fox et al., 2005; Toro et al., 2008). Connectivity within the 
motor network was also found to be decreased during resting state (Wu et al., 2007).

Connectivity between networks also appears to be important for task performance. 
For example research has shown that the DMN and the dorsal attention network (DAN) 
generally tend to be anticorrelated; when activity in one network increases, activity in 
the other network decreases. This is in line with the function ascribed to these specific 
networks; while the DMN is less active during cognitive tasks, the DAN becomes more 
active during task execution (Fox et al., 2005). Two studies linked the anticorrelation 
between these networks to behavioral performance; participants with a stronger negative 
correlation, had less variable behavioral performance and performed better on a working 
memory task (Hampson et al., 2010; Kelly et al., 2008).

Although multiple functional networks have been discerned, most aging studies 
mainly focused on functional connectivity in one or a limited number of pre-specified 
networks. Instead, we were interested in the commonalities between connectivity changes 
in different networks; are the observed age-related changes in network connectivity 
characteristic for specific networks or is it possible to identify common patterns which are 
present in all or most of the networks? In addition, due to the focus on specific networks, 
most studies have looked at changes within this functional network, without taking into 
account connectivity between different networks. However, as previous studies have 
suggested (Park & Reuter-Lorenz, 2009; Rieckmann et al., 2011), the increase in neural 
activation that is often found with aging might be a sign of neural reorganization, which 
might affect the functional organization of networks identified mainly in young adults. 
Therefore looking at connectivity between networks is of crucial importance and will be 
the second focus of the present study. 

The age related changes that have been found so far, were observed during task 
execution, as well as, during resting state. In the current study, seed regions for the 
functional connectivity analysis were selected based on areas involved in task performance. 
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Participants performed a visual oddball task which included novel stimuli. For the current 
purpose this task has several advantages. First of all, task difficulty is low, so both older 
and younger participants are able to perform well and to reach accuracy levels at ceiling. 
Second, adequate task performance in the oddball task requires continuous attentional 
control. Third, performance of visual oddball tasks generally recruits widespread areas in 
the occipital, parietal and frontal lobes (Kiehl et al., 2005). This enables us to use a broad 
range of areas that are involved in task performance and, more importantly, that are 
related to different functional networks, as a starting point for functional connectivity 
analysis.

In sum, in the present study we used areas involved in task performance to identify 
a range of functional networks and compared connectivity within these networks 
between young and elderly participants. Based on previous studies we expected to find 
age related reductions in connectivity within functional networks, especially within the 
DMN. Moreover, we examined age-related changes in functional connectivity between 
networks. 

2.3 Methods

2.3.1 Participants

Twelve young participants (10 female, mean age 24.1, SD = 2.9) and 30 older participants 
(10 female, mean age 63.9, SD = 6.2) without a history of head injury or other neurological 
conditions participated in this study. All participants had normal or corrected to normal 
vision and a normal score (19 or 20) on the unabbreviated cognitive screening test for 
dementia (de Graaf & Deelman, 1991). Four of the elderly participants indicated that 
they used medication for high blood pressure, two elderly participants took medication 
against high cholesterol and one elderly participant took medication for diabetes. The 
study protocol was approved by the medical ethical committee of the University Medical 
Center Groningen and all participants gave written informed consent.

2.3.2 Task and Stimuli

Participants performed a visual oddball task. They were instructed to press a button 
with their right thumb when a target (letter ‘X’) appeared on the screen. No response was 
required when a standard (the letter ‘O’) or a novel (any of the other letters in the alphabet 
and digits 1-9) appeared on the screen. Three task versions were used. In the first version, 
only standard stimuli were presented; in the second version standard (probability 0.85) 
and target (probability 0.15) stimuli were presented and in the third version, standard 
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(probability 0.70), target (probability 0.15) and novel (probability 0.15) stimuli were 
presented. Each novel stimulus did not occur more than once per block. Three blocks of 
each task version were presented in a balanced random order, with the restriction that 
the task versions of consecutive blocks were dissimilar. Alternation of different task blocks 
was used to motivate participants to keep attention focused on the task. Participants 
were asked to fixate on the fixation cross during task performance and rest periods and 
to react as fast and accurately as possible. 

Stimuli were generated on a Personal Computer using E-prime (Psychology Software 
Tools Inc., Pittsburgh, USA). They were presented on a screen positioned at the head 
end of the MRI scanner, which participants saw via a mirror attached to the head coil. 
Stimuli were presented in white, on a black background with a vertical visual angle of 
approximately 2 degrees, and a horizontal visual angle between 0.5 and 2 degrees, varying 
for the different symbols. Stimulus duration was 150 ms and inter-stimulus interval varied 
randomly between 1050 and 1450 ms (mean 1250 ms), resulting in approximately 128 
stimuli per task block of three minutes. Task blocks were alternated with rest periods of 
45 seconds.

2.3.3 Behavioral data 

In addition to the fMRI experiment, all older participants completed a series of 
neuropsychological tests on a previous day. These tasks related to visual–motor 
sequencing (Trail making test A and B Reitan, 1958; Tombaugh, 2004), executive 
functioning (Stroop interference test,Stroop, 1935; Rule shift test, Behavioral Assesment 
of the Dysexecutive Syndrome,Wilson et al., 1996), working memory and incidental recall 
(forward and backward digit span, Wechsler Adult Intelligence Scale–Revised, Wechsler, 
1981) and verbal learning (Dutch version of the Rey Auditory Verbal Learning Test,Lezak 
et al., 2004).

Data of one younger and one older participant, were excluded from the analysis 
because they did not comply with the task instructions. For four participants data of 
only two of the three task blocks were included in the analysis. For one participant, this 
was due to technical problems during data acquisition, the other three participants did 
not comply with the task instructions in one of the blocks. For each participant median 
reaction times (RTmed) were calculated only for correct trials. Trials with RTs faster than 
150 ms were regarded as fast guesses and were removed from the data. Differences 
between groups were assessed using the Mann-Whitney-U test, because the data were 
not normally distributed. 
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2.3.4 Recordings

Functional images were acquired using a 3T Philips Intera MRI scanner (Best, the 
Netherlands), using a standard transmit/receive head coil. The following pulse sequence 
parameters were used: fast field echo (FFE) single shot echo planar imaging (EPI); 46 
slices; slice thickness 3.5 mm; no gap; field of view 224 mm; scanning matrix 64×64; 
transverse slice orientation; repetition time (TR) = 3 s; echo time (TE) = 35 ms; flip angle 
90°. In addition, T1-weighted 3D FFE anatomical images of the entire brain were obtained 
with the following pulse sequence parameters: field of view 256 mm; scanning matrix 
256×256; 120 slices; slice thickness 1 mm; transverse slice orientation; TE = 4.6 ms; TR =25 
ms; flip angle 30°. 

2.3.5 fMRI data analysis

Functional imaging data were analyzed using Statistical Parametric Mapping software 
(SPM8; http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab 7.1.0 (The MathWorks, 
Natick, Massachusetts). Functional images were corrected for motion artifacts, coregistered 
to the T1 image, normalized to the Montreal Neurological Institute (MNI ) standard template 
and smoothed with an 8-mm full-width at half-maximum (FWHM) Gaussian kernel. For 
the first-level statistical analysis of the fMRI data, the onsets of standard, target and novel 
trials were entered as separate regressors. Preliminary analysis of the data indicated that 
there were no differences in activation patterns between task versions, therefore stimuli 
were collapsed over task versions in order to optimize parameter estimation. Onsets of 
trials with incorrect responses were modeled as a separate regressor. Additionally, the 
realignment parameters and the first derivatives thereof were entered as covariates to 
correct for the effects related to head motion (Friston et al., 1996). No high-pass filter was 
applied because of the low-frequency cycling of conditions.

The task related regressors were convoluted with the canonical hemodynamic 
response function (HRF), the temporal derivative and the dispersion. When comparing 
BOLD signal changes in older and younger participants, changes in the timing and the 
shape of the HRF are a source of concern (Steffener et al., 2010). Therefore, we used an 
approach which combines the contribution of the three HRF terms by calculating the 
total area under the curve (see also Kokal et al., 2009). The area under the curve was 
calculated by reconstructing the fitted bold response for each of the stimulus categories, 
which were each subsequently integrated over time. This area under the curve value 
was fed into a factorial design in a second level analysis, containing a subject factor, the 
three stimulus categories, and the age groups (young and older participants). A family 
wise error correction (FWE) of 0.05 and a cluster extent of 20 voxels was used to identify 
regions in which there was a main effect of stimulus type. Interactions between stimulus 
type and participant group were investigated using an FWE cluster threshold of 0.05 
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(initial threshold p<0.001). Interpretation of results was restricted to gray matter areas. 

2.3.6 Functional connectivity analysis

The procedure for the functional connectivity analysis mostly followed the approach 
described by Van Dijk et al. (2010). Seed regions were defined by a 4 mm sphere around 
voxels displaying peak activation in the F-contrast examining main effect of stimulus 
type over all groups. These seed regions were used for all participants. Because of the 
larger number of older, compared to younger participants this approach could lead to 
a bias toward the older participants in the selection of seed regions. To control for this 
possibility, we created separate F-contrasts for the young and older groups. Our aim was 
to find out how many significant voxels in the original F-contrast could be explained by 
voxels in the F-contrast for the younger or the older group, respectively. Therefore, we 
lowered the F-threshold for both the older and the younger maps until together they 
explained 98% of the voxels in the original map (F>10). Following this procedure, 39 % 
of the significant voxels could be attributed to voxels in the F-map of young participants, 
44% to the F-map of older participants and 14% to both. This demonstrated that there is 
no bias in the selection of seed regions due to unequal group sizes. 

Maps of functional connectivity were obtained by regressing the first eigenvariate of the 
time course from the seed region (corrected for the effects of stimulus onset) against the 
time courses of all acquired voxels. To minimize the effects of noise caused by the cardiac- 
and respiratory cycles, scanner drifts, and motion, the following nuisance regressors were 
included in the first level model: the realignment parameters and the first derivative of 
the realignment parameters, average white matter- and cerebral spinal fluid (csf ) signals, 
and the mean whole brain signal. In addition stimulus onsets were included as nuisance 
regressors. White matter and csf voxels were defined using the apriori probability maps 
for various tissue types included in the SPM8 package. These were turned into binary 
maps by applying a threshold of 95% and 75% probability for white matter and csf, 
respectively. From these binary maps the average time courses for white matter and csf 
signals were extracted. Separate first level analyses were constructed for each of the seed 
regions. The regressors containing the first eigenvariate of the time course of the seed 
region were included in the second level models. All second level models included age 
group as independent variable. Main effects between groups were examined at a FWE 
cluster corrected threshold of 0.05 (initial threshold p<0.001). 

2.3.7 Clustering of functional connectivity maps

Cluster analysis was used to group seed regions according to the similarity of their 
functional networks. This enabled us to compare our results to functional networks 
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previously presented in the literature and thereby clarify the interpretation of age related 
differences. For each seed region, a t-map was constructed representing the functional 
connectivity of that region with all voxels in the brain averaged over all participants. To 
reduce the dimensionality of the data, the Euclidian distance (or L2 norm) between the 
t-maps of each seed was calculated. The resulting distance matrix was fed into a K-means 
cluster analysis with 5000 repetitions and random starting points. A solution with 6 
clusters was chosen based on the knee in the scree plot (Ding & He, 2004). Solutions with 
more clusters explained less than 5% additional variance. The clusters that were found 
were in accordance with functional networks as presented in the literature. In order to 
make one map on second level representing the functional connectivity within each 
resulting cluster, an additional functional connectivity analysis was performed on first 
level using the first eigenvariate extracted from the activation in the combined seed 
regions per cluster as the time course. For each cluster, a t-test was used to construct a 
functional connectivity map over groups. These maps were only used for comparing the 
functional networks to those in the literature; the assessment of group differences was 
done separately for each seed. To improve interpretability of the results and alignment 
with previous research, cluster membership of each seed is used in the presentation and 
discussion of the results. Membership as part of a functional network was determined for 
each area of which functional connectivity to the seed region changed depending on age 
group, through comparison with the cluster maps. 

2.3.8  Corrections for gray matter volume

Additional analyses were carried out to determine whether the observed differences 
in functional connectivity could have been influenced by underlying differences in gray 
matter density or registration error (Oakes et al., 2007). First, voxel based morphometry 
(VBM) was used to identify regional brain volume of gray matter for each of the 
participants (Ashburner & Friston, 2000). Structural T1 images for each participant were 
segmented into gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) 
using tissue probability maps provided by SPM8. Diffeomorphic Anatomical Registration 
using Exponentiated Lie algebra (DARTEL) was used to increase the accuracy of inter-
subject alignment (Ashburner, 2007). Images were then normalized and modulated by 
the Jacobian determinants derived from the normalization step in order to adjust for the 
resulting volume changes due to normalization. Modulated normalized images were 
smoothed with a 10-mm FWHM Gaussian kernel. For statistical analysis, the two groups 
were combined in a one-way ANOVA, with the total intracranial volume (TIV) as a covariate 
to correct for individual differences in brain volume. TIV was calculated by summing 
volumes of GM, WM, and CSF derived from non-normalized segmented images. Because 
TIV in the present study includes CSF, it represents total brain volume and does not reflect 
atrophy of either GM or WM. Differences between young and elderly participants were 
examined with a threshold of PFWE<0.05, and a cluster extent of 15 voxels. 
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Second, the fMRI data were reanalyzed using gray matter density information of each 
participant as a voxel-dependent covariate. This was done using the robust regression 
procedure which is less sensitive to the effects of outliers (Yang et al., 2011) as implemented 
in the biological parametric mapping toolbox (Casanova et al., 2007). Although this robust 
procedure reduces the effects of outliers, we also noticed that it increased the voxel to 
(neighboring) voxel variability in the resulting T-map. For each of the areas that originally 
showed an effect of age on functional connectivity, we identified the number of voxels 
within that area that remained significant (p<0.001) if gray matter density was taken into 
account. 

2.3.9 Connectivity and task performance

To evaluate the relation between changes in connectivity and cognitive functioning 
in the elderly group, the connectivity estimates were correlated with the performance 
on neuropsychological tests. Each score was converted into a z-score and reversed if 
required so that higher scores indicate better performance. The Spearman rank correlation 
coefficient was used instead of the Pearson correlation coefficient to cope with deviations 
from normality, linearity and to reduce effects of possible outliers. Because of the large 
number of multiple comparisons (9 test scores * 28 connectivity estimates), we used 
a Monte Carlo resampling procedures to evaluate whether the number of significant 
correlations we detected was higher than could be expected by chance. The scores of 
participants were randomly permuted, and correlations with connectivity estimates 
were recomputed. The number of significant (p<0.05) positive correlations was stored. 
This procedure was repeated 5000 times to generate a null distribution. When the actual 
number of significant results was in the 5% tail of this distribution, we concluded that 
the number of significant differences was larger than could be expected based on 
chance. This was done separately for areas where older participants compared to young 
participants showed a) decreased connectivity and b) increased connectivity to the 
seed region. A subsequent question was whether the number of significant correlations 
differed significantly between regions with increased connectivity and regions showing 
decreased connectivity with age. Therefore, the number of significant clusters was 
compared between these two types of areas using a similar procedure. 

2.4 Results 

2.4.1 Behavioral Results

Older participants showed a tendency to respond slower (O, RTmed=473, IQR=82) than 
younger participants, although this difference was not significant (Y, RTmed=427, IQR =34; 
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U(40)=215, Z=1.68, p=0.098). The proportion of misses and false alarms was below 0.01% 
in both groups.

2.4.2 Effects of task and age on fMRI activations

The first step in the analysis was to identify areas showing an effect of stimulus category 
(F-contrast); these areas were used in the functional connectivity analysis. Additionally, 
interactions between age group and stimulus category on brain activation were tested.

 

Over all groups, increased activation in target and novel trials compared to standard 
trials was observed in the right precentral gyrus (BA44), the left and right inferior parietal 
lobules, the right middle frontal gyrus, and the right and left fusiform gyri. The right 
cerebellum pars 7 and the right inferior orbitofrontal gyrus showed more activation in 
target than standard trials. In addition, in particular the left inferior frontal operculum, 
the left middle occipital and the right inferior occipital gyrus, were more active in novel 
than in standard trials (see table 2.1 and figure 2.1). Furthermore, we found a number 
of areas where activation was decreased in target compared to standard and novel 
trials. These areas included the left postcentral gyrus, the right precentral gyrus (BA4), 
the mid cingulum, the left rolandic operculum, the right superior parietal gyrus, the left 
precuneus and the left calcarine sulcus. The right middle orbitofrontal gyrus and the 
left anterior cingulate were specifically less active in target than standard trials. Young 
participants showed decreased activation in target compared to standard trials in the left 
postcentral gyrus, the middle cingulum, the right fusiform gyrus and the left and right 

Figure 2.1:  Areas showing a main effect of stimulus category are displayed (pFWE<0.05). The top 
row shows the lateral view and the bottom row shows the medial view of the brain. Activations 
are displayed on an inflated surface rendering of the human brain using the CARET program 
(Van Essen et al., 2001).



29

Functional connectivity in the aging brain during task performance

superior temporal gyri, while there was no significant difference between these stimulus 
categories in the older participants (age group*stimulus category, see supplementary 
table 2.1) . 

Table 2.1: MNI coordinates for areas that show a main effect of stimulus category

Area K F x y z Cluster Effect
L Precuneus (BA7) 228 23.68 -6 -56 34 DMN-p S>T, N>T
L Calcarine (BA30) 167 24.76 -6 -52 8 DMN-p S>T, N>T

R Middle Orbitofrontal (BA10) 85 23.45 10 46 -2 DMN-a S>T
L Anterior Cingulate (BA10) 63 26.10 -10 48 -2 DMN-a S>T

R Precentral3 (BA44) 26 18.12 40 4 32 FPCN N>S, N>T
R Precentral2 (BA44) 54 20.38 50 12 42 FPCN N>S, N>T

L Inferior Frontal Operculum (BA44) 45 23.88 -50 10 30 FPCN N>S, N>T
R Middle Frontal (BA45) 198 27.49 44 48 20 FPCN T>N, T>S
L Inferior Parietal (BA7) 726 33.06 -30 -54 46 FPCN N>T, T>S

R Inferior Parietal (BA40) 782 42.61 54 -42 48 FPCN T>N, N>S
R Superior Parietal (BA2) 60 20.78 18 -44 70 DAN-SMN S>T,N>T

L Rolandic Operculum (BA48) 25 22.44 -38 -20 18 DAN-SMN S>T,N>T
R Precentral (BA4) 456 34.82 46 -14 58 DAN-SMN S>T,N>T
L Postcentral (BA3) 1150 44.28 -34 -30 62 DAN-SMN S>T,N>T

L Mid Cingulum (BA23) 1184 53.57 -8 -22 46 DAN-SMN S>T,N>T
R Cerebellum 7 20 20.31 8 -72 -44 DAN-VAN T>N, T>S

L Middle Occipital (BA19) 72 25.23 -34 -84 14 DAN-VAN N>S, N>T
R Fusiform (BA19) 186 27.57 38 -70 -20 DAN-VAN N>S,T>S

R Inf Occipital (BA19) 67 31.12 34 -86 -8 DAN-VAN N>S, N>T
L Fusiform (BA37) 1705 44.74 -44 -62 -16 DAN-VAN N>T, T>S

R Inferior Orbitofrontal (BA38) 88 23.34 50 22 -6 COCN T>N, T>S

L=left, R=right, BA=Brodmann’s area, x,y,z=stereotactic coordinates, k=cluster extent, 
p=posterior, a=anterior, DMN=default mode network, VAN=visual attention network, 
FPCN=frontoparietal control network, DAN=dorsal attention network, SMN=somatomotor net-
work, COCN=cingulo-opercular control network, S=standards, T=targets, N=novels

2.4.3 Functional Connectivity

In the second part of the analysis, we used functional connectivity analyses to examine 
differences in functional networks between older and younger participants. Areas showing 
a main effect of stimulus category were used as seed regions in this analysis. To facilitate 
comparisons with functional networks in the literature, functional connectivity maps of 
all seed regions were clustered. Seeds in each cluster were taken together to generate 
one functional connectivity map for each cluster on second level. Cluster membership of 
seed regions is presented in table 2.1. Below we will discuss the networks identified.

Default mode network The functional connectivity maps of the first and second cluster 
that were identified, closely resembled the default mode network (DMN, see e.g. Raichle 
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et al., 2001). In the first cluster connectivity to posterior parts of the DMN was most 
pronounced while in the second cluster connectivity to anterior parts was predominant. In 
both DMN clusters, seed regions showed functional connectivity to a network consisting 
of the precuneus (bilateral), superior (medial) frontal gyri extending on the left side into 
the middle frontal gyrus, the angular gyri, the left and right hippocampus and the middle 
temporal gyri (see figure 2.2). 

Fronto-parietal control network The third cluster closely resembled the fronto-parietal 
control network (FPCN, Vincent et al., 2008). Areas belonging to this network were the 
right and left inferior parietal lobules, the right and left middle frontal gyri, the right and 
left inferior frontal operculum and inferior frontal triangular areas, the superior medial 
frontal gyrus, the supplementary motor area, and left and right caudate.

Dorsal attention network The networks of the fourth and fifth cluster contained 
areas involved in vision, attention and somatomotor processing which together closely 
resemble the DAN. The network of the fourth cluster contained the somatomotor parts 
of the DAN and closely resembles the previously identified somatomotor network (DAN-
SMN, Beckmann et al., 2005; Damoiseaux et al., 2006). Functional connectivity from these 
seeds was found to the right and left superior temporal gyri, the right and left pre and 
postcentral gyri, the left and right superior parietal lobules, the left and right posterior 
insula, the paracentral lobule, the supplementary motor area and the mid cingulum. 
Primary and secondary visual processing areas, as well as inferior and superior parietal 
areas were the main components of the fifth cluster, subsequently called DAN-visual 
attention network (DAN-VAN). Seeds in this cluster showed functional connectivity to the 
left and right middle and inferior occipital gyrus, the left and right calcarine and lingual 
gyrus, bilateral cerebellar areas 6 ,7 and vermis 7 and 8 and the bilateral inferior and 
superior parietal lobules. 

Cingulo-opercular control network Cluster 6 consisted of only one seed region, the 
right inferior orbitofrontal gyrus. The network of this seed region closely resembles the 
lateral parts of the cingulo-opercular control network (COCN, Dosenbach et al., 2007). 
Connectivity was found to the left and right inferior orbitofrontal gyri , the right and left 
inferior frontal opercula , the right and left superior temporal gyrus, the bilateral insula and 
the right middle temporal gyrus. Contrary to the findings of Dosenbach and colleagues, 
we did not observe any connectivity with the anterior cingulate.
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Figure 2.2: For each cluster the functional connectivity averaged over all participants, from the 
combined seed regions (using the first eigenvariate of all the seed voxels) to other voxels in the 
brain is displayed (PFWE<0.05). 
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2.4.4 Effects of age on functional connectivity

For each seed region separately, effects of age on functional connectivity were 
examined. For reasons of clarity, the observed effects are grouped according to cluster 
membership of the seed. 

The pattern that became clear from figure 2.3 and supplementary table 2.2 is that 
elderly show more connectivity to areas that do not belong to the functional network 
of the respective seed region than young participants. From seed regions in the DMN 
clusters, older participants showed more connectivity to areas belonging to the DAN-SMN 
(right and left rolandic operculi, supplementary motor area and anterior cingulate). From 
seeds in the FPCN elderly showed increased connectivity to areas belonging to the DMN, 
DAN-VAN and the DAN-SMN (precuneus, cuneus and middle cingulum, respectively). 
Seeds in the DAN-SMN showed increased connectivity to areas in the DMN and FPCN 
(precuneus, superior medial frontal gyrus and left inferior parietal lobule). The left middle 
occipital gyrus (DAN-VAN) seed showed increased connectivity to the left inferior parietal 
sulcus (FPCN). The COCN seed showed increased connectivity to the right insula (DAN-
SMN) and the right calcarine sulcus (DMN). An exception to this pattern were two seed 
regions in the DAN-SMN which showed increased connectivity to the middle cingulum 
(within the DAN-SMN).

 

Figure 2.3: Effects of age on functional connectivity left: areas where elderly show more function-
al connectivity to the seed region than young participants (color represents cluster membership 
of the seed) right: areas where elderly show less functional connectivity to the seed region than 
young participants (pFWE-cluster<0.05). Note that an area in a single color can indicate connectivity 
to one or multiple seeds within a cluster.
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In addition, elderly showed reduced connectivity to areas within the network of 
the seed region, especially for the DMN and the DAN-SMN (see figure 2.3). From DMN 
seeds, there was reduced connectivity to the precuneus and the angular gyrus. From 
seeds in the DAN-SMN we found reduced connectivity to the right insula, the left pre 
and postcentral gyri and the right rolandic operculum. From DAN-VAN seeds, reduced 
connectivity was found to the left fusiform gyrus. Exceptions to this pattern were (a) the 
reduced connectivity in elderly to the right superior temporal gyrus from two DAN-SMN 
seeds; this area was not within any of the functional networks identified in the current 
study, and (b) reduced connectivity in elderly from the right inferior occipital gyrus (DAN-
VAN) to the left superior frontal gyrus (DMN).

2.4.5 Correction for gray matter density

VBM analyses showed significant decreases in gray matter in the older group 
compared to young participants, most notably in the anterior cingulate, the middle 
cingulum and the medial superior frontal gyrus (see figure 2.4). Additionally, gray 
matter losses were identified in the left middle frontal gyrus and the left frontal inferior 
and rolandic operculum. To try and disentangle the connectivity changes from the age 
related changes in gray matter density, connectivity analyses were repeated, using gray 
matter density as a voxelwise covariate (Oakes et al., 2007). Within each area that initially 
showed a significant effect of age on connectivity with one of the seed regions, the 
number of voxels which stayed above threshold (p<0.001) after gray matter correction 
is reported in supplementary table 2.3. Although a general decrease in the number of 
above-threshold voxels was observed, we found for all but two of the areas, significant 
differences between the two age groups in functional connectivity between different 
brain areas. The proportion of remaining voxels tended to be larger for areas showing an 
age related increase in connectivity compared to areas showing an age related decrease 
in connectivity with the seed region. 

 

Figure 2.4: Areas showing decreased gray matter density in the elderly are displayed (pFWE<0.05). 
The top row shows the lateral view and the bottom row shows the medial view of the brain.
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2.4.6 Correlations between functional connectivity and neuropsychological test scores

All significant Spearman correlations between connectivity and neuropsychological 
test scores (NTs) are presented in supplementary table 2.2. In areas where older adults 
showed more connectivity than young adults, we observed 3 positive and 1 negative 
correlations between NTs and connectivity. That is, connectivity correlated positively 
with the digit span backwards (in two areas) and Stroop interference tests and negatively 
with the Rule shift task. Moreover, we found 8 positive correlations in areas where elderly 
showed less connectivity than young adults. Here, connectivity correlated positively with 
the Rule shift task (in three areas), the digit span forward and backward, the Rey Auditory 
Verbal Learning Task and part A of the Trail making test (in two areas).

The Monte Carlo resampling procedure was used to indicate whether the number of 
significant positive correlations between connectivity and NTs exceeded the amount 
expected by chance. This analysis revealed that connectivity correlated significantly with 
test scores for connections that were decreased in elderly compared to young participants. 
The number of correlations was not significant for the connections where elderly showed 
more connectivity than the young participants. In addition, we found that the difference 
between the number of significant correlations in the two types of areas was significantly 
larger than expected by chance. 

2.5 Discussion

Although the present study used methods which were different from previous 
studies, the functional networks that were identified closely matched the networks that 
have previously been identified in the literature (see figure 2.2). This was true for studies 
using apriori defined seeds in seed based regression analyses (Fox et al., 2005; Vincent 
et al., 2008; Voss et al., 2010), as well as studies using independent component analysis 
(Beckmann et al., 2005; Damoiseaux et al., 2006; Rosazza & Minati, 2011). The fact that 
we were able to find the same networks using a more exploratory seed based approach 
along with a clustering method is a strong indication of the robustness of the networks 
that were identified. 

Although seed based approaches usually identify the DAN as a single network (Fox et 
al., 2005; Vincent et al., 2008), we identified it in two subcomponents within this network. 
One component consisted of the somatomotor network, including the pre and postcentral 
gyri and the supplementary motor areas, while the other consisted of a visual attention 
network, including the occipital, calcarine and lingual gyri and the inferior and superior 
parietal lobules. These networks we identified closely resemble the identified networks 
in studies using independent component analyses (see for example figures 6b and 6d in 
Beckman et al, 2005). The reason for the discrepancy with other seed based correlation 
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studies might be related to specific task requirements; in our task the link between 
visual input, visual attention and response depended on the stimulus category. All three 
stimulus types provided the participants with visual input, while especially standard and 
novel stimuli captured attention and only target stimuli required a response. 

The approach adopted in the present study allowed us to identify a consistent 
pattern of differences between older and younger participants in connectivity within 
and between the different functional networks identified. In general, older participants 
showed positive correlations between seed regions and areas which were located outside 
the functional network of that seed region. Moreover, in the DMN and the DAN-SMN, 
connectivity to areas within the functional networks of the seed region was reduced in 
older participants. These results suggest a general decrease in the specificity of functional 
networks in elderly. 

Voss and colleagues (2010) found similar patterns of reductions in specificity of 
functional networks in elderly in the DMN, the FPCN and the DAN. They used a seed 
based approach with one apriori defined seed region for each of the networks. In their 
study, participants performed a series of passive viewing tasks. From the seed regions 
in all three networks, they found decreased connectivity in elderly to areas within the 
network and increased connectivity to areas outside the network. The similarity to our 
findings suggests that the pattern we identified was not specific to the visual oddball task 
that was used in the current study. Moreover, their results taken together with the current 
results, confirm that changes in connectivity in functional networks are not limited to 
specific networks but appear to be present in all networks identified. However, note that 
not all networks need to be affected to the same degree. At the moment it is not clear how 
differences between the tasks that participants perform affect the age related changes 
in connectivity that are detected. Therefore, it would be interesting to see whether these 
findings can be replicated resting state data or in more demanding cognitive tasks. 

One possible explanation for the observed changes in connectivity in older individuals 
compared to our group of younger adults might be the decline in gray matter that is 
generally observed with age. In our elderly group, we observed age related declines 
in gray matter density mainly in the anterior cingulate, the middle cingulum and the 
rolandic operculum. This is in line with the gray matter changes observed in previous 
studies (Good et al., 2001). The functional connectivity analysis using voxelwise gray 
matter density as a covariate, remained to show connectivity differences similar to the 
differences originally identified, except for two areas. The resulting number of significant 
voxels was larger for areas showing an age related increase in connectivity compared to 
areas showing an age related decrease in connectivity with the seed region. These results 
show that the observed age related connectivity changes cannot be fully explained by 
the changes in gray matter. 
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An important question concerns the mechanism underlying the observed reduction 
in specificity of network connectivity. Dedifferentiation theory suggests that areas in 
the older brain may become less functionally distinct (Baltes & Lindenberger, 1997). This 
idea has been supported by a range of studies. It was, for example, found that distinct 
categories of visual stimuli activate less selective areas in elderly in the visual cortex (Park 
et al., 2004), as well as, in the parietal and prefrontal cortex (Carp et al., 2011a). Similarly, 
representations of distinct movements in the motor system, such as tapping the right and 
the left finger, are less selective in the elderly (Carp et al., 2011b). In addition, during visual 
imagery, the distinction between areas related to motion or faces was reduced in elderly 
(Kalkstein et al., 2011) and the specificity of the connections between the prefrontal 
cortex and the visual cortices during imagery was reduced in elderly. The current findings 
of reduced specificity in functional networks could be interpreted as a confirmatory 
evidence of dedifferentiation.

Changes in neural specificity can in some cases be related to changes in performance 
level; neural specificity in elderly for example was found to be a good predictor of 
fluid intelligence, but not crystallized intelligence (Park et al., 2010). The relation with 
performance level was partly confirmed in the current study. We found that decreased 
connectivity within the DMN and DAN-SMN was related to poorer performance on 
neuropsychological tests of visual–motor sequencing, executive functioning, working 
memory, incidental recall and verbal memory. However, we found no evidence of a 
negative or positive effect of increased connectivity between areas in different functional 
networks on task performance. 

Over activations caused by dedifferentiation might be related to reduced specificity of 
functional networks. A recent study provided evidence for this idea; Langan et al. (2010) 
showed that reduced interhemispheric connectivity in elderly was related to a decreased 
ability to inhibit activity in the non-dominant hemisphere during unilateral motor task 
performance. It would be interesting to see if future studies in other domains will be able 
to link the decrease in specificity of neural representations to the specificity in functional 
networks, as well. Note however, that there are also a lot of studies showing positive 
relations between over activation in elderly and cognitive performance (for a review, Park 
and Reuter-Lorenz, 2009). In addition, we have shown in a recent electroencephalogram 
(EEG) study, using a selective attention task, that specific increases in connectivity in 
elderly can have a compensatory function (Geerligs et al., 2012b). Therefore, we agree 
with other researchers that aging theories need to incorporate both dedifferentiation 
and compensation to fully account for the age related changes on the neural level and 
their relation to cognitive performance (Carp et al., 2010). 

Li and colleagues (2001) proposed that neural noise, defined as haphazard neuronal 
activity, might be the cause the reduction in the specificity of neural representations with 
age. An increase in neural noise with age might not only affect the specificity of neural 
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representations within specific brain areas, but also the specificity of functional networks. 
This is in line a recent simulation study showing that there seems to be an optimal level of 
neural noise, at which correlation within networks and anticorrelations between networks 
are highest. An increase or a decrease in noise with regard to this optimum reduces 
both correlations and anticorrelations (Deco et al., 2009). Therefore, we suggest that the 
increased levels of neural noise with age could be a plausible mechanism underlying both 
decreased connectivity within functional networks and increased connectivity between 
networks along with less specific neural representations. 

In conclusion, we have shown a widespread decrease in the specificity of functional 
networks in older compared to younger participants. This was expressed in both an 
increase in connectivity between areas belonging to different functional networks and 
a decrease in connectivity between areas belonging to the same functional network. 
Specifically decreased connectivity within functional networks was related to poorer 
cognitive functioning in elderly. 
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2.6 Supplementary Tables

Supplementary table 2.1: Differences between groups in the effect of task condition (target-standard)

Area k T x y z
Young 

standard 
Mean(SE)

Young  
target    

Mean (SE)

Old 
standard 
Mean(SE)

Old 
target 

Mean (SE)
L Postcentral (BA4) 7843 6.2 -46 -16 54 1.81(0.52) -3.42(0.63) 1.72(0.35) 1.39(0.37)

L Mid Cingulum (BA31) 6.1 -2 -8 48
L Mid Cingulum (BA24) 6.1 0 4 42
L Sup Temporal (BA48) 434 5.9 -50 -22 14 0.72(0.36) -2.12(0.44) 0.78(0.24) 1.23(0.26)

R Fusiform (BA19) 6618 5.8 22 -54 -12 0.61(0.39) -1.79(0.47) 0.21(0.26) 1.27(0.28)
R Cerebellum VI 5.7 28 -52 -24
R Cerebellum VI 5.5 20 -76 -18

R Sup Temporal (BA22) 306 5.1 62 -10 8 0.96(0.48) -2.35(0.58) 0.64(0.32) 1.07(0.34)

L=left, R=right, BA=Brodmann’s area, x,y,z=stereotactic coordinates, k=cluster extent, Y=young participants, O=older participants
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Supplementary table 2.2: Group differences in functional connectivity and correlations with neuropsychological test scores

Seed region
Cluster 
(seed) Connectivity with area Cluster 

(area) k T x y z effect Young  
mean  (SE)

Old mean 
(SE) task (r)

L Calcarine (BA30) DMN-P R Rolandic Oper 
(BA48)

DAN-SMN/ 
COCN 198 4.5 58 6 2 O>Y -0.19(0.02) -0.04(0.02) RS (-.38) 

DSP(.45)

L Precuneus (BA7) DMN-P L A Cingulate (BA24) DAN-SMN/ 
FPCN 404 4.2 0 24 28 O>Y -0.16(0.02) 0(0.03) DSP(.45)

L A Cingulate (BA10) DMN-A L Rolandic Oper (BA48) DAN-SMN/ 
FPCN 202 4.7 -54 4 16 O>Y -0.09(0.01) 0.04(0.01)

L A Cingulate (BA10) DMN-A L Supplementary 
Motor Area (BA6) DAN-SMN 244 4.7 -2 4 60 O>Y -0.17(0.03) 0.01(0.02)

R Mid Orbitofrontal 
(BA10) DMN-A

White matter 
extending into L Sup 
Orbitofrontal (BA47)

Part FPCN 166 5.4 -26 42 0 O>Y -0.02(0.02) 0.09(0.01)

L Inf Frontal Oper 
(BA44) FPCN R Cuneus (BA19) DAN-VAN 225 4.7 8 -84 24 O>Y -0.16(0.02) 0(0.02)

R Mid Frontal (BA45) FPCN Calcarine/Precuneus 
(BA30) DMN 435 5.2 0 -56 10 O>Y -0.37(0.04) -0.11(0.03)

R Precentral3 (BA44) FPCN L Mid Cingulum 
(BA24) DAN-SMN 306 5.7 0 0 40 O>Y -0.03(0.03) 0.14(0.02)

L Mid Cingulum (BA23) DAN-SMN L Mid Cingulum 
(BA23)

DAN-SMN/ 
FPCN 213 6.3 0 -14 36 O>Y 0.04(0.04) 0.26(0.02)

L Mid Cingulum (BA23) DAN-SMN R Precuneus (BA5) DMN 699 5.6 6 -56 56 O>Y -0.08(0.02) 0.15(0.03)
L Mid Cingulum (BA23) DAN-SMN L Cerebellum Crus 1 DAN-VAN 239 5 -34 -66 -28 O>Y -0.23(0.02) -0.04(0.03)

L Postcentral (BA3) DAN-SMN R Sup Medial Frontal 
(BA32) FPCN 347 4.9 12 24 44 O>Y -0.03(0.02) 0.1(0.01)

L Postcentral (BA3) DAN-SMN L Inf Parietal (BA40) FPCN 203 4.8 -46 -50 54 O>Y -0.03(0.01) 0.07(0.01)
L Rolandic Oper (BA48) DAN-SMN R Precuneus (BA23) DMN 488 4.6 8 -58 32 O>Y -0.11(0.02) 0.03(0.02)

R Sup Parietal (BA2) DAN-SMN R Mid Cingulum 
(BA32) DMN 252 4.6 4 32 32 O>Y -0.13(0.03) 0.04(0.02)

L Mid Occipital (BA19) DAN-VAN L Inf Parietal (BA40) FPCN 213 4.9 -44 -64 48 O>Y -0.12(0.02) 0.01(0.02) STI(.39)
R Inf Orbitofrontal 

(BA38) COCN R Calcarine (BA17) DMN 968 6.6 24 -60 18 O>Y -0.15(0.01) 0.01(0.02)

R Inf Orbitofrontal 
(BA38) COCN R Insula (BA48) DAN-SMN/

DMN 210 4.2 40 -10 10 O>Y -0.03(0.02) 0.1(0.02)
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Seed region
Cluster 
(seed) Connectivity with area Cluster 

(area) k T x y z effect Young  
mean  (SE)

Old mean 
(SE) task (r)

L Precuneus (BA7) DMN-P L Angular (BA39) DMN 425 5.5 -54 -58 38 Y>O 0.19(0.02) 0.09(0.01)
L A Cingulate (BA10) DMN-A R Precuneus (BA23) DMN 234 4.5 10 -62 26 Y>O 0.31(0.04) 0.17(0.02)

L Mid Cingulum (BA23) DAN-SMN R Sup Temporal (BA48) none 282 4.7 50 -28 12 Y>O 0.13(0.02) 0.03(0.03)
L Rolandic Oper (BA48) DAN-SMN R Insula (BA48) DAN-SMN 174 5.3 38 0 14 Y>O 0.17(0.01) 0.09(0.01) RS(.58)
L Rolandic Oper (BA48) DAN-SMN L Precentral (BA6) DAN-SMN 347 5.2 -18 -14 58 Y>O 0.14(0.02) 0.06(0.02) RS(.41)
L Rolandic Oper (BA48) DAN-SMN L Postcentral (BA4) DAN-SMN 229 4.9 -50 -18 52 Y>O 0.16(0.02) 0.07(0.01)

R Precentral (BA4) DAN-SMN R Rolandic Oper 
(BA48) DAN-SMN 182 4.8 40 -16 20 Y>O 0.12(0.03) 0.02(0.02) DSF(.50)

R Sup Parietal (BA2) DAN-SMN R Sup Temporal (BA48) none 232 4.8 44 -18 10 Y>O 0.14(0.04) -0.01(0.03)
WD(.39)
 DSB(.43)
TRA(.51)

L Mid Occipital (BA19) DAN-VAN L Fusiform (BA37) DAN-VAN 170 5.7 -38 -58 -10 Y>O 0.2(0.02) 0.1(0.01) RS(.40)
R Inf Occipital (BA19) DAN-VAN L Sup Frontal (BA9) DMN 381 4.3 -14 56 26 Y>O 0(0.03) -0.09(0.03) TRA(.45)

Supplementary table 2.2 continued: Group differences in functional connectivity and correlations with neuropsychological test scores

The outer right column shows significant correlations between connectivity and task performance in the elderly group. L=left, R=right, 
BA=Brodmanns area, x,y,z=stereotactic coordinates, k=cluster extent, Y=young participants, O=older participants, P=posterior, A=anterior, Inf=Inferior, 
Sup=superior, Mid=Middle, Oper=Operculum, DMN=default mode network, VAN=visual attention network, DAN=dorsal attention network, 
FPCN=frontoparietal control network, SMN=somatomotor network, COCN=cingulo-opercular control network, DSF=digit span forward, DSB=digit 
span backward, TRA=trialmaking test part A, RS=ruleshift task, WD= 15 word test direct recall, STI=Stroop interference
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Seed region
Cluster 
(seed) Connectivity with area Cluster 

(area) k T x y z effect T after 
GMC k 

Percentage 
of original 

voxels

L Calcarine (BA30) DMN-P R Rolandic Oper (BA48) DAN-SMN/ 
COCN 198 4.5 58 6 2 O>Y 4.74 127 64.1

L Precuneus (BA7) DMN-P L A Cingulate (BA24) DAN-SMN/ 
FPCN 404 4.2 0 24 28 O>Y 5.25 124 30.7

L A Cingulate (BA10) DMN-A L Rolandic Oper (BA48) DAN-SMN/ 
FPCN 202 4.7 -54 4 16 O>Y 4.29 68 33.7

L A Cingulate (BA10) DMN-A L Supplementary Motor Area 
(BA6) DAN-SMN 244 4.7 -2 4 60 O>Y 5.2 148 60.7

R Mid Orbitofrontal 
(BA10) DMN-A White matter extending into 

L Sup Orbitofrontal (BA47) Part FPCN 166 5.4 -26 42 0 O>Y 4.71 39 23.5

L Inf Frontal Oper 
(BA44) FPCN R Cuneus (BA19) DAN-VAN 225 4.7 8 -84 24 O>Y 5.91 218 96.9

R Mid Frontal (BA45) FPCN Calcarine/Precuneus (BA30) DMN 435 5.2 0 -56 10 O>Y 5.46 228 52.4
R Precentral3 (BA44) FPCN L Mid Cingulum (BA24) DAN-SMN 306 5.7 0 0 40 O>Y 8.3 207 67.6

L Mid Cingulum (BA23) DAN-SMN L Mid Cingulum (BA23) DAN-SMN/ 
FPCN 213 6.3 0 -14 36 O>Y 5.5 175 82.2

L Mid Cingulum (BA23) DAN-SMN R Precuneus (BA5) DMN 699 5.6 6 -56 56 O>Y 5.5 401 57.4
L Mid Cingulum (BA23) DAN-SMN L Cerebellum Crus 1 DAN-VAN 239 5 -34 -66 -28 O>Y 4.85 107 44.8

L Postcentral (BA3) DAN-SMN R Sup Medial Frontal (BA32) FPCN 347 4.9 12 24 44 O>Y 4.71 205 59.1
L Postcentral (BA3) DAN-SMN L Inf Parietal (BA40) FPCN 203 4.8 -46 -50 54 O>Y 4.35 36 17.7

L Rolandic Oper (BA48) DAN-SMN R Precuneus (BA23) DMN 488 4.6 8 -58 32 O>Y 4.5 202 41.4
R Sup Parietal (BA2) DAN-SMN R Mid Cingulum (BA32) DMN 252 4.6 4 32 32 O>Y 4.56 78 31.0

L Mid Occipital (BA19) DAN-VAN L Inf Parietal (BA40) FPCN 213 4.9 -44 -64 48 O>Y 5 176 82.6
R Inf Orbitofrontal 

(BA38) COCN R Calcarine (BA17) DMN 968 6.6 24 -60 18 O>Y 5.63 664 68.6

R Inf Orbitofrontal 
(BA38) COCN R Insula (BA48) DAN-SMN/

DMN 210 4.2 40 -10 10 O>Y 4.94 132 62.9

Supplementary table 2.3: Group differences in functional connectivity after corrections for gray matter density
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Seed region
Cluster 
(seed) Connectivity with area Cluster 

(area) k T x y z effect T after 
GMC

k 
after 
GMC

Percentage 
of original 

voxels
L Precuneus (BA7) DMN-P L Angular (BA39) DMN 425 5.5 -54 -58 38 Y>O 4.97 59 13.9

L A Cingulate (BA10) DMN-A R Precuneus (BA23) DMN 234 4.5 10 -62 26 Y>O 7.11 20 8.5
L Mid Cingulum (BA23) DAN-SMN R Sup Temporal (BA48) none 282 4.7 50 -28 12 Y>O 5.02 59 20.9
L Rolandic Oper (BA48) DAN-SMN R Insula (BA48) DAN-SMN 174 5.3 38 0 14 Y>O 3.34 1 0.6
L Rolandic Oper (BA48) DAN-SMN L Precentral (BA6) DAN-SMN 347 5.2 -18 -14 58 Y>O 4.52 102 29.4
L Rolandic Oper (BA48) DAN-SMN L Postcentral (BA4) DAN-SMN 229 4.9 -50 -18 52 Y>O 3.49 9 3.9

R Precentral (BA4) DAN-SMN R Rolandic Oper (BA48) DAN-SMN 182 4.8 40 -16 20 Y>O 3.54 2 1.1
R Sup Parietal (BA2) DAN-SMN R Sup Temporal (BA48) none 232 4.8 44 -18 10 Y>O -- -- 0.0

L Mid Occipital (BA19) DAN-VAN L Fusiform (BA37) DAN-VAN 170 5.7 -38 -58 -10 Y>O 4.22 44 25.9
R Inf Occipital (BA19) DAN-VAN L Sup Frontal (BA9) DMN 381 4.3 -14 56 26 Y>O -- -- 0.0

Supplementary table 2.3 continued: Group differences in functional connectivity after corrections for gray matter density

L=left, R=right, BA=Brodmanns area, x,y,z=stereotactic coordinates, k=cluster extent, Y=young participants, O=older participants, P=posterior, 
A=anterior, Inf=Inferior, Sup=superior, Mid=Middle, Oper=Operculum, DMN=default mode network, VAN=visual attention network, DAN=dorsal at-
tention network, FPCN=frontoparietal control network, SMN=somatomotor network, COCN=cingulo-opercular control network, GMC=corrections for 
gray matter density
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3 A graph theoretical study of functional connectivity in 
the aging brain during resting state

3.1 Abstract

Aging affects functional connectivity between brain areas, however, a complete picture 
of how aging affects integration of information within and between functional networks 
is missing. We used complex network measures, derived from a brain-wide graph, to 
provide a comprehensive overview of age-related changes in functional connectivity. 
Functional connectivity in young and older participants was assessed during resting state 
fMRI. The results show that aging has a large impact, not only on connectivity within 
functional networks but also on connectivity between the different functional networks 
in the brain. Brain networks in the elderly showed decreased modularity (less distinct 
functional networks) and decreased local efficiency. Connectivity decreased with age 
within networks supporting higher level cognitive functions, that is, within the default 
mode, cingulo-opercular and fronto-parietal control networks. Conversely, no changes 
in connectivity within the somatomotor and visual networks, networks implicated in 
primary information processing, were observed. Connectivity between these networks 
even increased with age. A brain-wide analysis approach of functional connectivity in 
the aging brain thus seems fundamental in understanding how age affects integration 
of information.

3.2 Introduction

Performance in various domains of cognitive functioning has been found to decline 
with age (Grady, 2012). There is evidence that these deteriorations are partly related to 
changes in communication between different brain areas (Andrews-Hanna et al., 2007; 
Sambataro et al., 2010). We previously found the first evidence that aging not only affects 
functional connectivity within specific functional networks, implicated in particular 
cognitive functions, but communication between different functional networks as 
well (Geerligs et al., 2012a). In the current study, we investigated how aging affects the 
integration of information across the whole brain, that is, within as well as between 
functional brain networks.

Whole brain analysis requires a novel approach. So far, effects of aging on functional 
connectivity have mainly been assessed using seed based functional connectivity and 
independent component analysis (Biswal et al., 1995; Fox et al., 2005; van de Ven et 
al., 2004). Both methods have a limited capability of providing a complete view of the 
characteristics of connectivity between and within functional networks. Seed based 
connectivity requires a hypothesis regarding the chosen seed region, while independent 
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component analysis has the inherent limitation that only connectivity within functional 
networks can be examined. In the current study we apply complex network measures, 
based on social network analysis, to assess connectivity within a brain wide graph of 
functional areas (Power et al., 2011; Rubinov & Sporns, 2010). 

In the context of a graph, brain areas are referred to as nodes and connections between 
nodes are referred to as edges. Nodes that are directly connected through one edge are 
referred to as neighbors, whereas a series of edges connecting distant nodes are referred 
to as a path. After a network has been defined in such a way, it is possible to extract 
different complex network measures that characterize the connectivity structure of the 
network. This approach has major advantages over a mass-univariate approach in which 
all connections between all areas are tested independently. First of all, graph theory avoids 
the large number of multiple comparisons that accompany a mass-univariate approach. 
Second, by examining complex network measures, specific features that are important 
for the functioning of the network can be assessed.

Studies in younger adults have shown that the brain consists of a number of separate 
functional networks. There are dense connections within these networks whereas 
connectivity between different networks is sparse. This organization is thought to benefit 
specialized or segregated information processing in different brain networks (Bullmore 
& Sporns, 2012). The extent to which such an organization is present can be measured 
with the complex network measure modularity (Newman, 2004). There are indications 
that functional brain networks in elderly become less distinct, due to an increase in inter-
network connections along with a decrease in intra-network connections (Geerligs et 
al., 2012a). Previous studies have already shown that brain areas become functionally 
dedifferentiated with advancing age (Baltes & Lindenberger, 1997; Carp et al., 2011a; 
Dennis & Cabeza, 2011; Park et al., 2004). Geerligs et al. (2012a) extended these findings 
by showing that dedifferentiation might also occur on the level of large scale functional 
brain networks. One of the goals of the current study was to lend more support to these 
findings, using complex network measures. If functional networks indeed become 
dedifferentiated with age, we would expect a reduction in modularity. A reduction in 
modularity with age might be driven by global changes throughout the networks or 
by decreased connections within or increased connections between specific functional 
networks. To examine these possibilities, we additionally examined the participation 
coefficient (Guimerà & Amaral, 2005), which is a local measure of the proportion of inter- 
and intra-network connections. 

The trajectory between the input and the output of the brain, that is, between 
perception and overt and covert behavior, requires the integration of information within, 
as well as between, different functional networks. The capacity to integrate information 
across all brain areas can be assessed with global efficiency (Latora & Marchiori, 2001). 
Higher level functions, such as executive functions, that require integration of information 
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from different sources, benefit from global efficiency across the whole network (Bullmore 
& Sporns, 2012). In addition, primary processing functions, such as visual information 
processing benefit from clustered connections between neighboring nodes. This can 
be measured using local efficiency, which quantifies connections between neighboring 
nodes (Latora & Marchiori, 2001). If neighboring nodes are well connected, information 
exchange will be more segregated as well as more efficient and the networks will be more 
resilient to disruptions in connectivity. 

Previous studies using graph theory in fMRI data have shown that aging is accompanied 
by a reduction in global and local network efficiency (Achard & Bullmore, 2007). Modularity 
on the other hand was reported to be similar in older and younger participants (Meunier 
et al., 2009a). In the current paper, we extend these previous findings by examining age-
related effects on complex networks measures within different functional networks. 
Because each functional network tends to be related to a specific cognitive function, this 
approach allows for a more direct link between the changes in complex graph measures 
and the changes in cognitive functioning. In this paper, we used the network measures 
described above to provide a coherent whole brain view of age-related changes in 
functional connectivity. To extract functional networks in the older and younger groups, 
we used data driven methods which did not require any a-prior hypotheses about specific 
features of these networks. We found that, the balance between intra- and inter-network 
connections shifted with age, as reflected by decreased modularity. Changes in local 
efficiency varied across networks. In the visual and somatomotor networks, subserving 
more elementary cognitive functions, efficiency was maintained in elderly, whereas a 
sharp decrease in efficiency was found in higher level processing networks, the default 
mode network (DMN, Buckner et al., 2008; Greicius et al., 2003; Raichle et al., 2001), fronto-
parietal control network (FPCN, Spreng et al., 2010; Vincent et al., 2008) and the cingulo-
opercular network (Dosenbach et al., 2007). 

3.3 Methods

3.3.1 Participants

Forty older adults (24 males, Mage = 64.9 years, age range: 59-74 years) and 40 younger 
adults (21 males, Mage = 20.6 years, age range: 18-26 years) participated in this experiment. 
All participants were right handed and had no history of neurological or psychiatric 
disorders. Older participants had a score of 26 or higher on the Mini Mental Status 
Examination (MMSE, Folstein et al., 1975) and below 16 on each of the subscales of the 
Hospital Anxiety and Depression Scale (HADS, Zigmond & Snaith, 1983). All participants 
had normal or corrected-to-normal visual acuity. The study adhered to the Declaration of 
Helsinki and was approved by the local ethics committee of the University Medical Center 
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Groningen, the Netherlands. Informed consent was obtained from all participants. Data 
of one older participant was lost due to technical problems. One older participant was 
excluded because a brain abnormality was detected. 

3.3.2 Data acquisition and preprocessing

FMRI scans were obtained during 10 minutes of resting state with a three tesla MR 
scanner (3T Achieva, Philips Medical Systems, Best, Netherlands), with echo planar imaging 
(EPI) capability and an eight channel SENSE head coil. Participants were instructed to keep 
their eyes closed and not fall asleep. Functional images were obtained with the following 
pulse sequence parameter settings: single shot EPI; 37 slices; slice thickness 3.5 mm; no 
gap; field of view 224 mm; matrix scan size 64 by 64; transverse slice orientation; repetition 
time (TR) = 2000 ms; echo time (TE) = 30 ms; minimal temporal slice timing (1836 ms); flip 
angle 70°. A 3D T1-weighted anatomical scan of the entire brain was obtained for each 
participant using the following pulse sequence parameters: field of view 256 mm; matrix 
scan size 256 by 256; 170 slices; slice thickness 1 mm; transverse slice orientation; TE = 
3.6 ms; TR =9 ms; flip angle 8°. Offline processing was performed using the statistical 
parametric mapping software package (SPM 8; http://www.fil.ion.ucl.ac.uk/spm/
software). First, for each participant, the functional images were motion-corrected and 
co-registered to the anatomical scan. Co-registration was checked visually and adjusted 
manually when required. Smooth signal intensity variations due to field inhomogeneities 
were reduced in both structural and functional images by applying bias regularization 
as implemented in SPM. For functional images, the regularization was initially applied 
only to the first and the last functional scan. Based on these two corrections, an average 
correction factor was computed for each voxel, which was applied to all scans. A study 
specific anatomic template was created (for young and elderly participants together), 
using Diffeomorphic Anatomical Registration Exponentiated Lie algebra (DARTEL), to 
optimize inter-participant alignment (Ashburner, 2007). Data were smoothed with an 8 
mm full-width half maximum (FWHM) Gaussian kernel. 

For the functional connectivity analyses, additional preprocessing steps were used 
to remove spurious variance from the time courses. One of these steps was global 
signal regression. The global signal is assumed to reflect a combination of resting-state 
fluctuations, physiological noise (e.g. respiratory and cardiac noise), and other noise 
signals (Birn et al., 2006). It has been shown that (physiological) noise in the BOLD signal 
increases with advancing age (D’Esposito et al., 1999; Makedonov et al., 2013). Therefore, 
in the current study, we applied global signal regression to reduce these effects of noise 
differences between groups on estimates of the correlation coefficient. Using SPM 
routines, a multiple regression approach was used which included regression of the time-
courses from the white matter, cerebro-spinal fluid and the whole brain (global signal) 
and regression of motion parameters (for details of this procedure see Geerligs et al., 
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2012a). First derivatives of these signals were also regressed out. In addition, a high pass 
filter (time constant of 111 seconds) was applied. 

It has been shown that participant motion can have large effects on functional 
connectivity estimates (Power et al. 2012). To minimize such effects, scans which 
might have been affected by movement were excluded from the analysis (similar to 
the procedure described in Power et al., 2012). The first step in this correction was to 
calculate the total displacement per scan. The rotational parameters were transformed to 
millimeters (mm) displacement by assuming affected voxels were at a distance of 65 mm 
from the origin of the rotation. The total displacement per scan was computed using the 
procedure in the ArtRepair toolbox http://cibsr.stanford.edu/tools/human-brain-project/
artrepair-software.html. Scans in which the displacement compared to the previous scan 
was larger than 0.5 mm were flagged. The second step in the correction was to identify 
scans which could have been affected by participant motion by examining changes in 
the intensity of the functional image. For each voxel (within the participant specific brain 
mask) a temporal derivative of the signal was calculated, by computing the intensity 
difference between subsequent scans. Subsequently, the root mean square (RMS) 
intensity change over all voxels was calculated as index of total intensity change. Scans 
in which the RMS was higher than 3 standard deviations above the average were flagged 
(Shannon et al., 2011; Smyser et al., 2010). For functional connectivity analysis, all flagged 
scans were excluded, as well as the scan before and two scans after the flagged scan. Two 
younger and two older participants with less than 200 remaining scans were excluded. In 
the remaining younger participants an average of 10.4% of all scans was removed based 
on this procedure, in the older participants the proportion of removed scans was 7.2% on 
average. 

3.3.3 Functional connectivity analysis

For functional connectivity analysis the brain wide graph of 264 putative functional 
areas (10 mm diameter spheres) created by Power and colleagues (2011) was used. 
The functional areas in this graph were defined based on meta-analysis and functional 
connectivity mapping so that each area represents an element of brain organization. 
To make sure that the graph only included areas that did not suffer from susceptibility 
artifacts, a group mask was created. First, participant-specific binary images were created 
by thresholding functional images at 70% of mean signal intensity. A group mask was 
created by multiplying the binary images of all participants. If the group mask overlapped 
less that 50% with a functional area, this area was excluded from analysis (i.e. 29 
functional areas). Average time courses were extracted for the remaining 235 functional 
areas. Pearson correlation coefficients were computed between the time courses of all 
functional areas in each participant separately. To remove connections which might be 
due to re-slicing or motion-induced artifacts, correlations between areas less than 20 mm 
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apart were set to zero (Power et al., 2011). The diagonal of the correlation matrix was set 
to zero to remove correlations between an area and itself.

3.3.4 Thresholding

Based on the correlation matrix, graphs were constructed for each participant. Graph 
characteristics, such as modularity and global efficiency are affected by the number 
of nodes, but also by the number of edges in a graph (van Wijk et al., 2010). For each 
participant, the correlation matrix was thresholded to enhance the contrast between 
relevant (strong) and irrelevant (weak) connectivity values. This was done in such a way 
that the number of edges in the graph was constant. A threshold was selected using 
the method below, in order to maximize the amount of information obtained about the 
network on the group level. 

For a range of thresholds (selecting between 1 - 50 % strongest connections), and for 
both age groups separately, we applied the following procedure. For each participant, 
the correlation matrix was binarized by setting the connections above the pre-defined 
threshold to 1 and all other connections to zero. Subsequently these binarized matrixes 
were averaged over all participants within each group. This averaged matrix is referred 
to as the ‘actual’ matrix. Information theory was applied to compute the entropy over 
the actual matrix (Shannon, 1948). The threshold at which the entropy is lowest, is 
the threshold at which the actual matrix contains the least disorder and therefore the 
largest stability over participants. However, the entropy also depends on the number of 
elements taken into account for each participant; at a threshold of 100% the entropy will 
be zero. Therefore, a correction was applied to account for these changes by comparing 
the entropy in the actual matrix to the entropy in a randomized matrix. We created 50 
randomized matrices per participant, per threshold, preserving the number of nodes 
and the degree distribution (Maslov & Sneppen, 2002). These random graphs were used 
to construct 500 new average graphs, by randomly sampling one of the 50 randomized 
networks per participant. The entropy was computed for each of these average random 
matrices and averaged. Then, the difference between the entropy in the actual and the 
entropy in the random matrices was computed. Once this procedure was performed for 
all thresholds, the optimal threshold was defined as the threshold at which the difference 
between the entropy in the actual matrices and the entropy in the randomized matrices 
is maximal. The optimal threshold is found when the information in the actual matrix 
is as unique as possible (i.e., highest stability across subjects), and more importantly, 
least resembles the result for a random network. More details of this method, including 
simulations, are presented in the supplementary materials. Applying the procedure 
described above to both age groups separately, resulted in a threshold set at the 2.8 % 
strongest connections in the network for the younger participants and 2.6% for the older 
participants. Therefore, a threshold of 2.7 % was selected (see supplementary figure 3.2). 
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3.3.5 Graph analysis

Network measures were calculated using functions implemented in the Brain 
Connectivity Toolbox (Rubinov & Sporns, 2010, www.brain-connectivity-toolbox.net). 
Modularity is the extent to which a graph can be divided into modules with a large 
number of within module connections and a minimal number of between module 
connections (Girvan & Newman, 2002). For fMRI data, such modules are similar to the 
functional networks that can be identified using seed based correlations or independent 
component analysis (Power et al., 2011). Network modularity estimates were computed 
using the algorithm by Blondel and colleagues (2008), using the average modularity 
across 50 runs of the algorithm. In addition, local and global efficiency were assessed 
(Latora & Marchiori, 2001). Global efficiency is the inverse of the average shortest path 
length in the network and is suitable for use in disconnected networks. Local efficiency 
is the inverse of the average shortest path length between all immediate neighbors of 
a node. Local efficiency tends to be related to modularity; networks which have dense 
local connections tend to have a more modular organization (Bullmore & Sporns, 2012). 
Local efficiency was averaged over all nodes to estimate the mean local efficiency for the 
complete graph or specific networks. 

The graph was partitioned into modules separately for younger and older participants. 
As input to the partitioning algorithm, we computed averages of the binary matrices of 
all participants (correlation matrices thresholded at 2.7%) in each age group. To achieve 
the optimal module division, we adopted a two-step procedure, similar to the one 
applied by Rubinov and Sporns (2011). An initial partition into modules was created 
using the algorithm by Blondel et al. (2008), which attempts to maximize within module 
connections and minimize between module connections. As the approach is susceptible 
to the occurrence of local maxima, this procedure was repeated 500 times. Subsequently, 
all of these partitions were refined, using a modularity fine-tuning algorithm (Sun et al., 
2009) which randomly assigns nodes to different modules or randomly creates a separate 
module. Changes that led to an increase in modularity were retained. The fine-tuning 
algorithm was applied repeatedly until the modularity of the partitioning no longer 
increased, and the partitioning with the highest modularity was used for further analyses. 

To compare the module decompositions in older and younger participants, we used 
normalized mutual information (NMI). NMI measures how much information is provided by 
one set of assignments about another set of assignments (Strehl & Ghosh, 2003) and varies 
from 0 (no mutual information) to 1 (identical node assignments). Statistics on differences 
in module decomposition between age groups (NMI smaller than 1) was obtained using 
permutation testing. In the permutation procedure, participants were randomly divided 
into two groups (retaining original group sizes). Subsequently, the optimal module 
decomposition was calculated for each group and their NMI was calculated as described 
above. This procedure was repeated 1000 times to get a distribution of NMI values under 
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the null hypotheses. If the actual NMI between age groups was smaller than the 5th 
percentile of this distribution, the difference between groups was considered significant. 

To find modules which were representative for both the older and the younger 
participants, we used the intersection of the modules defined in the two groups. Only 
nodes that belonged to a specific module in both groups, were taken as representative 
of that module for both groups. Additional details on how common networks were 
constructed are reported in the results section. For each of the five large networks defined 
in this manner, we computed the average local efficiency and participation coefficient. 
The participation coefficient is an index of the number of between module connections 
versus the total number of connections of a certain node (Guimerà & Amaral, 2005). 

 To examine the connectivity within and between all the different modules we 
developed a specific procedure, which was performed separately for both negative and 
positive connections. For this analysis the original weighted graph was used. Correlations 
with p<0.05 after false discovery rate correction (FDR, Benjamini & Hochberg, 1995) were 
retained, while all other correlations were set to zero. For each pair of modules and within 
each module, we then computed the sum of all correlations and divided these by the 
number of possible correlations. Group comparisons were performed with Mann Whitney 
U tests. 

3.3.6 Correlation with behavioral measures

To assess how the observed changes in network properties affected the functioning 
of older participants, the relation with cognitive performance was examined. All 
participants were tested on an extensive neuropsychological battery, consisting of visual-
motor sequencing (Trail making test A and B, Reitan, 1958; Tombaugh, 2004), executive 
functioning (Stroop task, Stroop, 1935), working memory and incidental recall (digit span 
test forward and backward, Wechsler Intelligence Scale - Revised, Wechsler, 1981), verbal 
learning (Dutch version of the Rey Auditory Verbal Learning Test, Lezak et al., 2004), and 
a simple reaction time test. In addition, an estimation of crystallized intelligence (Dutch 
version of the National Adult Reading Test, Schmandt et al., 1992) and fluid intelligence 
(matrix reasoning test, Wechsler Intelligence Scale - Revised, Wechsler, 1981) was obtained. 
One younger participant was excluded from the analysis because neuropsychological 
data was not available. All neuropsychological test scores were transformed to z-scores 
and scaled such that a higher value indicates better performance. Because some of the 
neuropsychological test scores were highly correlated, we first performed factor analysis on 
the neuropsychological tests using maximum likelihood estimation and varimax rotation. 
Four factors, with an eigenvalue above 1, were chosen based on the interpretability of the 
results. Subsequent correlations with complex network measures were performed using 
participant factor scores. Only complex network measures that showed a significant 
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difference between the age groups were related to behavioral performance.

3.3.7 Correlation with structural measures 

To assess whether complex network measure differences between younger and older 
adults were related systematic gray matter volume differences between the groups, the 
determinant of the Jacobian matrix was used. This determinant is the local expansion 
factor, which results from the DARTEL procedure and represents differences in local 
volume between the individual images and the template brain. Values of the Jacobian 
determinant that are larger than 1, indicate volume expansion relative to the group 
template, whereas values smaller than 1 indicate contraction (Lee et al., 2007). For each 
functional area that was used in the graph analysis, the corresponding average Jacobian 
determinant was extracted for each participant. Subsequently, Spearman rank correlations 
were computed between complex networks measures and the Jacobian, both averaged 
across all functional areas as well as for each module separately. 

3.4 Results

3.4.1 Functional networks in old and young

Functional networks were identified separately in the older and the younger group, 
by using module decomposition algorithms (Rubinov & Sporns, 2011). The modules 
we identified were similar to the functional brain networks described in the literature 
(Damoiseaux et al., 2006) and to the modules described by Power and colleagues (Power 
et al., 2011) (see figure 3.1A). To examine the similarities between the node-module 
assignments (i.e. which nodes are assigned to which functional networks) of older adults 
and younger adults, we used normalized mutual information (NMI). Subsequently, 
permutation testing was used to test whether this similarity was significantly below 
chance level. Over all nodes and all modules, the NMI between older and younger 
participants was 0.6, which was significantly lower than expected by chance (p=0.006). 
Tests per module revealed significant differences between younger and older participants 
in the visual module (NMI=0.63, p=0.001), whereas no significant differences between age 
groups were observed in the somatomotor and cingulo-opercular network (NMI=0.66, 
p=0.07 and NMI=0.60, p=0.69, respectively). In addition, age-related differences were 
observed in the fronto-parietal control network (FPCN) and the default mode network 
(DMN). While the FPCN and the DMN were separate modules in younger participants, 
they were identified as one module in the older participants. The NMI expressing the 
extent to which DMN/FPCN node assignment in the older group was predicted by node 
assignments of both the DMN and the FPCN in the younger group was 0.39. This similarity 
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was significantly below chance level (p=0.009). The null distributions of the permutation 
tests per module are shown in supplementary figure 3.6. To test whether the observed 
age-differences are specific to the threshold of 2.7% applied here, we repeated the 
analysis presented above for a range of thresholds between 2% and 10%. At all of the 
thresholds, a significant difference in module decomposition between younger and older 
participants was observed (see figure 3.3B). 

To compare characteristics of networks between the younger and older groups, we 
first derived common networks. The nodes belonging to the same network in both 
groups were taken as representatives of that network (see figure 3.1C and table 3.1). The 
DMN and FPCN modules were based on the node assignments in young participants 
but included only nodes that belonged to the DMN/FPCN in older participants. In figure 
3.1B, the average graphs of the younger and older participants are presented using a 
force atlas layout. To illustrate age-related differences in labeling, the graphs of older and 
younger participants are presented both with the labeling of their own group and with 
the labeling of the other group.

3.4.2 Age-related changes in network distinctiveness: modularity and participation coef-
ficient 

Segregation of functional networks was reduced in the older (mean modularity 
old (Mold) =0.61) compared to the younger participants (Myoung=0.67; z=5.3, p<0.001), 
see figure 3.2A. Additional correlation analyses between modularity and age within 
the older group revealed no significant correlation (r=-0.21, p=0.22). The difference 
between the age groups can also be observed in figure 3.1B; nodes within functional 
networks are less clustered in older than in younger participants. Particularly, the visual 
network shows more pronounced local isolation in younger than in older participants. 
Confirming these findings, the participation coefficient was increased in older compared 
to younger participants in the visual and the somatomotor networks (z=4.53, p<0.001; 
z=4.04, p<0.001, respectively), indicating that a larger proportion of the connections 
of the nodes in these networks are directed to nodes outside the network (see figure 
3.2B). Similar to Power and colleagues (Power et al., 2011), we observed that the FPCN 
was the network with the highest proportion of inter-network connections (the highest 
participation coefficient). This is in agreement with its central role in cognitive control, 
requiring communication with other networks (Spreng et al., 2010; Vincent et al., 2008). 
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Figure 3.1: A The different modules are shown separately for older (right) and younger (left) 
participants. The colors indicate the nodes that belong to each module. Nodes are pasted on an 
inflated surface rendering of the human brain using the CARET program (Van Essen et al. 2001). 
B The graphs for younger (left) and older (right) participants are visualized using a force atlas 
layout implemented in Gephi (Bastian, Heymann, Jacomy 2009). The top row shows the graphs 
of younger and older participants with the node assignments of the younger participants. The 
bottom row shows the graphs for both groups with the node assignments of the older partici-
pants. C Final node module assignments based on the intersection of node assignments in both 
groups. Grey nodes were not assigned to any of the modules.
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Young

Visual Somato-
motor

Cingulo-
opercular DMN FPCN Other Total 

(count)

% 
nodes in 
common

Visual 33 0 0 4 0 1 38 87%

Somato-
motor 0 37 3 6 0 1 47 79%

Cingulo-
opercular 0 0 47 0 2 1 50 94%

Old
DMN & 
FPCN 1 1 9 26 44 8 89 79%

Other 4 0 0 0 2 5 11

Total 
(count) 38 38 59 36 48 16 235

% nodes 
in 

common 
87% 97% 80% 72% 92%

Total (count) refers to the number of nodes in each module. % nodes in common refers to the 
percentage of nodes assigned to a specific module that ended up in the same module in the 
final node-module assignments. 

3.4.3 Age-related changes in efficiency of connectivity: global and local efficiency

While global efficiency was similar in older and younger participants (Myoung=0.20, 
Mold=0.20, z=0.25, p=0.80), local efficiency was significantly reduced in the older compared 
to the younger participants (Myoung=0.35, Mold=0.39, z=4.7, p<0.001). These results were 
independent of the chosen connectivity threshold (see Figure 3.3). Separate analyses 
in each functional network showed an age-related decrease in local efficiency in the 
DMN (z=2.87, p=0.004), the FPCN (z=2.51, p=0.012) and the cingulo-opercular network 
(z=3.53, p<0.001, see figure 3.2B). Correlations between local or global efficiency and 
age within the older group, did not show any significant effects (r=0.22, p=0.20; r=0.05, 
p=0.78, respectively). Additional analyses with more stringent movement correction 
criteria (0.3 mm) and additional low pass filtering (0.08 Hz) did not change the effects 
of age group on the network measures described above (global and local efficiency, 
modularity and participation coefficient, see supplementary figures 3.3 and 3.4). As a 
final check, we investigated the effect of global signal regression on the results. In the 
literature, it has been shown that global signal regression can have both positive and 
negative effects on the analysis of functional connectivity (Murphy et al., 2009; Song et 
al., 2012; Weissenbacher et al., 2009). Therefore, we have repeated the analyes without 
global signal regression. Although these analyses point to the same pattern of differences 
between older and younger participants, some differences were observed compared to 

Table 3.1: Nodes assigned to each module in younger and older participants: overlap and 
differences 
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the original analyses. These are presented and discussed in the supplementary materials 
(see supplementary figure 3.5).

3.4.4 Age-related changes in functional connectivity within and between networks

Functional connectivity is reflected in the strength of the correlations between all 
functional brain areas. To examine the effect of age on overall functional connectivity, we 
compared the correlation distribution of the unthresholded correlation matrix between 
younger and older participants. The number of negative correlations (between -0.25 and 
-0.15) and the number of strong positive correlations (between 0.4 and 0.8) was reduced 
in elderly (p<0.05, see figure 3.4A). 

Figure 3.2 : A Global network measures are presented in boxplots for older (lighter) and younger 
(darker) participants. From left to right, global efficiency, local efficiency and modularity. Stars 
indicate a significant difference between the older and younger participants (***p<0.001). B 
For each of the functional networks (modules), participation coefficient and local efficiency are 
displayed in boxplots for younger and older participants. The darker boxplots represent the 
younger participants, the lighter boxplots the older participants. Difference between the older 
and younger groups; *p<0.05, **p<0.005, ***p<0.001.
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Correlations between 0.08 and 0.18 were more pronounced in elderly. Taken together, 
overall functional connectivity decreased with age. 

In addition, functional connectivity within and between each of the functional 
networks was examined. To distinguish effects of aging on positive and negative 
correlations (also referred to as anti-correlations Fox et al., 2009), these were examined 
separately (see figure 3.4B). The strength and number of correlations was combined in 
a single measure (total positive correlation or total negative correlation, respectively) 
and compared between younger and older participants. To select relevant connections 
an FDR-threshold was applied (p<0.05 FDR corrected) to the correlation matrix of each 
participant. Subsequently node-module assignments were used to identify correlations 
within and between specific networks. The connectivity within the cingulo-opercular 
control network (z=4.59, p<0.001), the FPCN (z=2.64, p=0.008) and the DMN (z=4.23, 
p<0.001) was reduced with age, as was the connectivity between the cingulo-opercular 
network and the somatomotor network (z=2.02, p=0.04). The connectivity between the 
visual network and the somatomotor networks (z=3.04, p=0.002) and between the visual 
and the cingulo-opercular network (z=2.62, p=0.009) increased with age.

 

Figure 3.3: A Differences between old and young participants in modularity, global efficiency 
and local efficiency are plotted for thresholds between 2 and 10% of all possible connec-
tions. The dashed line indicates the p-values corresponding to the difference between the 
two groups, these values are presented on the right y-axis. B A test of age-related differences 
in module decomposition is shown over a range of thresholds. The null distribution of NMI 
values resulting from the permutation testing procedure is shown in the boxplots. The black 
dot represents the actual NMI value of the correspondence between the two age groups.
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Negative correlations were reduced in elderly between the somatomotor network 
and the visual network (z=2.48, p=0.013), between the cingulo-opercular network and 
the FPCN (z=2.01 p=0.044) and between the DMN and the FPCN (z=2.07, p=0.038). An 
increase in negative correlations was observed between the cingulo-opercular network 
and the somatomotor network (z=2.04, p=0.042) and within the cingulo-opercular 
network (z=4.24, p<0.001). 

Figure 3.4: A The distribution of correlations shown for older (lighter) and younger (darker) 
participants. The number of correlations was counted in the separate bins with a size of 0.01. 
On the y-axis, the average number of correlations within the group, divided by the average 
number of correlations across both groups is depicted. A bin was included if at least half of 
the participants had one or more correlations in that particular bin. Stars indicate bins show-
ing a significant difference between older and younger participants (*p<0.05). B Average total 
functional connectivity (representing both strength and number of correlations) within and 
between networks is shown for younger (left) and older (middle) participants. The upper row 
demonstrates the changes in positive correlations, whereas the bottom row demonstrates the 
changes in negative correlations. The right panel shows significant differences in functional 
connectivity between both age groups. A fully filled square indicates decreased total correla-
tions with age, a filled square with a diamond shape indicates increased total correlations with 
age. 
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Uddin and colleagues (2009) argued that the negative correlations between the DMN 
and FPCN result from a unilateral influence of the DMN on the FPCN. Therefore, we tested 
whether decreased intra-network connectivity in either the FPCN or DMN was indeed 
related to a decrease in negative correlations between the DMN and FPCN. We found 
that correlations within the DMN were associated with negative correlations between the 
DMN and FPCN in both younger (r=0.33, p=0.044) and older participants (r=0.47, p=0.005). 
However, correlations within the FPCN were not predictive of negative correlations 
between the DMN and FPCN in younger (r=-0.01, p=0.95) nor older participants (r=-0.06, 
p=0.72). 

3.4.5 Age-related changes in network measures related to cognitive performance 

Cognitive performance was assessed by neuropsychological tests in all participants. 
Since some of the neuropsychological test scores showed high collinearity, we first 
performed factor analysis on the data of all participants (younger and older) to cluster 
the tests. Four factors were identified: verbal learning, loading high on the Rey auditory 
verbal learning test direct recall (0.77) and recognition (0.98); processing speed, with high 
loadings on the trail making tests A (0.84) and B (0.58), symbol substitution test (0.53) and 
matrix reasoning test (0.47); working memory, loading high on the forward (0.52) and 
backward digit span (0.95); crystallized intelligence with high loadings on the trail making 
B (0.45) and adult reading test (0.61). Older participants showed a significant decline of 
performance in verbal learning (z=3.36, p<0.001) and processing speed (z=3.22, p=0.001) 
but not on working memory or crystallized intelligence. 

For each of the network measures that showed an effect of age, we tested whether 
it was related to any of the four neuropsychological test factors, using partial Spearman 
correlations, controlling for the effects of age. Within the younger group, we found 
that reduced modularity was related to better verbal learning (r=-0.37, p=0.025), while 
increased local efficiency in the full graph was related to increased processing speed 
(r=0.37, p=0.028). Modularity and local efficiency did not show significant relations with 
performance in the older group. 

Within the younger group, we found that better verbal learning was associated 
with increased local efficiency and intra-network connections within the DMN (r=0.40, 
p=0.015 and r=0.40, p=0.015 respectively). In addition, better verbal learning was related 
to increased negative correlations between the cingulo-opercular network and the DMN 
and between the FPCN and DMN (r=0.39, p=0.019 and r=0.42, p=0.01, respectively). 
Increased working memory was associated with decreased local efficiency within the 
cingulo-opercular network (r=-0.33, p=0.044) and decreased negative correlations 
between the cingulo-opercular network and the FPCN (r=-0.35, p=0.037). In elderly, 
increased intra-network correlations in the FPCN were related to increased working 
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memory (r=0.34, p=0.043) and crystallized intelligence (r=0.39, p=0.019). In addition, 
increased crystallized intelligence was associated with increased negative correlations 
within the cingulo-opercular network (r=0.35, p=0.042). It should be noted that the 
correlations between behavior and network measures do not survive an FDR correction 
for multiple comparisons. Therefore, these results should be interpreted with caution. 

3.4.6 Age-related changes in network measures related to structural differences

The Jacobian determinant was used as a measure of local gray matter volume 
differences between the individual images and the DARTEL template. In the young, the 
Jacobian determinant (local expansion factor) tended to be larger (1.058) than in the 
older participants (0.978; z=1.72, p=0.085), indicating that on average, the local volume 
was larger in younger than older participants. The same pattern was observed in all 
five separate modules (visual, z=3.09, p=0.002; somatomotor, z=1.92, p=0.055; cingulo-
opercular, z=2.99, p=0.003; FPCN, z=3.99, p<0.001, DMN, z=4.84, p<0.001). 

We found that the average Jacobian determinant over the whole brain correlated 
significantly with the whole brain local efficiency (r=0.31, p=0.006) as well as modularity 
(r=0.32, p=0.005) but not with the global efficiency (r=0.18, p=0.12). When we examined 
the correlations for each specific network, we found that some of the network measures 
that changed with age, were correlated with the Jacobian determinant. For the local 
efficiency per module, we found no significant correlations with the Jacobian determinant 
(visual, r=0.14, p=0.22; somatomotor, r=0.04, p=0.77; cingulo-opercular, r=0.21, p=0.076; 
FPCN, r=0.07, p=0.56; DMN, r=0.16, p=0.16). For the participation coefficient, we found 
a significant correlation with the Jacobian determinant ( r=-0.35, p=0.002) only in the 
somatomotor network. In the other networks no significant relationship was observed 
(visual, r=-0.06, p=0.59; cingulo-opercular, r=-0.10, p=0.41; FPCN, r=-0.06, p=0.61, DMN, 
r=0.02, p=0.85).

3.5 Discussion

Using complex network measures, we identified clear differences in the organization 
of connections within and between functional networks with age. Brain networks in the 
elderly showed decreased modularity and decreased local efficiency within the DMN, 
FPCN and cingulo-opercular networks. Conversely, local efficiency in the visual and 
somatomotor networks was not affected by age while the participation coefficient of 
these networks was increased in elderly. Additional analyses showed that this increase 
in participation coefficient was due to increased connectivity between the visual and 
somatomotor network, as well as, between the visual and cingulo-opercular network.
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In younger adults, functional brain networks were found to be highly modular, as 
reflected in high intra-network connectivity along with few inter-network connections 
(Ferrarini et al., 2009; Meunier et al., 2010). In this study we have shown that this modularity 
is reduced in elderly, indicating that functional brain networks become less differentiated 
or less specific with age. These findings are in accordance with our previous study, where 
we used seed based correlation analyses to demonstrate an increase in inter-network 
connections along with decreased intra-network connections during task performance 
(Geerligs et al., 2012a). The present study extended these findings in two ways. First, the 
current findings demonstrate that age-related changes in functional connectivity are 
general and not restricted to performance during specific tasks. Second, the use of graph 
theory allowed us to quantify the effects of age on modularity. These effects are large, 
there is only little overlap in the modularity values of younger and older participants (see 
figure 3.2A). 

The dedifferentiation theory suggests that overactivation of brain areas in elderly might 
be due to a decrease in functional distinction between brain areas (Baltes & Lindenberger, 
1997; Carp et al., 2011a; Dennis & Cabeza, 2011; Park et al., 2004). In line with our previous 
study (Geerligs et al., 2012a), the current findings show that dedifferentiation also occurs 
on the level of functional networks. Functional networks show increased inter-network 
connections in older age along with decreased intra-network connections, which makes 
them less distinct. These age-related changes in functional connectivity could be related 
to a dedifferentiation of activation patterns. Although the term dedifferentiation has 
often been used to indicate a link with age-related declines in performance, the increase 
in inter-network connections might also have a compensatory role.

Along with reduced modularity, the local efficiency across the whole network was 
reduced in elderly, while global efficiency was not affected by aging. The latter finding 
might be related to the increase in inter-network connections with age. Our findings are 
partly in accordance with previous results (Achard & Bullmore, 2007), that have shown a 
reduction in local efficiency and global efficiency with age, while modularity was reported 
to be stable across age groups (Meunier et al., 2009a). Differences between those results 
and the current findings may be related to the regional parcellation of the brain that was 
used in the previous study for graph construction (90 vs. 235 nodes in the present study), 
which has a limited ability to represent functional networks due to coarse nodes which 
encompass different functional areas (Power et al., 2011). 

It has been suggested that over-activations in elderly are caused by less efficient use 
of neural resources (reduced cost efficiency); this theory has related over-recruitment of 
brain areas to less efficient performance in elderly (Morcom et al., 2007; Rypma et al., 
2007; Stevens et al., 2008). The decline in local efficiency can be interpreted as a sign of 
reduced cost efficiency in the elderly brain, that is, with the same number of connections 
(cost) the efficiency is decreased. Because of the large metabolic costs of supplying 
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the brain with resources, minimizing these costs is likely one of the selection pressures 
during evolution (Chen et al., 2006). Minimal metabolic costs can be achieved through 
high clustering of connections in brain networks (i.e. high local efficiency) along with 
sparse long range connections which are more costly but greatly increase the speed of 
information transfer (Bullmore & Sporns, 2012; Buzsáki et al., 2004; Kitzbichler et al., 2011). 
Even though for older and younger participants the analyzed graphs contained the same 
number of connections, the local efficiency in the resulting network was smaller in the 
older participants. Furthermore, we found an increase in the number of inter-modular 
connections in older compared to younger participants. Inter-modular connections tend 
to be longer and therefore more costly, than intra-modular connections (Meunier et al., 
2010). Together, these findings indicate a decrease in the cost efficiency of functional 
networks of elderly. Note that we have shown that the reduction in cost efficiency is not 
only present during task performance (Morcom et al., 2007; Rypma et al., 2007; Stevens et 
al., 2008) but also during resting state conditions. 

In addition to comparisons between age groups, we also studied the correlations 
between the global network measures (modularity and global and local efficiency) and 
chronological age within the older group. No significant correlations were observed, 
which suggests that the changes in functional connectivity are not linearly related to 
chronological age. This fits with the model presented in a recent review article of Grady 
(2012), which illustrates how the effect of aging on functional connectivity could be 
mediated by many different (environmental) factors. These mediating variables (e.g., 
such as stress, education, exercise, genes, life experiences and diet (Kramer et al., 2004; 
Milgram et al., 2002; Pesonen et al., 2013)) might obscure a linear relation between aging 
and functional connectivity. 

Besides age-related changes in global network properties, we showed changes in 
connectivity within and between specific functional networks in the older brain. Inter-
network connections increased with age, primarily between the visual, somatomotor 
and cingulo-opercular networks. Local efficiency and intra-module correlations within 
the cingulo-opercular network, the FPCN and the DMN decreased with age. These results 
are in line with a recent study by Tomasi and Volkow (2012). They examined functional 
connectivity in relation to aging and showed that long range connectivity decreased 
from areas within the DMN and FPCN, while long range connectivity increased from areas 
in the somatomotor network, thalamus and cerebellum. 

Previous research has linked age-related decreases in connectivity within the DMN to 
decreased memory, executive functioning and processing speed (Andrews-Hanna et al., 
2007; Geerligs et al., 2012a; Sambataro et al., 2010). Decreased connectivity within the 
FPCN with age has also been shown before (Andrews-Hanna et al., 2007; Madden et al., 
2010; Rieckmann et al., 2011) and was associated with more efficient semantic retrieval 
in both younger and older participants (Madden et al., 2010). In line with these findings, 
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we found that both connectivity within the DMN and local efficiency within the DMN 
correlated positively with verbal learning in younger participants. In addition, we found 
that connectivity changes were related to cognitive functioning; higher connectivity 
within the FPCN was associated with better working memory and crystallized intelligence 
in elderly. Although these findings are in line with the results in the literature, the 
correlations with behavior did not survive corrections for multiple comparisons and 
should therefore be interpreted with caution. Note that the decreases in intra-network 
connections occurred in three networks involved in higher level functions, while the 
networks involved in primary sensory and motor processing maintained intra-network 
connections with age. The findings in the literature as well as the observations in the 
current study suggest that the decreased connectivity within the DMN and FPCN might 
be related to cognitive decline in the aging brain. 

The FPCN and the DMN formed one functional network in elderly in the module 
decomposition, while they formed separate networks in younger participants. In addition, 
decreased negative correlations between the FPCN and the DMN were observed with age. 
In several studies, it has been shown that older participants show reduced suppression 
of the DMN during performance of cognitive tasks (Grady et al., 2006; Lustig et al., 2003; 
Persson et al., 2007; Sambataro et al., 2010). In addition, the ability to flexibly decouple 
the FPCN from the DMN in tasks requiring an external focus was shown to be reduced 
with age (Spreng & Schacter, 2011). These findings were argued to reflect a decline in 
neuromodulation at the level of larger-scale brain networks due to deficits in executive 
control. The current results suggest that the reduced integrity of both the DMN and the 
FPCN, as well as the decreased negative correlations between the two networks, result 
in reduced differentiation of these two networks. This dedifferentiation might underlie 
the reduced ability of elderly to modulate the two networks separately during task 
performance. 

The correlation with behavior suggests that increased negative correlations between 
the DMN and the FPCN in the elderly might be related to improved verbal learning. 
This is in agreement with previous studies that have shown an association between 
negative correlations between FPCN and DMN and better working memory and flanker 
task performance in younger participants (Hampson et al., 2010; Kelly et al., 2008). It has 
been suggested that the negative correlations between the DMN and FPCN are due to 
a unilateral influence of the DMN on the FPCN (Uddin et al., 2009). Supporting this idea, 
we have shown in the present study that the negative correlations between DMN and 
FPCN are related to the connectivity strength within the DMN but not to the connectivity 
strength within the FPCN, in older as well as younger participants. As aging is related 
to a decrease in intra-DMN connectivity as well as a decrease in DMN-FPCN negative 
correlations, the current findings suggest that both phenomena might be related to the 
reduction in intra-DMN connectivity. 
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3.5.1 Limitations

We found some interesting relations between performance on neuropsychological 
tests and complex network measures. Whereas some of the results are well in line with 
previous literature, suggesting that decreased connectivity within functional networks is 
related to reduced levels of task performance, for other results the interpretation is less 
straightforward. It is important to note that correlations between cognitive performance 
and network measures did not survive correction for multiple comparisons, therefore, 
they should be interpreted with caution to avoid speculation. However, they do provide 
a starting point for future studies. 

Possibly, older and younger participants had different levels of arousal during the 
scanning session. However, there are a number of reasons why it is unlikely that such 
differences were the cause of the age-related effects on functional connectivity we 
observed. First of all, none of the participants mentioned that they had fallen asleep during 
the debriefing. Second, previous studies, that have examined functional connectivity 
differences in awake versus sleeping participants, showed only minor changes in 
functional connectivity (Horovitz et al., 2008; Larson-Prior et al., 2009). Furthermore, these 
changes were very different from the effects of aging that we observed in the current 
study (i.e. only a small increase in connectivity was observed during sleep within the DAN 
and no change was observed in the DMN in Larson-Prior et al. 2009). 

In addition to functional changes, aging is known to be related to changes in 
underlying brain structure (Park & Reuter-Lorenz, 2009). The functional networks in which 
we identified an age-related decrease in local efficiency in the present study show overlap 
with areas that generally show age-related reductions in grey or white matter. Reduced 
white matter is generally observed in frontal areas of the aging brain, whereas gray matter 
reductions are mainly found in frontal and parietal cortices, as well as in the insula and 
hippocampus (Good et al., 2001; Gunning-Dixon et al., 2009; Madden et al., 2009; Raz et 
al., 2005; Resnick et al., 2003). We therefore performed additional analyses to examine the 
relation between complex network measures and structural differences. The observed 
correlations between whole brain local efficiency and modularity with the Jacobian 
determinant indicated that for these measures, it was not possible to disentangle the effects 
of aging on structural differences from the effects on functional connectivity. However, 
for the measures of local efficiency per module, we found no significant correlation with 
the Jacobian determinant. In addition, only for the somatomotor network, but not for the 
visual network, we observed a significant correlation between the Jacobian determinant 
and the participation coefficient. These results demonstrate that not all of the observed 
differences in complex network measures can be attributed to age-related differences in 
brain structure. This is in line with the results of a previous study (Geerligs et al., 2012a), 
in which we showed that changes in functional connectivity cannot be fully explained by 
changes in gray matter volume. Nevertheless, based on the results of the present study, 
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it is difficult to conclude whether the reduction of gray matter in specific functional areas 
(nodes) and/or the reduced white matter integrity between functional areas (edges) is an 
underlying cause of the decline in intra-network connections. It would be important for 
future longitudinal studies to assess to what extent the changes in functional connectivity 
are indeed driven by the changes in gray and white matter. 

3.5.2 Conclusions

In the current study we have shown that aging has pronounced effects on specific 
functional networks in the brain. In general, modularity and local efficiency were 
reduced and the distinction between the DMN and FPCN was diminished. Moreover, we 
have shown that the decreases in intra-network connections did not occur in primary 
processing networks, but were restricted to networks involved in higher order cognitive 
processes. Together with the increase in connectivity between visual and somatomotor 
networks, these results suggest a shift in the balance between intra- and inter-network 
connections. The results demonstrate that a brain-wide analysis approach of functional 
connectivity in the aging brain is fundamental to understand how age affects integration 
of information, both within and between networks.

3.6 Suppelemtary material: graph thresholding

3.6.1 Introduction

Thesholding is generally required for graph theoretical analyses of connectivity matrices 
to enhance the contrast between relevant (strong) and irrelevant (weak) connectivity 
values (van Wijk et al., 2010). The success of this approach is dependent on the selection 
of an appropriate threshold. Here, we present a method to select the optimal number of 
edges (k) in each subjects graph based on the stability of the presence of this edge across 
subjects. First we present the details of the method and then we investigate its behavior 
using simulations.

3.6.2 Method

Let n be the number of nodes within a network and c the maximum number of 
undirected edges between the nodes. Let s be the total number of subjects. Let Q be an 
s by c matrix defining the strength (e.g. based on correlation of temporal behavior) of all 
possible edges per subject. Let Bk be the binarized version of Q, where the k strongest 
edges per subject are set to 1 and all others are set to 0. Now let Fk be a 1 by c matrix, 
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where the ith element of Fk (fi
k) is the number of subjects for which the ith edge was among 

the k strongest. For each possible value j (1 to s) in Fk, pj
k is now defined as: 

where  

pj
k represents the probability that an arbitrary edge is selected j times. For this estimate to 

be reliable, sufficient edges have to be present. 

Now define . 

The entropy (Hk) contained in Pk is now given by:       

The entropy is the inverse of the information content of Pk (Shannon, 1948). This value 
is compared against the value obtained for a random network. In a random network the 
chance that a specific edge is among the k-strongest for a given subject, is equal for all 
edges. Randomized networks were derived from Bk retaining the degree distribution over 
nodes(Maslov & Sneppen, 2002). For this random network, a value Hr can be calculated as 
above, where the subscript r signifies the random network. An optimal value of k would 
be the one where the information gain from Hr to H is maximal.

3.6.3 Simulation

To evaluate the above method, a series of simulations using surrogate data was performed. 
The strength of an edge was simulated as the correlation coefficient between the two 
time courses belonging to the nodes it connects. In all simulations it was assumed that 
across all subjects, an edge is either relevant (E1) or irrelevant (E0), that is, the correlation 
is 1 or 0, respectively, in the absence of noise. A variable amount of noise was added to 
the time courses to manipulate the overlap of the correlation distributions of E0 and E1 
edges, with noise to signal ratios of 1.5 , 2.5 and 3.5. The number of nodes was fixed at 200 
and the number of subjects at 80, the number of E1-edges was set to 5, 10, 20 or 30 %. 

3.6.4 Results and discussion

The entropy value of a matrix P will depend upon the number of edges selected (at a 
threshold of 100% all elements will have a value of one and the entropy will be zero). 
Therefore, it is essential to compare the entropy of the network under investigation to 
the entropy of a randomized network. Comparing the information content for the actual 
network with a random network is intuitive. 
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The optimal value of k is found when the information in the actual network is as unique 
as possible (i.e., highest stability across subjects), but more importantly, least resembles 
the result for a random network. 

The results of the simulation (supplementary figure 3.1) demonstrate a number of 
properties of the current method. When the E1 and E0 distributions are perfectly separable 
(under low noise to signal conditions), the optimal value of k is equal to the number of E1 
edges. Under these conditions, the random network shows a steady increase in entropy 
with increasing threshold, while the actual network only shows an increase in entropy 
when more edges than the total number of E1 edges are selected. As the noise increases, 
the optimal value of k is lower than the actual number of E1 edges. This is because the 
proportion of E0 edges in all selected edges increases for the actual network, given a 
value of k, thus resulting in less stable results across participants. Supplementary figure 
3.2 demonstrates that the application of this method to the real data leads to comparable 
overall behavior. Furthermore, the optimal values of k, in percentages, were similar in 
both older and younger adults.

Supplementary figure 3.1: The results of the simulation. A The correlation distribution of the E0 
and E1 edges for varying noise to signal ratios. The number of E1 edges was fixed at 10%. B The 
dashed lines show the entropy for the actual and random networks. The solid line shows the dif-
ference between random and actual networks, for varying noise to signal ratios. Again the num-
ber of E1 edges was fixed at 10%. C The effect of varying the number of E1 edges on the entropy 
difference between random and actual networks is depicted for different noise to signal ratios. 
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Deriving a threshold in this way eliminates the need to try a large range of thresholds 
as described in previous studies (e.g. Achard & Bullmore, 2007; Van Den Heuvel et al., 
2009; Zhao et al., 2012), giving more validity to the resulting statistics. In addition, we 
found that the use of P as the input to the module decomposition algorithm (Blondel et 
al., 2008) provides more stable results than using a matrix in which the edge strengths 
were averaged over participants (data not shown). Additional analyses for a range of 
thresholds, show that the chosen threshold is indeed within the range for stable results 
using global efficiency, local efficiency and modularity (figure 3.3). However, it should 
be noted that the chosen threshold was designed to be optimal for characterizing the 
network on a level of the group, not necessarily for the individual subject. 

Supplementary figure 3.2: A The correlation distributions for young and older adults are shown. 
B The dashed lines show the entropy for the actual and random networks. The solid line shows 
the difference between random and actual networks. For older participants, the maximum dif-
ference is at 2.6%, for young participants at 2.8%.
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Supplementary figure 3.3: Age differences in complex network measures after more stringent 
corrections for motion (cutoff 0.3 mm instead of 0.5 mm). A Global network measures are 
presented in boxplots for older (lighter) and younger (darker) participants. From left to right, 
global efficiency, local efficiency and modularity. Stars indicate a significant difference between 
the older and younger participants (***p<0.001). B For each of the functional networks (mod-
ules), participation coefficient and local efficiency are displayed in boxplots for younger and 
older participants. The darker boxplots represent the younger participants, the lighter boxplots 
the older participants. Difference between the older and younger groups; *p<0.05, **p<0.005, 
***p<0.001.C Differences in average total functional connectivity between both age groups. A 
fully filled square indicates decreased total correlations with age, a filled square with a diamond 
shape indicates increased total correlations with age.
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3.7 Supplementary material: additional analyses

The analyses presented in figure 3.2 were repeated with a more stringent criterion for 
movement detection. Instead of using 0.5 mm as the cutoff, all scans with 0.3 mm or more 
movement were excluded in the computation of the correlation matrix. The additional 
criterion of a maximal intensity change of 3 standard deviations remained the same as in 
the previous analysis. The new criteria led to the removal of 16% of all scans on average 
for the younger participants and 20.7% of all scans in the older group. 

 The overall differences between age groups in module decomposition remained the 
same after this analysis (NMI=0.63, p=0.021). There were significant differences between 
groups in the visual and the combined DMN and FPCN modules (NMI=0.66, p=0.01 and 
NMI=0.39, p=0.005, respectively), whereas no significant differences were observed in 
the somatomotor and the cingulo-opercular modules (NMI=0.73, p=0.26 and NMI=0.65, 
p=0.65, respectively). Results of the analysis of complex network measures as well as 
analysis of connectivity within and between networks are shown in supplementary 
figure 3.3. The effects of age group on all complex network measures remained the same 
regardless of the strictness of the motion detection criterion. The analysis of within and 
between network total correlations also gave highly similar results after the additional 
motion correction. The difference between the two analyses was that the age-related 
increase in negative connectivity between the somato-motor and the cingulo-opercular 
network was reduced to a trend effect (z=1.91 p=0.056) and that we now observe an 
age-related decrease in positive connectivity between the FPCN and the DMN (z=2.13, 
p=0.03). 

Correlations between behavioral measures and networks measures also remained 
highly similar. There were two exceptions in the younger group: the negative correlation 
between local efficiency in the cingulo-opercular network and working memory (r=-
0.28, p=0.10) was no longer significant, nor was the positive correlation between verbal 
learning and overall connectivity within the DMN (r=0.31, p=0.06). In the older group, the 
correlation between working memory and connectivity within the FPCN was now just 
above the level of significance (r=0.33, p=0.051), just like the relation between negative 
connectivity in the cingulo-opercular network and crystallized intelligence (r=0.33, 
p=0.051). Note that also after additional motion correction, the correlations between 
behavioral measures and network measures do not survive correction for multiple 
comparisons.

In addition, to ensure that changes in high frequency noise between the two age 
groups did not influence the results, the analyses were repeated after low pass filtering 
of the ROI time courses. A zero-phase shift Butterworth filter was applied with a cut-off of 
0.08 Hz and a filter order of 15. Due to the filter lag, the first and last 15 time points in the 
data were discarded in the correlation analysis. 
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The results of this analysis are shown in supplementary figure 3.4 and demonstrate 
that the effect of age on complex network measures was not affected by low pass filtering. 

As a final check, we investigated the effect of global signal regression on the results. 
In literature, the use of global signal regression has been debated. On the positive side, 
studies have shown that global signal regression can improve the local specificity of 
correlations (Weissenbacher et al., 2009), reducing correlations with a non-neural origin. 
In addition, the stability of the functional connectivity across scans was found to increase 
after global signal regression (Song et al., 2012). On the other hand, it has also been shown 
that global signal regression might induce negative correlations that are not present prior 
to this correction procedure (Murphy et al., 2009; Weissenbacher et al., 2009). 

The critical issue here is the presence of signal of interest in the global signal. When 
the global signal consists purely of physiological and non-physiological noise, global 
signal regression works well. However, when a substantial proportion of the global signal 
consists of resting state fluctuations (with a neural origin), the global signal regression

Supplementary figure 3.4: Age differences in complex network measures after additional low-
pass filtering (Butterworth filter, cut-off = 0.08 Hz, filter order = 15). A Global network measures 
are presented in boxplots for older (lighter) and younger (darker) participants. From left to right: 
global efficiency, local efficiency and modularity. Stars indicate a significant difference between 
the older and younger participants (***p<0.001). B For each of the functional networks (mod-
ules), participation coefficient and local efficiency are displayed in boxplots for younger and 
older participants. The darker boxplots represent the younger participants, the lighter boxplots 
the older participants. Difference between the older and younger groups; *p<0.05, **p<0.005, 
***p<0.001.
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Supplementary figure 3.5: Age differences in complex network measures when no global signal 
regression is applied. A Global network measures are presented in boxplots for older (lighter) 
and younger (darker) participants. From left to right: global efficiency, local efficiency and 
modularity. Stars indicate a significant difference between the older and younger participants 
(***p<0.001). B For each of the functional networks (modules), participation coefficient and local 
efficiency are displayed in boxplots for younger and older participants. The darker boxplots rep-
resent the younger participants, the lighter boxplots the older participants. Differences between 
the older and younger groups; *p<0.05, **p<0.005, ***p<0.001. C Differences in average total 
functional connectivity between both age groups. A fully filled square indicates decreased total 
correlations with age, a filled square with a diamond shape indicates increased total correlations 
with age.
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 might negatively affect the results of the functional connectivity analysis (Chen et al., 
2012). 

To examine the influence of global signal regression in the present study, we compared 
the initial results with the results of additional analyses in which no global signal regression 
was applied. We found that the effects of aging on brain-wide network measures were the 
similar with and without global signal regression; older participants had reduced local 
efficiency and modularity (see supplementary figure 3.5A). It is important to note that 
the variance of the complex network measures was larger in the analysis without global 
signal regression, in particular for the modularity. 

Whereas in the initial analysis, the results of the graph analysis corresponded very 
well to the analysis of total correlations, this was no longer the case after global signal 
regression. Similar to the original analysis, the participation coefficient indicated an 
increase in inter- versus intra-network connections in older adults in the visual and 
somato-motor networks (see supplementary figure 3.5B). However, the age-related 
increase in total positive connectivity between the visual and somato-motor networks 
was no longer significant (supplementary figure 3.5C). 

For the within network connectivity we observed the same reduction of correspondence 
between different measures with and without the use of global signal regression. The 
analysis of total positive correlations still showed the significant decrease in connectivity 
in older adults in the DMN, the FPCN and the cingulo-opercular network. However, the 
local efficiency decrease in older adults was only significant in the DMN, whereas a trend 
was observed in the FPCN (z=1.87, p=0.062) and no significant difference was present in 
the cingulo-opercular network (z=1.4, p=0.16). The results with and without global signal 
regression thus show the same pattern of changes in the aging brain. However, without 
global signal regression correspondence between the difference measures was reduced. 

NMI values were used to assess the similarity between module decompositions in the 
two age groups. To test whether the similarity was lower than expected by chance, we 
used a permutation testing procedure (see methods section). Supplementary figure 3.6 
shows the null distributions of NMI values per module, resulting from the permutation 
procedure, along with the actual similarity (indicated by a dot) between the two age 
groups. 
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Supplementary figure 3.6: The null distribution of NMI values resulting from the permutation 
testing procedure is shown in the boxplots. The black dot represents the actual NMI value of the 
correspondence between the two age groups. Significant differences in module decomposition 
were only observed in the visual module and the DMN&FPCN module. 
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4 Flexibility of functional connectivity in the aging brain

4.1 Abstract

Recent studies have shown that aging has a large impact on connectivity within and 
between functional networks. An open question is whether elderly still have the flexibility 
to adapt functional network connectivity (FNC) to the demands of the task at hand. To 
study this, we collected fMRI data in younger and older participants during resting state, 
a selective attention task and an n-back working memory task with varying levels of 
difficulty. Spatial independent component (IC) analysis was used to identify functional 
networks over all participants and all conditions. Dual regression was used to obtain 
participant and task specific time courses per IC. Subsequently, functional connectivity 
was computed between all ICs in each of the tasks. Based on these functional connectivity 
matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total 
influence of each IC in the complete graph of ICs. The results demonstrated that elderly 
remain able to adapt FNC to task demands. However, there was an age-related shift in the 
impetus for FNC change. Older participants showed the maximal change in SEC patterns 
between resting state and the selective attention task. Young participants, showed the 
largest shift in SEC patterns between the less demanding selective attention task and 
the more demanding 2-back task. Our results suggest that increased FNC changes from 
resting state to low demanding tasks in elderly reflect recruitment of additional resources, 
compared to young adults. The lack of change between the low and high demanding 
tasks suggests that elderly reach a resource ceiling.  

4.2 Introduction

Functional connectivity is an important measure that can be used to assess information 
transfer between brain areas. Numerous studies have demonstrated the existence of 
different functional networks. These are defined as groups of brain areas that tend to show 
high functional connectivity and have a particular functional signature (Biswal et al., 1995; 
Greicius et al., 2003; Sporns et al., 2004). There is ample evidence for a relation between 
functional connectivity patterns and specific task demands in young participants. For 
example, Hampson et al. (2002) showed that functional connectivity between language-
related brain areas increased when participants listened to speech compared to resting 
state. In addition, Shirer et al. (2011) found that connectivity increased between the 
dorsal attention network (DAN) and the basal ganglia during a subtraction task compared 
to resting state. These, and similar findings (e.g. Dew et al., 2012; Hare et al., 2010; Sala-
Llonch et al., 2012; Sterpenich et al., 2006; Wolbers et al., 2006), illustrate that connectivity 
within and between (functional) networks is dependent on task demands. 
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There is strong evidence that connectivity within specific functional networks, that 
are involved in higher level cognitive functioning, is reduced in elderly (Andrews-Hanna 
et al., 2007; Damoiseaux et al., 2008; Grady et al., 2010; Sambataro et al., 2010). However, 
connectivity between different functional networks tends to increase in older compared 
to younger adults (Geerligs et al., 2012a). These functional connectivity changes affect 
cognitive functioning in elderly. For example, a decrease in connectivity within the default 
mode network (DMN) has been linked to deterioration in performance on processing 
speed and working memory tasks in elderly (Andrews-Hanna et al., 2007; Sambataro et 
al., 2010). 

Most aging studies so far, have focused on age-related changes in brain activity. These 
studies have provided evidence that the adaptation of brain activity to task demands 
proceeds differently in younger and older adults. Older adults often show additional 
activation compared to young adults, specifically in prefrontal areas, when comparing 
a task performance to a baseline condition, as well as comparing increasing levels of 
task demands (Cabeza, 2002; e.g. Cabeza et al., 2004; Madden et al., 1999; Mattay et al., 
2006; Reuter-Lorenz et al., 2000). It has been suggested that these increased activations 
reflect the response of the brain to processing inefficiencies, leading to the recruitment of 
additional or ‘‘reserve’’ resources (Reuter-Lorenz and Cappell, 2008; Stern et al., 2005). The 
downside of this additional recruitment is that older adults appear to reach a resource 
ceiling as the task demands increase further. At this point, activation does not increase 
anymore and might even decrease, which is associated with a drop in task performance 
(Reuter-Lorenz and Cappell, 2008). 

Although many studies have demonstrated the differences between younger and older 
groups in adaptation of brain activation to task demand, it is not known whether elderly 
are able to adapt the connectivity between different brain networks to the demands of 
the task at hand, in a similar manner as young adults. This question is especially important 
in the context of the age-related changes in connectivity both within and between 
functional networks that have been observed. Previous work by Spreng and Schacter 
(2011) has provided a first indication that flexibility of interactions between networks 
is reduced in older adults. They demonstrated that in younger adults the fronto-parietal 
control network (FPCN) was flexibly coupled to either the DMN or the DAN, depending 
on the task demands (involving autobiographical memory or visuo-spatial planning, 
respectively). In older adults, this flexibility was reduced and the FPCN was coupled with 
the DMN in both task conditions. 

In the current study we focus on connectivity between functional networks, that is, 
functional network connectivity (FNC). A procedure to study FNC was first described 
by Jafri and colleagues (2008). This procedure is based on the identification of different 
functional networks, using spatial independent component analysis (ICA). ICA can be 
applied to decompose fMRI data into a set of maximally spatially independent voxelwise 
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maps and their corresponding time-courses (Calhoun et al., 2001). Although the 
resulting spatial maps of independent components are maximally independent, their 
corresponding time-courses can show considerable temporal correlations. Therefore, the 
temporal correlations between different ICs or “functional networks” can be computed 
and compared between different conditions (Arbabshirani et al., 2012). It should be 
noted that there is no fixed number of functional networks in the brain. The number of 
networks that is identified in a given study depends on the scale on which these networks 
are investigated. If one were to investigate on a smaller scale, functional networks can 
generally be split again into distinct sub networks (Meunier et al., 2009b; Meunier et al., 
2010). 

This method allows testing whether functional connectivity between pairs of ICs is 
modulated by particular task demands. However, a disadvantage of this approach is that it 
requires a large number of multiple comparisons. Alternatively, task related modulations 
of functional connectivity can be indexed by looking at centrality (Lohmann et al., 2010); 
a class of graph theoretical measures that can be used to assess the prominence or 
functional importance of each IC, within the complete graph of ICs. A graph is a schematic 
representation of a network, which consists of a set of nodes (in this case the ICs) and 
edges (the connections between them). Depending on the number and positioning of 
the edges, one IC can be more central in the graph than another. Task related changes in 
centrality can be used as an index of adaptations to task demands. The centrality of an IC 
can be measured in a number of different ways. The simplest way to define centrality of 
an IC is to look at its degree, defined as the number of connections an IC has with other 
ICs. Degree defines an IC with many connections as more central in the graph than an 
IC with few connections (Freeman, 1979). However, the degree is not able to measure 
the influence of an IC throughout the graph. Therefore, we instead used the eigenvector 
centrality, to capture not only the direct connections of an IC but also its influence 
throughout the graph (Bonacich, 1972; Bonacich, 2007). Eigenvector centrality can be 
seen as a sum of all direct connections, weighted by the centrality of indirect connections, 
thereby taking into account the entire connectivity pattern. 

In the current study, fMRI was recorded in both younger and older participants during 
eyes closed resting state, during a selective attention task and during a working memory 
task. Functional networks are each involved in certain (cognitive) functions. It is likely that 
depending on the demands of the task as hand, different ICs will play a more central role in 
the graph of ICs. Therefore, it is expected that the pattern of eigenvector centrality over ICs 
will change depending on the task at hand. To this end, we used correlations to investigate 
the similarity of eigenvector centrality over all ICs between different experimental 
conditions. For example, if the FNC is independent of a specific task, we would expect the 
eigenvector centrality pattern in the tasks to be similar, that is, we would expect a high 
correlation over ICs. On the other hand, low correlations would reflect a task or condition 
dependent change in eigenvector centrality. The main aim of our study was to assess 
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whether condition-related changes in eigenvector centrality patterns were dependent 
on age; are elderly able to flexibly adapt FNC to the demands of the task at hand, similar 
to young adults? Based on effects of aging on brain activity as discussed above, it is could 
be hypothesized that older participants adapt FNC patterns to the task demands in a 
different way than young. By comparing the similarity of eigenvector centrality patterns 
between younger and older participants across conditions, we can assess differences 
in the age-related modulation of FNC. In addition, we examined these changes in more 
detail by investigating the age- and condition related changes in eigenvector centrality, 
separately for each IC.

4.3 Methods

4.3.1 Participants

Forty younger (21 males, Mage = 20.6 years, range: 18-26 years) and 40 older adults (24 
males, Mage = 64.9 years, range: 59-74 years) participated in the experiment after giving 
informed consent. All participants were right handed and had no history of neurological 
or psychiatric disorders. They had normal or corrected-to-normal visual acuity. All 
participants scored 26 or higher on the Mini Mental State Examination (MMSE, Folstein et 
al., 1975) and below 16 on both subscales of the Hospital Anxiety and Depression Scale 
(HADS, Zigmond and Snaith, 1983). The study adhered to the Declaration of Helsinki and 
was approved by the local ethics committee of the University Medical Center Groningen, 
the Netherlands. Data of one young and one older participant were lost due to technical 
problems. One older participant was excluded because a brain abnormality was detected. 

4.3.2 Procedure and cognitive tasks

fMRI data was recorded in three different runs, in which participants performed an 
n-back task, a selective attention (SA) task and 10-minutes of resting state. A schematic 
display of the selective attention as well as the n-back task is presented in Figure 4.1. 
During resting state, participants were instructed to keep their eyes closed, but not to 
fall asleep. Results on each of these conditions separately will be reported elsewhere. The 
order of the tasks was randomized over participants. For both tasks, stimulus generation 
and response collection were controlled using E-prime 1.2 (Psychology Software Tools, 
Inc., Sharpsburgh, PA). Participants viewed the stimuli via a mirror mounted on the head 
coil. In both tasks a fixation cross remained on screen throughout the task presentation. 
Responses were given by pressing a button with the right index or middle finger. The 
specific association between the button and the response finger was randomized over 
participants. 
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4.3.2.1  N-back task

The n-back task had three load conditions; 0-, 1- and 2-back. Each block started with the 
presentation of task instructions. Subsequently, in each trial participants were presented 
with a single stimulus letter (500 msec). Each letter was randomly positioned in one of 8 
possible locations (horizontal X axis, vertical Y axis and the lower and upper position of 
both diagonals). The inter trial interval varied randomly between 1000 and 2000 msec. In 
the 0-back load condition, the target was the letter ‘x’. In the 1-back load condition, the 
target was any letter identical to the letter immediately preceding it. In the 2-back load 
condition, the target was any letter identical to the letter presented 2 trials ago. The visual 
input was identical for all loads and the conditions could only be differentiated through 
the instructions received. Each load condition was presented twice, resulting in a total 
of 6 task blocks, with 100 trials each. In each block, targets occurred randomly in 50 % of 
the trials. Blocks were followed by a 30 second fixation cross. The order of the task loads 
was semi-randomized between participants. Letters were randomly presented either in 
upper-case (50%) or lower-case (50%). Participants were instructed to ignore the case of 
the letter and to focus on its identity. The letters were chosen from a set of 18 consonants 
derived from the Dutch alphabet (all consonants except the letters Q, Y and J). 

4.3.2.2 Selective attention task

After general task instructions, 6 experimental blocks, each containing 63 trials were 
presented. At the start of a block, participants were presented with a target letter (5 
sec), followed by a cue frame, indicating on which diagonal (right-up, left-up) relevant 
information would be presented. In each trial, the stimuli, consisting of 4 letters 
positioned at the end points of both diagonals, were presented for 300 msec followed 
by an interstimulus interval varying randomly between 2000 and 2500 msec. Participants 
were required to press the ‘yes’ button when the target letter was presented on a relevant 
diagonal position [target]. In all other cases (i.e., target letter on irrelevant diagonal 
positions [irrelevant target] or no target letter presented [nontarget]) they should press 
‘no’. Relevant target trials made up 33% of the total number of trials. There were never two 
target letters present in one stimulus frame. Stimulus letters were randomly chosen from 
the alphabet, excluding the letters g, i, o, q, u, x, and y. Each block was followed by a 30 
second fixation cross. 

4.3.3 Behavioral data

Participants were excluded based on behavioral data if there were indications that they 
did not understand/follow the task instructions. Data of three younger participants and 
one older participant were excluded because their accuracy on the SA task was around or 
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below chance level (below 60%) in one or more task conditions (targets, nontargets and/
or irrelevant targets). For the n-back task, all participants performed the 0- and 1-back task 
with over 70% accuracy, indicating that the task instructions were clear. On the 2-back 
task, 4 participants performed around or below chance level (below 60% accuracy). 
However, this likely reflects the difficulty of the task and not the lack of understanding of 
task instructions. Therefore data of these participants were included in the analysis. Thus, 
the behavioral and ICA analyses were performed on the data of 36 younger and 37 older 
participants. For each participant and each task the median reaction time for correct 
responses and the mean accuracy scores were used in subsequent analyses. Fast guesses 
(responses faster than 200 msec) and responses slower than the minimum interstimulus 
interval (1500 msec for the n-back task and 2000 msec for the SA task) were regarded as 
incorrect responses. 

  Figure 4.1: Schematic description of the n-back and the selective attention tasks. 
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4.3.4 Image acquisition

FMRI scans were obtained with a three tesla MR scanner (3T Achieva, Philips Medical 
Systems, Best, Netherlands), with echo planar imaging (EPI) capability and an eight channel 
SENSE head coil. Functional images were obtained with the following pulse sequence 
parameter settings: single shot EPI; 37 slices; slice thickness = 3.5 mm; no gap; field of 
view = 224 mm; matrix scan size 64 by 64; transverse slice orientation; repetition time 
(TR) = 2000 msec; echo time (TE) = 30 msec; minimal temporal slice timing = 1836 msec; 
flip angle 70°. A 3-D T1-weighted anatomical scan of the entire brain was obtained for 
each participant using the following pulse sequence parameters: field of view = 256 mm; 
matrix scan size 256 by 256; 170 slices; slice thickness 1 mm; transverse slice orientation; 
TE = 3.6 msec; TR =9 msec; flip angle 8°.

4.3.5 fMRI data analysis

Offline processing was performed using the statistical parametric mapping software 
package (SPM 8; http://www.fil.ion.ucl.ac.uk/spm/software). The functional images 
were motion-corrected and coregistered to the anatomical scan. The coregistration was 
checked visually and adjusted manually when required. Bias regularization (SPM 8) was 
used to reduce signal intensity variations due to field inhomogeneities in both structural 
and functional images. For functional images, the regularization was initially applied to 
the first and the last functional scan within each run. Based on these two corrections, an 
average correction factor was computed for each voxel, which was applied to all scans 
in each run. A group specific anatomic template was created (for young and elderly 
participants together), using Diffeomorphic Anatomical Registration Exponentiated Lie 
algebra (DARTEL), to optimize inter-participant alignment (Ashburner, 2007). Data were 
smoothed with an 8 mm full-width half maximum (FWHM) Gaussian kernel. 

4.3.6 Independent component analysis

Data were decomposed into functional networks using a group-level spatial 
independent component analysis (ICA) as implemented in the GIFT toolbox (version 2.0e, 
http://mialab.mrn.org/software/gift/). The data from the two tasks and resting state were 
entered as separate runs in the analysis. Prior to ICA decomposition, voxel time series were 
z-scored to normalize variance across space (similar to Allen et al., 2012). This procedure is 
aimed at minimizing a possible bias in subsequent variance-based data reduction steps 
due to variance differences between tasks and participants. The number of components 
in each run of each participant was estimated by the minimum description length (MDL) 
criterion (Li et al., 2007). The mean estimated number of components was 38; therefore 
the data was decomposed into 38 functional networks. To monitor the reliability of the 
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ICA decomposition, we repeated the Infomax ICA algorithm (Bell and Sejnowski, 1995) 10 
times in the ICASSO toolbox within GIFT (http://www.cis.hut.fi/projects/ica/icasso). With 
each repetition, the ICA algorithm was initialized with a different start point. Generally, 
these results showed compact clusters, validating the reliability of component estimation. 
After IC components had been established on the group level, part of the dual regression 
procedure was applied to estimate participant- and run specific time courses (Filippini et 
al., 2009). This was done by regressing the group spatial maps into the 4D dataset of each 
subject and each run. This procedure ensures that the IC timecourse for each participant 
and each run is based on the same spatial map. A subset of 25 ICs was visually selected for 
further analysis, based on the expectation that ICs should exhibit peak activations in grey 
matter and low spatial overlap with known vascular, ventricular, motion, or susceptibility 
artifacts. 

4.3.7 Functional connectivity analysis

Prior to the functional connectivity analysis, we applied a number of additional 
processing steps to the time-courses of each participant and each run to remove variance 
in the data related to participant motion and scanner drifts (Van Dijk et al., 2010). A flow 
chart of the analysis procedure is presented in figure 4.2. The default procedure in GIFT is to 
detrend the linear, quadratic and cubic trends in the time-courses. Subsequently, residual 
effects of motion were corrected by regression with the 6 realignment parameters and 
their temporal derivatives. In addition, variance associated with stimulus presentation 
was removed in the SA-task and the n-back task, to make sure that connectivity is not 
dominated by synchronized stimulus-evoked responses (Al-Aidroos et al., 2012; Geerligs 
et al., 2012a). For the SA task, target, nontarget and irrelevant target trials were modeled as 
separate regressors. In addition regressors related to task instructions and error trials were 
modeled in separate regressors. For the n-back task, 0-back, 1-back and 2-back trials were 
modeled as separate regressors in addition to regressors for the task instructions. In both 
tasks, we convolved all regressors with the canonical hemodynamic response function 
(HRF), as well as the temporal derivative and the dispersion derivative to account for local 
variability in the shape of the HRF. The residuals of this procedure were used to compute 
functional connectivity. The resulting functional connectivity reflects background 
connectivity, which can be used to assess how the cognitive state of a participant affects 
the functional architecture of the brain (Al-Aidroos et al., 2012).

An additional movement correction procedure was performed to make sure that the 
effects of age and task condition on functional connectivity were not due to spurious 
effects of motion. To this end, we used part of the procedure applied by Power and 
colleagues (2012). The first step in this correction procedure was to calculate the total 
displacement per scan. The rotational parameters were transformed to millimeters (mm) 
displacement by assuming affected voxels were at a distance of 65 mm from the origin 
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of the rotation. The total displacement per scan was computed using the procedure in 
the ArtRepair toolbox http://cibsr.stanford.edu/tools/human-brain-project/artrepair-
software.html. Scans in which the displacement compared to the previous scan was larger 
than 0.5 mm were flagged. The flagged scans as well as two scans before and one scan 
after this scan were not taken into account in the computation of the correlation matrix. 

In addition to movement differences, a bias might be introduced due to the differing 
numbers of scans in each task condition; 300 resting state scans, +/- 200 scans per n-back 
load condition and +/- 480 scans for the SA task. Therefore, we randomly selected up to 
200 scans (depending on the number of scans left after movement correction) out of 
all scans for both the resting state and the SA condition, to make the number of scans 
equivalent to each n-back load condition. These scans were then used to compute the 
correlation matrix. Those participants (4 younger and 2 older) for which fewer than 150 
scans remained in one or more conditions due the movement correction procedure 
were excluded from the functional network connectivity analysis. Thus, the functional 
network connectivity analysis was performed on the data of 32 younger and 35 older 
participants 

Condition specific time series were generated by segmenting time-courses from each 
IC into separate condition blocks. Each block started 3 scans after the first stimulus onset 
and ended at the final stimulus onset of that block. For the n-back task, there were two 
0-back blocks, two 1-back blocks and two 2-back blocks. For the SA task, there were 6 
experimental blocks. The time course of each block segment was mean centered and 
concatenated with segments of the same condition. Subsequently the correlation 
coefficient was computed between the time courses for each pair of ICs for each 
participant and each condition. The Spearman rank correlation was used to reduce the 
effect of outliers on the correlation estimate. 

4.3.8 Eigenvector centrality

To determine the functional importance of each IC, we used a graph theoretical 
approach. The ICs are taken as the separate nodes in a graph, whereas the functional 
connections between ICs represent the graph’s edges. Eigenvector centrality was 
computed for each node, for each condition and each participant separately (Lohmann 
et al., 2010). A node is considered to be central if it has many connections as well as 
high connectivity strengths to other nodes, particularly when these other nodes have a 
large number of connections -preferably with a high connectivity themselves (Bonacich, 
1972). Eigenvector centrality can be seen as a weighted sum of the direct and the indirect 
connections of a node (Bonacich, 2007), that is, it takes the entire pattern of connections 
within a graph into account. Moreover eigenvector centrality does not depend on a pre-
specified threshold for correlation values, unlike other centrality measures such as degree 
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or betweenness centrality. 

Eigenvector centrality is based on an eigenvector decomposition of the adjacency 
matrix (A). If we define λmax as the largest eigenvalue and xmax as the corresponding 
eigenvector then Axmax=λmax xmax. The eigenvector centrality of a node i is then defined 
as xmax,i The eigenvector centrality represents the relative influence of a node on all other 
nodes. Therefore, a graph with a higher average correlation coefficient will not always 
result in higher centrality values. Because we were interested in the total influence of a 
node on all other nodes, we applied an additional scaling by the largest eigenvalue λmax. 
Here we employed that the largest eigenvalue λmax of a positive correlation matrix is closely 
related to the mean of this positive correlation matrix (Friedman and Weisberg, 1981). 
Scaling the relative contribution per node (eigenvector centrality) with the total influence 
all nodes have on each other (λmax), thus results in a measure of the total influence per 
node, the scaled eigenvector centrality (SEC): SECi=xmax λmax. 

To calculate the eigenvector centrality, it is required that the eigenvector decomposition 
has a unique solution. To achieve this, all values in the adjacency matrix must be positive. 
Lohmann et al (2010), proposed two methods to meet this requirement: either to add a 
constant to the correlation values, using  or to use the absolute values of the 
correlation coefficient  , where  is the correlation and  is the adapted version. 
Using the first alternative will result in a low eigenvector centrality for nodes with high 
negative correlations, underestimating the strength of the influence of these nodes. The 
second alternative, on the other hand, takes only the strength of the correlation into 
account and not the sign. However, since a node with a strong negative correlation can 
be regarded as a node with a high influence on other nodes in the graph, we chose this 
second approach.

4.3.9 Statistical analysis

The main aim of this study was to investigate whether elderly are able to flexibly change 
patterns of functional connectivity between networks (FNC) depending on task demands. 
General changes in FNC patterns were measured by correlating the SEC over all ICs in one 
condition with the SEC over all ICs in another condition. This results in one Spearman 
rank correlation coefficient per participant, per comparison between conditions. 
These correlation values were transformed to a normal distribution using Fisher r to z’ 
transformation (Fisher, 1921). For each combination of conditions, the transformed scores 
were then compared between age groups using an independent samples t-test in SPSS. To 
reduce the number of comparisons, analyses were initially restricted to the resting state, 
SA and 2-back conditions, as these are most distinct in terms of the cognitive processes 
they require. The 0-back and 1-back task conditions were used for post-hoc testing to 
confirm specific patterns observed in the data. 
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To examine the effects of age groups and task on SEC, repeated measures analysis 
were used. Initially, we used a model with the within subject factors task (rest, SA-
task and 2-back task) and IC and the between subject factor age group. Subsequently, 
repeated measures analyses were created per IC, with the within subject factor task 
and the between subject factor age group. As this resulted in 25 different models, the 
reported p-values of this analysis were corrected for multiple comparisons, using the 
FDR correction (Benjamini and Hochberg, 1995). P-values were adjusted for violations 
of the sphericity assumption using the Greenhouse-Geisser correction (Greenhouse 
and Geisser, 1959). Only results with an FDR corrected p-value equal to or below 0.01 
are reported. This stringent threshold was chosen to limit the number of false positives 

Figure 4.2: Flow chart of all steps in the analysis procedure after the initial, standard preprocess-
ing steps. RV=removal of variance, SEC=scaled eigenvector centrality, FC=functional connectiv-
ity, ICA=independent component analysis, MDL=minimal description length.
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resulting from the 75 tests performed. For clarity, uncorrected degrees of freedom values 
are presented in the results section. Paired and independent samples t-tests were used 
for post-hoc testing. Prior to the analyses, SEC values were transformed as described by 
van Albada and Robinson (2007) to ensure that they obey a Gaussian normal distribution, 
maintaining the mean and standard deviation of the original distribution. 

To explore whether the SEC is related to task performance we created regression 
models for each of the ICs for which an interaction effect between task and age group 
was observed. For each of the task conditions (SA and 2-back), the accuracy and reaction 
times during task performance were used as the dependent variables in separate models. 
Age group and the SEC of the respective IC were used as the independent variables, 
along with the interaction between the two. This resulted in a total of sixteen regression 
models. No correction for multiple comparisons was applied to these post-hoc tests. 

4.4 Results

4.4.1 Behavioral data

In all tasks, older participants responded slower than younger participants 
(F(1,71)=116.6, p<0.001), however the differences between age groups varied with 
condition (F(3,213)=19.83, p<0.001, see table 4.1). Differences between age groups were 
largest in the 2-back task condition (237 msec), smaller in the 1-back task condition 
(161 msec) and the SA task (154 msec) and smallest in the 0-back task condition (116 
msec). In both age groups, participants were faster in the 0-back than the 1-back task 
condition (t(72)=14.04, p<0.001) and faster in the 1-back than the 2-back task condition 
(t(72)=14.48, p<0.001). In the SA task, participants were faster than in the 0-back task 
condition (t(72)=7.59, p<0.001) but slower than in the 1-back task condition (t(72)=5.22, 
p<0.001). 

Table 4.1: Averages and standard deviations for response times (RT) and accuracy (ACC), 
separately for each age group and task (condition)

0-back 1-back 2-back SA
RT young (msec) 483 (50) 534 (60) 650 (104) 506 (68)

RT old (msec) 600 (54) 695 (81) 888 (108) 660 (80)
ACC young (%) 94 (3) 90 (5) 86(4) 95(3)

ACC old (%) 94(3) 90(4) 73 (12) 95 (4)

In the 2-back task condition, older participants had significantly lower accuracy 
scores than young participants (t(71)=6.08, p<0.001), whereas there were no significant 
differences between the age groups in the other tasks and conditions (age x condition; 



88

Chapter  4

F(3,242)=30.77, p<0.001). In both age groups, accuracy scores were higher in the 0-back 
than the 1-back task condition (t(72)=7.63, p<0.001) and higher in the 1-back than in the 
2-back task condition (t(72)=8.07, p<0.001). Accuracy scores in the SA task were slightly 
higher than in the 0-back task condition (t(72)=2, p=0.049). 

4.4.2 Independent components

From the 38 estimated IC components, 25 components were selected as nonartifactual, 
relevant networks. These components were derived from all the rest and task data 
together. Figure 4.3 illustrates the spatial maps of these components. For clarity and ease 
of display, these ICs were grouped based on function, using a similar approach as Allen et 
al. (2012). A description of the ICs can be found in the caption of figure 4.3. 

For each IC, we used the scaled eigenvector centrality (SEC) to investigate its centrality 
or importance in the graph. SEC reflects the total influence of an IC in the graph of ICs, by 
capturing both the correlation strength and the number of connections of that IC to other 
ICs, as well as the centrality of the neighboring (i.e. connected) ICs. To investigate whether 
SEC changes in different ICs depend on age-group and condition, a repeated measures 
analysis was performed. We observed a main effect of IC (F(24,3120) = 28.6, p<0.001), a 
main effect of task (F(2, 3120)=11.49, p<0.001) and a main effect of age group (F(1,65) 
= 12.36, p=0.001), as well as, significant interactions between task and IC (F(48,3120) = 
9.08, p<0.001), age and IC (F(24,3120) = 6.09, p<0.001), and age, task and IC (F(48,3120) 
= 4.16, p<0.001). To elucidate these effects we created a repeated measures model for 
each IC, with the within subjects factor task and the between subjects factor age group. 
This allowed us to investigate differences in SEC between the two age groups, differences 
between the conditions as well as interactions between age and condition, separately 
for each IC. Averages and standard deviations for the SEC can be found in supplementary 
table 4.1, separately for each IC, condition and age group.

4.4.3 Effects of age on SEC

Older participants had higher SEC values than younger participants in 4 of the 25 
identified ICs, indicating that connectivity between functional networks was increased 
in older compared to younger participants. In particular in two of the four visual ICs, the 
basal ganglia and the anterior cingulate IC, older participants had higher SEC values than 
younger participants. Note that this description of results only takes into account the ICs 
in which there was no interaction between age and condition. Younger participants had 
a higher SEC than older participants in the medial frontal IC. In table 4.2, all main effects 
of task and age are described. 
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Figure 4.3: Identified independent components (ICs), grouped by location and function. The 
number between brackets indicates the independent component number. Within the identified 
ICs, there were 4 visual components, representing the medial (IC1), lateral (IC 2), ventral (IC3) 
and dorsal (IC4) parts of the visual system. In addition, one auditory component (IC 5) was iden-
tified. Six different components were identified that are related to sensorimotor functions (IC 
6-11). Separate ICs were identified for the cerebellum (IC 12) and the basal ganglia (IC 13). The 
classical default mode network was represented in 4 separate components (IC 14-17). Separate 
left and right fronto-parietal components were identified (IC 18 and 19, respectively) as well as 
left and right anterior insula/opercular networks (IC 20 and 21, respectively). 
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Bilateral inferior frontal (IC 22) and temporo-parietal junction components (IC 23) were 
identified as well as medial superior parietal (IC 24) and anterior cingulate components 
(IC 25). R=right, L=left, Ant=anterior, Inf=inferior, Sup=superior, Lat=lateral, Med=medial, 
SMA=supplementary motor area, CB=cerebellum, BG=basal ganglia, PCC=Posterior Cingulate 
Cortex, FPCN=fronto-parietal control network, AI=anterior insula, TPJ=temporoparietal junction

4.4.4 Effects of task on SEC

In the majority of ICs, the SEC was smaller in task conditions compared to resting state, 
indicating that between network connectivity was stronger during resting state than 
during task performance. In particular in the ICs related to visual or auditory information 
processing, as well as ICs related to sensorimotor functions and the basal ganglia IC, the 
SEC was larger in resting state than during task performance. Specifically in the inferior 
frontal IC we found that centrality was increased in the 2-back task compared to resting 
state. The selective attention task showed an increase in SEC compared to resting state in 
the angular gyrus IC and the inferior frontal IC. In other ICs, the effect of task was specific 
to one of the age groups; these results are discussed in the next section. 

4.4.5 Interactions between task and age per IC

The averages in different tasks and age groups are visualized in figure 4.4 for those ICs 
that showed a significant interaction between task and age group. An interaction between 
task and age was observed in the somatosensory IC (IC 9). In younger participants, SEC 
was not significantly different between conditions, whereas in old participants the SEC 
increased from rest to the SA task (t(34)=2.63, p=0.013) and from the SA task to the 2-back 
task condition (t(34)=2.93, p=0.006). Therefore, in rest elderly had a lower SEC than young 
adults (t(65)=2.11, p=0.039), whereas in the 2-back task condition elderly had a higher 
SEC than young participants (t(65) =2.62, p=0.011). 

For older adults, the SEC in the precuneus IC (IC 14) was larger in the 2-back task 
condition than in the SA task (t(34)=3.88, p<0.001) and in rest (t(34)=3.17, p=0.003), while 
in young adults SEC was higher in the SA task than the 2-back task (t(31)=2.23, p=0.033) 
while both tasks were not significantly different from rest. In the 2-back task condition 
the SEC in the precuneus was significantly larger in older than young adults (t(65) =4.31, 
p<0.001). 

Another interaction between task and age group was observed in the right FPCN IC 
(19). The SEC was significantly larger in young than older participants during the 2-back 
task condition (t(65)=3.84, p<0.001), but not in rest or during the SA task. In young 
adults, SEC was largest in the 2-back task condition compared to the SA task (t(31)=5.47, 
p<0.001) and rest (t(31)=3.84, p=0.001). In the older adults, no significant differences 
were observed between the tasks. 
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Table 4.2: Results of repeated measures analysis; effects of condition, age group and the interaction of age group and condition on SEC.

Main effect task Post-hoc Main effect age Post-
hoc

Interaction 
task x age

IC F p RE-SA R-2B SA-2B F p O-Y  F p
Med. Visual (1) 7.23 0.004 RE>SA 2B>SA 19.6 <0.001 O>Y
Lat. Visual (2) 5.98 0.007 RE>SA

Ventral visual (3) 12.95 <0.001 RE>SA RE>2B
Dorsal visual (4) 10.27 0.009 O>Y

Auditory (5) 19.28 <0.001 RE>SA RE>2B 2B>SA
Somatomotor (6) 24.66 <0.001 RE>SA RE>2B 2B>SA

L. Somatomotor (7) 13.70 <0.001 RE>SA RE>2B SA>2B
R. Somatomotor (8) 19.31 <0.001 RE>SA RE>2B
Somatosensory (9) 8.36 0.004

SMA (10)
Paracentral lobule (11) 10.81 <0.001 RE>SA 2B>SA

CB (12)
BG (13) 5.39 0.011 RE>SA 50.35 <0.001 O>Y

Precuneus (14) 10.32 0.004
PCC (15)

Med. Frontal (16) 5.49 0.010 SA>2B 16.49 <0.001 Y>O
Angular (17) 12.39 <0.001 SA>RE SA>2B
L. FPCN (18)
R. FPCN (19) 7.74 0.007

L. AI/Operculum (20)
R. AI/Operculum (21) 7.23 0.002 RE>SA RE>2B

Inf. Frontal (22) 24.67 <0.001 SA>RE 2B>RE 2B>SA
TPJ (23) 12.95 <0.001

Med. Sup. Parietal (24)
Ant. Cingulate (25) 6.23 0.005 RE>SA RE>2B 48.30 <0.001 O>Y

Y=young, O=old, RE=rest, SA=selective attention task, 2B=2-back task, R=right, L=left, F=F-value, p=p-value, Ant=anterior, Inf=inferior, Sup=superior, 
Lat=lateral, Med=medial, SMA=supplementary motor area, CB=cerebellum, BG=basal ganglia, PCC=Posterior Cingulate Cortex, FPCN=fronto-parietal 
control network, AI=anterior insula, TPJ=temporoparietal junction, degrees of freedom for the F-test of the task and the interaction effect were 2 and 
130, degrees of freedom for the F-test of the age effect were 1 and 65. Main effects of age and task are not displayed for those ICs that demonstrated a 
significant interaction of task*age.
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In the temporoparietal junction (TPJ) IC (23), similar SEC values were observed in 
both age groups in rest, while the SEC was larger in older than young adults in both 
the 2-back task condition (t(65)=3.31, p=0.002) and the SA task (t(65)=5.35, p<0.001). In 
young participants, SEC was smaller in the SA task compared to the 2-back task condition 
(t(31)=5.5, p<0.001) and rest (t(31)=2.5, p=0.018). In contrast, SEC in the older participants 
was larger in the 2-back task condition compared to the SA task (t(34)=2.52, p=0.017) and 
larger in the SA task compared to rest (t(34)=4.63, p<0.001). 

We have performed additional analyses in which we have tested the effects of 
removing the variance associated with stimulus presentation prior to the computation of 
the connectivity matrix. The results of this procedure are described in the supplementary 
materials. They show that the main findings described above are robust and are only 
minimally affected by the specific approach used. In addition, to demonstrate the effect 
of the specific threshold selected for the analysis, results of the analyses are also presented 
for a lower significance threshold (pfdr<0.05) in supplementary table 4.2. 

Figure 4.4: SEC for the different conditions and age groups, displayed for those ICs showing 
a significant interaction between age and task. Black bars show the mean and standard er-
ror of the SEC in younger participants, gray bars show the SEC in older participants. RE=rest, 
SA=selective attention task, 2B=2-back task, Y=young, O=old, FPCN=fronto-parietal control 
network, TPJ=temporoparietal junction. 
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4.4.6 Effects of age on changes in SEC patterns with changing task demand

In the second approach to shed more light on the IC x age x task interaction, we 
focused on the relation between different ICs. Specifically, we examined the change in 
the SEC patterns across ICs between different task conditions and the effects of aging on 
this change. Correlation analyses were used to investigate the similarity of SEC patterns 
over all ICs between different conditions. Little change between two conditions would be 
reflected in high correlation values (high similarity), whereas a large change between two 
conditions would results in low correlations (low similarity). Correlations were compared 
between age groups to see how changes between conditions are affected by aging. 

4.4.7 Differences in SEC patterns between resting state and task performance

The relative importance of nodes, i.e. the SEC pattern, was similar in resting state and 
the SA task in young participants (z-transformed correlation: M=0.46, SD=0.26), whereas 
this similarity was reduced in older participants (M=0.17, SD=0.28; t(65)=4.35, p<0.001). 
For both younger and older adults there was little similarity between the SEC patterns 
in the 2-back task condition and rest (young: M=0.19, SD=0.28; old: M=0.12, SD=0.22; 
t(65)=1.03, p=0.31). The relatively high accuracy levels and the fast responses in the SA 
task suggest that the levels of cognitive demand required by this task are lower than the 
cognitive demand required in the 2-back task condition. Therefore, the results suggest 
that the change in SEC pattern is larger in older than younger participants only from 
resting state to low demanding tasks. To confirm this, we additionally considered the 0- 
and the 1-back task conditions. The accuracy levels and response times indicate that task 
demand in the 0-back task condition is similar to that in the SA task, while demand in the 
1-back task condition is higher than in the 0-back task condition, but lower than in the 
2-back task condition. Based on the effect of aging in the SA-task compared to resting 
state, we would expect the largest age group differences in the change in SEC pattern 
for the 0-back task condition versus resting state and a smaller age difference for the 
1-back task condition versus resting state. Indeed, we found that the SEC pattern in the 
0-back task condition was more similar to the resting state condition, in young (M=0.44, 
SD=0.26) compared to older adults (M=0.15, SD=0.29; t(65)= 4.17, p<0.001). Likewise, the 
SEC pattern in the 1-back task condition was more similar to the resting state, in young 
(M=0.30, SD=0.26) compared to older adults (M=0.17, SD=0.21; t(65)=2.16, p=0.035). In 
figure 4.5 the age group differences in absolute changes in SEC between tasks and resting 
state are visualized per IC. 
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Figure 4.5: Visualization of the differences between age-groups in absolute change in SEC 
between task/rest conditions per IC. The bars represent differences between older and younger 
adults in absolute SEC change per IC. Differences are expressed as a percentage of the total dif-
ference between older and younger adults. The standard error of the mean is indicated by the 
error bars.
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4.4.8 Differences in SEC patterns between the selective attention task and n-back task 
conditions

In addition to the decreased similarity in SEC pattern between resting state and low 
demanding task conditions in elderly compared to young individuals, we observed an 
increased similarity in SEC pattern between different tasks in the elderly. The SEC patterns 
in the 2-back task condition and SA task were similar in older (M=0.44, SD=0.29) and 
less similar in younger adults (M=0.27, SD=0.21; t(65) =2.7, p=0.009). In line with this 
result, elderly showed a more similar SEC pattern between the 0-back and the 2-back 
task condition (young M=0.25, SD=0.30; old M=0.58, SD=0.33; t(65) =4.16, p<0.001) 
and showed a trend toward the same effect in the 0-back and the 1-back task condition 
(young M=0.51, SD=0.33; old M=0.67, SD=0.34; t(65) =1.96, p=0.054). However, the age 
groups did not show a difference in SEC pattern similarity between (a) the 1-back and 
the 2-back task condition, (b) the 0-back task condition and the SA task, and (c) the 
1-back task condition and the SA task (a: young M=0.53, SD=0.26; old M=0.60, SD=0.31; 
t(65) =1.0, p=0.32; b: young M=0.57, SD=0.32; old M=0.50, SD=0.33; t(65)=0.83, p=0.41; 
c: young M=0.49, SD=0.32; old M=0.48, SD=0.34; t(65)=0.09, p=0.93). The differences 
between age-groups in SEC changes between task conditions are visualized in figure 4.5.

4.4.9 Relation with behavior

Of the four ICs that showed an interaction between condition and age group, only the 
precuneus IC (14) showed a significant correlation with behavior. In the SA task, increased 
SEC of the precuneus IC (14) was related to increased accuracy (B=0.01, t(63)=2.10, p=0.04), 
whereas no significant effect of age (B=0.007, t(63)=0.70, p=0.49) and no interaction 
between age and SEC was observed (B=0.001, t(63)=0.07, p=0.95). However, it should 
be noted that no correction for multiple comparisons was applied and that the F-test for 
the complete regression model was not significant (F(3,63)=1.63, p=0.19). Therefore, the 
observed relation could be a false positive result. 

4.5 Discussion

To truly understand the effects of aging on brain function, it is important to know 
if elderly are able to adapt FNC in response to changing task demands. In this study, 
we investigated how aging affects the adaptation of functional connectivity between 
functional networks (FNC) to the demands of the task at hand. We have used a brain-wide 
approach to show that elderly can indeed adapt functional connectivity. However, the 
results show that the impetus to change FNC patterns changes with age; whereas young 
participants show the maximal change in connectivity patterns from less demanding to 
more demanding task conditions, older participants showed maximal change from rest 
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to low demanding tasks. 

Previous studies have shown that during task performance, functional connectivity 
increases between specific areas that are involved in execution of the task at hand (e.g. 
Dew et al., 2012; Hampson et al., 2002; Hare et al., 2010; Sala-Llonch et al., 2012; Shirer et al., 
2011; Sterpenich et al., 2006; Wolbers et al., 2006). Since, the SEC incorporates both direct 
and indirect functional connectivity from an IC to all other ICs, we would expect that, 
similar to functional connectivity, the SEC will increase in ICs that are functionally relevant 
to the task at hand. Indeed, the results of the current study demonstrate an increase in 
centrality of ICs that play an important role in task performance. During the 2-back task, we 
found that in both age groups, centrality was increased in the inferior frontal IC compared 
to resting state, an area that has been suggested to play an important role in working 
memory (Nagel et al., 2009; Owen et al., 2005). In addition, another network important for 
working memory, the right fronto-parietal control network, showed increased centrality 
in young participants during the 2-back task. Another study by Lohmann and colleagues 
(2010) has also shown that the eigenvector centrality increases in areas that are important 
in the condition at hand. More specifically, they found that the eigenvector centrality of 
the ventral striatum, a key region implicated in reward such as food, increased in a sated 
compared to a hungry condition. Note that the direction of correlations was not taken 
into account in the current analysis. Therefore it is unclear whether a SEC increase reflects 
an increase in negative correlations or an increase in positive correlations.

Especially in the visual and somatomotor ICs, functional connectivity to other ICs was 
decreased during task performance compared to resting state. These results are in line with 
those of Arbabshirani et al (2012), who found a general decrease in FNC during performance 
of an auditory oddball task compared to resting state. These authors suggested that 
performance of an active task may be facilitated by higher activation within specialized 
brain networks rather than collaboration between different networks. This idea is further 
supported by findings of Nir et al (2006). They compared visual stimulation to periods of 
eyes closed resting state and showed that during visual stimulation; functionally related 
visual areas were more strongly connected, while functionally dissimilar visual regions 
became de-correlated. Together with our results, this suggests that most networks 
show decreased connectivity to other functional networks with increasing levels of task 
demands.

As visual and somatomotor networks are essential for adequate performance in the 
selective attention and working memory tasks, it is puzzling why these networks showed 
a decrease as opposed to an increase in SEC during task performance compared to 
resting state. First of all, it should be noted that in the current study, participants closed 
their eyes during the resting state condition, while performance of the two tasks was 
dependent on the processing of visual input. This difference in visual input might have 
aggravated the observed effects of task compared to resting state on the SEC of visual ICs. 
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Alternatively, it might be the case that increases in SEC with increasing task demand are 
limited to those networks that play the most central role in the task. For example, working 
memory of visual items is thought to rely on the maintenance of sensory representations 
in the visual cortex as well as on the manipulation of these items. Therefore, especially 
areas involved in maintaining and manipulating this representation, such as the inferior 
frontal gyrus, would need to increase FNC during working memory tasks to enable 
adequate performance. A limitation of this study is that these two alternatives cannot be 
disentangled with this dataset. Future studies using an eyes open baseline period could 
investigate whether the observed FNC changes are truly related to task performance or 
to the difference between eyes open during task performance and eyes closed during 
resting state. 

Our findings indicate an age-related difference in the modulation of FNC with 
condition. Whereas young participants show the maximal change in SEC patterns from 
less demanding to more demanding task conditions, older participants showed maximal 
change from rest to a low demanding task. It is important to note that this result cannot 
be due to the difference between eyes closed – eyes open in rest versus task, as there 
was no difference between older and younger adults in the comparison between resting 
state and the high demanding two-back task. This result fits well with previous literature 
on BOLD activation differences in elderly compared to young participants. In working 
memory studies, for example, it has been found that elderly show increased prefrontal 
activation compared to young participants in low working memory loads, whereas the 
opposite pattern is observed during high working memory loads (Mattay et al., 2006). 
According to Reuter-Lorenz and Cappell (2008), processing inefficiencies cause the aging 
brain to recruit more neural resources to achieve computational output equivalent to that 
of a younger brain. They argued that as demand increases, elderly can reach a resource 
ceiling (Grady, 2012). In turn this can lead to age-related declines in performance in more 
demanding tasks. In the context of the current results, the larger change in SEC patterns 
from resting state to the less demanding cognitive tasks in elderly compared to young 
adults, could reflect the recruitment of additional neural resources necessary to cope with 
task demands. The limited adaptation of centrality in case of additional task demands in 
elderly might be a sign of elderly reaching a resource ceiling. These results show that the 
theories of age-related change, mainly based on changes in brain activation, are in line 
with observed connectivity changes in the aging brain. 

In addition, we observed that the functional connectivity to other ICs was larger in 
older compared to younger participants in a number of ICs (i.e. the visual ICs, the basal 
ganglia IC and the anterior cingulate IC). This age-related increase in connectivity between 
functional networks is in line with results from a previous study, in which we found that 
connectivity between functional networks was increased during a visual oddball task in 
older compared to younger participants (Geerligs et al., 2012a). Tomasi and Volkow (2012) 
also found indications that connectivity between functional networks increases with 
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age; they showed that long range connectivity from areas in the somatomotor network, 
thalamus and cerebellum was increased in elderly during resting state. Previous studies 
have demonstrated that besides increases in between network connectivity, connectivity 
within specific functional networks is decreased with age (Andrews-Hanna et al., 2007; 
Damoiseaux et al., 2008; Grady et al., 2010; Rieckmann et al., 2011; Sambataro et al., 
2010). Together, these age-related changes result in decreased segregation of functional 
networks. This is in line with the dedifferentiation theory of aging that suggests that areas 
in the older brain may become less functionally distinct (Baltes and Lindenberger, 1997; 
Carp et al., 2011a; Park et al., 2004). Moreover, it shows that dedifferentiation is not limited 
to brain areas but extends to functional networks as well (Geerligs et al., 2012a). 

In four ICs, we found significantly different task dependent changes in centrality between 
older and younger participants (i.e. right FPCN, TPJ, somatosensory, and precuneus IC). 
In the right FPCN, younger participants showed increased centrality during the 2-back 
task compared to resting state and the SA task. This is well in line with expectations, 
as the main constituents of the right FPCN, the dorsolateral prefrontal cortex (DLPFC) 
and the posterior parietal cortex, are often found to be active during working memory 
tasks (Cabeza et al., 2008; Owen et al., 2005). However, in the elderly, the centrality of 
the right FPCN was not increased during performance of the 2-back task compared to 
resting state. In addition, the centrality was significantly smaller in older than younger 
participants in the 2-back task. Previous studies have demonstrated that the connectivity 
from the right DLPFC was decreased in elderly especially under conditions of high 
working memory load. Nagel and colleagues (2011), for example, showed that in young 
but not older participants, connectivity between the left and the right DLPFC increased 
with increasing working memory load. Furthermore, Rieckmann et al (2011) showed that 
functional connectivity from the right DLPFC to parietal areas and the occipitotemporal 
sulcus was reduced in older compared to younger participants during a working memory 
task. Implications of the reduced connectivity/centrality of the right FPCN in old relative 
to younger adults remains elusive at this moment. We, for example, did not observe a 
correlation between 2-back performance and SEC of this IC. 

A second IC in which we observed task dependent changes of centrality between 
older and younger participants, was the TPJ. During the SA task, the centrality of the TPJ 
was increased in elderly compared to young participants. Whereas the dorsal parietal 
cortex is related to attentional top-down control, the TPJ plays an important role in the 
capture of bottom-up attention by an external stimulus (Cabeza et al., 2012; Corbetta and 
Shulman, 2002; Corbetta et al., 2008). Although older participants performed as accurate 
on this task as younger participants, we have shown in a previous study that older 
participants have trouble suppressing the information that is presented on the irrelevant 
spatial positions (Geerligs et al., 2012b). This is in line with a large body of research that 
has shown that elderly generally suffer more from distraction of irrelevant information 
than younger adults (see also: de Fockert et al., 2009; Gazzaley et al., 2005a; Gazzaley 
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et al., 2008; Haring et al., 2013; Hasher and Zacks, 1988; Hasher et al., 1999; Mager et 
al., 2007). Wen and colleagues (2012) showed that increased connectivity directed from 
the ventral attention network (including the TPJ), to the dorsal attention network, was 
associated with slower and less accurate performance in a visual spatial attention task. 
The increased centrality of the TPJ during the SA task might be related to an increased 
likelihood of attentional capture by (irrelevant) external stimuli in the elderly. However, 
as no direct link to performance was observed, it is important that this interpretation is 
tested in future studies. 

Whereas most visual and somatomotor ICs showed a decrease in centrality in task 
performance compared to resting state, elderly showed an increase in the centrality in the 
somatosensory IC with increasing task demand. In younger participants there was no effect 
of task on somatosensory IC centrality. Similarly, in the precuneus IC (part of the DMN), 
centrality did not change between tasks in young participants while older participants 
showed a higher centrality in the 2-back task than in the SA task or resting state. Previous 
research has shown that older adults often have trouble with the suppression of activity 
as well as connectivity within the DMN, which is related to decreased task performance 
(Grady et al., 2006; Persson et al., 2007; Sambataro et al., 2010). Although we can only 
speculate about the more specific implications of the current findings, they do show that 
with age, the functional networks that are recruited for task performance change. 

In this study we set out to study functional connectivity between networks and how the 
change in connectivity with changing task demands is affected by aging. It is important 
to note that the answer to this question heavily depends on the definition of networks. 
Here, we used independent component analysis to identify different brain networks. The 
recommended approach to use the minimal description length (MDL) procedure to find 
a suitable number of components resulted in a large number (38) of components (Li et 
al., 2007). Decomposing the data into these 38 components resulted in a quite regional 
decomposition, in which areas that are generally regarded as one functional network 
(e.g. the DMN) were split into subcomponents. This is in line with previous literature 
that has shown that functional networks can be identified at different levels of hierarchy 
(Meunier et al., 2009b; Meunier et al., 2010). It would be important for future studies to 
investigate whether these results would be similar when different methods are used to 
define functional networks. 

In conclusion, elderly are able to adapt FNC to task demands. However, the impetus 
for FNC change is different in young and elderly. Whereas young participants showed 
the maximal shift in FNC patterns between the less demanding SA task and the more 
demanding 2-back task, older participants showed the maximal connectivity shift 
between resting state and the SA task. The observed increases in FNC from rest to task 
were found to be limited to those ICs that are involved in central functions related to the 
demands of the task at hand, whereas FNC decreases in the other ICs. We argued that the 
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age-related changes reflect the previously reported recruitment of additional resources 
in elderly. 

4.6 Supplementary material

Supplementary table 4.2 shows the results of the analysis procedure for two different 
significance thresholds. These results show that the general trends of increased SEC in 
older adults and general decreased SEC in task compared to resting state become even 
more pronounced when a less stringent threshold is used. 

In addition, we examined the effect of regressing out the effects of stimulus 
presentation prior to computing the correlation matrix. Initially, variance associated with 
stimulus presentation was removed in the SA-task and the n-back task, to make sure 
that connectivity was not dominated by synchronized stimulus-evoked responses (Al-
Aidroos et al., 2012; Geerligs et al., 2012a). However, we are interested in adaptations of 
connectivity to task demand. Therefore, removing the variance associated with stimulus 
presentation could have removed some effects of interest. Here, we repeated the original 
analysis without the removal of variance related to stimulus presentation. We found that 
the age-differences in changes in SEC patterns remained the same. In addition, the results 
of the repeated measures procedures were also highly similar compared to the analysis 
without removal of variance associated with stimulus presentation (see supplementary 
Table 4.3). 
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Supplementary table 4.1: Averages and standard deviation for the SEC, separately for 
each IC, task condition and age group 

Young Old
IC rest SA 2-back rest SA 2-back
1 1.11(0.27) 0.97(0.23) 1.01(0.28) 1.29(0.28) 1.15(0.24) 1.24(0.19)
2 1.01(0.3) 0.79(0.31) 0.99(0.29) 1.09(0.38) 0.97(0.22) 0.92(0.2)
3 1.04(0.33) 0.94(0.24) 1(0.24) 1.35(0.35) 1.05(0.23) 1.01(0.26)
4 1.27(0.27) 1.24(0.19) 1.11(0.26) 1.42(0.31) 1.27(0.22) 1.33(0.25)
5 1.3(0.2) 1.05(0.18) 1.13(0.27) 1.36(0.24) 1.18(0.2) 1.24(0.19)
6 1.11(0.31) 0.89(0.27) 1.01(0.3) 1.36(0.26) 1(0.34) 1.05(0.35)
7 1.23(0.3) 1.19(0.24) 1.03(0.32) 1.31(0.31) 1.13(0.24) 1.04(0.29)
8 1.21(0.34) 1.05(0.25) 0.95(0.3) 1.27(0.33) 1.03(0.3) 1.02(0.26)
9 1.23(0.25) 1.32(0.22) 1.21(0.28) 1.12(0.2) 1.24(0.23) 1.37(0.24)

10 1.08(0.28) 0.96(0.33) 1.14(0.23) 1.05(0.26) 1.05(0.3) 1.04(0.27)
11 1.14(0.36) 0.89(0.26) 1.11(0.26) 1.28(0.4) 1.05(0.29) 1.09(0.29)
12 1(0.34) 0.83(0.32) 0.94(0.24) 1.07(0.29) 0.99(0.23) 1.04(0.24)
13 0.87(0.27) 0.71(0.22) 0.77(0.23) 1.11(0.26) 1.02(0.26) 1.05(0.23)
14 1.06(0.22) 1.1(0.2) 0.97(0.27) 1.05(0.22) 1.07(0.23) 1.26(0.27)
15 0.87(0.32) 0.69(0.22) 0.88(0.29) 0.78(0.27) 0.77(0.22) 0.87(0.34)
16 1.13(0.23) 1.35(0.2) 1.18(0.25) 1.15(0.29) 1.08(0.25) 0.98(0.25)
17 0.77(0.27) 1.08(0.24) 0.88(0.26) 0.89(0.26) 0.99(0.23) 0.93(0.3)
18 1.18(0.29) 1.17(0.25) 1.1(0.24) 1.22(0.31) 1.05(0.26) 1.14(0.25)
19 1(0.37) 1(0.23) 1.29(0.2) 1.12(0.35) 1(0.29) 1.06(0.29)
20 1.03(0.23) 0.91(0.2) 0.94(0.28) 1.05(0.25) 0.95(0.27) 1.1(0.26)
21 1.09(0.24) 1.06(0.28) 0.92(0.25) 1.15(0.23) 0.92(0.26) 0.99(0.32)
22 0.84(0.26) 0.98(0.22) 1.24(0.23) 0.94(0.3) 1.06(0.23) 1.11(0.22)
23 1.01(0.29) 0.84(0.25) 1.1(0.23) 0.95(0.23) 1.17(0.25) 1.28(0.21)
24 1.16(0.26) 1.13(0.21) 1.23(0.25) 1.01(0.27) 1.21(0.17) 1.16(0.26)
25 0.91(0.22) 0.77(0.25) 0.79(0.24) 1.15(0.25) 1.08(0.19) 1.03(0.22)

Y=young, O=old, SA=selective attention task, 2B=2-back task, IC=independent component.
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Supplementary table 4.2: Results of repeated measures analysis presented for different significance thresholds; effects of condition, age 
group and the interaction of age group and condition on SEC.

Main effect task Post-hoc Main effect age Post-
hoc

Interaction task 
x age

IC F p RE-SA R-2B SA-2B F p O-Y  F p
Med. Visual (1) 7.23 0.004 RE>SA 2B>SA 19.6 <0.001 O>Y
Lat. Visual (2) 5.98 0.007 RE>SA

Ventral visual (3) 12.95 <0.001 RE>SA RE>2B 9.81 0.011 O>Y 5.7 0.028
Dorsal visual (4) 4.95 0.020 RE>SA RE>2B 10.27 0.009 O>Y

Auditory (5) 19.28 <0.001 RE>SA RE>2B 2B>SA 8.72 0.014 O>Y
Somatomotor (6) 24.66 <0.001 RE>SA RE>2B 2B>SA

L. Somatomotor (7) 13.70 <0.001 RE>SA RE>2B SA>2B
R. Somatomotor (8) 19.31 <0.001 RE>SA RE>2B
Somatosensory (9) 6.09 0.005 SA>RE 2B>RE 8.36 0.004

SMA (10)
Paracentral lobule (11) 10.81 <0.001 RE>SA 2B>SA

CB (12) 3.81 0.031 RE>SA 6.16 0.050 O>Y
BG (13) 5.39 0.011 RE>SA 50.35 <0.001 O>Y

Precuneus (14) 10.32 0.004
PCC (15) 4.81 0.016 2B>SA

Med. Frontal (16) 5.49 0.010 SA>2B 16.49 <0.001 Y>O 6.36 0.016
Angular (17) 12.39 <0.001 SA>RE SA>2B
L. FPCN (18)
R. FPCN (19) 7.58 0.002 2B>SA 7.74 0.007

L. AI/Operculum (20) 4.17 0.022 RE>SA 2B>SA
R. AI/Operculum (21) 7.23 0.002 RE>SA RE>2B

Inf. Frontal (22) 24.67 <0.001 SA>RE 2B>RE 2B>SA 4.60 0.044
TPJ (23) 17.97 <0.001 2B>RE 2B>SA 13.67 <0.001 O>Y 12.95 <0.001

Med. Sup. Parietal (24) 4.80 0.016 SA>RE 2B>RE 4.45 0.044
Ant. Cingulate (25) 6.23 0.005 RE>SA RE>2B 48.30 <0.001 O>Y

Y=young, O=old, RE=rest, SA=selective attention task, 2B=2-back task, R=right, L=left, F=F-value, p=p-value, Ant=anterior, Inf=inferior, Sup=superior, 
Lat=lateral, Med=medial, SMA=supplementary motor area, CB=cerebellum, BG=basal ganglia, PCC=Posterior Cingulate Cortex, FPCN=fronto-parietal 
control network, AI=anterior insula, TPJ=temporoparietal junction, degrees of freedom for the F-test of the task effect and the interaction effect were 2 
and 130, degrees of freedom for the F-test of the age effect were 1 and 65. Values in the white cells show results that are significant at pfdr<0.01, values 
in the shaded cells show results that are significant at pfdr<0.05.
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Supplementary Table 4.3: Results of repeated measures analysis without removal of variance associated with stimulus presentation.

Main effect task Post-hoc Main effect age Post-
hoc

Interaction task 
x age

IC F p RE-SA R-2B SA-2B F p O-Y  F p
Med. Visual (1) 8.86 0.002 RE>SA 2B>SA 14.12 <0.001 O>Y
Lat. Visual (2) 10.81 <0.001 RE>SA 2B>SA

Ventral visual (3) 13.56 <0.001 RE>SA RE>2B 8.94 0.017 O>Y 5.57 0.028
Dorsal visual (4) 4.28 0.035 RE>2B 6.87 0.031 O>Y

Auditory (5) 19.68 <0.001 RE>SA RE>2B 8.33 0.020 O>Y
Somatomotor (6) 24.23 <0.001 RE>SA RE>2B 2B>SA 7.84 0.022 O>Y

L. Somatomotor (7) 13.14 <0.001 RE>SA RE>2B SA>2B
R. Somatomotor (8) 17.89 <0.001 RE>SA RE>2B
Somatosensory (9) 10.07 <0.001 SA>RE 2B>RE 7.33 0.009

SMA (10)
Paracentral lobule (11) 15 <0.001 RE>SA RE>2B 2B>SA

CB (12)
BG (13) 4.01 0.035 RE>SA RE>2B 40.05 <0.001 O>Y

Precuneus (14) 6.81 0.014
PCC (15) 6.23 0.007 RE>SA 2B>SA

Med. Frontal (16) 6.41 0.006 SA>RE SA>2B 9.60 0.016 Y>O 6.38 0.016
Angular (17) 13.54 <0.001 SA>RE SA>2B
L. FPCN (18)
R. FPCN (19) 6.01 0.007 2B>SA 8.67 <0.001

L. AI/Operculum (20) 3.35 0.050 RE>SA
R. AI/Operculum (21) 4.80 0.017 RE>SA RE>2B 5.94 0.017

Inf. Frontal (22) 22.36 <0.001 SA>RE 2B>RE 2B>SA
TPJ (23) 8.86 <0.001 2B>RE 2B>SA 14.21 <0.001 O>Y 11.44 <0.001

Med. Sup. Parietal (24) 3.39 0.050 2B>RE
Ant. Cingulate (25) 35.56 <0.001 O>Y

Y=young, O=old, RE=rest, SA=selective attention task, 2B=2-back task, R=right, L=left, Ant=anterior, Inf=inferior, Sup=superior, Lat=lateral, 
Med=medial, SMA=supplementary motor area, CB=cerebellum, BG=basal ganglia, PCC=Posterior Cingulate Cortex, FPCN=fronto-parietal control net-
work, AI=anterior insula, TPJ=temporoparietal junction, degrees of freedom for the F-test of the task effect and the interaction effect were 2 and 130, 
degrees of freedom for the F-test of the age effect were 1 and 65. Values in the white cells show results that are significant at pfdr<0.01, values in the 
shaded cells show results that are significant at pfdr<0.05.
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5 An EEG study on the neural correlates of suppression of 
irrelevant information in old and young

5.1 Abstract

With increasing age, people experience more difficulties with suppressing irrelevant 
information, which may have a major impact on cognitive functioning. The extent of 
decline of inhibitory functions* with age is highly variable between individuals. In this 
study we used event related potentials and phase locking analyses to investigate neural 
correlates of this variability in inhibition between individuals. 

Older and younger participants performed a selective attention task in which relevant 
and irrelevant information was presented simultaneously. The participants were split into 
high and low performers based on their level of inhibition inefficiency, that is, the slowing 
of response times induced by information participants were instructed to ignore. P1 peak 
amplitudes were larger in low performers than in high performers, indicating that low 
performers were less able to suppress processing of irrelevant stimuli. 

Phase locking analyses were used as a measure of functional connectivity. Efficient 
inhibition in both age groups was related to increased functional connectivity in the 
alpha band between frontal and occipito-parietal ROIs in the prestimulus interval. In 
addition, increased power in the alpha band in occipito-parietal ROIs was related to 
better inhibition both before and after stimulus onset. Phase locking in the upper beta 
band before and during stimulus presentation between frontal and occipito-parietal 
ROIs was related to better performance in elderly only, suggesting that this is an active 
compensation mechanism employed to maintain adequate performance. In addition, 
increased top-down modulation and increased power in the alpha band appears to be a 
general mechanism facilitating inhibition in both age-groups. 

5.2 Introduction

Studies investigating how aging affects visual selective attention and inhibition have 
shown that the elderly have problems suppressing irrelevant information, while there 
are no evident problems in their ability to process relevant information (de Fockert et al., 
2009; Gazzaley et al., 2005a; Gazzaley et al., 2008; Mager et al., 2007; but see Wild-Wall et 
al., 2008). According to the inhibitory deficit theory (Hasher & Zacks, 1988), this deficit in 
inhibition may have an influence on performance in a range of attention and memory 
tasks (for recent confirmation see Gazzaley et al., 2005a). However, there are studies 
showing that the deficits in inhibition processes with age are not unitary in nature and 
are not found in all tasks (Kramer et al., 1994). 

* In chapter 5 suppression of irrelevant information is termed inhibition, whereas the term 
selective attention is used in the other chapters. 
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Less efficient suppression of irrelevant information in the elderly has been linked to a 
deficit in top-down modulation of early visual processing stages (Gazzaley et al., 2008). 
Top down modulation is crucial for our ability to voluntarily focus on relevant information 
and ignore irrelevant information in accordance with task instructions, expectations or 
goals. Top down control is thought to be actualized through enhancement of activity in 
cortical areas processing relevant information and suppression of activity in cortical areas 
processing irrelevant information (Pinsk et al., 2004). These mechanisms underlying visual 
selective attention have been related to a neural network consisting of dorsal parietal 
and frontal brain areas (Corbetta & Shulman, 2002; Miller & D’Esposito, 2005; Noudoost 
et al., 2010). Recent research in monkeys using implanted electrodes has corroborated 
these results, and in addition showed that top-down control is initiated in the frontal 
cortex, while activity in parietal areas is affected in a later stage of processing (Buschman 
& Miller, 2007). The communication between distant regions such as frontal and parietal 
areas is reflected in phase locking of their oscillatory activity (Fries, 2005; Sauseng & 
Klimesch, 2008). 

In ERP studies, reduced top-down suppression of irrelevant information has been 
linked to increased amplitude of early ERP components, such as the P1 (Zanto & Gazzaley, 
2009) and N170 (de Fockert et al., 2009). In a working memory task, for example, young 
participants showed a reduction in P1 amplitude when irrelevant images were presented 
during task performance, compared to viewing the same images with no accompanying 
task. The elderly did not show this reduction, which was interpreted as evidence that this 
group was unable to suppress irrelevant information during task performance (Zanto & 
Gazzaley, 2009). 

Top-down suppression of irrelevant information has also been linked to an increase 
in EEG alpha power in young participants (Freunberger et al., 2008). When young 
participants received information in advance about the location of an upcoming target, 
alpha power was larger in the hemisphere ipsilateral to the target than in the hemisphere 
contralateral to the target. This indicates that participants prepared for the upcoming 
stimulus by suppressing visual processing activity at irrelevant spatial locations. These 
findings are consistent with those of studies investigating working memory and long 
term memory performance, showing that increased alpha power in task-irrelevant 
regions was predictive of good performance (Haegens et al., 2010; Meeuwissen et al., 
2011). 

The prefrontal cortex (PFC), implicated in inhibition of irrelevant sensory information 
(Aron et al., 2004; Knight et al., 1999), is one of the areas showing the greatest atrophy 
with age (Raz et al., 2005). Thus, structural decline in this brain area might be responsible, 
at least partly, for the inhibitory deficit in elderly. However, according to the scaffolding 
theory of aging (Park & Reuter-Lorenz, 2009) enhanced activity in frontal areas is a hallmark 
of the brain’s adaptation to a range of neural challenges it faces during the life span. The 
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theory posits that, despite functional deterioration, an adequate performance level in 
elderly is maintained due to engagement of additional neural circuitry. The additional 
circuitry is suggested to primarily involve frontal brain areas; however, parietal, temporal 
or occipital areas might be included, as well. 

It is important to note that studies of aging often have treated the elderly as a 
homogeneous group, assuming the same general pattern of cognitive decline in all 
individuals (Colcombe et al., 2005; for exceptions see Daffner et al., 2011; Duverne et 
al., 2008; Nagel et al., 2009). However, large individual differences have been observed 
within the elderly population (Park & Reuter-Lorenz, 2009). In view of the need to develop 
interventions to slow age-related changes in performance (e.g., cognitive training 
methods, adaptations of work environment), it is of great importance to understand 
why some older individuals are able to maintain their level of cognitive function into old 
age, while others cannot. The main aim of the present study is to examine age-related 
changes in processing of relevant and irrelevant information using both behavioral and 
electrophysiological indices of performance, taking into account differences between 
high and low performing individuals. 

Inhibition was measured using a selective attention task, in which relevant and irrelevant 
information could be presented simultaneously. Participants were instructed to press 
‘yes’ when a target letter was presented on one of the relevant positions on the screen 
and press ‘no’ in all other cases. An inhibition inefficiency score was derived by assessing 
how response times were affected by a target letter presented on one of the irrelevant 
locations on the screen compared to trials in which no target letters were presented. Based 
on previous research, we hypothesized that an individual’s ability to inhibit irrelevant 
information would be related to the amplitude of the P1 ERP component (Gazzaley et al., 
2008). In addition we expected an increase in functional connectivity between signals 
measured at frontal and occipito-parietal electrode locations, as reflected in higher phase 
locking values in the alpha band, in individuals with a high ability to inhibit irrelevant 
information compared to those who have a lower ability to inhibit irrelevant information.

5.3 Methods

5.3.1 Participants

Forty-four older adults (20 males, Mage = 65.8 years, age range: 60-74 years) and 40 
younger adults (20 males, Mage =19.8 years, age range: 18-26 years) participated in this 
experiment. All participants were right handed and had no history of neurological or 
psychiatric disorders. Older participants had a score above 26 on the Mini Mental Status 
Examination (MMSE, Folstein et al., 1975) and below 16 on each of the subscales of the 
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Hospital Anxiety and Depression Scale (HADS, Zigmond & Snaith, 1983). All participants 
had normal or corrected-to-normal visual acuity. The study adhered to the Declaration of 
Helsinki and was approved by the local ethics committee. Informed consent was obtained 
from all participants. 

5.3.2  Stimuli and apparatus

The task used in the current experiment was a modified version of the selective attention 
task used by Wijers et al. (1987). In this version of the task (figure 5.1), an experimental 
block started with the presentation of the target letter, followed by the presentation of a 
cue frame, indicating which diagonal (right-up, left-up, horizontal) was relevant. Both the 
target letter and the cue frame were presented for 5000 ms. After the instruction, a series 
of 150 trials was presented in each block. In each trial the stimuli were presented for 300 
ms followed by an inter-stimulus interval varying randomly between 2000 and 2500 ms. 
A fixation cross in the middle of the screen remained visible throughout a block of trials. 

Participants were required to pay attention to information presented on the relevant 
diagonal and to ignore information presented on the irrelevant diagonals. For half of the 
participants a right hand index finger response was required if a target letter appeared 
on a relevant diagonal position (relevant target) and a right hand middle finger response 
was required in all other conditions (i.e., target letter on irrelevant diagonal positions 
(irrelevant target) or no target letter presented on the relevant diagonal (non-target)). 
For the other half of the participants index and middle finger responses were reversed. 
Relevant target trials made up 25% of the total number of trials. There were never two 
target letters present in one trial. In addition display load was varied; the stimulus 
display contained 2, 4 or 6 letters. On diagonals where no letters were displayed masks 
were presented to keep the amount of visual input similar over conditions. The display 
load manipulation will not be discussed in the current paper. The outcome measure of 
interest in this task was the ability to inhibit irrelevant information on the screen. This 
was measured by the difference in median reaction time between irrelevant target trials 
and non-target trials, averaged over the other task variations such as display load and 
whether or not letters were presented on the relevant diagonal. This difference score is 
referred to as the inhibition inefficiency score.

Stimuli were presented on a Pentium IV PC, equipped with a 17 inch monitor. Stimulus 
generation and response collection were controlled using E-prime 1.2. All stimuli were 
white on a black screen in font Arial, size 18. Stimulus letters were randomly chosen from 
the alphabet, excluding the letters g, i, o, q, u, x and y. The visual angle from the centre 
of fixation to each of the letters was 2.3° with a viewing distance of 75 cm. In total, there 
were 6 blocks of 150 stimuli. Between every two blocks, there was a two-minute break to 
avoid effects of mental fatigue due to prolonged task performance. 
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Figure 5.1: Schematic overview of different task conditions 

5.3.3 Procedure

The experiment consisted of 2 sessions carried out on separate days. In the first session 
participants performed a series of neuropsychological tests, which were used to check 
whether differences between groups in the inhibition task were related to speed of 
information processing or intelligence. The test battery included the Dutch Adult Reading 
Test (Schmandt et al., 1992), the WAIS III digit span, digit symbol and matrix reasoning 
tests (Uterwijk, 2001) and a simple reaction time test (see Table 5.1). Visual acuity was 
measured using reading charts at a distance of 75 cm; a score of 1 reflects normal visual 
acuity. Additionally, participants practiced the selective attention task in three blocks of 
50 trials. During the training, feedback on performance levels was given after each block. 
In the second session, participants performed the selective attention task while EEG was 
measured. 

5.3.4 Performance level split

To examine the relation between individual differences in inhibition and brain activity, 
both the older and the younger groups were split into high and low performers. The split 
was based on the inhibition inefficiency score; the difference in median reaction times 
between trials in which a target was presented on an irrelevant location and trials in which 
no target letters were presented. Participants with an inhibition inefficiency score smaller 
than the median in their age group were considered to be high performers, those with 
a score above the median as low performers. Participants with an inhibition inefficiency 
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score higher or lower than two standard deviations from the group mean were excluded 
from the analysis to prevent artificial inflation of correlations. This led to the removal of 
four outliers, two younger participants and two older participants.

5.3.5 EEG measurement and data analysis

EEG was recorded using 64 tin electrodes attached to a cap (ElectroCap International 
Inc., Eaton, Ohio, USA). The electrodes were placed at sites specified by the international 
10-10 system (except F1, F2, CP1, CP2, FT7 and FT8). A REFA 8-72 amplifier (Twente 
Medical, Systems, Enschede, The Netherlands) was used to sample the signal at 500 Hz, 
with a low pass filter of 135 Hz (48 dB/oct). The Electro-Oculogram (EOG) was recorded 
bilaterally from electrodes placed at the outer canthi of both eyes and above and below 
the left eye. Data acquisition was performed using Brain Vision Recorder (version 1.03, 
BrainProducts GmbH, Munich, Germany). 

Preprocessing of the data was executed using Brain Vision Analyzer (version 1.05, 
BrainProducts GmbH, Munich, Germany). Trials with incorrect responses were excluded 
from analysis. Data were down-sampled to 250 Hz, re-referenced to the average of the 
mastoid electrodes and filtered with a high pass filter of 0.16 Hz. For time frequency 
analysis, a low pass filter of 55 Hz (48 dB/oct) was used. A low-pass filter of 40 Hz (24 dB/
oct) was used for the ERP analysis. Ocular correction was applied using the algorithm 
of Gratton, Coles and Donchin (1983). No horizontal eye movements were observed 
in relevant segments. Segments for ERP analysis ranged from -200 to 1000 ms around 
stimulus onset and baseline correction was applied to the pre-stimulus interval from -200 
to 0 msec. Segments for the phase locking analysis ranged from 1 s pre-stimulus to 1 s 
post-stimulus. For the ERP analysis, trials were considered artifacts when the difference 
between the highest and the lowest voltage within a segment at PO7 or PO8 was more 
than 200 μV and when there was a difference larger than 50 μV between subsequent 
data points. For the time-frequency analysis, trials were considered artifacts when 
there was a difference larger than 75 μV between subsequent data points on one of the 
channels involved in the analysis. The number of trials considered as artifacts did not 
differ significantly between high and low performing participants. After the exclusion of 
artifacts and incorrect trials, an average of 817 trials remained for subsequent analysis.

To calculate phase locking values between different frontal and occipito-parietal 
regions of interest (ROIs), the Fieldtrip toolbox for EEG/MEG-analysis was used (Oostenveld 
et al., 2011). The choice for particular ROIs was partly based on previous research (Zanto 
et al., 2010) and extended with frontal ROIs, as it has been suggested that inhibition 
and selective attention involves a widespread frontoparietal network (Pinsk et al., 2004). 
Except for the central frontal ROI (average of 3 electrodes: AFz, Fz and FCz), all ROIs were 
averages of the signals measured at 5 electrodes: FC1, FC3, FC5, C3, F3 (left frontal), FC2, 
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FC4, FC6, F4, C4 (right frontal), P3, P5, P7, PO3, PO7 (left occipito-parietal), POz, Oz, O1, O2, 
Iz (central occipito-parietal), and P4, P6, P8, PO4, PO8 (right occipito-parietal). 

Time frequency analyses and phase computations were performed using Morlet 
wavelets (family ratio:fo/σf=7) in three frequency bands: the alpha band (8-12 Hz), the 
lower beta band (13-20 Hz) and the upper beta band (21-30 Hz). These frequency bands 
were based on previous research (Sauseng & Klimesch, 2008), indicating that long range 
connectivity in alpha and beta waves plays a role in inhibition and attention processes. 
Phase locking values (PLV) were computed by measuring the inter-trial variability of 
the difference in phase between two ROIs at each time-frequency point (Lachaux et 
al., 1999). This procedure results in a measure between 0 and 1, where 0 represents a 
random phase difference and 1 represents a constant phase difference. In addition to 
PLV, the power values, as computed by the Morlet wavelets, were examined to check for 
artificial differences in PLV, induced by power differences. Averages of the phase locking 
and power values were computed in four 200 ms intervals, ranging from 400 ms before 
stimulus onset to 400 ms after stimulus onset. Due to the Morlet wavelet procedure, the 
PLV and power values at each time point are estimates based on a range of time points 
encompassing seven cycles of the frequency of interest. Data of five participants were 
removed from the PLV and power analysis because of bad data quality for one of the 
electrodes within one of the ROIs.   

5.3.6 Data Reduction and Statistical Analyses

Based on findings in previous studies, where the P1 and N1 were linked to inhibition 
of irrelevant information, we specifically looked at these ERP components (Gazzaley et 
al., 2005b). P1 peak amplitude was quantified as the most positive value between 50 and 
150 ms after stimulus onset at PO7 and PO8, the N1 as the most negative value between 
120 and 220 ms at PO7 and PO8. Data from one participant were excluded from the ERP 
analysis because of bad signal quality at electrode PO8. Analysis of behavioral data, ERP 
peak amplitudes and latencies was performed using mixed effects ANOVAs. Within subject 
factors were task condition and electrode (only for the analysis of ERPs), between subject 
factors were age group, performance level (high/low) and the interaction between age 
and performance level. To check whether the behavioral results were confounded by 
effects of processing speed, two different measures of processing speed, reaction time in 
the reaction time task and response time in non-target trials, were used as covariates in 
two separate ANCOVAs. Planned comparisons and post hoc-tests were performed using 
t-test. For the t-tests, corrections for unequal variances were applied when required. All 
correlation analyses (between phase locking, P1 amplitude and inhibition inefficiency 
scores) were performed using one sided Spearman rank correlations. The Spearman rank 
correlation coefficient was used instead of the Pearson correlation coefficient to cope 
with deviations from normality, linearity and to reduce effects of possible outliers. 
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To assess whether correlations were significantly different in the older and the younger 
groups, a Monte Carlo resampling procedure was used. Participants were randomly 
assigned to one of two groups. Within each group the correlation was computed, and 
subsequently the difference between the correlations in the groups was stored. This 
procedure was repeated 5000 times to generate a null distribution. Only when the 
difference in the correlations between the older and the younger groups was larger 
than the largest 5% of this null distribution, we concluded that the correlations were 
significantly different between the age groups and we calculated separate Spearman rank 
correlations. The effect of age on phase locking values and power values was computed 
using the Mann-Whitney U test, a non-parametric alternative for the t-test. This test was 
used instead of the t-test to reduce effects of outliers and to cope with non-normal data. 
The standard effect size of the Mann-Whitney U test (r) was computed by dividing the 
z-value by the square root of the number of participants in the analysis. The significance 
level was set at p=0.05. 

For the analysis of phase locking values, each time frequency bin contained 15 
comparisons (electrode-pairs), for the analysis of power values there were 6 comparisons 
(electrodes) in each bin. Monte Carlo resampling procedures were used to evaluate the 
probability of the observed number of significant effects in each time frequency bin 
(similar to the procedure used by Hanslmayr et al., 2007). The scores of participants were 
randomly exchanged, and correlations or group differences within a time-frequency bin 
were computed. The number of significant (p<0.05) effects was stored. This procedure 
was repeated 5000 times to generate a null distribution. When the actual number of 
significant results was larger than the cut-off number corresponding to the largest 5% of 
this null distribution, we concluded that the number of significant differences was larger 
than could be expected based on chance. In the figures, we indicated whether results in 
a given time-frequency bin were found significant according to this procedure by adding 
an asterisk. Only results that were significant according to this procedure were presented 
in the results section. 

5.4 Results

5.4.1 Behavioral data 

The inhibition inefficiency score measures the extent to which participants were 
affected by irrelevant information. A median split on the inhibition inefficiency score was 
used to categorize participants into high and low performers (see Methods). As accuracy 
levels for both conditions were almost at ceiling level (>99% accuracy), the split only 
incorporated differences in response times. In all groups the inhibition inefficiency score 
was significantly larger than zero (t(18/19)=6.6-25.1, p<0.0005). The inhibition inefficiency 
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score was larger for older than for younger participants (F(1,74)=15.1, p<0.0005). However, 
this difference depended on performance level (F(1,74)=8.4, p=0.005), that is, old high 
performers (M=7.5, SD=5.1) and young high performers (M=6.4, SD=3.6) did not differ, 
while old low performers had a significantly higher inhibition inefficiency score (M=24.7, 
SD=6.6) than young low performers (M=17.3, SD=3; t(26.9)=-4.5, p<0.0005). 

ANCOVAs were used to control for the effects of processing speed on the inhibition 
inefficiency score. Both reaction times as measured with the simple reaction time test 
and response times in non-target trials were entered as covariates of no interest. Effects 
of performance level and the age by performance interaction did not change. The effects 
of age group remained significant when adding the response time in non-target trials 
(F(1,73)=6.9, p=0.01) or the reaction time in the reaction time test (F(1,73)=9.7, p<0.003) 
as covariates. 

No differences were observed between high and low performers in average response 
times for any of the task conditions (F(1,74)=0.39, n.s.), nor did high and low performers 
differ on scores for the simple reaction time test (F(1,73)=-0.21, n.s.), Dutch reading test 
IQ (F(1,74)=-0.99, n.s.) or WAIS matrices IQ (F(1,74)=0.01, n.s.). In addition, none of the 
neuropsychological tests showed an age by performance interaction. Younger participants 
scored significantly better than older participants on tests for speed of information 
processing and visual acuity (Table 5.1). No age differences in IQ score were found, indexed 
by the WAIS matrices test, while the Dutch Reading test, a test of crystallized intelligence, 
showed significantly better performance for older than for younger participants.

Table 5.1: Neuropsychological, demographic and experimental variables

Young HP Young LP Old HP Old LP
Sex (m/f ) 11/8 9/10 9/11 10/10

Age (years) 19.6 (1.2) 20.2 (2.2) 65.6 (4.3) 65.6 (3.9)
Visual acuity 1 1.1 (0.1) 1.0 (0.2) 0.8 (0.2) 0.8 (0.1)

Dutch Reading test IQ 1 101 (4) 102 (6) 107 (8) 110 (12)
WAIS Matrices IQ 110 (8) 111 (11) 108 (11) 107 (11)

Digit Symbol 1 87 (11) 85 (14) 67 (11) 62 (15)
Reaction time test (ms) 1 219 (20) 220 (22) 236 (18) 240 (34)

RT non-target trials (ms) 1 399 (56) 416 (61) 567 (71) 561 (70)
Inhibition inefficiency (ms) 23 6.4 (3.6) 17.3 (3) 7.5 (5.1) 24.7 (6.6)

P1 amplitude (μV) 2 3.2 (1.5) 3.7 (1.6) 3 (1.9) 5.4 (3.4)
Numbers represent mean (standard deviation). m: male; f: female; 1: significant difference 
between old and young participants (p< 0.005). 2: significant difference between high and low 
performers (p<0.01). 3: significant interaction between age and performance level (p<0.005)
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5.4.2 ERP data 

The results for the P1 peak matched the pattern we found for the behavioral data; 
in the low performing elderly group P1 amplitude (M=5.4, SD=3.4) was larger than in 
the other groups (performance level F(1,73)=8.7, p=0.004). Additionally, low performing 
younger participants showed a slightly larger P1 (M=3.7, SD=1.6) than both young (M=3.2, 
SD=1.5) and old high performing participants (M=3, SD=1.9; see figure 5.2).

Figure 5.2: ERP waveforms at electrodes PO7 and PO8 illustrating the P1 component. The wave-
form is averaged over all task conditions and superimposed for age and performance level.

P1 amplitude differences between high and low performers were more pronounced 
at the right hemisphere electrode (PO8) than at the left hemisphere electrode (PO7) 
(performance level*electrode: F(1,73)=5.4, p=0.022). Correlation analyses revealed 
that P1 amplitude correlated significantly with the inhibition inefficiency score at PO8 
(r=0.342, p=0.001), that is, participants with a larger inhibition inefficiency score had 
larger P1 amplitudes (see figure 5.3). However, this correlation was not present at PO7. 
Monte Carlo resampling procedures revealed that correlations between P1 amplitude 
and inhibition inefficiency score did not differ significantly between the older and the 
younger group. There was no effect of trial type (target/non-target/irrelevant target) on 
P1 or N1 amplitude. No effects of age or performance level or condition on N1 amplitude 
or P1 and N1 latency were observed. 

5.4.3 Phase locking

Connections between the different ROIs were examined in the phase locking analysis 
to identify correlations with the inhibition inefficiency score and P1 amplitude as well as 
differences between age groups. In figure 5.4 and 5.5 the significant results are summarized 
for both the alpha and beta frequency bands. When the number of significant results for a 
specific time-frequency bin exceeds the number expected by chance, this is indicated by 
an asterisk in the figure and these results are described in the results section. 
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Figure 5.3: Correlation between P1 amplitude at electrode PO8 and inhibition inefficiency. Be-
cause the non-parametric Spearman rank correlation was used, rank scores are shown. 

Phase locking in the alpha band (8-12 Hz) between frontal and occipito-parietal ROIs 
consistently correlated negatively with the inhibition inefficiency score in the first interval 
before stimulus onset (i.e. -400 - -200 ms). Participants with a higher ability to inhibit 
irrelevant information (lower inhibition inefficiency score) showed more phase locking 
between frontal and occipito-parietal ROIs (see figure 5.4a). Correlations did not differ 
significantly between the older and the younger group. Age effects in the alpha band 
were mainly limited to post-stimulus stages of stimulus processing; older participants 
showed more phase locking in the alpha band between frontal and occipito-parietal ROIs 
than young participants between 200 - 400 ms after stimulus presentation.

Effects of age on PLV in the lower beta band (13-20 Hz) were present in all time intervals, 
although the differences between age groups were only significant after correction for 
multiple comparisons in the intervals after stimulus onset. Elderly showed larger phase 
locking values between frontal and occipito-parietal ROIs than young participants, 
while phase locking was reduced between frontal ROIs for elderly compared to young 
participants (see figure 5.4b). Correlations between P1 amplitude and phase locking in 
the lower beta band differed across age groups. In older participants the P1 amplitude 
decreased with increased phase locking between frontal and occipito-parietal ROIs (over 
all intervals), while in young participants the effects did not reach the level of corrected 
significance.
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Figure 5.4: A Significant correlations (r; p<0.05) between phase locking values in different ROIs 
and the inhibition inefficiency (pooled over the two age groups). Line color indicates strength 
and sign of the correlation. Note: In the upper beta band, correlations are presented separately 
for the younger and elderly groups because interactions between age group and inhibition 
inefficiency were observed in this frequency band. An asterisk (*) indicates that the number of 
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significant correlations or group differences in that time-frequency bin exceeds the number 
expected by chance (p<0.05). The lower right head model shows the names abbreviated names 
associated with the different ROIs; left occipito-parietal (L-OP) central occipito-parietal (C-OP), 
right occipito-parietal (R-OP), left frontal (LF), central frontal (CF) and right frontal (RF). B Signifi-
cant differences between age groups (p<0.05) in phase locking values between different ROIs. 
Line color indicates effect size (r) and sign of the difference.

 In the higher beta band (21-30 Hz) the Monte Carlo resampling procedure showed 
that the correlation between phase locking values and inhibition inefficiency scores was 
significantly different in the older and the younger groups. While no correlations were 
observed between the inhibition inefficiency score and phase locking in the young group, 
higher phase locking values between frontal and occipito-parietal ROIs in the elderly 
were correlated with more efficient inhibition over all time intervals. Also the correlations 
between the P1 amplitude and phase locking in the upper beta band were significantly 
different between age groups. Younger participants showed no significant correlations 
while elderly showed a smaller P1 amplitude with increased frontal to occipito-parietal and 
occipito-parietal to occipito-parietal phase locking (over all intervals). These correlations 
were stronger than those in the lower beta band. 

Because phase locking in both the alpha and the upper beta band correlated with 
inhibition inefficiency scores in older participants, we additionally computed the 
correlation between the average frontal to occipito-parietal phase locking in the alpha 
band (-400 - -200 ms) and phase locking in the upper beta band (see figure 5.6). There was 
a significant interaction between young and older participants. In younger participants, 
there was no correlation between alpha and upper beta phase locking. Older participants 
with higher alpha phase locking also showed increased upper beta phase locking, this 
effect was mainly present between frontal and occipito-parietal ROIs but also between 
occipito-parietal ROIs and between frontal ROIs (over all intervals). 

Additional analyses of differences in absolute power levels revealed that older 
participants had less power in the alpha band in the right and central occipito-parietal 
ROIs than young participants over all intervals (significant between 0 and 400 ms, see 
figure 5.7b). Older participants had increased power in left and right frontal and left 
occipito-parietal ROIs in the lower beta band . Moreover, in the higher beta band older 
participants had more power than young participants in all frontal ROIs and in the left 
occipito-parietal ROI in pre- and post-stimulus intervals. 

In both younger and older participants, power in the alpha band at occipito-parietal 
ROIs correlated with the inhibition inefficiency score. Participants with more power in the 
alpha band were better at inhibiting the irrelevant information on the screen (see figure 
5.7a). Correlations between power and inhibition inefficiency were not significantly 
different for the two age groups. There were no significant correlations between power 
and P1 amplitude. 
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Figure 5.5: Significant correlations (r; p<0.05) between phase locking values in different ROIs 
and the P1 amplitude in the a) younger and the b) older group. Note: correlations are presented 
separately for the younger and elderly groups because interactions between age group and P1 
amplitude were observed in all frequency bands. Line color indicates effect size (r) and sign of 
the difference. An asterisk (*) indicates that the number of significant correlations in that time-
frequency bin exceeds the number expected by chance (p<0.05). 
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Figure 5.6: Significant correlations (r; p<0.05) between the average fronto-parietal phase lock-
ing value in the alpha band (-400 - -200 ms) and phase locking values in the upper beta band, 
separately for the older and the younger groups. Note: correlations are presented separately for 
the younger and elderly groups because interactions between age group and average fronto-
parietal phase locking value in the alpha band were observed. Line color indicates effect size (r) 
and sign of the difference. An asterisk (*) indicates that the number of significant correlations in 
that time-frequency bin exceeds the number expected by chance (p<0.05).

 

 

Figure 5.7: A Significant correlations (r; p<0.05) between power values in different ROIs and 
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the inhibition inefficiency (pooled over the two age groups). The color of the circle indicates 
strength and sign of the correlation. B Significant differences between age groups (p<0.05) in 
power values between different ROIs. The color of the circle indicates effect size (r) and sign of 
the difference. An asterisk (*) indicates that the number of significant correlations or group dif-
ferences in that time-frequency bin exceeds the number expected by chance (p<0.05).

5.5 Discussion

The main aim of the present study was to examine age-related changes in inhibition 
of irrelevant information, taking into account differences between high and low 
performing individuals. We used a combination of behavioral, ERP, power and functional 
connectivity measures to reveal neural correlates of efficient inhibition in younger and 
older participants. More specifically, we used P1 and N1 ERP component amplitudes 
to investigate whether inhibition inefficiency was related to insufficient suppression of 
irrelevant visual information in early processing stages. Phase locking analyses between 
frontal and occipito-parietal ROIs in the alpha and beta band were used to test whether 
inhibition inefficiency was related to decreased connectivity between these groups of 
electrodes. Additionally, we tested whether power in the alpha and beta band in frontal 
and occipito-parietal ROIs was related to inhibition inefficiency.

 The behavioral data demonstrated that although participants were instructed to 
attend only to the relevant diagonal, both younger and older participants were affected 
by information presented at irrelevant spatial positions. All participants responded 
more slowly if an irrelevant target was presented compared to the condition in which 
only non-targets were presented. Older adults seemed to be more affected by irrelevant 
information than younger adults as reflected by a larger inhibition inefficiency score. 
However, this apparent decline with age was carried exclusively by the low performing 
elderly subgroup. These results clearly indicate that aging does not necessarily lead to a 
decline in inhibition on a behavioral level; the high performing elderly performed as well 
as high performing young participants. These results did not change when measures of 
processing speed were entered as covariates in the analysis, indicating that this is in fact 
a specific effect of efficient inhibition. The large differences in the decline of inhibitory 
function between high and low performing elderly underline the importance of looking 
at individual differences when studying aging. 

Mean P1 amplitude in the different groups matched the pattern of results in the 
inhibition inefficiency scores; old low performers had the most pronounced P1, while 
young low performers had a larger P1 than young high performers. The P1 reflects the 
early influence of top-down processes on sensory processing based on global stimulus 
features (Klimesch et al., 2007; Klimesch, 2011). If a stimulus appears at a spatial location 
the participant is not attending to, P1 amplitude was found to be smaller than when the 
same stimulus appears at an attended location (Mangun & Hillyard, 1991). P1 is however 
not only related to attention to relevant stimuli, but also to suppression of irrelevant 
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stimuli. In a working memory task, a stimulus elicited a smaller P1 if that stimulus was 
irrelevant according to the task instructions compared to the same stimulus presented 
without relevance instruction. This was interpreted as evidence for a reflection of 
inhibition (Gazzaley et al., 2008). In the current study, we found that participants who 
were more affected by a target on the irrelevant diagonal had a larger P1. Top-down 
modulation enables the selection of relevant stimuli and the suppression of irrelevant 
stimuli through regulation of neuronal excitability (Gazzaley & Nobre, 2012; Kastner 
& Ungerleider, 2000). In the present study, participants knew before stimulus onset 
where irrelevant information would appear on the screen. Therefore, they could use this 
information to apply top-down modulation to the areas processing this information. 
This could lead to a decrease in the neural excitability of these areas, which in turn could 
cause the reduction in P1. Therefore, we interpret the increased P1 for low performing 
participants as reflecting a deficit in inhibition of the information presented at irrelevant 
diagonals. An alternative explanation might be that the differences in P1 amplitude are 
related to deficits in lower level visual processing, but since we found no differences in 
visual acuity between high and low performing participants this explanation seems less 
likely. We found no differences in P1 amplitude between the various trial types, which is 
in accordance with the suggestion that P1 reflects early categorization which is based 
on global stimulus features (Klimesch, 2011) and confirms that the effect we found is 
indeed related to top-down modulation initiated before stimulus onset. No relation was 
found between the inhibition inefficiency score and N1 latency or amplitude. The N1 
component has been related to the operation of discrimination processes as it is larger 
in choice reaction time tasks than in simple reaction time tasks, independent of task 
difficulty (Vogel & Luck, 2000). This shows that inhibition inefficiency is specifically related 
to inhibition of information at irrelevant spatial locations as reflected in the P1 and not to 
a general increase in the amplitude of ERP components. 

Functional communication between brain areas implicated in the neural network 
underlying top-down modulation was examined by computing phase locking values in 
the alpha and beta bands (Sauseng & Klimesch, 2008). We found that specifically in the 
interval from 400 to 200 ms before stimulus onset, phase locking between frontal and 
occipito-parietal ROIs in the alpha band was increased for those participants with a lower 
inhibition inefficiency score, that is, in those who were less distracted by irrelevant target 
letters. We also found that an increase in alpha power in occipito-parietal ROIs was related 
to decreased inhibition inefficiency in both younger and older participants. Oscillations 
in the alpha band have been consistently related to inhibition (Jensen & Mazaheri, 
2010; Klimesch et al., 2007). In addition, alpha oscillations are primarily related to top-
down communication (Klimesch et al., 2007; Von Stein et al., 2000). In line with these 
findings, the relation between pre-stimulus phase locking and processing of irrelevant 
information after stimulus onset might reflect the influence of top-down control via 
alpha phase locking, modulating cortical excitability in specific cortical areas. Based on 
task instructions, participants know the position of irrelevant information beforehand; 
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this information can be used to suppress the excitability of areas processing (ir)relevant 
stimuli. As the observed increase in phase locking was present in the pre-stimulus 
interval, an interval during which participants prepared for the upcoming stimulus, it is 
plausible that the increase in functional communication between frontal and occipito-
parietal ROIs indeed represents top down control as opposed to bottom up signaling. 
Note, however that phase locking is a measure of functional connectivity; therefore it 
provides no information about the direction of connectivity by itself. Together, these 
results show that alpha power is indeed associated with increased inhibition and that top 
down modulation of alpha activity on occipito-parietal electrodes before stimulus onset 
is associated with efficient inhibition of irrelevant information in both young and elderly. 

It has been debated whether increased activity in frontal areas in elderly is beneficial 
to task performance or is a sign of decline in functional specificity (i.e. dedifferentiation). 
Some authors claim that patterns of brain activity similar to young participants predict 
optimal performance (Li & Sikström, 2002; Nagel et al., 2009), while others argue that 
additional activity in frontal areas contributes to task performance in elderly (Cabeza, 
2002; Davis et al., 2008; Reuter-Lorenz & Cappell, 2008). In our data we found differences 
in power values between older and younger participants which were not related to any 
of the behavioral measures. Older participants had more power in frontal ROIs than 
younger participants, mainly in the higher beta band and to a lesser degree also in the 
lower beta band. In addition the elderly had higher phase locking values between frontal 
and occipito-parietal ROIs than younger participants across alpha and beta frequency 
bands, this effect was most clear in the interval from 200 to 400 ms after stimulus onset. 
On the other hand, we found reduced alpha power in the central occipito-parietal ROI in 
elderly compared to younger participants over all intervals. Therefore, we hypothesize 
that the (higher) beta power increases in frontal ROIs and the increase in phase locking, 
most notably in the intervals after stimulus onset in elderly are used to counteract the 
decline in alpha power in central occipito-parietal ROIs. 

We found that older participants who performed well showed more phase locking 
between frontal and occipito-parietal ROIs in the higher beta band than low performing 
elderly over all time intervals. Younger participants showed no correlation between 
performance and phase locking in this frequency band. Although knowledge about the 
functional interpretation of beta band oscillations is scarce compared to the alpha band, 
available evidence links phase locking in the beta band to modulation of attention (Gross 
et al., 2004; Wróbel et al., 2007; Wróbel, 2000). While phase locking in the alpha band was 
specifically related to inhibition of the information on irrelevant locations, the higher beta 
band communication between frontal and occipito-parietal ROIs might be related to the 
attention attributed to items on the relevant diagonal. It is known that the functional 
specificity of visual processing areas decreases with age (Park et al., 2004). As a result, 
increased top-down control of areas processing relevant stimuli might be required for 
good performance. In addition, the increased phase locking in the beta band might be 
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used to counteract the effects of reduced alpha power in elderly in the central occipito-
parietal ROIs. While the usual approach for detecting compensation mechanisms is to 
assess activation levels in particular brain areas (Davis et al., 2008; Nagel et al., 2009), 
our data suggest that it is an increase in communication between areas, specifically in 
the higher beta band, that is related to effective inhibition in elderly. Considering the 
specificity of this effect for the elderly group and the strong relation with performance 
efficiency, we suggest that increased beta band phase locking might represent a neural 
compensation mechanism employed by high performing elderly. This interpretation 
is supported by analyses showing that older participants with more phase locking in 
the upper beta band tended to have a smaller P1 and more pre-stimulus alpha phase 
locking. Both of these factors were found to indicate a low inhibition inefficiency (good 
performance) in the current study.

There are several models, which divide attention into subsystems of stimulus selection 
and conflict resolution. In the current study we focused on the selection of relevant 
and the exclusion of irrelevant information, which corresponds to the orienting system 
(Posner & Petersen, 1990; Raz & Buhle, 2006) or the perceptual selection stage (Lavie et al., 
2004; Lavie, 2005). Both models suggest that the orienting or perceptual selection stage 
is automatic and does not require active cognitive control. This assertion is contradicted 
by a recent study, which has shown that perceptual selection is affected by cognitive load 
and that distracters can be excluded in the perceptual stage to prevent them from further 
interference (Caparos & Linnell, 2010). This pattern appears to be reflected in our data as 
well; the conflict measured with the inhibition inefficiency score between correct letter 
(response: yes) and incorrect location (response: no) was reduced in high performing 
participants by employing perceptual selection (as reflected in increased alpha phase 
locking and decreased P1 amplitude), even before stimulus onset. 

In conclusion, we have shown that on a behavioral level, only a subgroup of elderly 
showed a deficit in inhibition, while others seem to perform comparably to young 
individuals. This age-related decline in inhibition seems to be related to a deficit in 
suppression of irrelevant information in the early stages of visual processing, as reflected 
in the relation between P1 amplitude and the inhibition inefficiency score. Increased top 
down modulation from frontal to occipito-parietal ROIs in the alpha band and increased 
alpha power in occipito-parietal ROIs appear to be an underlying mechanisms facilitating 
performance in both young and elderly participants. The relation between phase locking 
in the higher beta band and inhibition inefficiency suggests that increases in connectivity 
in high performing elderly are not passive age related changes but active compensation 
mechanism employed to maintain adequate performance. Successful ageing seems to be 
associated with maintenance of efficient information processing capabilities, extended 
by effective compensation mechanisms resulting in performance levels comparable to 
young individuals.
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6 The effect of the pre-stimulus brain state on information 
processing

6.1 Abstract

Temporal integration was examined using a missing element task, in which task 
performance depends on the ability to integrate brief successive stimulus displays. Previous 
studies have suggested that temporal integration is under endogenous control, and that 
integration is more likely when stimuli match the observer’s temporal expectancies. Beta 
oscillations have previously been related to such cognitive (and attentional) control, 
as well as to audiovisual integration. We thus hypothesized that pre-stimulus power in 
the beta frequency band might reflect ‘integration readiness’, and distinguish trials in 
which stimuli were successfully integrated from unsuccessful ones. The results showed 
increased upper beta power (21-30 Hz) prior to successful integration over central and 
parietal electrodes. This finding supported the idea that increased pre-stimulus beta 
power might reflect general control processes that can facilitate integration.

6.2 Introduction

The ability to perceive events in time allows us to maintain coherency in an ever-
changing stream of perceptual input, and enables appropriate actions. Event perception 
relies heavily on temporal integration: When visual stimuli appear in rapid succession 
within ±200 ms, the brain tends to treat them as a single, integrated event (Eriksen & 
Collins, 1967). Temporal integration has been observed with various types of stimuli, such 
as letters that form a word (Forget et al., 2010), two halves of faces (Cheung et al., 2011), 
and dot matrices (Hogben & Di Lollo, 1974).

Temporal integration is not entirely automatic, however. Several factors influence 
whether integration will occur. Stimulus characteristics such as duration and luminance 
affect integration frequency (Di Lollo, 1977; di Lollo, 1980; Hogben & Di Lollo, 1974; Long 
& Beaton, 1982). Endogenous factors that reflect the state of the observer’s cognitive and 
perceptual system, such as the expected presentation speed (Akyürek et al., 2008), and the 
availability of (transient) attention, also affect integration (Visser & Enns, 2001; Yeshurun 
& Levy, 2003). Electrophysiological studies on temporal integration have shown resultant 
modulations of the N1, N2, P3, and N2pc components of the event related potential (ERP), 
each of which might indeed relate to endogenous factors (Akyurek et al., 2010; Akyürek 
& Meijerink, 2012)

However, ERPs do not allow for examination of pre-stimulus effects, which could be 
important if the state of the perceptual system –even before stimulus onset– indeed 
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affects temporal integration. Pre-stimulus effects on temporal integration may be 
detected by examining EEG oscillatory power, in particular in the beta frequency band, 
which has been related to cognitive control, as well as audiovisual integration (Engel 
& Fries, 2010; Keil et al., 2012). Both pre- and post-stimulus beta oscillations are also 
linked to attention (Deiber et al., 2007; Gross et al., 2004; Kranczioch et al., 2007; Wróbel, 
2000). A common theme in these studies is that beta power (and/or synchrony) and 
task performance increase when the perceptual system is optimally set up to process 
the current or the upcoming stimulus; the latter due to successful prediction, or because 
the previous stimuli were similar. Importantly, when controlling temporal integration is 
concerned, this optimal state could be related closely to the currently preferred duration 
of event timing.

To determine whether pre-stimulus differences in oscillatory power might affect 
temporal integration, data presented in Akyürek et al. (Akyurek et al., 2010) were 
presently reanalyzed. In this experiment, participants performed a missing element task 
(MET), in which two successive stimulus displays (S1 and S2) were presented with a 10 ms 
interstimulus interval (ISI). Each display contained 12 out of 25 possible squares in a 5x5 
matrix. One matrix position remained empty and participants were instructed to localize 
that missing element. When the two displays are perceived separately, this is very hard to 
accomplish in a limited amount of time (here 1800 ms). However, when the two displays 
are temporally integrated into one percept the missing element is easy to spot. When 
S1 was presented for 70 ms and S2 for 10 ms, participants responded correctly in about 
half of the trials. This allowed a comparison of the trials in which temporal integration 
occurred with trials in which it did not. Based on the literature described above, we 
expected increased pre-stimulus beta power on trials in which temporal integration 
eventually succeeded.

6.3 Methods

6.3.1 Participants

Twenty-one students (18 female, 3 male) with normal or corrected-to-normal vision 
and a mean age of 23 years (range 19-30 years) participated in the study. This study 
presents a new analysis of the EEG data collected in Experiment 4 of Akyürek, Schubö 
& Hommel (2010). Further details with regard to its design and execution are reported 
there.

6.3.2 Stimuli and task
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Participants searched for the missing element in a MET, consisting of two successive 
display frames, each containing a random selection of 12 out of 25 possible squares 
(without overlap), so that only one square was not drawn in either display. In the condition 
exclusively analyzed here, S1 was presented for 70 ms, followed by a 10 ms blank, and 
followed by S2 for another 10 ms. Participants responded to a prompt showing all matrix 
positions, which appeared 600 ms after stimulus offset, and which remained onscreen 
until a response was registered or 1200 ms had elapsed. After a blank screen with a 
(random) duration of 600-800 ms, the next trial started.

6.3.3 Electrophysiological recording and data analysis 

EEG was recorded with 64 Ag-AgCl electrodes laid out according to the extended 
international 10–20 system. The electrodes were referenced to Cz and re-referenced 
off-line to the average of both mastoids. Horizontal and vertical eye movements were 
recorded from the outer canthi of the eyes and above and below the left eye, respectively. 
Electrode impedance was kept below 5 kΩ. Data were recorded with a 500 Hz sample 
rate, and a 125 Hz-lowpass and a 0.1-Hz highpass filter. Off-line, the data were filtered 
with a 100-Hz lowpass filter and a 0.16-Hz highpass filter (both 48 dB/oct). Subsequently, 
the data was segmented into 2500 ms segments, starting 1000 ms prior to the onset 
of S1 and ending 1500 ms afterward. Ocular artifacts (blinks and eye movements) were 
corrected using the Gratton–Coles procedure (Gratton et al., 1983). Trials with voltage 
steps exceeding 50 mV/ms were excluded from analysis.

The analysis compared trials with unsuccessful temporal integration to trials with 
successful integration, as evidenced by the participants’ response accuracy (excluding 
missing responses). Time–frequency analyses were performed with the Matlab-based 
FieldTrip toolbox (Oostenveld et al., 2011) using Morlet wavelets. This analysis produced 
an estimate of oscillatory raw power for each time sample between 600 ms pre-stimulus 
and 600 ms post-stimulus (in 10 ms steps) and for each frequency between 8 and 60 Hz 
(in 0.5 Hz steps). The Morlet wavelets contained a fixed number of cycles of sinusoidal 
oscillations for each frequency band (8-12 Hz, 6 cycles; 13-20Hz, 7 cycles; 21-30 Hz, 8 
cycles; 31-60 Hz, 9 cycles). Subsequently, following Grandchamp and Delorme (2011), 
a relative baseline correction was applied in which the power on each time point and 
frequency was divided by the average power of that frequency in the entire epoch (-600 
ms to 600 ms) for each channel separately. This procedure reduces the effect of artifactual 
trials with high power estimates.

 A non-parametric cluster based randomization technique was used to identify 
whether the power was different for correct and incorrect trials (Maris & Oostenveld, 
2007). This method deals with the multiple comparisons problem, while accounting for 
the dependency of the data, by clustering neighboring samples that show the same effect. 
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The analysis was performed separately for the average power in each of four frequency 
bands, alpha (8-12 Hz), lower beta (13-20 Hz), upper beta (21-30 Hz) and gamma (31-
60 Hz). Independent samples t-tests (correct vs. incorrect trials) were performed on 
all channels and time points. Samples in which this t-value exceeded an uncorrected 
threshold of p<0.05 were subsequently clustered. The sum of the t-values within a cluster 
was used as the cluster-level statistic. By randomizing the data across the two conditions 
and recalculating the test statistic 2000 times, a reference distribution of maximum cluster 
t-values was generated to evaluate the statistic of the actual data.

6.4 Results

Figure 6.1: Time-frequency plots for successful integration trials, unsuccessful integration tri-
als and the difference between successful and unsuccessful integration trials. The plots show 
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relative power (dB) averaged over the 5 electrodes showing the strongest differences between 
these conditions (P1,P2,P3,CP1,CP3). The dashed square indicates where successful and unsuc-
cessful integration trials were significantly different. The scalp maps represent relative power 
distributions (calculated over the upper beta average) over the scalp at 230 ms before stimulus 
onset. The stars indicate electrodes that belong to the cluster that shows a significant difference 
between the trial types.

As reported previously by Akyürek et al. (2010), temporal integration was achieved 
in approximately half the trials (mean correct = 52.1%, SEM = 3.1%). The cluster-based 
randomization technique revealed that power in the upper beta band (21-30 Hz) 
between 280 and 180 ms before stimulus onset (see figure 6.1) was significantly higher in 
successful integration than in unsuccessful integration trials (p=0.02). Tests in the alpha 
(p=0.94), lower beta (p=1) and gamma bands (p=0.57) did not show significant results, 
either pre- or post-stimulus. The upper beta effect was mainly present over parietal and 
central electrodes.

6.5 Discussion

Consistent with our expectations, pre-stimulus oscillatory power was related to 
temporal integration. Specifically, pre-stimulus upper beta power (21-30 Hz) over parietal 
and central electrodes was significantly higher in trials with stimulus integration compared 
to trials without. Together with previous evidence that temporal integration is under 
endogenous control, the present findings are compatible with one hypothesized role of 
beta band oscillations in the maintenance of the status quo of the perceptual system 
(Akyürek et al., 2008; Engel & Fries, 2010). The data thus suggested that integration is most 
likely to succeed when the perceptual system is optimally tuned for the upcoming task, 
which likely requires adopting a relatively long integration window, able to encompass 
the two successive stimuli. This may be one way in which beta activity is related to 
temporal (onset) expectations (Cravo et al., 2011), which may eventually also subserve 
motor planning (Alegre et al., 2003).

Such optimization of the state of the perceptual system may be related to the 
availability of attention. Indeed the current results provide support for the idea that 
attention facilitates temporal integration (Visser & Enns, 2001; Yeshurun & Levy, 2003). 
Several studies have related beta synchrony and beta power to attention. Increased beta 
power has been related to higher performance in vigilance tasks (Belyavin & Wright, 1987), 
and was found to increase during stimulus expectancy periods (Basile et al., 2007). Beta 
synchrony has furthermore been found to predict the perception of briefly presented 
visual stimuli (Hanslmayr et al., 2007), the perception of the second target in attentional 
blink tasks (Gross et al., 2004; Kranczioch et al., 2007), and the application of top-down 
attentional control (Buschman & Miller, 2007). The present increase in beta power before 
stimulus onset fits well with the idea that (anticipatory) attention may facilitate temporal 
integration. Behaviorally, this may also transpire in longer perceived durations of attended 
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stimuli (e.g.,Enns et al., 1999). Whether these effects reflect spontaneous waxing and 
waning of attention over trials, or active preparation for upcoming stimuli remains to be 
determined.

The perceptual state reflected by the pre-stimulus beta activity cannot only reflect 
an increased ability to discern stimuli; in the present task this could lead to the arguably 
more accurate perception of two successive stimuli, rather than one integrated percept. 
Thus, the present beta activity must also reflect an increased tendency to integrate 
sensory input. In one previous study increased pre-stimulus beta power has been related 
to auditory-visual integration (Keil et al., 2012), in which beamformer source analysis 
pointed to a network of left superior temporal gyrus, precuneus and right middle frontal 
gyrus. In another study by Hipp, Engel and Siegel (2011) beta band synchronization in a 
similar fronto-parietal-occipital network also predicted integration of visual and auditory 
information. The current results may be related to these findings by assuming that pre-
stimulus beta power might reflect processes that facilitate integration in general; both 
between modalities as well as in the temporal domain.
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7 An fMRI study on the neural correlates of selective atten-
tion in old and young

7.1 Abstract 

The ability to suppress irrelevant information declines with age, while the ability to 
enhance relevant information remains largely intact. We examined mechanisms behind 
this dissociation in an fMRI study, using a selective attention task in which relevant 
and irrelevant information appeared simultaneously. Slowing of response times due to 
distraction by irrelevant targets was larger in older than younger participants. Increased 
distraction was related to larger increases in activity and connectivity in areas of the 
dorsal attention network, indicating a more pronounced (re-)orientation of attention. 
The decreases in accuracy in target compared to nontarget trials were smaller in older 
compared to younger participants. In older adults we found increased recruitment of 
areas in the fronto-parietal control network (FPCN) during target detection. Moreover, 
older adults showed increased connectivity between the FPCN, supporting cognitive 
control, and somatomotor areas implicated in response selection and execution. This 
connectivity increase was related to improved target detection, suggesting that older 
adults engage additional cognitive control, which might enable the observed intact 
performance in detecting and responding to target stimuli.

7.2 Introduction

Every second, the human retina can send around 10 million bits of information 
to the brain (Koch et al., 2006). With such enormous quantities of information, the 
selection of behaviorally relevant pieces of information is essential. Two separate top-
down modulatory mechanisms have been suggested to underlie selection of relevant 
information; suppression of irrelevant information and enhancement of relevant 
information (Gazzaley et al., 2005a; Hillyard et al., 1998). 

Aging affects selective attention. Previous research has shown that task performance 
in older adults is especially affected by the presence of irrelevant stimuli compared to 
younger adults (de Fockert et al., 2009; Haring et al., 2013; Mager et al., 2007; Schmitz 
et al., 2010). This is reflected in increased slowing of response times when participants 
are presented with distracting stimuli (Geerligs et al., 2012b). Using a working memory 
paradigm, in which to be remembered and to be forgotten information was presented 
sequentially, the Gazzaley group showed that older adults indeed had trouble suppressing 
irrelevant information, whereas enhancement of relevant information was found to be 
intact (e.g. Gazzaley et al., 2005a; Gazzaley et al., 2008; for a review see Gazzaley, 2011). 
Moreover, they found that the decreased ability to suppress irrelevant information was 
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related to decreased memory capacity for relevant information (Gazzaley et al., 2008). 

It should be noted that not all studies have found a deficit in the suppression of 
irrelevant information with age (e.g. Kramer et al., 1994; Wild-Wall et al., 2008). It has been 
suggested that enhancement of relevant stimuli might actually be amplified in older 
compared to younger participants to overcome the age-related deficits in suppression 
(Haring et al., 2013; Wild-Wall et al., 2008). However, it has also been shown that under 
higher levels of visual load, that is in the context of distracting information, older adults 
do have trouble enhancing relevant stimuli (Chee et al., 2006). Quigley and colleagues 
(2010), for example, instructed participants to detect the direction of motion in a cloud of 
dots, all in one color. In addition, they superimposed another cloud of dots in a different 
color that acted as distractors. A cue indicated which color participants should attend to. 
Using an EEG technique (frequency tagging), the authors showed that younger adults 
clearly enhanced processing of stimuli with a relevant color. Older adults, however, 
showed no enhancement of relevant stimuli with respect to the pre-cue period and were 
significantly less accurate than young adults in detecting coherent motion. This suggests 
that when relevant and irrelevant information is present simultaneously, older adults 
can have trouble enhancing relevant information. It has been shown that declines in the 
visual system can cause deficits in the detection of briefly presented stimuli (e.g. Eriksen 
et al., 1970). However, as the stimuli in the Quigley et al. (2010) study were presented 
for a long period of time (2.2 seconds), this is unlikely to be the cause of the deficit in 
enhancement.

Top-down modulation of visual stimulus processing relies on a network of frontal and 
parietal brain regions, the dorsal attention network (DAN), operating in close interaction 
with the sensory cortices (Corbetta & Shulman, 2002; Desimone & Duncan, 1995; Kastner 
& Ungerleider, 2000). The main components of this DAN are the frontal eye fields (FEF) 
and the superior parietal lobule (SPL). Signals from these areas cause changes in the 
baseline firing rates of neurons and neural synchronization, leading to a larger neural 
responsiveness in the sensory cortices when a stimulus is attended (Reynolds & Chelazzi, 
2004). This increased neural responsiveness is visible in the increased amplitude of early 
event related potentials (ERPs) and increased blood oxygen level-dependent (BOLD) 
signals for attended stimuli (Gazzaley et al., 2005a; Hillyard et al., 1998) and leads to 
an increased ability to detect stimuli with attended spatial or non-spatial features. For 
unattended stimuli the opposite pattern emerges; neural responsiveness is reduced 
leading to decreased stimulus detection.

The mechanism described above allows segregation of relevant from irrelevant 
information in perceptual stages of processing. This requires that previous knowledge 
on the features or locations of relevant information and the task goals is maintained in 
working memory, involving activation of the fronto-parietal control network (FPCN). This 
network consists of the dorsolateral prefrontal cortex (DLPFC), the inferior and superior 
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parietal cortex, the rostrolateral prefrontal cortex (RLPFC) and the cerebellum. The FPCN 
has been found to be active in a wide range of tasks involving cognitive control (for a 
meta-analysis see: Niendam et al., 2012) and has especially been linked to goal-directed 
cognition (Braver et al., 2009; Spreng et al., 2013; Spreng et al., 2010a; Vincent et al., 2008). 

It has been suggested that older adults increasingly rely on the resolution of interference 
in later stages of processing (reactive control), to mitigate the effects of a reduced ability 
to prevent interference (proactive control, Braver et al., 2007; Braver, 2012). This is in line 
with a number of studies that have shown that (part of ) the age-related impairment in 
selective attention stems from changes in perceptual stages of processing (de Fockert et 
al., 2009; Haring et al., 2013; Schmitz et al., 2010), which are likely to be related to reduced 
preparation for the upcoming stimulus (Geerligs et al., 2012b). However, so far it is not 
clear whether older adults can actually use additional reactive control mechanism in 
selective attention tasks to mitigate the effect of aging on proactive control. In the current 
study, we investigated whether there is evidence for increased use of reactive control 
mechanisms in older adults by increased recruitment of areas involved in the resolution 
of conflict, such as the FPCN or the anterior cingulate cortex (Carter & Van Veen, 2007).

Many studies examining the effects of aging on selective attention have either 
separated the relevant and irrelevant information in time, or spatially superimposed 
the relevant and irrelevant stimuli (e.g. de Fockert et al., 2009; Gazzaley et al., 2005a; 
Gazzaley et al., 2008; Quigley et al., 2010). This is unlike situations often occurring in daily 
life, in which relevant and irrelevant information are typically spatially segregated. In the 
current study, we therefore use a selective attention task in which relevant and irrelevant 
information is presented simultaneously at different spatial locations. Participants are 
informed about the relevance of a location (i.e. one of the diagonals of a square) and 
about the letter identity of the “target” stimulus before each task block. The instruction 
is to identify a target stimulus among other stimuli, but only if it appears on a relevant 
location. This compares well to, for example, the real world situation of detecting a green 
light appearing in traffic lights. If the green light appears at another location, the ‘target’ 
needs to be ignored and is considered irrelevant. 

In the selective attention task used here, participants responded by pressing a predefined 
button when the target appeared on a relevant spatial location. An alternative button 
was pressed if the target did not appear or if the target appeared on an irrelevant spatial 
location. Using the nontarget condition as a baseline, we were particularly interested in 
the effect of a target stimulus (detection effect) and the effect of an irrelevant target; that 
is, a target at an irrelevant spatial location (distraction cost), on response times, accuracy 
and neural measures. All three task conditions require adequate enhancement of relevant 
information as well as suppression of irrelevant information. However, by examining the 
change in response time between nontargets (i.e. no target letter presented) and irrelevant 
targets (i.e. target letter presented at an irrelevant diagonal position), we can infer to what 
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extent the participant is able to suppress information presented on the irrelevant diagonal. 
If the participant is distracted by the irrelevant target, we would expect responses to be 
slower for irrelevant targets compared to nontargets. In the same way, comparing the 
nontarget condition to the target condition will provide information about how well 
participants are able to enhancing the processing of relevant stimulus features as well as 
relevant spatial locations. Using these different task conditions therefore, allowed us to 
study the effects of aging on reactive control during enhancement and suppression. 

Based on the literature described above, as well as the results from our previous 
study using a highly similar task (Geerligs et al., 2012b), we expect that older adults will 
show increased distraction costs, particularly in response times. In the current study, 
we investigate the differences between age groups on reactive control mechanisms in 
selective attention, by comparing the neural signatures of the different task conditions. 
Early selection processes, that arise as a result of differences in proactive control, are 
expected to be the same over the different task conditions that contain highly similar 
visual stimuli. However, if older adults are able to use reactive control mechanisms to 
support selective attention, we would expect to find additional activation in brain areas 
involved in the resolution of conflict, such as the FPCN or the anterior cingulate cortex 
(Carter & Van Veen, 2007). This additional activation would be expected to be related to 
higher levels of performance in older adults. If no difference is detected in activation of 
these brain areas between age groups, this would suggest that older adults do not use 
more reactive control processes than young participants. Because selective attention 
requires the collaboration of different sets of brain regions, we investigated task 
dependent modulations in both activity and functional connectivity.

7.3 Materials and methods

7.3.1 Participants

Forty younger (21 males, Mage = 20.6 years, age range: 18-26 years) and 40 older adults 
(24 males, Mage = 64.9 years, age range: 59-74 years) participated in the experiment. All 
participants were right handed and did not have a history of neurological or psychiatric 
disorders. They had normal or corrected-to-normal visual acuity. The older participants 
scored 26 or higher on the Mini Mental State Examination (MMSE, Folstein et al., 1975) 
and below 16 on both subscales of the Hospital Anxiety and Depression Scale (HADS, 
Zigmond & Snaith, 1983). Twelve older participants took medication against high blood 
pressure, high cholesterol or heart failure. Ten of those participants were included in the 
final sample (see below for reasons for exclusion). From one older participant, data on 
medication use was not available. Levels of education were similar in both age groups, 
with an average number of 16.09 years of education in the young participants and 16.34 
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years in the older participants. The study adhered to the Declaration of Helsinki and was 
approved by the local ethics committee of the University Medical Center Groningen, the 
Netherlands. Informed consent was obtained from all participants. Data of one older 
participant was lost due to technical problems. One older participant was excluded 
because a brain abnormality was detected. 

Figure 7.1: A schematic overview of the selective attention task

7.3.2 Stimuli and Apparatus

Stimulus generation and response collection were controlled using E-prime 1.2 
(Psychology Software Tools, Inc., Sharpsburgh, PA). Figure 7.1 depicts a schematic 
illustration of the selective attention task that was used. At the start of each experimental 
block, participants were presented with a single target letter (5000 ms), followed by a 
frame which indicated on which display positions (right-up or left-up diagonal positions) 
relevant information could be presented for that block. After instructions, 6 blocks, each 
containing 63 trials were presented. The target letter, as well as the relevant diagonal, was 
different in different blocks. Blocks were followed by a 30 second fixation cross. In each 
trial, the stimuli, consisting of 4 letters arranged in a square, were presented for 300 ms 
followed by an interstimulus interval varying randomly between 2000 and 2500 msec. A 
fixation cross in the middle of the screen remained visible throughout a block of trials. 
Participants were instructed to press the ‘yes’ button when the target letter was presented 
on a relevant diagonal position [target T]. When a target letter appeared on one of the 
irrelevant diagonal positions [irrelevant target IT] or when no target letter appeared at 
all [nontarget NT], participants were required to press no. Right hand index and middle 
finger responses were given for ‘yes’ and ‘no’ responses, randomized over participants. 
Relevant target trials made up 33% of the total number of trials, therefore 33% of trials 
required a ‘yes’ response whereas 66% of trials (irrelevant targets and nontargets) required 
a ‘no’ response. There were never two target letters present in one stimulus frame. All 
stimuli were white letters in Arial font, size 18, presented on a black screen. Stimulus 
letters were randomly chosen from the alphabet, excluding the letters g, i, o, q, u, x, and 
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y. All participants practiced the task on two occasions. In the week before the scanning 
session participants came in for the screening and practiced the task for 2 blocks of 40 
trials. Right before the scanning session they practiced the task again until it was clear 
that they understood the instructions. 

7.3.3 Behavioral data

Data of three younger participants and one older participant were excluded from the 
analyses because their accuracy was around chance level (below 60%) in one or more 
task conditions. Fast guesses (responses faster than 200 ms) and responses slower than 
the minimum interstimulus interval (2000 ms) were regarded as incorrect responses. 
The behavioral data was analyzed using a repeated measures analysis in SPSS (version 
20.0), using the within subjects factor task condition and the between subjects factor 
age group. P-values were adjusted for violations of the sphericity assumption using the 
Greenhouse-Geisser correction (Greenhouse & Geisser, 1959). For clarity, uncorrected 
degrees of freedom values are presented in the results section. Paired and independent 
samples t-tests were used for post-hoc testing. 

There were two outcome measures of interest in this task. First, selective attention to 
relevant target stimuli as measured by the difference in response time (RT) and accuracy 
(ACC) between target (T) and nontarget (NT) trials (RTT-NT and ACCNT-T). Although different 
processes might underlie the differences in response time and accuracy between T and 
NT trials, we refer to this difference as detection effect. Second, distraction by irrelevant 
information, was measured by the difference in RT between irrelevant target trials (IT) 
and NT trials (RTIT-NT). When attention is drawn to the irrelevant target letter, attention 
needs to be re-oriented, which is associated with an increase in response times; this will 
be referred to as distraction cost. The accuracy scores were not taken into account for 
the IT-NT contrast, as 31 of the 65 (19 older and 12 younger) participants included in 
the final sample (see below) showed a decline in accuracy smaller than 1%, indicating a 
ceiling effect for these participants. To compute the relation between performance and 
BOLD activity and connectivity values, scores were z-transformed for older and younger 
participants separately, resulting in a performance measure that is corrected for age 
group. This was done to ensure that there was no overlap in the variance that can be 
explained by the effect of performance and the effect of age group. 

7.3.4 Image acquisition

FMRI scans were obtained with a three tesla MR scanner (3T Achieva, Philips Medical 
Systems, Best, Netherlands), with echo planar imaging (EPI) capability and an eight 
channel SENSE head coil during performance of the selective attention task, as well as 
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during 10 minutes of eyes closed resting state. Functional images were obtained with the 
following pulse sequence parameter settings: single shot EPI; 37 slices; slice thickness 3.5 
mm; no gap; field of view 224 mm; matrix scan size 64 by 64; transverse slice orientation; 
repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; minimal temporal slice timing 
(1836 ms); flip angle 70°. The first three scans of each run were discarded to avoid spin-
history artifacts. A 3-D T1-weighted anatomical scan of the entire brain was obtained for 
each participant using the following pulse sequence parameters: field of view 256 mm; 
matrix scan size 256 by 256; 170 slices; slice thickness 1 mm; transverse slice orientation; 
TE = 3.6 ms; TR =9 ms; flip angle 8°.

7.3.5 fMRI data analysis

Offline processing was performed using the statistical parametric mapping software 
package (SPM 8; http://www.fil.ion.ucl.ac.uk/spm/software). The functional images 
were motion-corrected and coregistered to the anatomical scan. The coregistration was 
checked visually and adjusted manually when required. Bias regularization (SPM 8) was 
used to reduce signal intensity variations due to field inhomogeneities in both structural 
and functional images. For functional images, the regularization was initially applied 
to the first and the last functional scan. Based on these two corrections, an average 
correction factor was computed for each voxel, which was applied to all scans. A group 
specific anatomic template was created (for young and older participants together), using 
Diffeomorphic Anatomical Registration Exponentiated Lie algebra (DARTEL), to optimize 
inter-participant alignment (Ashburner, 2007). Data were smoothed with an 8 mm full-
width half maximum (FWHM) Gaussian kernel. 

T, NT and IT trials were modeled as separate regressors. Other regressors included 
the motion parameters and the first derivatives of the motion parameters. In addition, 
to take the low frequency cycling of task blocks into account, a high pass filter of 230 
seconds was used. After realignment and inclusion of motion parameters in the design, 
participant motion can still influence beta values and connectivity estimates (Power et 
al., 2012). Therefore, an additional procedure was applied to restrict the influences of 
movement on functional connectivity. Initially, scans which were affected by motion were 
identified in two steps. First, single scans with a total displacement of more than 0.5 mm 
with respect to the previous scan were identified. Second, single scans with a root mean 
squared intensity change (with respect to the previous scan) of more than 3 standard 
deviations were identified. To make sure these scans did not affect functional connectivity, 
the identified scans, as well as one scan before and two scans after the identified scans, 
were flagged and modeled as separate regressors (flagged scan regressors). For each 
flagged scan, a regressor was made that contains a “1” for the flagged scan and zeros 
for all other scans. In addition to the participants excluded based on behavioral data, 
seven younger and two older participants were excluded from the analysis because of 
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excessive movement during the fMRI scan (more than 140 scans deleted after the motion 
correction procedure). All of these excluded participants moved more than 3 mm over 
the course of the scan and moved more than 0.5 mm in more than a total of 35 scans. The 
final sample consisted of 30 younger and 35 older participants. 

Similar to Geerligs et al. (2012a), we used the canonical hemodynamic response 
function (HRF), as well as, the derivative and the dispersed to model the effects of task 
condition. We combined these three estimates by calculating the area under the curve 
(AUC, Geerligs et al., 2012a). AUC values were divided by the beta of the constant term 
of the model per voxel to correct for initial offset differences. To facilitate the reporting 
of the AUC values, they were subsequently multiplied by 1000. The resulting values 
were used in a factorial analysis of variance on second level, including the factors task 
condition and age group. A FWE cluster correction of 0.05 (initial threshold p<0.001) was 
used to identify areas showing a main effect of task condition or an interaction between 
age group and task condition. ROIs were defined based on these results, as the peak 
activations surrounded by a 10 mm diameter sphere. To additionally assess the relation 
between performance and BOLD activation in both age groups, mean AUC values for the 
T-NT contrast and the IT-NT contrast were extracted from each of these ROIs. 

7.3.6 Functional connectivity analyses

Prior to the functional connectivity analysis we applied a slightly different approach to 
remove variance in the data related to noise, such as participant motion, and cardiac and 
respiratory cycle (Van Dijk et al., 2010). In addition, variance associated with task execution 
was removed from the data. A general linear model (GLM) approach was used, which 
included all regressors in the first level design (task as well as nuisance regressors), except 
the flagged scan regressors, which were used in a subsequent analysis step. In addition, 
time-courses from the white matter, cerebro-spinal fluid and the whole brain and first 
derivatives of these signals were included in the GLM (for details of this procedure see 
Geerligs et al., 2012a). The residual images obtained after this approach contained only 
the variance that could not be explained by these regressors. For each of the previously 
defined ROIs, the first eigenvariate of the time course was extracted from the residual 
images. 

To investigate the effects of task condition on functional connectivity, we developed 
a procedure which relies on correlations instead of regression analysis, which is used 
in the traditional psychophysiological interaction (PPI) analysis (Friston et al., 1997). 
Theoretically, it is clear that the functional connectivity from region “A” to region ”B” 
should be the same as the functional connectivity from “B” to “A”. However regression 
analysis in PPI analysis can give different results depending on the chosen seed region 
(A or B). The current approach circumvents this problem by using correlation analyses 
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instead. Another advantage of the current approach is that correlations are computed on 
the deconvolved signal, which is expected to reduce the influence of temporal variations 
in BOLD response. 

ROI time courses were first deconvolved using the algorithms implemented for 
psychophysiological interaction analysis in SPM 8 (Gitelman et al., 2003). The flagged scans, 
indicating scans affected by participant motion, were still included in the deconvolved 
time courses. Therefore, we performed an intermediate correction step. First, the flagged 
scan regressors were deconvolved, using the same algorithm as applied for the time 
course data. This produces a time course similar to what would be expected when a 
sudden intensity change due to abrupt movement was deconvolved. Subsequently, 
the deconvolved flagged scan regressors were used in a regression analysis to predict 
the deconvolved time course of each ROI. The residuals of this regression analysis were 
maintained and used for subsequent analyses. The next step in the analysis, was to 
convert the stimulus onsets to the same time base as the deconvolved scans (microtime 
in SPM) in order to produce three vectors of onset times, one for each task condition. 
Correlations between all the deconvolved ROI time courses were computed for each of 
the task conditions separately, by selecting only those time points on which a stimulus 
belonging to that task condition was presented. In addition, the average correlation 
between all ROI time courses over all task conditions was computed.

Resting state data was processes in the same way as the task data, except for the 
removal of variance associated with task execution. Data of two participants from the final 
sample of 65 participants were not taken into account in the analysis of the resting state 
data as more than 100 of the total number of 300 scans were removed due to the motion 
correction procedure in these individuals. All time points in the resting state data were 
used to compute the correlations between ROI time courses. There has been considerable 
debate about the use of global signal regression in resting state data. The global signal 
reflects a combination of resting-state fluctuations, physiological noise (e.g. respiratory 
and cardiac noise), and other noise signals (Birn et al., 2006). With advancing age, the 
(physiological) noise in the BOLD signal increases (D’Esposito et al., 1999; Makedonov et 
al., 2013) and global signal regression might reduce the effects of these noise differences 
between age-groups on functional connectivity estimates. However, other researchers 
have claimed that application of global signal regression to can bias the results of group 
comparisons (Saad et al., 2012). Therefore we have performed the resting state analysis 
both with and without global signal regression. 

7.3.7 Linear mixed effects models

For the analysis of the ROI BOLD data and the ROI connectivity data, maximum 
likelihood based linear mixed effects models were used. To this end, the lmer function 
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implemented in the lme4 package (Bates et al., 2012) in R (R Core Team, 2012) was used. To 
estimate the p-values for each of the factors in the model, we used the package lmerTest, 
which uses the Satterthwaite approximation for the denominator degrees of freedom or 
the F-statistic (Kuznetsova et al., 2013). For clarity, the reported degrees of freedom were 
rounded to the nearest integer value. In all analyses, age group was included as a fixed 
factor using effect coding; the effect coding was adjusted for the number of participants 
in each group so that the average value for this factor over all participants was zero. For 
all fixed factors included in each of the models, we investigated the main effects as well 
as the interactions between the different fixed factors. 

7.4 Results 

7.4.1 Behavioral data

In general, older participants had longer response times (M=685, SD=84) than younger 
participants (M=523, SD=70; F(1,68)=81,80, p<0.001). However, these effect of age group 
were modulated by task condition (task: F(2,126)=57.89, p<0.001; task*age group: 
F(2,126)=27.02, p<0.001). All participants responded faster to nontarget (NT) than to 
irrelevant target trials, although, this effect was larger for older than younger participants 
(age*IT-NT: F(1,63)=18.02, p<0.001; young: t(29)=8.01, p<0.001; old: t(34)=8.89, p<0.001). 
Responses to target (T) trials were also faster than responses to IT trials, but only for older 
and not for younger participants (age*T-IT: F(1,63)=39.03, p<0.001; young: t(29)=1.47, 
p=0.15; old: t(34)=8.87, p<0.001). Young adults responded slower to T than NT trials, 
whereas, this effect was reversed in older participants (age*T-NT: F(1,63)=15.63, p<0.001; 
young: t(29)=3.37, p=0.002; old: t(34)=2.50, p=0.018). 

Overall, accuracy levels were similar for older and younger participants (F(1,63)=1.39, 
p=0.24), but accuracy levels were modulated by task condition (task: F(2,126)=58.31, 
p<0.001; age*task F(2,126)=3.22, p=0.054). Participants generally made more errors in IT 
than NT trials (young: t(29)=4.48, p<0.001; old: t(34)=2.08,p=0.045) and this was similar 
in both age groups (age*IT-NT : F(1,63)=0.53, p=0.47). Participants also made more errors 
in IT trials than T trials and this effect was stronger in younger than older participants 
(age*T-IT: F(1,63)=4.35, p=0.041; young: t(29)=6.16, p<0.001; old: t(34)=5.06, p<0.001). 
In addition, performance on T trials was less accurate than on NT trials, but this effect 
was larger in younger than older participants (age*T-NT: F(1,63)=4.07, p=0.048; young: 
t(29)=7.44, p<0.001; old: t(34)=4.91, p<0.001). Means and standard deviations of response 
times and accuracy scores can be found in table 7.1.

To ensure that the response time differences between conditions were not the result 
of general slowing phenomena in the older group (Salthouse, 1996), we repeated the 
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analysis in which the difference scores RTT-NT and RTIT-NT were divided by the average 
response time in the NT trials. T-tests confirmed that the effects were not due to age-
related to slowing, as the effects of aging on the proportional difference score were 
similar to the effects of aging on the original response time data (RTT-NT : young=0.037, 
old=-0.022, t(60.7)=4.4, p<0.001; RTIT-NT : young=0.053, old=0.089, t(58.5)=3.2, p=0.002).

Table 7.1: Mean (standard deviation) response times and accuracy scores for each task 
condition and age group.

Nontarget Target Irrelevant Target
RT Young 509 (72) 526 (71) 534 (74)

RT Old 670 (86) 654 (74) 730 (101)
ACC Young 98.4 (0.2) 89.2 (0.7) 95.4 (0.4)

ACC Old 98.1 (0.3) 92.4 (0.7) 96.1 (0.6)

7.4.2 Irrelevant targets versus nontargets

Large parts of the dorsal attention network (DAN) were more active in IT compared 
to NT trials. This activity increase was found in the right hemisphere, in the inferior and 
superior parietal and middle occipital gyri, as well as the frontal eye fields (FEF), the 
inferior frontal operculum and the inferior temporal gyrus (figure 7.2 and table 7.2). In the 
left hemisphere, activity was increased in the middle occipital and inferior and superior 
parietal gyri as well as in the cerebellum. No significant differences were observed 
between the two age groups. 

Table 7.2: Areas in which BOLD activation increased significantly (PFWE<0.05) in irrelevant 
target, compared to nontarget trials.

Irrelevant targets > Nontargets k T x, y, z  (MNI)
R Mid Occipital (BA 19)* 14409 8.48  32 -72  34 
R Sup Parietal (BA 7) * 8.13  18 -66  58 
L Mid Occipital (BA 19) 7.25 -28 -74  28 
L Sup Parietal (BA 7)* 6.77 -16 -64  60 
L Inf Parietal (BA 40)* 5.57 -40 -42  48 
L Cerebellum 6 5.33 -28 -66 -28
R Frontal Eye Fields (BA 8) 733 6.66  22   6  52 
R Inf Frontal Operculum (BA 44/48) 514 4.34  40  16  28 
L Frontal Eye Fields (BA 6)* 409 4.25 -28   0  58 

L=left, R=right, BA=Brodmann’s area, x,y,z=stereotactic coordinates, k=cluster extent, 
Mid=middle, Inf=inferior, Sup=superior. * indicates areas in which the activation increase 
(IT>NT) was related to increased distraction cost (RTIT-NT)
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Figure 7.2: Areas which were more active in irrelevant target compared to nontarget trials 
(PFWE<0.05). The white spheres indicate the centers of the associated ROIs, projected on an in-
flated surface rendering of the human brain using the CARET program (Van Essen et al., 2001).

A linear mixed effects model was used to evaluate whether the increased activity in 
these areas was related to a participants ability to ignore irrelevant targets. The model 
included fixed effects for age, distraction cost (RTIT-NT) and brain area and a random 
intercept per subject. The results indicated that increased activation in specific brain areas 
was associated with a larger distraction costs; that is a larger difference in response times 
between IT and NT trials (RTIT-NT*area F(8,549)=4.7, p<0.001; see figure 7.3). These effects 
were found specifically in the right middle occipital gyrus (t(61)=3.02, p=0.004), the right 
superior parietal gyrus (t(61)=2.42, p=0.019), the left superior parietal gyrus (t(61)=2.57, 
p=0.0125), the left inferior parietal gyrus (t(61)=3.42, p=0.0011) and the left frontal eye 
fields (t(61)=2.22, p=0.03). 

We additionally tested whether connectivity strength between each of these DAN 
areas was associated with age and distraction cost. Fixed effects in the model included 
age and RTIT-NT. Because of the large number of area combinations (36), the area pairs 
were not modeled as fixed, but as random effects, in addition to the random intercepts 
for subjects. Separate models were constructed for overall connectivity strength and 
the change in connectivity strength in IT compared to NT trials. To examine whether 
the observed relations between connectivity, age and distraction cost were specific 
for task execution, we tested connectivity during a period of eyes closed resting state 
in a separate model. During task performance, average connectivity was smaller in old 
than young participants (F(1,61)=18.79,p<0.001). Increased connectivity in the DAN 
tended to go along with increased distraction cost, although this was not significant 
(F(1,61)=3.50,p=0.066). The connectivity values averaged over all areas were significantly 
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higher in IT than NT trials (t(64)=2.22, p=0.03). This connectivity increase tended to be 
related to increased distraction cost in young, but not older participants, although this 
was not significant (interaction: F(1, 61)= 7.53, p=0.008; young: F(1,28)=3.76, p=0.063; 
old: F(1,33)=0.69, p=0.41). During resting state, connectivity was also higher in younger 
than older participants (F(1,59)=8.91, p=0.004) and increased connectivity was related to 
increased distraction cost (F(1,59)=5.31, p=0.025). 

When no global signal regression was applied on the resting state data, the effect of 
age on connectivity remained significant (F(1,59)=6.37, p=0.014), however, there was no 
longer a relation between distraction cost and connectivity. 

Figure 7.3: Relation between distraction cost (RTIT-NT) and changes in BOLD (IT-NT) in the left 
inferior parietal lobule. 

To check whether this activation difference between IT and NT trials was in fact related 
to interference from a salient irrelevant stimulus, as opposed to the presence of a target 
letter in the display which attracts attention, we additionally compared IT to T trials. The 
areas active in this contrast were very similar to the IT - NT contrast (see figure 7.4 and 
table 7.3). Increased activation in IT versus T trials was observed in the right and left middle 
occipital lobule all the way up to the bilateral inferior and superior parietal lobules. In 
addition, the bilateral inferior temporal gyrus, the anterior cingulate cortex, the bilateral 
inferior frontal operculi and the right middle frontal gyrus, extending into the FEF were 
more active in IT than T trials. Increased activation in T compared to IT trials was observed 
in the left postcentral gyrus.
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Table 7.3: Areas in which BOLD activation changed significantly (PFWE<0.05) in irrelevant 
target, compared to target trials.

Irrelevant targets > Targets k T  x,y,z (MNI)
R Sup Parietal (BA 7) 3626 8.96  28 -56  50 

R Inf Frontal Operculum (BA 44/48) 4694 7.57  40  14  30 
L Mid Occipital (BA 19) 4143 7.51 -36 -84  12 

L Inf Frontal Operculum (BA 44/48) 1202 6.73 -38  10  26 
R Inf Temporal (BA37) 741 6  46 -56 -12 
R Ant Insula (BA 47) 310 4.83  32  24  -2 

Targets < Irrelevant targets
L Postcentral (BA 3) 638 4.89 -52 -20 46

L=left, R=right, BA=Brodmann’s area, x,y,z=stereotactic coordinates, k=cluster extent, 
Mid=middle, Inf=inferior, Sup=superior, Ant=anterior.

Figure 7.4: Areas which were more active (yellow-red) or less active (green-blue) in 
irrelevant target compared to target trials. 

7.4.3 Targets versus nontargets

In target trials compared to nontarget trials, participants had more activation in areas 
related to somatomotor functions, the right and left pre- and postcentral gyrus and the 
right cerebellum (see figure 7.5 and table 7.4). There were four areas where activity was 
significantly decreased in T versus NT trials; the right middle cingulum, the right inferior 
frontal triangular area, the left inferior frontal operculum and the right superior frontal 
gyrus . In addition to these areas activated in both age groups, there were a number of 
areas which were significantly more active in the older compared to the younger group 
(T>NT). These included the right postcentral gyrus, the right rostrolateral PFC (RLPFC), 
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the left and right inferior parietal/angular gyrus, the dorsolateral PFC (DLPFC) and the left 
cerebellum crus2 (see figure 7.5). 

Figure 7.5: top Areas which were more active (yellow-red) or less active (green-blue) in target 
compared to nontarget trials. The white spheres indicate the centers of the associated ROIs 
projected on the surface. bottom Areas in which the difference in activation between target and 
nontarget trials was larger in older than in younger participants. 
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Table 7.4: Areas in which BOLD activation changed significantly (PFWE<0.05) in target, 
compared to nontarget trials.

Target > Nontargets k T  x,y,z (MNI)
L Inf Parietal / Postcentral (BA 3) 3214 7.52 -48 -26  48
R Cerebellum 6 991 7.1 20 -54 -22
R Postcentral (BA 40) 661 5.84 32 -34  46
R Cerebellum 8 580 5.02 24 -62 -52
Targets < Nontargets
R Middle Cingulum (BA 32) 783 5.64 8  24 40
R Inf Frontal Triangular (BA 48) 386 4.76 50  24 26
L Inf Frontal Operculum (BA 48) 314 5.51 -36   6 26
R Sup Frontal (BA 10) 331 4.68 26  54 10
Targets > Nontargets Old > Young
R Postcentral (BA 3) 347 5.27 28 -26  52
R Mid Orbitofrontal (BA 11) 1071 4.85 28  52  -4
R Angular / Inf Parietal (BA 7)* 1095 4.86 36 -72  42
R Dorsolateral PFC (BA 44) 910 4.67 42  18  38
L Inf Parietal (BA 39/40) 315 4.75 -46 -58  48
L Cerebellum Crus 2 688 4.56 -34 -70 -38

L=left, R=right, BA=Brodmann’s area, x,y,z=stereotactic coordinates, k=cluster extent 
* indicates the area in which the activation increase (T>NT) was related to decreased ACC detec-
tion cost (ACCNT-T)

To test the relation between activity in these areas and the detection effect, separate 
linear mixed effects models were constructed for the areas involved in the main effect and 
the areas involved in the interaction effect. Fixed factors included age, RT detection effect 
(RTT-NT), ACC detection effect (ACCNT-T) and brain area. In addition, a random intercept per 
subject was included. As the correlation between ACC detection effect and RT detection 
effect was low (r=0.10) we did not orthogonalize these regressors prior to the analysis. 
Interactions between ACC detection effect and RT detection effect were not included 
in the model. For the somatomotor areas showing the main effect of T>NT there was no 
significant relation between the activation increase (T>NT) and RT detection effect or 
ACC detection effect. For the FPCN areas showing the interaction effect age*T>NT, there 
was an interaction between brain area and  ACC detection effect (ACCNT-T; F(5,295)=2.49, 
p=0.031). When following up this effect, we found that increased brain activity in the 
right inferior parietal lobule was related to a decreased ACC detection effect ( t(61)=2.27, 
p=0.027; see figure 7.6). 

Connectivity was computed separately in three connectivity categories (CC); 
connectivity between the somatomotor areas showing a main effect of T>NT (CC-motor), 
connectivity between the FPCN areas showing an effect of T>NT only in the older adults 
(CC-FPCN) and connectivity between the somatomotor and FPCN areas (CC-motor-
FPCN). If the age-related increase in FPCN activation actively improves performance 
(T>NT), then an increase in connectivity is expected between regions in the FPCN and 
the somatomotor areas showing a main effect of T>NT. This would be reflected in an age-
related increase in connectivity in CC-motor-FPCN. In the linear mixed effects model, CC 
(3 levels; CC-motor, CC-FPCN and CC-motor-FPCN) was entered as a fixed effect (with 
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CC-motor-FPCN as the intercept), along with age, RT detection effect (RTT-NT) and ACC 
detection effect (ACCNT-T). Random effects included a random intercept per subject and 
a random intercept for each area. The areas were not modeled as separate fixed effects 
because of the large combination of area pairs. 

During task performance, connectivity was different in the three connectivity categories 
(F(1,42)=5.34, p=0.009). On average, connectivity was higher in CC-motor than CC-FPCN 
(t(128)=2.73, p=0.007), and higher in CC-FPCN than in CC-motor-FPCN (t(101)=10.65, 
p<0.001). Effects of connectivity type were modulated by age group (F(1,2804)=92.24, 
p<0.001). Compared to young participants, older participants showed increased 
connectivity in CC-motor-FPCN (F(1,59)=42.83, p<0.001). Decreased connectivity in older 
compared to young participants was found within CC-motor (F(1,59)=17.27, p<0.001) 
and CC-FPCN (F(1,58)=24.47, p<0.001). 

In addition, we found that the relation between connectivity and the ACC detection 
effect was different for the three connectivity categories (F(1,2804)=13.62, p<0.001). For 
CC-motor-FPCN, increased connectivity was related to a decreased ACC detection effect 
(F(1,59)=4.22, p=0.044). However, for the CC-FPCN, increased connectivity was related 
to an increased ACC detection effect (F(1,59)=5.74, p=0.0198). Note that, although the 
interaction is not significant, the latter relation was driven by the younger participants 
(interaction: F(1,59)=3.49, p=0.067; young: F(1,27)=6.31, p=0.018; old: F(1,32)=0.37, 
p=0.54). 

On average there was no significant change in connectivity strength in T versus NT 
trials for any of the CC categories. No relation between the connectivity change in T versus 
NT trials and age or performance was found. 

To test whether these effects were specifically related to task performance, we 
investigated these same effects during resting state (these are the data in which global 
signal regression was applied). There we found a similar effect of age on connectivity as 
during task performance. Similar to the effect of age on connectivity during task, there was 
an interaction between age group and CC-category (F(2,2716)=29.6, p<0.001); younger 
adults had higher connectivity than older adults in CC-motor (F(1,57)=10.11, p=0.002) 
and CC-FPCN (F(1,57)=10.44, p=0.002), whereas older adults had higher connectivity in 
CC-motor-FPCN (F(1,57)=6.82, p=0.011). In addition, in older but not younger participants, 
increased connectivity in the CC-motor-FPCN was associated with a decreased ACC 
detection effect (F(1,31)=5.01, p=0.033). It should be noted though, that in the analysis 
with both age groups together, no significant main or interaction effect was observed. 

When this analysis was repeated without global signal regression, the same age-
related decline in connectivity within CC-FPCN and CC-Motor was observed (interaction: 
F(2,2716)=24.8, p<0.001; CC-FPCN: F(1,57)=12.01, p=0.001; CC-motor F(1,57)=7.81, 
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p=0.007). The age-related connectivity increase in CC-motor-FPCN was not observed  
anymore. In addition, the increased connectivity in the CC-motor-FPCN was no longer 
associated with a decreased ACC detection effect in older participants, but with an 
increased ACC detection effect in young participants (F(1,26)=5.13, p=0.032).

Figure 7.6: A Relation between ACC detection effect and BOLD change between T and NT trials. 
B Relation between ACC detection effect (ACCNT-T) and overall connectivity strength in CC-mo-
tor-FPCN.

7.5 Discussion

The behavioral data are in agreement with previous research, suggesting that older 
adults show deficits in suppression of irrelevant information, while enhancement of 
relevant information is not affected by age (de Fockert et al., 2009; Gazzaley et al., 2005a; 
Mager et al., 2007). Both age groups showed an increase in response times in irrelevant 
target compared to nontarget trials. This indicates that participants were not able to 
focus selectively on information on the relevant diagonal, resulting in distraction by the 
target stimulus appearing on the irrelevant diagonal. This effect was larger in the older 
participants, indicating a deficit in suppression of irrelevant information. Whereas both age 
groups were less accurate in target compared to nontarget trials, this effect was smaller 
in the older group. Moreover, older participants were faster in target trials compared to 
nontarget trials, while younger participants were slower. These effects suggest that older 
participants may even outperform younger participants in the processing of relevant 
information. 

Possibly, the age-related differences in the performance on target compared to 
nontarget stimuli are related to differences in response tendencies. It is known that there 
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are marked differences in the tradeoff between speed and accuracy in older and younger 
participants (Forstmann et al., 2011; Rabbitt, 1979). Even at the cost of very high response 
times, older participants in general avoid errors (Starns & Ratcliff, 2010). In the current task, 
66% of the stimuli required the same response. Therefore, to optimize speed, it would be 
efficient to prepare for that most frequent response prior to stimulus onset. Then, when a 
target is detected at a relevant location, participants can switch the response. It has been 
shown in literature that suppression of a prepotent response is associated with an increase 
in error rates and increased response times to the non-prepotent response (Madden et 
al., 2004; Nieuwenhuis et al., 2003). A closer inspection of the response time and accuracy 
data of the young participants, suggests that this strategy was indeed applied. The young 
participants were both slower and less accurate in target compared to nontarget trials. 
This pattern of results is markedly different from those observed in previous studies using 
a similar task, in which it was demonstrated that participants are generally faster in target 
compared to nontarget conditions when both response categories are equally prevalent 
(Shiffrin & Schneider, 1977). 

In accordance with the large body of literature that has shown that older adults favor 
accuracy over speed, we found that the older adults did not use the information about 
prevalence of certain stimuli to bias their response tendencies to optimize speed. They 
were actually faster during target compared to nontarget trials, similar to the pattern 
observed when the two response categories have equal probability (Shiffrin & Schneider, 
1977). In addition, they were more accurate than younger adults during target trials. 
Whereas it might be suggested that this finding is at odds with the reported age-related 
decline in response inhibition, previous studies have also found that older adults make a 
comparable numbers of or even fewer errors than young adults in go/no-go task situations 
in which a prepotent response needs to be suppressed (Rush et al., 2006; Sebastian et al., 
2013). 

In the fMRI data, we observed that both younger and older participants activated 
primarily left and to a lesser extent also right (pre) motor and somatosensory areas more 
in target compared to nontarget trials. The pronounced left lateralization of this activation 
suggests that it is related to the required right hand response. Therefore, the increased 
(pre) motor and somatosensory activation in target compared to nontarget trials is in 
line with the idea that the less frequent response to target trials requires the participants 
to switch the response from the prepared response. Previous studies have found similar 
activation patterns in relation to a response switch. In an oddball task, infrequent target 
stimuli, requiring a switch from the most frequent response, activated the motor cortex to 
a much larger extent than infrequent novel visual stimuli that did not require a response 
switch (Madden et al., 2004). Based on our interpretation of the behavioral results, we 
would expect that the sensorimotor activation in trials would be less pronounced in older 
compared to younger participants. It is not clear why such a difference was not observed. 
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In addition, in target compared to nontarget trials, older participants showed increased 
activation in areas corresponding to the main components of the FPCN. Previous studies 
have also shown enhanced levels of activation in the FPCN in older adults, especially in 
the DLPFC and the RLPFC (Spreng et al., 2010b). If these areas are actively involved in 
supporting task performance, we would expect to find that increased activation in the 
FPCN areas, supporting cognitive control, would be related to increased performance. 
In addition, we would expect that increased connectivity between the FPCN and the 
somatomotor areas would be implicated in response selection and execution in older 
compared to younger participants. This is exactly the pattern that we found. Increased 
activity, specifically in the right inferior parietal lobule in target compared to non-
target trials, was related to reduced ACC detection cost, suggesting that this additional 
activation was indeed facilitating performance in older adults. Moreover, we found 
that while connectivity was decreased in older adults between areas within the FPCN 
and between areas within the somatomotor network, connectivity between the FPCN 
and somatomotor network was increased. These results support the presence of active 
compensatory mechanisms in older adults, which are likely to be related to the strategy 
differences between older and younger adults in performance of this task. The increased 
connectivity during task performance is not a side effect of increased overall activity 
within the FPCN in older adults, as connectivity between areas within the FPCN was 
actually reduced in the older compared to the younger group. Important evidence for the 
interpretation of compensatory FPCN function in older adults was provided by the relation 
with behavioral data. Those participants with higher connectivity between the FPCN and 
somatomotor areas showed a smaller decline in accuracy in target compared to nontarget 
trials. We found indications that the effects of age on connectivity were not specific to task 
execution, as a similar increase in connectivity between FPCN and somatomotor areas 
was observed in resting state. In addition, also in resting state increased connectivity 
between the FPCN and the somatomotor network was related to reduced ACC detection 
cost. This might suggests that the increases in between network connectivity that we 
observed before in older adults (Geerligs et al., 2012a) can be beneficial for performance 
on specific tasks. It should be noted however, that these effects were no longer present 
when no global signal regression was applied, therefore these data should be interpreted 
with caution. 

Older adults have more trouble with the enhancement of relevant information, in the 
context of other irrelevant stimuli (Chee et al., 2006; Quigley et al., 2010). Therefore, the 
increased involvement of the FPCN areas in older adults in target trials might signal the 
use of additional reactive control processes which support the adequate detection of 
target stimuli in this group (Braver et al., 2009). This is in line with a previous study on 
auditory target detection that has found that older adults use controlled processing to 
compensate for reduced levels of automatic processing of target stimuli (Alain et al., 2004). 
However, an alternative explanation could be that the increased recruitment of the FPCN 
in older adults is related to higher levels of control over the response, which in turn may 
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be related to the tendency of older adults to avoid errors irrespective of the speed costs 
(Starns & Ratcliff, 2010). It is important for future studies to disentangle the two possible 
explanations. However, regardless of the underlying mechanisms, the current findings 
demonstrate that older adults use additional recruitment of the FPCN as a compensation 
mechanism to enable good performance in detection of or response to target stimuli, as 
reflected in a decreased number of errors. 

In contrast to the age-related enhancement of activity in the FPCN during target versus 
nontarget trials, we found no age-related changes in activity in this network elicited by 
irrelevant target information. Instead, both age groups areas activated in the IT compared 
to the NT condition correspond to those belonging to the dorsal attention network 
(DAN). Both older and younger participants showed an association between increased 
distraction by irrelevant information and larger DAN activity. Similarly, the connectivity 
increases between DAN areas in IT compared to NT trials were also related to increased 
distraction. 

Areas in the DAN have been related to (re-)orienting of attention by top-down 
processes (Buschman & Miller, 2007; Corbetta & Shulman, 2002; Corbetta et al., 2008). 
This reorientation can be driven by the task goals or by the detection of salient stimuli by 
the bottom-up oriented ventral attention network (Corbetta et al., 2008). Based on these 
findings, one could argue that the observed increase in activation in the DAN could reflect 
the orientation of attention to salient (irrelevant) target stimuli, triggered by the ventral 
attention network. However, this explanation is unlikely because the same DAN areas 
are more active when we compare irrelevant target to target trials, which both contain a 
target stimulus. Therefore, it is more likely that these DAN areas are involved in resolving 
the interference caused by the irrelevant information, for example by reorientation of 
attention from the irrelevant target to the stimuli on the relevant diagonal or disengaging 
attention from the irrelevant target stimulus. These results show that an increased reliance 
on resolution of interference after stimulus onset (reactive control) is related to slowing 
of response times. Increased connectivity between the DAN areas was also related to 
increased distraction cost during resting state. This might indicate that in individuals who 
generally rely on reactive control strategies because of insufficient proactive control, the 
connectivity in the DAN network is strengthened. It should be noted however, that these 
results should be interpreted with caution as the relation between distraction cost and 
connectivity in resting state was only present when global signal regression was applied. 

The fact that no age-difference was observed in the contrast between irrelevant 
target and nontarget stimuli, is in line with previous results by Gazzaley and colleagues 
(2008), who showed that there is no age-related impairment in suppression of irrelevant 
information in later stages of processing. In addition, no evidence was found for the 
employment of additional reactive control mechanisms in older adults to overcome the 
deficit in suppression of irrelevant information in early stages of processing (de Fockert et 
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al., 2009; Haring et al., 2013; Schmitz et al., 2010). 

In conclusion, we confirmed that older adults indeed have a deficit in the suppression 
of irrelevant information, while enhancement of relevant information was not impaired. 
In both older and younger participants, the distraction cost elicited by irrelevant targets, 
appears to be related to an increased need for top-down (re-) orientation of attention, 
as reflected by connectivity and activity increases in the DAN. To detect and respond 
adequately to target stimuli, older adults appear to employ additional cognitive control 
processes to enable optimal performance, as reflected by additional activity in the FPCN 
and the increased connectivity between the FPCN and the somatomotor network. 
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8 General discussion and future perspectives

The current thesis aimed at gaining knowledge on age-related changes in the relation 
between cognition and brain function. In particular, the focus was on integration of 
information between different brain regions and brain networks. A lot of research in the 
past decades has focused on identifying the functional role of numerous brain areas. With 
this knowledge, it is now possible to study how these areas work together to accomplish 
the transformation of the sensory input the brain receives to the behavioral response that 
follows. In this thesis we used this new avenue in the study of brain function to understand 
the mechanisms underlying age-related changes in cognitive functioning. In the first part 
of this thesis (chapters 2-4) we examined connectivity in the entire brain to establish how 
the integration of information changes in old age, both during task performance and 
resting state. In addition, we linked individual differences in connectivity to individual 
differences in cognitive functioning. In the second part of the thesis (chapters 5-7), we 
zoomed in on one specific cognitive function; selective attention. There, we aimed to 
deepen our understanding of how age-related changes in this specific ability could be 
related to changes in functional connectivity during task performance. In this chapter, 
the main findings of all studies are summarized and integrated and critical considerations 
as well as future directions are discussed. 

8.1 Effects of aging on functional connectivity

Aging equals change. Previous research has shown that functional connectivity is 
affected by aging and that changes in functional connectivity might be related to declines 
in cognitive functioning (Andrews-Hanna et al., 2007; Rieckmann et al., 2011; Sambataro 
et al., 2010; Voss et al., 2010; Wu et al., 2007). Therefore, in the first part of this thesis we 
have studied the nature and extent of age-related changes in functional connectivity. 
Most research so far has been limited to studying age-related changes within specific 
functional networks (Andrews-Hanna et al., 2007; Rieckmann et al., 2011; Sambataro 
et al., 2010; Voss et al., 2010; Wu et al., 2007). In the set of studies described here, we 
aimed to get a more complete picture of the effects of aging on connectivity within as 
well as between networks. Using different analysis techniques (chapters 2, 3 and 4), we 
demonstrated that aging is indeed associated with large-scale changes in functional 
network connectivity. Although we found some differences between our studies, the 
overall pattern that emerged was that connectivity within specific functional networks 
decreased (chapter 2 and 3), whereas connectivity between (specific) functional networks 
increased with age (chapter 2, 3 and 4).

In chapter 2, we studied the effects of aging on connectivity within and between 
functional networks using a combination of seed-based connectivity analysis and 
k-means cluster analysis. The striking observation in this study was that age-related 
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increases in connectivity from a particular seed region were generally located outside of 
the functional network the seed region belonged to. In contrast, the age-related decreases 
in connectivity from a particular seed region were generally located within the functional 
network the seed region belonged to. These results were the first indication that changes 
in connectivity within as well as between functional networks are an important feature 
of aging. More specifically, we found that connectivity within the default mode network 
(DMN) and the somatomotor network declined with age. In addition, all identified 
networks showed increased connectivity to other functional networks. The net result 
of these changes in functional connectivity is that the functional networks become less 
distinct in older compared to younger adults. 

In chapter 3, we set out to study these age-related changes in functional connectivity 
in more detail. While brain activity was recorded during task performance in chapter 
2, in chapter 3 we measured brain activity during resting state. In chapter 3 we used a 
novel technique to study changes in functional connectivity; graph theory (Bullmore & 
Sporns, 2009; Rubinov & Sporns, 2010). Using graph theory, we were able to quantify 
age-related changes in terms of several complex network measures. In a graph, brain 
areas are referred to as nodes, whereas connections between brain areas are edges. 
To test whether functional networks are really becoming less distinct in older adults, 
we examined changes in modularity. Modularity is a measure of the extent to which a 
graph can be divided into separate networks with a maximal number of within network 
connections and a minimal number of between network connections (Girvan & Newman, 
2002). We found that there was indeed a substantial decrease in modularity in the older 
compared to the younger participants. 

To examine the origin of this age-related decrease in modularity on a more local 
scale, we additionally studied the network measures local efficiency and participation 
coefficient. Local efficiency is a measure of information integration on a local scale and 
the local resilience of a network against the loss of nodes (Latora & Marchiori, 2001). The 
participation coefficient is a measure of the proportion of between network connections 
compared to within network connections from each node in the network (Guimerà & 
Amaral, 2005). Using these two measures, we found a striking dissociation. The networks 
involved in more basic sensorimotor functions, that is the visual network and the 
somatomotor network, showed an increase in participation coefficient in older compared 
to younger adults, indicating that nodes in these networks had increased connectivity 
to nodes in other functional networks. In contrast, the local efficiency was decreased in 
older adults, in networks involved in higher order cognitive processes. These networks 
were the DMN, the fronto-parietal control network (FPCN) and the cingulo-opercular 
network. This finding indicates that connectivity within these networks was reduced in 
older compared to younger adults. 

In chapters 2 and 3, we established that connectivity changes are a major factor in the 
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effect of aging on brain function. Therefore, in chapter 4, we went one step further by 
investigating whether older adults are still able to flexibly adapt functional connectivity 
to the demands of the task at hand. Connectivity between functional networks was 
assessed during resting state (same data as chapter 3), during a selective attention task 
and during a working memory task in the same participants. Independent component 
(IC) analysis was used to identify the different functional networks in a data-driven way. 
Here, we did not only examine the adaptations of connectivity to task demand, but we 
also investigated the ‘main’ effects of aging on connectivity between different functional 
networks. In all three task conditions we found that in older participants, connectivity to 
other functional networks was increased. This was true for visual ICs, the cerebellar IC, the 
basal ganglia IC, the bilateral somatomotor IC and the anterior cingulate IC. 

Using different methodological approaches in each of the studies described in 
chapters 2-4 and by examining different task conditions, we were able to get a more 
complete picture of the age-related changes in functional connectivity. Moreover, by 
using these complementary approaches, we have shown that the changes in functional 
connectivity are general and can be shown largely independent of specific methods or 
task conditions. In addition, recent studies by other groups, using different methods, 
have also show the same pattern of increased connectivity between networks along 
with decreased connectivity within networks (Meier et al., 2012; Tomasi & Volkow, 2012; 
Voss et al., 2010). The strong correspondence between all of these results establishes 
that increased connectivity between networks, along with decreased connectivity within 
networks is a stable pattern of age-related changes that can be observed in different 
groups of older adults during task performance as well as during resting state. 

8.1.1 Dedifferentiation

The net result of the observed age-related connectivity changes is that the boundaries 
between functional networks are fading in older adults; the distinctiveness of functional 
networks decreases with age. This finding is in line with the dedifferentiation theory that 
suggests that areas in the older brain may become less functionally distinct (Baltes & 
Lindenberger, 1997; Carp et al., 2011a; Dennis & Cabeza, 2011; Park et al., 2004). Carp et 
al. (2011a) demonstrated the extent of dedifferentiation in a recent study using multi-
voxel pattern analyses. They showed that the activation patterns of distinct visual stimuli 
showed a larger overlap in older than younger adults. Importantly, these effects of aging 
were not limited to representations in the visual cortex but extended to parietal and 
frontal areas, as well. Possibly, dedifferentiation of brain areas and dedifferentiation of 
brain networks are two sides of the same coin. The reduced functional specialization of 
brain areas might result in increased functional connectivity to a larger number of other 
brain areas, thereby causing dedifferentiation of functional networks. In addition, the 
increased functional connectivity between brain areas in different functional networks 
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could cause these brain areas to be activated in response to the same stimuli, thereby 
causing dedifferentiation of brain areas. 

There is only little knowledge on how dedifferentiation is related to cognitive functioning 
in older adults. Previous research by Park and colleagues (2010) has shown that decreased 
functional specificity of brain areas was related to decreased measures of fluid, but not 
crystallized intelligence in older adults. Their finding suggests that dedifferentiation 
might indeed be related to age-related changes in cognitive functioning. In chapter 3, we 
studied how individual differences in modularity, which can be interpreted as a measure 
of differentiation in functional networks, might be related to differences in cognitive 
functioning between individuals as measured with a large battery of neuropsychological 
tests. Using this approach, we did not find a direct link between dedifferentiation and 
cognitive functioning. 

Summarizing, in the first part of this thesis we have demonstrated that dedifferentiation 
does not only occur on the level of brain areas (Park et al., 2004), but also on the level 
of brain networks. Dedifferentiation might be one mechanism underlying age-related 
declines in cognitive functioning, however more research is needed on the link between 
dedifferentiation and cognitive functioning to test this possibility.

8.1.2 Compensation

An important question is whether the observed age-related changes in functional 
connectivity reflect active adaptation (compensation) or passive change. In the second 
part of this thesis, we have studied how individual differences in functional connectivity 
during a selective attention task relate to differences in task performance. We found that 
specific increases in functional connectivity were related to better performance in the 
older group whereas no relation with performance was observed in the group of young 
participants. More specifically, in chapter 5, increased EEG connectivity between occipito-
parietal and frontal electrodes in the beta band was related to an increased ability to 
suppress irrelevant information. In chapter 7, increased connectivity between the FPCN 
and somatomotor areas was related to more accurate detection of target stimuli in older 
adults. These results demonstrate that in specific tasks, increased functional connectivity 
can have a compensatory function in older adults. 

It is unclear whether the changes in connectivity between networks as observed in 
chapters 2, 3 and 4 also have a compensatory role. In both chapters 2 and 3, we found 
that the decreased connectivity within functional networks was related to decreased 
cognitive functioning. Therefore, it is possible that increased connectivity between 
networks is mitigating these effects of decreased connectivity within networks. However, 
no clear relations were found between enhanced cognitive functioning and the increased 



162

Chapter  8

connectivity between networks. This raises the question what the mechanisms could be 
that cause age-related changes in functional connectivity. 

8.1.3  Underlying mechanisms 

The most likely underlying mechanism for age-related changes in functional 
connectivity is age-related changes in brain structure. As was discussed in chapter 3, the 
networks that exhibit age-related decreases in functional connectivity have quite some 
overlap with the brain areas that generally show age-related decreases in grey or white 
matter integrity. In chapter 2, we explicitly examined whether age-related changes in 
functional connectivity could be explained by reductions in gray matter volume. Although 
the effects of aging on functional connectivity were reduced when corrections for gray 
matter volume were taken into account, differences between age groups in within as well 
as between network connectivity remained. This suggests that changes in gray matter 
alone cannot explain the functional connectivity changes observed in the aging brain. 

In young adults, several studies have found a positive relation between structural 
connectivity and functional connectivity (Honey et al., 2009; Skudlarski et al., 2008; van 
den Heuvel et al., 2008). For example, Honey et al (2009), showed that, depending on the 
exact methods used, between 13% and 67% of the variation in functional connectivity 
could be explained by structural connectivity as measured by diffusion spectrum imaging. 
They showed that when structural connectivity is present between two areas, functional 
connectivity can be reliably inferred. However, when structural connectivity is minimal 
or absent the inference is much less reliable. Moreover, they found that functional 
connectivity is recurrently reconfigured around the underlying structural connectivity 
architecture. These results confirm that age-related structural connectivity changes could 
have a large impact on the observed functional connectivity changes. However, they also 
point to the flexibility of functional connectivity around the underlying fixed anatomical 
architecture. 

Decreased dopamine functioning (Bäckman et al., 2010; Bäckman et al., 2006) could 
be another factor that contributes to age-related changes in functional connectivity. 
Rieckmann et al. (2011) showed that individual differences in dopamine receptor density 
in the caudate in young and older adults were related to connectivity between the DLPFC 
and the right parietal cortex. Li and colleagues (2001) proposed that the age-related 
decrease in dopamine functioning might lead to additional noise, defined as haphazard 
neuronal activity. This increase in neural noise might be the cause of the reduction in the 
specificity of neural representations with age. In a more recent simulation study, Deco and 
colleagues (2009) demonstrated that neural noise could impact the connectivity within 
and between functional networks. They showed that there is an optimal level of neural 
noise, at which correlations within networks and anticorrelations between networks are 



163

General discussion and future perspectives

highest. An increase or a decrease in noise with regard to this optimum reduces both 
correlations and anticorrelations (Deco et al., 2009). Therefore, an increase or decrease 
in neural noise could be directly related to the observed reduced distinctiveness of 
functional networks in older adults. The results above thus suggest that (part of ) the age-
related changes in functional connectivity might be the result of a cascade of changes in 
gray and white matter structure and neurotransmitter function.

8.1.4  Flexible functional connectivity

In chapter 4 we found evidence that the changes in functional connectivity with age 
cannot be explained fully by changes in brain structure. In that study, we examined how 
functional connectivity is adapted to the demands of the task at hand. It has been shown 
that in young adults, connectivity within and between networks changes, depending on 
the task participants are performing (e.g. Dew et al., 2012; Hare et al., 2010; Sala-Llonch 
et al., 2012; Shirer et al., 2011; Sterpenich et al., 2006; Wolbers et al., 2006). Therefore, in 
chapter 4, we investigated whether older adults are still able to flexibly adapt functional 
connectivity to changing task demands. To this end, we examined how connectivity 
between different ICs changes between resting state, a selective attention task and 
a working memory task with varying levels of difficulty. We demonstrated that both 
younger and older participants are able to adapt functional connectivity to the demands 
of the task at hand. Importantly, older adults did so differently than young adults. While 
young adults showed the maximal change in functional connectivity with an increase 
in the level of task demand, older participants primarily showed a shift in connectivity 
between resting state and low demanding task conditions. 

The results fit well with previous activation studies on age-related changes in adaptation 
to different levels of task demand. Mattay and colleagues (2006) showed that prefrontal 
activation was increased in older adults compared to younger participants in low working 
memory loads, whereas the opposite pattern was observed during high working memory 
loads. Following their compensation-related utilization of neural circuits hypothesis 
(CRUNCH), Reuter-Lorenz and Cappell (2008) suggested that processing inefficiencies 
cause the aging brain to recruit more neural resources to achieve computational output 
equivalent to that of a younger brain. This leads to overactivation of prefrontal brain areas 
at lower levels of task demand. At higher levels of task demand, older adults can reach 
a resource ceiling (Grady, 2012). Activity then no longer increases with increasing task 
demand and can even start to decrease again. In turn, this can lead to age-related declines 
in performance during more demanding tasks. Our results in chapter 4, demonstrate that 
this pattern of age-related change in resource recruitment is reflected in brain functional 
connectivity as well as brain activity. 
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8.2 Selective attention

The studies in the first part of this thesis focused on general age-related changes in 
functional connectivity between and within networks. In the studies described in the 
second part of this thesis, we looked at these changes on a different level, by studying 
how brain activity and brain connectivity are related to performance during a selective 
attention task in young and older adults. It is known that aging affects selective attention 
- the ability to enhance relevant information while ignoring or suppressing irrelevant 
information. In particular, older adults experience higher levels of interference from 
distracting, task irrelevant stimuli (Gazzaley et al., 2005a; Hasher & Zacks, 1988; Hasher et 
al., 1999). Previous studies that demonstrated age-related declines in the suppression of 
irrelevant information often used stimuli in which the relevant and irrelevant information 
overlapped in space or were segregated in time (e.g. de Fockert et al., 2009; Gazzaley et 
al., 2005a; Gazzaley et al., 2008; Quigley et al., 2010). This task design is quite different from 
situations in real life, in which relevant and irrelevant information are usually present at 
the same time in different spatial locations. Therefore, we used a task in which relevant 
and irrelevant stimuli were presented on the screen at the same time but in different 
locations. Participants were instructed to detect a pre-specified target letter in one of two 
pre-specified ‘relevant’ spatial locations. Only when a target letter appeared on a relevant 
spatial location, participants were instructed to answer by pressing a ‘yes’-button. When 
only non-targets were presented (non-target condition) or when a target was presented 
on an irrelevant location (irrelevant target condition) they should press a ‘no’-button. This 
task design is comparable to various situations in daily life, in which the target stimulus (i.e. 
a green light), should only be responded to when it is present at a specific spatial location 
(i.e. a traffic light). In chapters 5 and 7, the ability to suppress irrelevant information was 
expressed as the difference in response times between irrelevant target and non-target 
stimuli.

We found that not all older adults suffer from a decline in suppression of irrelevant 
information. In both studies there was a group of older adults who performed as well as the 
younger participants, whereas there was another group that did show a clear age-related 
decline. In line with previous studies on the effects of aging on cognitive functioning, we 
observed that the inter-individual differences in performance were larger in the older than 
in the younger group (Hultsch et al., 2002). Note that individual differences in the ability 
to suppress irrelevant information were not related to differences in processing speed. 
The influential, general slowing theory proposed that age-related changes in cognitive 
functioning result from a general decline in processing speed (Salthouse, 1991; Salthouse, 
1996). However, our results show that at least part of the age-related decline in selective 
attention cannot be attributed to general slowing. The results do support the idea that a 
deficit in suppression of irrelevant information is an important factor in cognitive decline, 
in agreement with the inhibition deficit theory of aging (Hasher & Zacks, 1988). 
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In chapter 5, we investigated the neural mechanisms underlying the age-related deficit 
in suppressing irrelevant information using EEG. Already at very early stages of processing, 
individual differences in the ability to suppress irrelevant information were reflected in 
individual differences in the underlying neural processes. Especially older participants 
who showed a decline in the ability to suppress irrelevant information had a larger 
amplitude of the P1 component. This was interpreted to reflect increased processing of 
stimuli at irrelevant locations on the screen. Further evidence for an age-related decline 
in suppression of irrelevant information in early processing stages was obtained using 
time-frequency analysis. We found that after stimulus onset, alpha power was reduced in 
the older compared to the younger adults. Increased alpha power has consistently been 
related to increased inhibition (Jensen & Mazaheri, 2010; Klimesch et al., 2007). Therefore, 
the decline in alpha power might also reflect decreased suppression of information at 
irrelevant locations. Recent studies by other groups have also demonstrated that there 
is an age-related decline in suppression of irrelevant information in early stages of 
processing (de Fockert et al., 2009; Haring et al., 2013; Schmitz et al., 2010). Together, these 
results provide strong evidence that the decline in suppression of irrelevant information 
in (a subgroup of ) older adults is due to deficits in early stages of processing. 

8.2.1 Preparation for upcoming stimuli

In contrast to many previous studies, we have not only investigated differences in the 
neural signature of stimulus related processing, but we have also examined the role of 
preparation, as reflected in the neural activity prior to stimulus onset. Results show that 
preparation for upcoming stimuli might be especially important to enable adequate 
suppression of irrelevant stimuli at early stages of processing. In both young and older 
participants we found that increased phase locking in the alpha band between frontal 
and occipito-parietal electrodes was related to improved suppression of irrelevant 
information. Remarkably, this relation was only present prior to stimulus onset, indicating 
that increased alpha phase locking was related to preparation for the upcoming stimulus. 
Considering that alpha oscillations have been related to inhibition and top-down 
communication (Jensen & Mazaheri, 2010; Klimesch et al., 2007; Von Stein et al., 2000), the 
relation between pre-stimulus phase locking and processing of irrelevant information 
after stimulus onset might reflect the influence of top-down control. Alpha phase locking 
might reduce the excitability of the areas in the visual cortex in which the information on 
irrelevant spatial locations is processed, leading to increased suppression of irrelevant 
information after stimulus onset. 

These results demonstrate that preparation for the upcoming stimulus (proactive 
control) can reduce the effect of irrelevant information on response times. In contrast, 
in chapter 7 we showed that when the interference caused by irrelevant target stimuli is 
resolved in a later stage of processing (reactive control), responses are slower. Participants 
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who showed the largest increase in activity and connectivity within the dorsal attention 
network (DAN) areas in response to irrelevant target stimuli, were the ones who showed 
the greatest slowing of response times in irrelevant- compared to non-target stimuli.

Together these findings suggest that in order to suppress irrelevant information, 
preparation for the upcoming stimulus is very important, whereas dealing with interfering 
stimuli at later stages of processing (reactive control) causes a decline in performance. 
Braver and colleagues (2009) proposed that older adults specifically suffer from a deficit 
in proactive control; the ability to actively prepare for upcoming stimuli. This idea is well 
in line with our findings. Age-related decline was especially observed in the early markers 
of attentional control (P1 and pre-stimulus alpha), which likely result from changes in 
pre-stimulus top down control. In addition, there are indications that older adults employ 
higher levels of reactive control in response to stimulus presentation. For example, older 
adults showed a substantial increase in alpha phase locking after stimulus onset. This 
could reflect the reduction of interference from irrelevant stimuli at a later stage of 
processing in older adults. 

In chapter 5, we thus showed that the pre-stimulus brain state has a large impact on 
the processing of irrelevant target stimuli. In chapter 6, we demonstrated the extent 
of the influence the pre-stimulus brain state can have on the information processing. 
In that study, we asked participants to perform a temporal integration task, while EEG 
was recorded. They viewed two stimulus displays in rapid succession, which could be 
perceived as one stimulus (a grid of 24 squares) or as two separate stimuli (2 grids of 12 
squares). Only when they perceived the stimuli as one stimulus, participants were able 
to detect the one square that was missing in the 5 by 5 grid of squares. By examining 
the time-frequency characteristics of trials in which participants were able to detect the 
missing square, compared to the trials in which participants were not able to detect it, we 
found a neural signature that predicted integrated perception on this task. Participants 
who had high levels of beta power prior to stimulus onset, were more likely to perceive 
the two stimuli as an integrated percept. These results demonstrate that the pre-stimulus 
brain state does not only impact the processing of irrelevant but also of task relevant 
information. In addition, it shows the extent of the influence the pre-stimulus brain state 
can have on information processing; it not only influences how participants respond to 
stimuli, but probably also how stimuli are perceived. 

8.2.2 The role of compensation mechanisms in selective attention 

The results described above indicate that individual differences in preparation and 
suppression of irrelevant information in early stages of stimulus processing might play an 
important role in the age-related decline of selective attention. However, in the second 
part of this thesis, we also found evidence that older adults can use compensatory 
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mechanisms to mitigate these effects of aging on selective attention. In chapter 5, we 
found that occipito-frontal phase locking in the upper beta band (21-30 Hz) was related 
to efficient suppression of irrelevant information, but only in older adults. This effect was 
present both before and after stimulus onset, in contrast with the effect of alpha phase 
locking on suppression which was only present before stimulus onset. Although not much 
is known about the function of beta oscillations, there are indications that they are related 
to attention, or high levels of cognitive control (Engel & Fries, 2010; Gross et al., 2004; 
Wróbel et al., 2007; Wróbel, 2000). In chapter 6, we argued that beta oscillations might be 
related to the preparation of the perceptual system to optimally process the upcoming 
stimulus. Because increased beta phase locking was related to better performance in 
older, but not younger adults, this suggests that increased beta phase locking can be 
perceived as a compensation mechanism employed by high performing older adults. 
This interpretation was supported by the relation we found between the time-frequency 
(beta phase locking) and ERP data (the P1 amplitude); older adults with higher beta 
phase locking had lower P1 amplitudes, indicating that processing of irrelevant stimuli 
was reduced. Moreover, older adults with high levels of pre-stimulus alpha phase locking 
also had higher levels of phase locking in the upper beta band, indicating that these 
different mechanisms to adequately deal with irrelevant information, were co-occurring 
in older adults. Possibly, increased beta phase locking was related to the enhancement of 
items on the relevant diagonal. This enhancement could serve to increase the distinction 
between relevant and irrelevant information, making it easier for older adults to suppress 
irrelevant stimuli. 

In chapter 7, we further examined the effects of aging on the attention to task relevant 
stimuli. There, we found additional evidence for the occurrence of compensatory 
mechanisms in older adults. Whereas young participants made more errors when 
responding to infrequent target stimuli as compared to more frequent non target stimuli, 
this decline in performance was much smaller in older participants. Looking at brain 
activation and connectivity, we found a clear difference between age groups in the neural 
mechanisms enabling target detection. Whereas younger participants only activated 
sensorimotor areas to respond to the target stimulus, older participants also activated 
areas in the FPCN. Brain areas in the FPCN showed increased connectivity to brain areas 
in the sensorimotor network in older compared to young participants, supporting their 
role in adequate task performance. Moreover, we showed that the increased connectivity 
between the FPCN and sensorimotor areas in older adults was related to more accurate 
responses to target stimuli. In young participants, this relation was not observed. We 
therefore argue that this might be a reflection of age-related compensation. Because the 
activation differences reflect changes in processing after stimulus onset, these results are 
also in line with the suggestion that especially reactive cognitive control is employed in 
older adults to maintain high levels of performance.

These results in chapters 5-7 illustrate that the study of brain function can greatly 
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support our understanding of differences in behavior. Whereas in most studies no age-
differences are observed in responding to relevant stimuli, the current results show that 
older adult recruit additional brain areas to achieve these such high levels of performance. 
These differences in neural mechanisms might also have implications for performance. 
For example, we could hypothesize that because of the additional recruitment in older 
participants, they might show signs of mental fatigue sooner than younger participants, 
which could have an effect on the level of sustained task performance. In addition, the 
results described above demonstrate the importance of combining multiple analysis 
techniques that provide different sources of information, to get a better understanding 
of how aging affects information processing. In chapter 5, this was done by combining 
information on induced (oscillatory power and phase locking) and evoked (ERP) changes 
in brain activity. In chapter 7, by combining measures of activity and connectivity to 
understand the link between the change in neural patterns and the changes in behavior. 

8.2.3 Implications for daily life

Daily life is filled with distractions that interrupt ongoing activities. Advertisements on 
the side of the road, telephones ringing in the workplace, incoming e-mail on the computer 
and many more. The studies in this thesis have shown that older adults particularly have 
trouble ignoring these irrelevant stimuli (second part of the thesis). The results suggest 
that especially for older adults, it is important to limit the number of distractions in the 
home- and work situations. For example, an older worker could decide to check on new 
email messages only a few times per day and to limit the amount of clutter on the desk. 

While the increased distractibility of older adults often has a negative impact on their 
functioning, it might be possible to use it to their advantage. Studies in the group of Hasher 
(Biss et al., 2013) have demonstrated that older adults have better recall of irrelevant, 
distracting stimuli that were presented during task performance than younger adults. 
Memory for future events could thus possibly be strengthened by presenting cues or 
even explicit messages in the environment. One possibility would be to show reminders 
of important information in a text display at the bottom of the television screen. 

8.3 Critical considerations and future perspectives 

There are a number of factors that make the study of the aging brain a challenging 
endeavor. Below, some of these factors will be discussed and ideas for future studies will 
be presented. 
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8.3.1 Population representative samples

In the studies reported in this thesis, we have investigated neural mechanisms 
underlying age-related declines in cognitive functioning. However, it is important to 
realize that there is larger inter-individual variability in the healthy older group than in 
the young adults. Therefore, the subset of older adults that we measured might not be 
representative for the entire population of older adults. The older adults who participated 
in our studies, responded to an advertisement in a local newspaper asking for research 
participants. In general, we observed that those individuals who responded and became 
our participants did not sit at home all day; they were active, highly educated and 
engaged older adults who wanted to contribute to research. Older adults who are less 
active in daily life might be less likely to volunteer for participation in scientific research. It 
has been shown that older adults with a higher level of education as well as both physical 
and non-physical activity tend to have higher levels of cognitive functioning (Fratiglioni 
et al., 2004; Hertzog et al., 2008). Therefore, it is probable that the group of older adults 
that participated in this study, is not the group of older adults that experience the largest 
effects of aging on cognitive functioning. This limitation applies to the vast majority of 
aging studies. Especially when participants are required to come to the lab for fMRI and 
EEG measurements, it might be difficult to motivate low-fit older adults to participate. 
Hence, it can be expected that the effects of aging on cognitive function as well as brain 
function in the population are more substantial than the effects we observed in the 
current studies. Especially the group of low-fit older adults would have a lot to gain from 
training interventions. It is important for future studies to investigate whether the brain 
mechanisms underlying age-related decline can be generalized to this low-fit group of 
older adults and whether this group would be able to benefit from training interventions. 

8.3.2 Motivation

A striking difference we observed while collecting the data of our younger and older 
participants, was the difference in motivation between both groups. Although both 
groups were motivated to participate, the older participants tended to be more strongly 
motivated than the younger participants. During the measurements, older adults were 
less likely to complain about the duration or about the discomfort of the EEG cap than 
the young adults. Moreover, for the older adults it appeared to be especially important 
to perform the tasks as best they could. It cannot be ruled out that these motivational 
differences were reflected in the levels of task performance as well as in the differences 
in neural signatures we observed in both groups. However, it should be noted that the 
young participants were motivated as well, as they performed at or near ceiling level in 
the different tasks. A previous study that has looked into the effect of age-differences on 
motivation showed that especially in older adults, the motivation to do well, was strongly 
related to the amount of effort invested in task performance, whereas this relation was 
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not as clear in young participants (Ennis et al., 2013). On the one hand, the higher levels 
of effort invested by older participants could lead to better task performance. However, 
it could also cause older adults to tire more quickly, which could actually cause a decline 
in performance. In future studies, recording information about the invested effort during 
task performance, using, for example, pupil dilation (Beatty, 1982) or systolic blood 
pressure responsivity (Hess & Ennis, 2012) could provide valuable additional information 
to examine the effect of aging on cognitive functioning in relation to the effect of effort. 

8.3.3 Error avoidance

Another difference in task performance in older compared to younger participants is 
in the tradeoff between speed and accuracy (Rabbitt, 1979). Younger participants tend to 
optimize this speed accuracy trade-off depending on task instructions and the feedback 
provided. Older adults on the other hand consistently set a pace that nearly eliminates 
all avoidable errors (Starns & Ratcliff, 2010). Different explanations have been proposed 
for this effect (Forstmann et al., 2011). One possibility is that it might be more difficult 
for older adults to adjust the speed-accuracy trade-off due to degeneration of white 
matter connections between cortex and striatum. The connectivity between both brain 
structures enables speeded responses; when the input from the cortex to the striatum 
increases, the striatum in turn decreases the inhibitory control of the output nuclei of the 
basal ganglia. This enables faster, but possibly premature responses. Another explanation 
for differences in the trade-off between speed and accuracy is that older adults are able 
to adopt more risky response strategies, but that they avoid adopting these strategies 
because the weakened cortico-striatal connections do not support tight control over the 
speed-accuracy trade-off. Therefore a small decrease in response time could lead to a 
large decrease in accuracy. 

Regardless of the origin of these effects, the speed-accuracy trade-off differences 
between older and younger adults make it more difficult to draw conclusions about 
age-related changes, both in the behavioral domain as well as regarding the neural 
mechanisms supporting behavior. If two groups are not using the same strategy to 
accomplish a cognitive task, it becomes more difficult to attribute changes to either 
age-differences or strategy differences. Because older participants do not respond well 
to incentives to change the trade-off (Starns & Ratcliff, 2010), it is difficult to design an 
experiment where this effect would not play a role. Moreover, even at similar levels of 
speed versus accuracy, older and younger adults still differ in their trial-to-trial response 
time variability, indicating more conservative strategies in older participants (Smith & 
Brewer, 1995). In the current thesis, these differences in speed-accuracy trade-off were 
most apparent in situations of relatively low task demand, such as the selective attention 
task, in which older adults were able to achieve very high levels of accuracy at the cost 
of decreased speed. In chapter 7, we observed that older adults actually had higher 



171

General discussion and future perspectives

levels of accuracy than younger adults during the detection of relevant target stimuli. 
This accuracy increase was related to increased connectivity between sensorimotor and 
cognitive control regions. Possibly, this increase in connectivity reflects an increase in 
cognitive control over the motor response, to reduce the number of erroneous responses. 
Alternatively, the increased levels of cognitive control could be used to support selective 
attention mechanisms. It is important to keep in mind that these differences between 
younger and older adults in speed-accuracy trade-off can have effects on the observed 
age-differences in behavior as well as brain function. 

8.3.4  Cross-sectional studies

Most aging studies assess the effects of aging on cognitive functioning as well as brain 
functioning using a cross-sectional design. This approach is generally used because there 
are many practical and monetary issues involved when following older participants over 
a long time frame in a longitudinal study. However a cross-sectional approach also has its 
downsides. The most important problem is that differences between older and younger 
adults in cognitive functioning do not necessarily reflect age-related decline. They could 
also be the result of individual differences in intelligence or education already present at 
a younger age. 

Another problem with a cross-sectional approach is the cohort effect. The young and 
older groups have been exposed to different experiences during their lifetime which can 
have an impact on differences observed between the two groups. For example, whereas 
all of the young participants that participated in our studies had extensive experience 
using the computer for leisure or work activities, there were some older adults who never 
used a computer before. It is likely that these differences affected the performance in 
both groups, at least during the training phase. Moreover, the majority of the younger 
participants were psychology students, who had more experience than the older 
participants in the testing situation. This could also influence the observed differences 
between both age groups. By training participants on the tasks prior to the experimental 
sessions, we have tried to mitigate the influence of these cohort effects. It should be 
noted that on average, the level of education was high in both the younger and the older 
participants. 

Yet, the issues described above cannot be solved using a cross-sectional design. 
Therefore, it is important to replicate the results described in this thesis in longitudinal 
studies. In addition, longitudinal studies might provide more information about the 
mechanisms behind age-related changes in functional connectivity. First of all, changes 
in brain structure over time could be related more directly to changes in functional 
connectivity, thereby elucidating the interaction between the two. Second, the effects 
of functional connectivity changes on behavior could be clarified by investigating how 
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changes in functional connectivity over time relate to age-related changes in cognitive 
functioning over time. The combination of these approaches could also shed more light 
on the question whether age-related changes in connectivity should be interpreted as 
passive changes or active adaptations. This issue is particularly relevant in the context of 
the development of training interventions. If functional connectivity changes are indeed 
mainly the result of structural changes, there might be less room for improvement than if 
these changes would (partly) reflect active adaptations. 

Because of the complexity of the brain’s architecture, it is difficult to understand 
the consequences of specific changes in the brain or in behavior. Therefore explicitly 
modeling these changes could be an important tool to develop well defined hypotheses 
about the possible interactions between brain structure, brain function and behavior. By 
using network simulations, it becomes possible to look at the effects of declines in grey 
matter (loss of nodes), loss of white matter (loss of edges or loss of efficiency of edges) and 
increases in neural noise due to neurotransmitter functions on the structure of functional 
networks in the brain (Deco et al., 2009; Deco et al., 2012). Hypotheses generated with 
these techniques could subsequently be tested in cross-sectional as well as longitudinal 
studies.

8.3.5 Linking brain function and behavior - dynamics

In chapters 2, 3 and 4 we showed that there are large-scale changes in functional 
connectivity in older compared to younger adults. However, the implications of these 
changes for performance are less clear. Measures such as modularity or participation 
coefficient, which are theoretically important indices of the optimization of network 
function, did not show any relation to performance on different neuropsychological tests 
in young or older adults. In general, neuropsychological tests tend to be related to a wide 
range of underlying cognitive functions. These tests are not very specific to a particular 
domain. In contrast, the selective attention task that we used in chapters 5 and 7, measured 
very specific differences between individuals in cognitive functioning. When we related 
performance on these tests to individual differences in functional connectivity, we were 
able to detect clear links between connectivity and behavior. Therefore, it is possible that 
more specific measures of cognitive function are needed to increase our understanding 
of how connectivity changes impact behavior. 

In addition, it might be necessary to use more specific measures of brain function. 
Modularity and local efficiency over the entire brain network are, for example, very global 
measures of brain functioning (chapter 3). Possibly, individual differences in such global 
measures do not relate directly to individual differences in behavior. Instead, it might be 
the case that individual differences in connections within or between specific functional 
networks have a much stronger link to cognitive functioning. The results in chapters 5 
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and 7, but also in chapter 3, support this idea. There we found clear relations between 
task performance and specific measures of connectivity between functional networks. 

Another factor that might help to establish the link between brain function and 
behavior is the study of brain dynamics. Recent studies have shown that functional 
connectivity varies dynamically over time and that these dynamics could be an important 
dimension of brain function. Allen and colleagues (2012) have measured functional 
connectivity in brief time periods, using a sliding window approach. By clustering the 
different connectivity patterns observed, they were able to distinguish different sets of 
connectivity states. In some cases, these connectivity states were markedly different from 
the traditionally reported functional networks. This suggests that the functional networks 
that can be identified over long periods of time represent the most frequently occurring 
state of functional connectivity, but this does not necessarily mean that these are the 
only configurations used by the brain to transfer information. The functional connectivity 
patterns recorded over a period around the onset of a stimulus might have a clearer 
link to behavior at that time than the connectivity averaged over longer time periods. 
In addition, different researchers now suggest that the variability in brain activity and 
connectivity over time provide a window into the dynamic range of brain function (Deco 
et al., 2011; Garrett et al., 2013b; He, 2013). 

In a series of papers Garrett and colleagues have demonstrated that this dynamic range 
of brain function might be reduced in older adults. They have shown that variability in the 
BOLD signal declines with age in a large number of brain regions (Garrett et al., 2010; 
Garrett et al., 2011; Garrett et al., 2013a). In addition, they showed that this variability 
has a clear functional significance, as it increases during task performance compared to 
resting state conditions (Garrett et al., 2013a) and it is related to more consistent and 
faster performance (Garrett et al., 2011). Strikingly, the task-related increases in variability 
are not limited to the task positive areas that generally show an increased mean signal 
during task performance compared to resting state. It is likely that the increased BOLD 
variability reflects a greater dynamic range of possible responses to incoming stimuli. 

These new directions of research point to the importance of studying age-related 
changes in the spontaneous fluctuations in brain function. This is important, both 
because these spontaneous fluctuations have a clear relation to cognitive function and 
because the brain state at the time of stimulus onset determines the brain’s response to 
that stimulus (He, 2013). Therefore, to truly understand how age-related differences in 
brain function relate to differences on the behavioral level, it is necessary to examine the 
(functional) nature of these spontaneous fluctuations in much more detail. 
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8.4 Conclusions

Aging equals change. In this thesis we observed that aging is associated with large-scale 
changes in connectivity within and between functional networks. Moreover, adaptation 
of functional connectivity to the demands of the task at hand proceeds differently in older 
compared to younger participants. Besides changes associated with age-related decline, 
we also found that there are specific adaptations in brain function that are associated with 
higher levels of selective attention in older adults. Further disentangling the passive age-
related changes from active adaptation in brain function is an important challenge for 
future studies. Charting the limits of flexibility in the aging brain as well as understanding 
the factors that might trigger functional adaptations is important for the development of 
future interventions in healthy as well as pathological aging. 
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Ouder worden we allemaal, toch is er nog veel onbekend over de oorzaken achter 
de veranderingen in cognitief functioneren die samengaan met veroudering. In dit 
proefschrift onderzoeken we hoe communicatie tussen hersengebieden verandert bij 
veroudering en hoe dit cognitief functioneren beïnvloedt. Er zijn groepen hersengebieden 
die meer met elkaar communiceren dan met andere hersengebieden, deze gebieden 
vormen samen een netwerk. Wij hebben laten zien dat deze hersennetwerken bij ouderen 
minder duidelijk van elkaar te onderscheiden zijn doordat functionele connectiviteit 
tussen netwerken toeneemt, terwijl de connectiviteit binnen specifieke netwerken 
afneemt in vergelijking met jongeren. Verder vonden we aanwijzingen dat deze 
afnemende communicatie in specifieke netwerken ook samengaat met slechter cognitief 
functioneren van ouderen. Eén specifieke cognitieve functie hebben we in meer detail 
onderzocht; selectieve aandacht. Selectieve aandacht is het mechanisme waarmee we 
aandacht kunnen besteden aan die dingen in de omgeving die voor ons belangrijk zijn en 
tegelijkertijd de onbelangrijke informatie uit de omgeving kunnen negeren. Dit tweede 
mechanisme is noodzakelijk omdat er op elk moment een grote hoeveelheid informatie 
via onze zintuigen binnenkomt die we niet allemaal kunnen verwerken. Voor ouderen 
wordt het met name lastiger om informatie te negeren die niet van belang is. Met ons 
onderzoek hebben we laten zien dat de hersenen, voordat informatie binnenkomt, zich 
kunnen voorbereiden op wat komen gaat en dat dit een belangrijke rol speelt bij het 
onderdrukken van irrelevante informatie. Bovendien vonden we dat ouderen tot op 
zekere hoogte de fysieke achteruitgang van hun hersenen kunnen compenseren bij het 
uitvoeren van de selectieve aandachtstaak door extra hersengebieden te activeren en de 
communicatie tussen specifieke hersengebieden te verhogen. De inzichten die dit soort 
fundamenteel onderzoek ons geeft, zijn belangrijk om nieuwe aanknopingspunten te 
geven voor het ontwikkelen van nieuwe interventies om het cognitief functioneren van 
ouderen langer op peil te houden.

Over deze resultaten, de methoden erachter en de betekenis ervan is meer informatie te 
vinden in de uitgebreide Nederlandse samenvatting. 
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Ouder worden we allemaal. Op een bepaald moment zullen de meeste mensen weten 
wat het is om oud te worden. Veroudering is een proces van verandering. Veroudering 
is namelijk niet alleen het resultaat van passieve achteruitgang met de tijd, maar het is 
een proces waarin door een voortdurende wisselwerking tussen toegenomen ervaring 
en kennis en de fysieke veranderingen die gepaard gaan met veroudering nog van alles 
mogelijk is. 

Ouder worden gaat gepaard met positieve, maar ook met negatieve veranderingen. 
Ouderen zijn vaak beter in staat om te gaan met hun emoties dan jongeren en door hun 
levenservaring kunnen ze beter omgaan met sociale conflicten. Aan de andere kant gaan 
sommige cognitieve functies achteruit bij veroudering; ouderen ervaren bijvoorbeeld 
vaak dat ze minder goed dingen kunnen onthouden dan vroeger. Bovendien reageren 
ouderen langzamer op gebeurtenissen in de omgeving en zijn ze sneller afgeleid dan 
jongeren. Maar dit geldt niet voor alle ouderen in gelijke mate: er zijn grote verschillen 
tussen mensen in de effecten van het ouder worden. De een merkt een snelle achteruitgang 
in de cognitieve functies terwijl bij de ander nauwelijks achteruitgang te merken is. In dit 
proefschrift proberen we te achterhalen wat de oorzaken zijn van deze verschillen tussen 
mensen. Dit doen we door te kijken naar de hersenmechanismen die ten grondslag 
liggen aan de verschillen tussen ouderen in cognitief functioneren. 

Een belangrijke cognitieve functie: selectieve aandacht

Eén van de cognitieve functies die met name van belang is voor goed functioneren in het 
dagelijks leven is “selectieve aandacht”. Selectieve aandacht is het mechanisme waarmee 
we aandacht kunnen besteden aan die dingen in de omgeving die voor ons belangrijk 
zijn en tegelijkertijd de onbelangrijke informatie uit de omgeving kunnen negeren. Dit 
tweede mechanisme is noodzakelijk omdat er op elk moment een grote hoeveelheid 
informatie via onze zintuigen binnenkomt die we niet allemaal kunnen verwerken. Voor 
wie vertrouwd is met computers; er is geschat dat er elke seconde ongeveer 10 miljoen 
bits aan informatie via je ogen binnenkomt. Dat is evenveel informatie als op ruim 500 van 
deze proefschrift pagina’s staat. Het is dus erg belangrijk dat met behulp van selectieve 
aandacht de juiste informatie hieruit gefilterd wordt. Stel je maar eens voor dat je op een 
feestje bent. De kamer is vol met mensen die allemaal druk door elkaar heen praten. Jij 
hebt midden in die kamer een leuk gesprek aan het voeren met je beste vriend. Op dat 
moment ben je, als het goed is, in staat om alle gesprekken die in de kamer om je heen 
gevoerd worden te negeren en je te richten op het gesprek met je vriend. Waarschijnlijk 
heb je ook wel eens meegemaakt dat je moe was op een feestje en dat het ineens een stuk 
moeilijker was om al die gesprekken om je heen te negeren; je wordt dan sterker afgeleid. 
Het voeren van een goed gesprek met je vriend is dan ook ineens een stuk lastiger. Bij het 
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ouder worden gaan selectieve aandacht mechanismen achteruit. Met name het negeren 
van informatie die niet van belang is, lijkt minder goed te gaan. 

Effecten van veroudering op de hersenen

In dit proefschrift onderzoeken we de mechanismen die ten grondslag liggen aan de 
veranderingen in het cognitief functioneren met veroudering. Hierbij kijken we vanuit 
het perspectief van de hersenen. Met het ouder worden veranderen er veel dingen in de 
hersenen die een direct effect hebben op het functioneren van ouderen. Zo sterven er 
bijvoorbeeld zenuwcellen (grijze stof ) af, met name in het voorste deel, de frontale kwab, 
van de hersenen (zie figuur 1). 

Figuur 1: Een dwarsdoorsnede van de hersenen van vier van de deelnemers aan ons onderzoek. 
De bovenste twee zijn jongere deelnemers, de onderste twee oudere deelnemers. Opvallend is 
dat de ventrikels (zwarte gaten in het midden) groter worden bij ouderen. Bovendien is er meer 
ruimte tussen de windingen van de hersenen die aan de zijkant zichtbaar zijn. Dit wijst op een 
afname in grijze en witte stof bij de oudere deelnemers. Natuurlijk hebben niet alle verschillen 
te maken met veroudering, tussen mensen zijn er ook grote verschillen in de structuur van de 
hersenen. 
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Ook de witte stof, waarin de verbindingen liggen tussen zenuwcellen, wordt aangetast 
door veroudering. Toch kunnen deze veranderingen in de structuur (of de hardware) 
van de hersenen niet volledig de achteruitgang in het functioneren van ouderen 
verklaren. Dit komt omdat de hersenen zich tot op zekere hoogte kunnen aanpassen 
aan de veranderingen in de structuur. Onderzoek heeft bijvoorbeeld laten zien dat bij 
ouderen vaak meer hersengebieden ingezet worden tijdens het uitvoeren van een taak 
dan bij jongeren. Dit is door verschillende onderzoekers aangevoerd als bewijs voor 
‘compensatie-mechanismen’. Het idee is dat de hersenen van ouderen hun prestaties op 
een taak op peil kunnen houden, ondanks de achteruitgang in grijze en witte stof, door 
extra hersengebieden in te zetten om de taak goed uit te voeren. Er zijn echter ook andere 
onderzoeken die laten zien dat de inzet van extra hersengebieden juist een aanwijzing 
voor achteruitgang zou kunnen zijn. Deze onderzoekers zeggen dat de extra activiteit in 
de hersenen een teken is dat de oudere hersenen niet meer goed kunnen bepalen welke 
hersengebieden ingezet moeten worden bij een taak. 

Samengevat zijn er dus aanwijzingen dat zowel de structurele veranderingen in de 
hersenen als de veranderingen in functie van bepaalde hersengebieden een rol spelen 
bij de veranderingen ten gevolge van veroudering. De resultaten tot zover zijn echter 
niet consistent en kunnen niet volledig de veranderingen in cognitieve functies verklaren 
die gepaard gaan met het ouder worden. Dit komt ook omdat een belangrijk aspect 
van hersenfunctie tot nu toe weinig aandacht heeft gekregen in het onderzoek naar 
veroudering. Dat is de informatie-uitwisseling tussen verschillende hersengebieden. 
Tussen het moment waarop informatie binnenkomt in de hersenen en het moment waarop 
gereageerd wordt zitten veel verwerkingsstappen. Er zijn gebieden in onze hersenen die 
de binnenkomende visuele informatie ontcijferen en ons in staat stellen om objecten te 
herkennen, gebieden die in de gaten houden wat de doelen zijn van de taak waar we mee 
bezig zijn en er zijn gebieden die op basis van de verzamelde informatie beslissen welke 
reactie gegeven moet worden. Om dit goed te laten verlopen is het essentieel dat alle 
hersengebieden, die elk voor een deel van de verwerkingsstappen verantwoordelijk zijn, 
op de juiste manier en op het juiste moment met elkaar communiceren. Er is echter niet 
veel bekend over de manier waarop deze informatie-uitwisseling wordt beïnvloed door 
het verouderingsproces. Een van de belangrijke doelen van dit proefschrift is om te laten 
zien hoe de informatie-uitwisseling tussen hersengebieden verandert met veroudering 
en of dit het cognitief functioneren van ouderen beïnvloedt. 

Het meten van hersenactiviteit

De mate waarin bepaalde hersengebieden actief worden en de mate waarin 
hersengebieden informatie met elkaar uitwisselen kan onderzocht worden met 
verschillende technieken. In dit proefschrift is gebruik gemaakt van elektro-encefalografie 
(EEG) en functionele magnetische resonantie imaging (fMRI, zie figuur 2). Tijdens een EEG 
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meting wordt er een “badmuts” op het hoofd van de deelnemer gezet waarin elektroden 
zijn bevestigd. Deze elektroden kunnen de elektrische activiteit van de hersenen meten. 
Tijdens een EEG registratie wordt elke milliseconde de hersenactiviteit gemeten en kan 
gekeken worden hoe deze activiteit verandert als iemand een bepaalde taak uitvoert. Het 
nadeel van het EEG is dat we niet heel nauwkeurig kunnen bepalen waar in de hersenen 
de activiteit precies vandaan komt. 

Figuur 2: hersenmetingen met EEG (links) en fMRI (rechts) 

Deze locatie kunnen we wel goed bepalen met behulp van de fMRI techniek. 
Deze techniek maakt gebruik van een sterk magnetisch veld om de verandering in 
hersenactiviteit te meten als iemand een taak uitvoert. Als een gebied in de hersenen 
betrokken is bij het uitvoeren van een taak, dan gebruikt het gebied meer zuurstof. 
Als reactie hierop wordt door de bloedvaten meer zuurstofrijk bloed aangevoerd. Dit 
zorgt voor een verandering in de verhouding tussen zuurstofarm en zuurstofrijk bloed 
ter plaatse en deze verandering kunnen we meten doordat zuurstofrijk en zuurstofarm 
bloed anders reageren op het magnetische veld. Zo kunnen we onderzoeken waar in de 
hersenen de activiteit toeneemt als iemand een taak uitvoert. Met fMRI is het mogelijk 
om tot op een aantal millimeters nauwkeurig te bepalen welk hersengebied actief 
is tijdens het uitvoeren van cognitieve taken. EEG is daarentegen juist erg goed in het 
bepalen wanneer de activiteit in een gebied verandert. In de onderzoeken beschreven 
in dit proefschrift gebruiken we zowel EEG als fMRI omdat de technieken elkaar goed 
aanvullen. 

Naast het bepalen van waar en wanneer de activiteit in bepaalde hersengebieden 
verandert, kunnen EEG en fMRI ook gebruikt worden om de informatie-uitwisseling 
tussen gebieden in kaart te brengen. Als de activiteit in twee gebieden gedurende 
langere tijd met elkaar mee varieert kunnen we constateren dat er communicatie tussen 
deze gebieden is. Deze informatie-uitwisseling tussen gebieden noemen we functionele 
connectiviteit.
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Informatie-uitwisseling in de oudere hersenen 

In het eerste deel van dit proefschrift onderzoeken we wat de invloed is van veroudering 
op de functionele connectiviteit in de hersenen. Communicatie tussen hersengebieden 
wordt veroorzaakt doordat grote groepen zenuwcellen tegelijkertijd in hetzelfde ritme 
(met dezelfde frequentie) gaan vuren. Ongeveer 12 jaar geleden werd voor het eerst 
ontdekt dat er groepen van hersengebieden zijn, die meer met elkaar communiceren 
dan met andere gebieden. Deze groepen gebieden communiceren met elkaar wanneer 
mensen een taak uitvoeren, wanneer ze rustig met hun ogen dicht in de scanner liggen 
en zelfs wanneer ze slapen. Deze groepen van gebieden worden hersennetwerken 
genoemd. De verschillende gebieden in zo’n hersennetwerk worden vaak samen actief 
tij-dens het uitvoeren van specifieke cognitieve functies. Het eerste netwerk dat ontdekt 
werd is het ‘default mode netwerk’ (standaard-modus netwerk). Dit netwerk heeft zijn 
naam gekregen omdat de gebieden in het netwerk het meest actief zijn wanneer een 
deelnemer in rust is, en niet gericht is op gebeurtenissen in de buitenwereld. Een tweede 
belangrijk hersennetwerk is het somato-motorische netwerk (zie figuur 3). Dit is een 
netwerk dat een belangrijke rol speelt bij taken die een beroep doen op de tastzin en 
het plannen en uitvoeren van bewegingen. Er zijn ook netwerken die zich bezig houden 
met het coördineren van de informatieverwerking in andere netwerken, de zogenaamde 
regel- of coördinatie-netwerken. Zo speelt het dorsale aandachtsnetwerk een belangrijke 
rol bij selectieve aandacht; het richten van aandacht op belangrijke informatie en het 
onderdrukken van onbelangrijke informatie die binnenkomt. Een ander coördinerend 
netwerk is het fronto-pariëtale controle netwerk (zie figuur 3), dit netwerk zorgt ervoor 
dat we de doelen in de gaten houden van de taak waar we mee bezig zijn en stelt ons 
in staat om strategieën te bepalen, beslissingen te maken en plannen te maken voor de 
toekomst. 

Onderzoek heeft laten zien dat de functionele connectiviteit (de communicatie) 
in het default mode netwerk achteruit gaat als mensen ouder worden. Bovendien is 
gevonden dat deze achteruitgang gerelateerd is aan een minder goed functionerend 
geheugen en een tragere reactiesnelheid. Dit onderzoek gaf een eerste indicatie dat er 
veranderingen zijn in de functionele connectiviteit bij het ouder worden en dat deze 
veranderingen het functioneren van ouderen beïnvloeden. In dit proefschrift hebben 
we die veranderingen onder de loep genomen. We hebben niet alleen gekeken hoe de 
functionele connectiviteit binnen netwerken verandert als mensen ouder worden, maar 
ook hoe functionele connectiviteit tussen verschillende netwerken wordt beïnvloed door 
veroudering. Bij jonge volwassenen vindt voornamelijk veel communicatie plaats tussen 
gebieden die tot één bepaald netwerk behoren. 
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Figuur 3: Zijaanzicht van de rechter en linkerkant van een model van het menselijk brein; twee 
verschillende hersennetwerken zijn in kleur aan gegeven. In rood het fronto-pariëtale controle 
netwerk en in blauw het somato-motorische netwerk. 

Gebieden die bij verschillende netwerken horen communiceren onderling veel 
minder met elkaar. In hoofdstuk 2, laten we zien dat het onderscheid tussen verschillende 
netwerken in de hersenen minder sterk wordt bij veroudering. Dit komt doordat de 
verbindingen binnen de netwerken afnemen; vooral binnen het default mode netwerk en 
somato-motorische netwerk. Tegelijkertijd nemen verbindingen tussen de verschillende 
netwerken toe. 

De studie in hoofdstuk 2 gaf ons een eerste indicatie dat er inderdaad veranderingen 
in de hersennetwerken optreden wanneer mensen ouder worden. In hoofdstuk 3 
hebben we deze veranderingen in meer detail onderzocht. Hiervoor hebben we een 
nieuwe techniek gebruikt om naar de hersennetwerken te kijken. Deze techniek heet 
grafentheorie, en wordt bijvoorbeeld ook gebruikt in het bestuderen van de dynamiek 
in sociale netwerken. Met deze techniek kunnen we mensen in een sociaal netwerk 
bekijken als knopen. Vriendschappen of familiebanden vormen de verbindingen tussen 
die knopen. Wanneer we op die manier een sociaal netwerk beschrijven kunnen we 
vervolgens kijken hoe de informatie in zo’n netwerk verspreid wordt. Bijvoorbeeld: stel 
dat informatie bij één persoon in het netwerk aanwezig is; hoe snel kan de informatie 
dan verspreid worden naar andere personen in dat netwerk? Of in andere woorden, als 
één van je vrienden een nieuwtje heeft over jou, hoe lang duurt het dan voordat al je 
vrienden dit weten? Dit wordt de globale efficiëntie van het netwerk genoemd. Een ander 
voorbeeld: als één van de personen uit het netwerk weg zou vallen, zouden de vrienden 
van deze personen dan nog met elkaar ‘verbonden zijn’? Dus, als een vriendin ineens naar 
Engeland verhuist, heb je dan nog contact met de vrienden van die vriendin? Dit is de 
lokale efficiëntie van een knoop in het netwerk.

Deze methode kunnen we ook toepassen op de hersenen. We beschouwen dan een 
hersengebied als een knoop in het netwerk en de functionele connectiviteit tussen 
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hersengebieden als de verbindingen tussen die knopen. In hoofdstuk 3 hebben we op 
deze manier het functioneren van hersennetwerken van jongere en oudere deelnemers 
met elkaar vergeleken. We vonden dat de verspreiding van informatie in het gehele 
netwerk (globale efficiëntie) niet veranderde met leeftijd. Er waren in specifieke 
netwerken echter minder verbindingen tussen verschillende knopen in het netwerk (de 
lokale efficiëntie ging omlaag). Dit was vooral zo voor netwerken die betrokken waren 
bij coördinerende functies (het cingulo-operculaire netwerk en het fronto-pariëtale 
controle netwerk) en voor het default mode netwerk. De effecten van veroudering zijn 
dus niet in alle netwerken even sterk. Daarnaast vonden we in hoofdstuk 3 ook dat 
functionele connectiviteit tussen netwerken toe nam in ouderen. De resultaten die we 
hebben gevonden met deze grafentechniek bevestigden de eerdere bevindingen die 
beschreven zijn in hoofdstuk 2. We vonden opnieuw dat er meer verbindingen waren 
tussen verschillende hersennetwerken in ouderen (in het bijzonder tussen het somato-
motorische en het visuele netwerk) dan in jongeren. Samen gevat zijn hersennetwerken 
bij ouderen minder van elkaar onderscheiden doordat functionele connectiviteit tussen 
netwerken toeneemt terwijl de connectiviteit binnen specifieke netwerken afneemt in 
vergelijking met jongeren. 

Verder hebben we in hoofdstuk 3 geprobeerd om beter in kaart te brengen hoe deze 
veranderingen samenhangen met veranderingen in cognitieve functies bij ouderen. 
Dit hebben we gedaan door de individuele verschillen in netwerkeigenschappen 
te relateren aan de individuele verschillen in prestatie op verschillende testen voor 
bijvoorbeeld reactiesnelheid en geheugen. We vonden dat minder communicatie tussen 
de gebieden in het default mode netwerk en in het controle netwerk gepaard ging met 
slechtere prestatie op verschillende testen. De afgenomen connectiviteit in speciaal deze 
netwerken bij ouderen lijkt dus wel een teken van achteruitgang te zijn. 

De functionele connectiviteit tussen specifieke gebieden die tot een bepaald netwerk 
horen en tussen verschillende netwerken is afhankelijk van de taak waar iemand mee 
bezig is. Gebieden die belangrijk zijn voor een bepaalde taak gaan meer met elkaar 
samenwerken als iemand die taak uitvoert. Zonder deze flexibiliteit zou je een specifieke 
taak niet goed kunnen uitvoeren. In hoofdstuk 4 hebben we daarom onderzocht in welke 
mate ouderen nog in staat zijn functionele connectiviteit flexibel aan te passen aan de 
taak waar ze mee bezig zijn. We hebben de hersenactiviteit en het gedrag van oudere 
en jongere deelnemers gemeten (1) terwijl ze een geheugentaak deden, (2) terwijl ze 
een aandachtstaak deden en (3) tijdens rust. Bovendien hebben we taakmoeilijkheid 
gevarieerd in de geheugentaak door mensen meer te laten onthouden. Vervolgens hebben 
we gekeken hoe de functionele connectiviteit af hing van de taak die de proefpersoon 
uitvoerde. Hierbij hebben we vooral gelet op de connectiviteit tussen verschillende 
netwerken. De resultaten lieten zien dat ouderen nog steeds flexibel connectiviteit 
kunnen aanpassen aan de taak waar ze mee bezig zijn. Opvallend was echter dat ouderen 
veel grotere veranderingen in connectiviteit lieten zien dan jongeren bij het uitvoeren 
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van een simpele taak ten opzichte van rust. Aan de andere kant waren er bij ouderen 
minder verschillen in netwerkeigenschappen dan bij jongeren als we de simpele taak 
vergeleken met een moeilijkere taak. Dit zou erop kunnen wijzen dat ouderen relatief 
meer inspanning moeten leveren als ze een simpele taak uitvoeren ten opzichte van rust, 
dan jongeren. Doordat ze tijdens simpele taken al relatief veel energie investeren is het 
vervolgens lastig om deze inspanning nog verder te verhogen wanneer de taak moeilijker 
wordt. Wanneer het plafond is bereikt, en ouderen niet meer inspanning kunnen leveren 
dan ze al doen, zien we dat de prestatie op de taak achteruit gaat. Ouderen kunnen zich 
dan niet meer aanpassen aan de eisen die de taak aan hen stelt. Bij jongeren wordt het 
plafond minder snel bereikt.

Selectieve aandacht in de oudere hersenen 

In het eerste deel van dit proefschrift (hoofdstukken 2, 3 en 4) hebben we gekeken naar 
algemene veranderingen in de communicatie tussen hersengebieden door functionele 
connectiviteit te onderzoeken. In het tweede deel van dit proefschrift (hoofdstukken 
5-7) hebben we vervolgens onderzocht welke hersenmechanismen een rol spelen in de 
leeftijd gerelateerde veranderingen in selectieve aandacht en welke rol de veranderingen 
in connectiviteit hierin spelen. We wisten al dat het richten van aandacht op relevante 
informatie en het negeren van onbelangrijke informatie in de hersenen worden geregeld 
door een aantal verschillende hersengebieden. Vooral vanuit gebieden in het dorsale 
aandachtsnetwerk wordt een sterke invloed uitgeoefend op hersengebieden die betrokken 
zijn bij de verwerking van de informatie die binnen komt, via bijvoorbeeld het gehoor 
of de ogen. Het dorsale aandachtsnetwerk zorgt er vervolgens voor dat de informatie 
die belangrijk is voorrang krijgt, terwijl de verwerking van onbelangrijke informatie 
wordt onderdrukt. Om dat voor elkaar te krijgen is het belangrijk dat de betrokken 
hersengebieden samenwerken en informatie met elkaar uitwisselen. In hoofdstukken 5 
en 7 hebben we onderzocht hoe deze informatie uitwisseling door veroudering wordt 
beïnvloed. In dit onderzoek voerden de oudere en jongere deelnemers een selectieve 
aandachtstaak uit waarin belangrijke en onbelangrijke informatie tegelijkertijd op 
en scherm kon verschijnen. Hiermee konden we bepalen in hoeverre mensen werden 
afgeleid door onbelangrijke informatie. We vonden dat gemiddeld genomen de oudere 
mensen inderdaad meer werd afgeleid door de onbelangrijke informatie dan de jongere 
mensen. Maar belangrijk is, is dat niet alle ouderen deze achteruitgang lieten zien. 

We hebben vervolgens onderzocht of verschillen in connectiviteit deze verschillen 
tussen mensen zou kunnen verklaren. Terwijl we in hoofdstukken 2, 3 en 4 met behulp van 
fMRI metingen naar connectiviteit gekeken hebben, hebben we dat in hoofdstuk 5 met 
behulp van EEG metingen onderzocht. Hersengebieden communiceren op verschillende 
frequenties, een beetje vergelijkbaar met radiosignalen die op verschillende golflengtes 
worden uitgezonden. Met behulp van EEG kunnen we naar communicatie op al deze 
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verschillende frequenties kijken. De rol van deze communicatie hangt af van de specifieke 
frequentieband waar binnen de communicatie plaats vindt. Communicatie in de 
zogenaamde alfa frequentieband speelt bijvoorbeeld vooral een rol bij het onderdrukken 
van informatieverwerking. Dit onderdrukken van informatieverwerking is belangrijk om 
te voorkomen dat iemand wordt afgeleid door onbelangrijke informatie in de omgeving. 
Door de connectiviteit binnen de alfa frequentieband te onderzoeken, hebben we in 
hoofdstuk 5 laten zien dat de verschillen tussen mensen in de mate waarin ze afgeleid 
werden door onbelangrijke informatie inderdaad voor een deel veroorzaakt werden door 
verschillen in de samenwerking tussen hersengebieden. Wanneer er meer communicatie 
was in de alfa band tussen de frontale (coördinerende) gebieden en de gebieden die de 
visuele informatie verwerken, waren deelnemers beter in staat onbelangrijke informatie 
te negeren. Belangrijk was dat deze toegenomen communicatie plaatsvond vlak voor de 
informatie op het scherm verscheen. Hieruit kunnen we concluderen dat de deelnemers 
zich voorbereiden op de taak die ging komen door de communicatie tussen de frontale 
en visuele gebieden te optimaliseren. Deze resultaten vertellen ons ook dat de hersenen, 
voordat informatie binnenkomt, voorbereid kunnen worden op wat komen gaat en dat 
dit een belangrijke rol speelt bij de daarop volgende informatie verwerking. 

In hoofdstuk 6 hebben we verder onderzocht hoe de toestand van de hersenen, voordat 
informatie binnenkomt, bepaalt hoe deze informatie wordt verwerkt. In deze studie 
kregen mensen 2 keer heel snel achter elkaar een afbeelding van elk 12 vierkantjes te 
zien. In ongeveer de helft van de gevallen dat deze afbeeldingen getoond werden aan de 
deelnemers, zagen ze twee aparte afbeeldingen. Maar in de andere helft van de gevallen 
hadden mensen de indruk dat ze maar één samengevoegde afbeelding van 24 vierkantjes 
zagen. Dit laatste verschijnsel wordt temporele integratie genoemd. In deze studie hebben 
we gekeken wat er in de hersenen gebeurt zodat mensen soms twee afbeeldingen zien 
en soms maar één. We vonden dat mensen vaak één afbeelding zagen in plaats van twee, 
wanneer het brein al voor het verschijnen van de afbeeldingen meer actief was in de beta 
frequentie band. De beta frequentieband is een andere frequentieband in het EEG, die 
met name belangrijk is bij richten van aandacht op belangrijke dingen in de omgeving. 
De toestand van de hersenen, al voordat de plaatjes verschijnen, lijkt dus te bepalen hoe 
we informatie waarnemen. Dit resultaat geeft aan dat het erg belangrijk is om niet alleen 
te kijken hoe de hersenen reageren als we iets hebben laten zien, maar ook te kijken naar 
de toestand van de hersenen voordat de deelnemers informatie te zien krijgen.

In hoofdstuk 5 vonden we ook aanwijzingen dat ouderen tot op zekere hoogte de 
fysieke achteruitgang van hun hersenen kunnen compenseren bij het uitvoeren van de 
selectieve aandachtstaak. Ouderen die meer connectiviteit lieten zien tussen frontale 
en visuele gebieden in de beta frequentieband, waren namelijk ook beter in staat om 
onbelangrijke informatie te negeren. Bij de jongere deelnemers speelde connectiviteit 
in de beta frequentieband helemaal geen rol bij het onderdrukken van onbelangrijke 
informatie. Ook in hoofdstuk 7 vonden we aanwijzingen dat ouderen door het activeren 
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van extra hersengebieden ervoor kunnen zorgen dat hun prestatie op peil blijft. In die 
studie hebben we met behulp van fMRI de hersenactiviteit van deelnemers onderzocht 
tijdens het uitvoeren van de selectieve aandachtstaak. In deze studie keken we vooral 
naar de verschillen in hersenactiviteit en gedrag tussen ouderen en jongeren tijdens 
het detecteren van en reageren op een bepaalde letter die mensen in hun geheugen 
moesten opslaan voordat de taak begon. We vonden dat jongeren tijdens taakuitvoering 
vooral het somato-motorische netwerk activeren. Ouderen gebruikten daarnaast ook het 
fronto-pariëtale controle netwerk tijdens de uitvoering van deze cognitieve taak. Het lijkt 
er op dat het fronto-pariëtale netwerk bij ouderen meer betrokken is bij de aansturing 
van de respons die gegenereerd werd in het somato-motorische netwerk. Dit bleek ook 
uit de verhoogde connectiviteit tussen het somato-motorische netwerk en het fronto-
pariëtale controle netwerk bij ouderen. Bovendien was deze toegenomen connectiviteit 
bij ouderen gerelateerd aan een betere prestatie op de taak. Ook in dit geval zetten de 
ouderen blijkbaar extra hersenen gebieden in om hun prestatie op peil te houden; ze 
compenseren blijkbaar op die manier voor de fysieke achteruitgang van de hersenen. 

Conclusies

In dit proefschrift hebben we laten zien dat de communicatie tussen hersengebieden 
verandert als mensen ouder worden. De verbindingen binnen netwerken nemen af ten 
gevolge van veroudering terwijl de verbindingen tussen netwerken toenemen. Hierdoor 
zijn bij ouderen de afzonderlijke hersennetwerken minder goed te onderscheiden. 
Bovendien hebben we laten zien dat de afname in connectiviteit binnen verschillende 
netwerken een negatief effect heeft op het functioneren van ouderen. Aan de andere 
kant hebben we ook laten zien dat functionele connectiviteit van groot belang is voor het 
efficiënt richten van aandacht. Door connectiviteit tussen bepaalde hersenen gebieden 
te verhogen waren de ouderen in staat om, tot op zekere hoogte, te compenseren voor 
de fysieke achteruitgang van hun hersenen. Veranderingen in connectiviteit kunnen dus 
zowel positieve als negatieve effecten hebben op het cognitief functioneren van ouderen. 

Omdat de effecten van veroudering het dagelijks leven van ons allemaal beïnvloeden is 
het belangrijk dat we onderzoek blijven doen naar wat er precies gebeurt in de hersenen 
als mensen ouder worden en hoe dit proces het functioneren van ouderen bepaalt. In de 
toekomst kunnen we deze informatie misschien gebruiken om trainingsmethoden voor 
ouderen te ontwikkelen die er voor zouden kunnen zorgen dat ouderen zo lang mogelijk 
mentaal goed kunnen blijven functioneren. 
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Selectieve aandacht Het mechanisme waardoor we in staat zijn om onze aandacht te 
richten op belangrijke informatie in de omgeving en onbelangrijke informatie te negeren. 

Compensatie De inzet van extra hersengebieden of verbindingen tussen verschillende 
hersengebieden, waardoor de prestatie van ouderen op peil blijft ondanks fysieke 
achteruitgang van de hersenen. 

Cognitieve functies Verschillende processen die betrokken zijn bij het opnemen, het 
verwerken en het reageren op informatie, zoals bijvoorbeeld geheugen en aandacht.

fMRI De meting van hersenactiviteit met behulp van sterke magnetische velden. Met 
fMRI kan heel precies bepaald worden waar hersenactiviteit verandert. Doordat fMRI 
slechts elke 2 seconden een nieuwe meting doet kan minder goed bepaald worden 
wanneer hersenactiviteit verandert.

EEG De meting van elektrische activiteit in de hersenen met behulp van elektroden 
die bevestigd zijn in een soort badmuts. Met EEG kan heel specifiek gekeken worden 
wanneer hersenactiviteit verandert. EEG is minder goed in het in kaart brengen van waar 
hersenactiviteit plaats vindt. 

Hersennetwerk Een groep hersengebieden die sterk met elkaar communiceren en 
minder met gebieden die horen bij andere netwerken. 

Default mode netwerk Een netwerk dat het meest actief is wanneer we in rust zijn en 
niet gericht zijn op gebeurtenissen in de buitenwereld.

Dorsale aandachtsnetwerk Een netwerk dat een belangrijke rol speelt bij aandacht; het 
richten van aandacht op belangrijke informatie en het onderdrukken van onbelangrijke 
informatie die binnenkomt.

Fronto-pariëtale controle netwerk Een netwerk dat ervoor zorgt dat we de doelen 
in de gaten houden van de taak waar we mee bezig zijn. Dit netwerk stelt ons ook in 
staat om strategieën te bepalen, beslissingen te nemen en plannen te maken voor de 
toekomst.

Somato-motorische netwerk Een netwerk dat betrokken is bij het plannen en 
aansturen van bewegingen en de tastzin. 
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Visuele netwerk Het netwerk dat een rol speelt bij de verwerking van informatie die 
via de ogen binnenkomt, belangrijk voor de visuele waarneming.

Frequentieband Hersengebieden communiceren op verschillende frequenties. Met 
behulp van EEG kunnen we naar communicatie op al deze verschillende frequenties 
kijken. Frequenties die dicht bij elkaar liggen worden vaak samen beschreven als een 
frequentieband. De rol van deze communicatie hangt af van de specifieke frequentieband 
waar binnen de communicatie plaats vindt.

Alfa band De frequentieband die met name een rol speelt bij het onderdrukken van 
informatieverwerking in bepaalde hersengebieden. Dit is met name belangrijk bij het 
negeren van onbelangrijke informatie in de omgeving. 

Beta band De frequentieband die met name een rol speelt bij het richten van aandacht 
op bepaalde informatie. Dit is met name belangrijk bij het verwerken van de informatie 
uit de omgeving die van belang voor het uitvoeren van een bepaalde taak. 
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