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Chapter 5 

 
 

 

 
Abstract 

The linear factor model for continuous items assumes normally distributed item scores. 
Deviations from normality due to non-normality of the expected item scores can be modeled 

through a skew-normally distributed factor model or a quadratic factor model. We show that the 
quadratic factor model is equivalent to the skew-normal factor model up to the third-order 

moments, but that the converse is not generally true. We illustrate that observed data that follow 
any skew-normal factor model can be well approximated by the quadratic factor model. We 
explain that this connotes the importance of including a skewness parameter in the latent trait for 

the establishment of measurement invariance across populations. 

 

 

 

 

 

 

 

 

 
This chapter has been submitted for publication as:  

Smits, I. A. M., Timmerman, M. E., & Stegeman, A. On the importance of the skewness parameter in modelling 

latent traits. 
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5.1 Introduction 
The linear factor model for continuous items assumes normally distributed item 

scores. Non-normality of the item scores occurs in empirical practice, giving a need for 

alternatives to the linear factor model.  

For continuous items, the normality assumption has been relaxed in different 

variants. The least restrictive alternatives are asymptotic distribution free factor 

analysis (Mooijaart, 1985), semi-parametric estimation (Ma & Genton, 2010) and 

nonparametric maximum likelihood estimation (Skrondal & Rabe-Hesketh, 2004, pp. 

182-184). This type of analyses requires very large sample sizes, and is 

computationally heavy. Therefore, in empirical practice, parametric alternatives 

appear to be more attractive to account for non-normally distributed continuous items. 

The earliest approach is the nonlinear factor model (Mooijaart & Bentler, 1986), in 

which a normally distributed factor has a nonlinear relationship to the expected 

observed item scores. The nonlinearity is typically restricted to a quadratic function to 

make estimation feasible (e.g., Muthen & Muthen, 1998-2007; Molenaar, Dolan, & 

Verhelst, 2010). Recently, the skew-normal factor model (Molenaar et al., 2010; 

Montanari & Viroli, 2010) has been proposed, which pertains to a linear factor model 

with skewly distributed factors. Both the skew-normal factor model and the nonlinear 

factor model allow for non-normality of the expected item scores (i.e., apart from 

residuals). Non-normality of the residuals can be modeled as a function of the latent 

trait score, thereby allowing for heteroscedasticity of the residuals (Hessen & Dolan, 

2009).  

For ordinal polytomous items, non-normality can arise at the level of the latent 

continuous item scores underlying the observed item scores. That is, polytomous items 

are generally analyzed by means of an ordinal factor analysis (FA) model or the 

equivalent graded response model (GRM; Samejima, 1969; see Takane & de Leeuw, 

1987). The ordinal FA model / GRM can be derived by assuming that the observed 

ordinal items relate to latent continuous items that are normally distributed, while the 

latent continuous item scores follow a linear factor model. The underlying normality 

assumptions can be relaxed by using the heteroscedastic GRM with a skewed latent 

trait (Molenaar, Dolan, & De Boeck, 2012) or, as a nonparametric alternative, the 

Ramsay-curve item response theory (IRT) model (e.g., Woods, 2006). 
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For continuous items, the parametric approaches to account for non-normality of the 

items scores have been put in a single framework (Molenaar et al., 2010). Of particular 

interest are the two variants that account for deviations from normality of the expected 

item scores. This is done either through a quadratic factor model, a nonlinear factor 

model with a polynomial of the second degree, or through a skew-normal factor 

model. On the basis of empirical identification checks (i.e., confidence intervals, 

simulation results and the rank of the Hessian), Molenaar et al. (2010) illustrated that 

the latter two variants cannot be implemented jointly into a single model. This implies 

that the quadratic factor model and the skew-normal factor model are competing in 

empirical practice. This raises the questions how they are related at a theoretical level, 

and how researchers should choose between them. When would either model be 

preferred, and when would the choice between the two models be arbitrary?  

In this study, we consider and analyze the relation between the quadratic factor 

model and the skew-normal factor model as variants to account for deviations from 

normality of continuous expected item scores. Further, we discuss the implications of 

this relation for the choice between the variants, both in a single-group and in a 

multiple-group context. In particular, for a single-group, we first show that in the case 

of a skew-normal factor the two variants are empirically indistinguishable. We further 

show that the reverse does not generally hold, implying that some quadratic factor 

models could be empirically distinguished from a skew-factor model. We will argue 

that if both models would fit an empirical data set equally well, that the skew-normal 

factor model is preferred over the quadratic factor model, for reasons of model 

parsimony and ease of interpretation. Subsequently, we discuss the implications of 

those results in a multi-group context. In particular, we argue that in a multi-group 

context the skewness parameter is not a negligible parameter, but an important 

parameter to characterize a population g in comparison to ',g  with ' .g g   
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5.2 Modeling Non-Normal Expected Item Scores in a 

Single Population 

5.2.1 The Skew-Normal Factor Model 
The skew-normal factor model has been proposed as a valuable approach to account 

for non-normally distributed expected item scores. Molenaar and colleagues (2010) 

considered the skew-normal factor model for a single factor, while, independently, 

Montanari & Viroli (2010) considered the general model involving multiple factors.  

We start with the skew-normal factor model for a single factor (Molenaar et al., 

2010). If iy  denotes a randomly observed score on item i, the following linear factor 

model for iy  is specified: 

 * * * * ,i i i iy  (1) 

where *
i  is the intercept of item i, *

i is the factor loading of item i, *  is the common 

factor score and *
i is the residual. The residual is drawn from a normal distribution: 

* 2~ (0, ),i N  and the common factor score is drawn from a skew-normal distribution: 
* ~ ( , , ),SN  with location parameter ,  scale parameter ,  and shape parameter 

 (as developed by Azzalini, 1985, 1986). The probability density function of the 

skew-normal factor scores *  is the following: 

 * *
* 2( | , , ) ,f  (2) 

where  denotes the scale parameter, (.)  denotes the standard normal distribution 

function,  denotes the shape parameter,  denotes the location parameter and (.)  

denotes the standard normal probability density function. Note that the normal 

distribution is a special case of the skew-normal distribution, with 0.   
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The expected value and variance of the distribution are respectively (Azzalini & 

Capitanio, 1999): 

 
*

2

2( ) ,
1

E  (3) 

and 

 2
* 2

2

2( ) 1 .
(1 )

Var  (4) 

To identify the model, the usual scale and metric restrictions have to be imposed. 

For example, one may take *( )  0E  and *( )  1.Var  The skew-normal factor model 

can be fitted by means of Marginal Maximum Likelihood (MML; Bock & Aitkin, 1981; 

see Molenaar et al., 2010; Montanari & Viroli, 2010). 

An extension of the above model is the skew-normal factor model with multiple 

factors (Q, with   1;Q  Montanari & Viroli, 2010). This model involves the 

multivariate skew-normal distribution (Azzalini & Dalla Valle, 1996). That is, the 

(   1)Q  vector with factor scores * ~ ( , ),SN  with the density function 

 ( ) 2 ( ; ) ( ),Qf t t t  (5) 

where ( ; )Q t  is the Q dimensional normal density with mean zero and correlation 

matrix ,  and  denotes the distribution function of the N(0,1) distribution. The 

vector  contains the shape parameters (related to  in Eq. (2)). The mean vector 

and covariance matrix of *  are respectively (Montanari & Viroli, 2010):  

 
*

*
2( ) ,E  

* *
*( ) ,Var  (6) 

with 1/2(1 ) .  

The well-known equivalence after orthogonal and oblique transformations holds for 

the multivariate skew-normal distribution as well. That is, if * ~ ( , ),SN  and H is a 

non-singular (   )Q Q  matrix such that H  is a correlation matrix, then 
* 1( ).SNH H  Azzalini & Capitanio (1999) show that a linear 

transformation *H  exists that transforms the multivariate skew-normal density to a 

canonical form with Q  and 1 0 0 . In that case, the first random 

variable is a unidimensional skew-normal with parameters 1(0,  1,  ),  and the other 
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random variables have the N(0,1) distribution. Moreover, the Q random variables are 

mutually independent since their joint density in (5) equals the product of their 

marginal densities. In the skew-normal factor model with multiple factors, factors are 

estimated in this canonical form, in which only a single factor has a shape parameter 
  0  (Montanari & Viroli, 2010).  

5.2.2 The Quadratic Factor Model 
The quadratic factor model, a special case of a nonlinear factor model (e.g., McDonald, 

1962, 1967; Mooijaart & Bentler, 1986), is just like the skew-normal factor model an 

approach to account for non-normally distributed expected item scores (Molenaar et 

al., 2010). Here, we will describe the quadratic factor model.  

If iy  denotes a randomly observed score on item i, the following nonlinear factor 

model (Mooijaart & Bentler, 1986) is specified for :iy  

 ( ) ,i i i iy s  (7) 

where i  is the intercept of item i, i  is the factor loading of item i,  is the common 

factor score, s( )  is a function of the factor scores and i  is the residual term. The 

residual and the common factor score are drawn from a normal distribution: 
2(0, )i N  and 2( , ).N  For s( ),  one may specify a polynomial function as: 

 s 2
0 1 2( ) .r

i i i ir
 (8) 

In the quadratic factor model, the polynomial function is of degree 2. The model for 

iy  then becomes: 

 2
0 1 2( ) ,i i i i i i iy   

2
0 1 2 ,i i i i i i i i iy  

2
(1) (2) ,i i i i iy  

(9) 

with i  the intercept of item i, and ( )i x  the factor loading associated with the xth 

power of  for the ith item. This model can be fitted using MML (Bock & Aitkin, 1981; 

see Molenaar et al., 2010).  
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5.2.3 Relation between the Skew-Normal Factor Model and the 
Quadratic Factor Model 
Because non-normality of the expected item scores can be modeled with the skew-

normal factor model and with the quadratic factor model, the important question 

arises how these models are related. We will show that the quadratic factor model is 

equivalent to the skew-normal factor model up to the third-order moments, but that 

the converse is not generally true. This implies that observed data that follow any 

skew-normal factor model can be so well approximated with the quadratic factor 

model that the models are empirically indistinguishable. The reverse does not hold in 

general. 

We consider the skew-normal factor model in (1) and the quadratic factor model in 

(9). By noting that the residuals *
i

 and i  rely on exactly the same assumptions in 

both models, and that the distributions of *
i

 and i  are independent from 

respectively *( )i iy  and ( ),i iy  we can leave the residual variances aside in 

comparing the models. It remains to address the differences in distributions of the 

expected item scores of the two models. 

Under the skew-normal factor model, * ,iT  the expected score on item i, equals 

 * * * * ,i i iT  (10) 

where *
i

 is the intercept of item i, *
i

 is the factor loading of item i, and *  is the 

common factor score. The common factor score *  is drawn from a skew-normal 

distribution: * ~ ( , , ),SN  with location parameter ,  scale parameter ,  and 

shape parameter .  As it stands, the model is unidentified; to identify the model, we 

fix  at 0 and  at 1, so that * * * * ,i i iT  with * (0,1, ).SN   

Under the quadratic factor model, ,iT  the expected score on item i, equals 

 2
(1) (2) ,i i i iT  (11) 

where i  is the intercept of item i, (1)i  and (2)i  are the factor loadings of item i, and 

 is the common factor score from a normal distribution: 2( , ).N  To identify the 

model, we fix  at 0 and 2  at 1, so that 2
(1) (2) ,i i i iT  with ~ (0,1).N  To 
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have fully equivalent models, the densities of iT  and *
iT  should be equal. This is not 

generally true. We will first consider approximating the density of *
iT  (i.e., under the 

skew-factor model) by that of iT  (i.e., under the quadratic factor model), and then the 

converse. 

Approximating the skew-normal factor model by a quadratic factor model  
As we will show, for suitably chosen parameter values, the density of ,iT  the 

distribution of the expected scores under a quadratic factor model, is to its third 

moment equivalent to the density of * ,iT  the distribution of the expected scores under 

the skew-normal factor model. For simplification, we consider a special case of the 

skew-normal factor model for * ,iT  by fixing *
i  at 0 and *

i  at 1, so that * * .iT  This 

can be done without loss of generality, because any differences in location and scale of 

iT and *
iT can be solved through ,i  (1)i  and (2).i  

The question now reduces to whether there exists constants ,i  (1)i  and (2)i  which 

equate the first three moments of the density of 2
(1) (2)i i i iT  (Eq. 11), to the 

density of * ,  with * ~ ( , , ).SN  In Appendix A, it is proven that those constants 

exist (omitting the index i in ,i  (1) ,i  (2)i  and iT  to improve the readability). To find 

the constants ,i  (1)i  and (2) ,i  one first needs to find (2)i  (by solving Eq. (A6) in 

Appendix A for 2  that satisfies 2 2
1 (2)1 2 0).c  Then, (1)i  and i  can be 

computed as:  

 2 2
(1) 1 (2)1 2 ,i ic  

1 (2).i ic   

Further, it is shown in Appendix A that (2)i  and i  are unique, while (1)i  is unique 

up to sign. The latter is because the distribution of the term (1)i  in iT  is symmetric 

around zero, and hence does not depend on the sign of (1).i   

The preceding implies that the density of * ,iT  the expected scores under the skew-

normal factor model, can be approximated by the density of ,iT  the expected scores 

under the quadratic factor model. To illustrate how well the density of iT  

approximates the density of * * ,iT  we consider the cases with 1.81, 2.17,  
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2.62,  and 3.50,  corresponding to a small, medium, large and very large 

coefficient, respectively (see Molenaar et al., 2010, for an indication of the magnitude 

of shape parameters). To assess the closeness of the densities of *
 and ,iT  we use the 

L1-norm of the difference between their densities:  

 
* *1

( ) ( ) .
i iT Tf f f y f y dy   

The L1-norm of the density differences and the values for ,i  (1) ,i  and (2)i  can be 

found in Table 5.1. As can be seen, the L1-norm is rather small, even for large values of 

.  Further, the closeness of the distributions of *  and iT  is illustrated in Figure 5.1. 

Here, the densities of *  and iT  are plotted for 1.81  (Figure 5.1a), 2.17  

(Figure 5.1b), 2.62  (Figure 5.1c), and 3.50  (Figure 5.1d). As can be seen, they 

are very close. This indicates that a linear model with a skew-normal factor can be well 

approximated by a quadratic factor model with a normal factor. This implies that in 

practice, the two models are empirically indistinguishable from each other. This also 

explains that the quadratic factor model cannot be jointly implemented with a skew-

normal factor, as demonstrated by Molenaar et al. (2010). 

Above, we illustrated how well iT  approximates * , where iT  are the expected 

scores under the quadratic factor model, a nonlinear factor model with a polynomial 

of the second degree. We conjecture that when the degree of the polynomial would be 

taken larger than two, the approximation of * ,  by iT  will improve. This can be 

expected because the skew-normal distribution is completely determined by its 

moments (Gupta, Nguyen, & Sanqui, 2004; Lemma 2.1). As a result, if the moments 

( )kE T  converge to the moments of *( )kE  for k = 1, 2, …, then the distribution of iT  

will converge to the distribution of *  (e.g., Billingsley, 1995; section 30). Therefore, 

taking the degree of the polynomial iT  larger than two, more moments could be 

equated, and if equality holds for more moments *( ) ( ),k kE T E  then the closeness of 

the distributions *  and iT  will be even better than we already had with a second 

degree polynomial. 
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Table 5.1. The L1-norm of the Density Differences of *  and ,iT  and the values for ,i  (1),i  and (2),i  

for different values of .   

 
1.81  2.17  2.62  3.50  

L1-norm 
0.0271 0.0360 0.0468 0.0669 

i
 

0.6507 0.6671 0.6783 0.6879 
(1)i

 
0.7125 0.6843 0.6598 0.6315 

(2)i
 

0.0477 0.0576 0.0671 0.0793 

 
 

The converse: Approximating the quadratic factor model by a skew-normal 

factor model  
The question is whether for any given constants ,i  (1) ,i  and (2) ,i  there exists values 

of * ,i  *
i  and  for which the first three moments of the density of * * * * ,i i iT  

with * (0,1, )SN  (Eq. 10) could be made equal to those of the density of 
2

(1) (2) ,i i i iT  with (0,1)N  (Eq. 11). In Appendix B, it is proven that this 

cannot be done in all cases. 

The limiting factor in equating the densities appears to be the limited range in 

skewness (and kurtosis) of the skew-normal distribution (see e.g., Azzalini, 1985; 2005; 

Henze, 1986). As a result, for large values of (2) ,i  the skewness of iT  is outside the 

range of the skewness of * .iT  Consequently, for these values of (2) ,i  the first three 

moments of the density of *
iT  cannot be made equal to those of the density of .iT  In 

Appendix C it is shown that for small values of (2)i  (roughly between -0.17 and 0.17), 

for which the skewness of iT  fall within the range of the skewness of * ,iT  the first 

three moments of *
iT  can be equated to the first three moments of .iT   
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Figure 5.1. Closeness of the Distributions of *  and the approximation T  for a small ( 1.81), medium 
( 2.17),  large ( 2.62),  and very large ( 3.50)  skewness coefficient. 

 
 

The multiple factor case 
As we showed above, a skew-normal factor from a skew-normal factor model for a 

single factor can be very well approximated by a quadratic factor model, and vice 

versa, if the loading of the quadratic function is within certain bounds. In Appendix D, 

it is shown that this relation between the skew-normal factor model for a single factor 

and the nonlinear factor model can be generalized to the case with multiple factors.  

That is, if the expected score on item i in the skew-normal factor model is 

* * * * * *
(1) 1 ( )

2
,

Q

i i i i q q
q

T  where the Q dimensional skew-normal distribution is in 

canonical form (with *
1 skew-normal and * ~ (0,1),q N  2, , ),q Q),Q,  then we can 

find parameters ,i  (11)i  and (12) ,i  ( ) ,i q   2, , ,q Q,Q,  such that the nonlinear factor 
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model with expected item score 2
(11) 1 (12) 1 ( )

2
 

Q

i i i i i q q
q

T  (with ,q

 1, ,q QQ,  independent N(0,1) variables) satisfies *( ) ( ),k k
i iE T E T  for k = 1, 2, 3. 

This generalization of the relation between the nonlinear factor model and the skew-

normal factor model for a single factor to the case with multiple factors holds because 

in the canonical skew-normal factor model with multiple factors, all factors are 

mutually independent, and only a single factor has a shape parameter   0  

(Montanari & Viroli, 2010). This implies that analogous to the single factor case, a 

skew-normal factor model with multiple factors can be well approximated by a 

nonlinear factor model, and conversely if the skewness of iT  does not fall outside the 

range of the skewness of * .iT  

5.2.4 Implications of the Relation between the Skew-Normal Factor 
and Quadratic Factor Model 
As we showed, a skew-normal factor model can be very well approximated by a 

quadratic factor model, and vice versa, if the loading of the quadratic function is 

within certain bounds. From a mathematical point of view, in those conditions the 

choice between these parameterizations is arbitrary. In empirical practice, a skew-

normal factor model may be preferred over the quadratic factor model, since one 

needs fewer parameters, which yields more efficient estimates. Moreover, one uses 

linear relations between the items and the latent trait, which are generally easier to 

interpret than nonlinear relations.  

5.3 Modeling Non-Normal Expected Item Scores in 

Multiple Groups 
For a single group, the choice between a skew-normal factor model and the quadratic 

factor model is not crucial, when the data follow a skew-normal factor model or when 

the loading of the quadratic part is within certain bounds. In contrast, for multiple 

groups, the difference appears to be crucial when establishing measurement 

invariance.  
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5.3.1 Establishing Measurement Invariance 
Measurement invariance (MI) holds if a test measures the same latent trait equally 

across groups. That is, conditional on the level of the latent trait, the expected scores of 

the items of the test should be group independent (Mellenbergh, 1985, 1989). More 

formally, items of a test are measurement invariant with respect to group G, given the 

latent trait Z (i.e., factor), “if and only if:  

 ( | , ) ( | ),f X g z f X z   

for all values g and z of the variables G and Z, where ( | , )f X g z  is the distribution of 

the item response given g and z and ( | )f X z  the distribution of the item responses 

given z; otherwise the item is biased” (Mellenbergh, 1989, p.129). Here, ( | )f X z  can 

be any function, and Z can have any distribution.  

Various statistical methods have been developed to assess whether measurement 

invariance holds (e.g., Millsap & Everson, 1991). Typically, measurement invariance is 

examined by means of a multi-group confirmatory factor analysis (MG-CFA) where 

the latent trait Z is assumed to follow a normal distribution and it is common to 

specify a linear function for ( | )f X z  using a linear factor model for continuous items 

and an ordinal FA model / GRM for ordinal items. 

The requirements for measurement invariance in a linear one factor model for 

continuous items can be described as follows. If igy  denotes an observed score of a 

random subject in group g on item i, we specify the following linear factor model for 

:igy  

 ,ig ig ig g igy  (12) 

where ig  is the intercept of item i in group g, ig  is the factor loading of item i in 

group g, g  is the common factor score of a random subject in group g (g = 1, … G) 

and ig  is the residual term. An item is strict measurement invariant if all 

measurement parameters are equal across groups, thus if the intercept, factor loading 

and the residual term of the item are equal across the G groups (i.e., if: ,ig i ig i  

and ;ig i  see e.g., Meredith, 1993). In an ordinal FA model / GRM analogous 
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requirements apply, with additionally equal relationships between the observed 

ordinal items and the latent continuous items (see e.g., Millsap & Yun-Tein, 2004).  

Tests for measurement invariance (MI) crucially depend on a correct model 

specification. That is, if a linear factor model is applied to data that follow a quadratic 

factor model, then this yields diverging loadings and intercepts across groups. This is 

so because factor mean differences increase between groups (Bauer, 2005). MI tests can 

be heavily affected by such model misspecifications. As shown in a simulation study, 

MI tests increasingly rejected MI incorrectly when factor mean differences increased 

(Bauer, 2005); this stresses the importance of a correct model specification in tests for 

MI.  

In addition, tests for MI can be affected by violations of the normality assumption of 

the latent trait. As shown in a simulation study of Woods (2008), MI tests too often 

incorrectly rejected MI2 when under a two-parameter logistic model (2PLM) the latent 

trait densities differed across groups. In particular, when the latent trait density was 

skewly distributed in one group and normally distributed in the other group, MI tests 

were biased (Woods, 2008). Because the 2PLM for binary items is closely related to the 

GRM for ordinal items, one may expect those tendencies to hold under the ordinal FA 

model / GRM as well. 

To remedy the biased MI tests, we propose to include a skewness parameter in the 

models when assessing measurement invariance. That is, to assess measurement 

invariance with a linear measurement model (i.e., a linear FA model or an ordinal FA 

model / GRM) that allows for a skew-normal factor score distribution: 

( , , ),g g g gSN  with ,g  ,g  and g  respectively the location parameter, scale 

parameter and shape parameter in group g. The key difference with the currently 

standard approach is that now ,g  is not fixed to be equal to zero, but is allowed to 

differ from zero in all models, across all groups.  

MI assessment with a skew-normal factor model can be seen as an alternative to 

considering nonlinear factors. When data in two or more groups follow a nonlinear 

factor model and the quadratic term is sufficiently small, the skew-normal factor 

model offers a very good approximation. In this case, the skew-normal factor model 

                                                 
2 Woods (2008) uses the term Differential Item Functioning, which is in the IRT tradition the term for violation 
of MI. 
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appears to be preferred in view of the fewer parameters. Further, if data in two or 

more groups follow a skew-normal factor model, with different sizes of the skewness 

1 2(   ),  MI assessment with a nonlinear factor model appears to be unsuitable. 

That is, although the skew-normal factor model can be well approximated with a 

nonlinear factor model, and thus the skewness of the latent trait can be accounted for 

by nonlinear measurement parameters, they will do so differently across groups 

because the skewness differs across groups. As a consequence, differences between 

groups in a structural parameter of the model (i.e., differences in skewness of the 

latent trait) will in a nonlinear factor model be translated to differences between 

groups in a measurement parameter of the model (i.e., differences in factor loadings of 

the quadratic term). This could suggest that MI is violated, whereas in fact it is just the 

distribution of the latent trait that differs across the groups. Therefore, we generally 

prefer to use a skew-normal factor model for the assessment of MI across groups. 

5.4 Discussion 

Deviations from normality of the expected item scores can be modeled through either 

a skew-normal factor model or through a quadratic factor model (see Molenaar et al., 

2010). In this chapter, we showed why these two variants to account for non-normal 

expected item scores cannot be implemented jointly into a single model. We showed 

that the quadratic factor model is equivalent to the skew-normal factor model up to 

the third-order moments, and that the converse is true if the factor loading of the 

quadratic term is small. Furthermore, we show that the intimate relation between the 

skew-normal factor model and the quadratic factor model holds for both the single 

and multiple factor case. We illustrated that observed data that follow any skew-

normal factor model can be so well approximated with the quadratic factor model that 

the models are indistinguishable in practice. In a single-group context, the choice 

between the two models is not crucial. In contrast, in establishing measurement 

invariance across populations, it can be of key importance to explicitly model the 

skewness of the factor distribution. This can be done using a model that incorporates a 

skew-normal factor (Molenaar et al., 2010, 2012; Molenaar, Dolan, & van der Maas, 

2011; Montanari & Viroli, 2010; for a Bayesian approach see Azevedo, Andrade, & Fox, 

2012) or a model that approximates the factor distribution. The latter can be done 
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nonparametrically (Woods, 2011a, 2001b, 2011c), or semi-nonparametrically 

(Irincheeva, Cantoni, & Genton, 2012).  

We note that deviations from normality go beyond its skewness, and are aware of 

the fact that higher moments of a distribution such as the kurtosis may be of 

importance as well in the comparison of multiple populations. However, we consider 

the first three moments as a good start in comparing multiple populations and advice 

researchers to establish measurement invariance in a model in which a parameter for 

the mean, variance and skewness of the latent trait is considered. 
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5.5 Appendix A 

Proposition 1. Let *  have the skew-normal distribution with parameters (0,  1,  ).  Let 
2

(1) (2) ,T  where  has the (0,1)N  distribution, and ,  (1) ,  (2)  are real 

constants. Then, for any ,  there exist constants ,  (1) ,  (2)  such that *( ) ( )k kE E T  for k 

= 1, 2, 3. 

Proof. The moments of the skew normal distribution can be found in Corollary 4 of 

Henze (1986). For k = 1, we have 

 
*

12

2( ) ,
1

E c  
(2)( ) .E T  

 

Hence, we obtain 

 1 (2).c  (A1) 

For k = 2, we have  

 *2( ) 1,E  2 2 2 2
2 2 1( ) 2 3 .E T   

Hence, we obtain 

 2 2 2
2 2 12 3 1 0.  (A2) 

For k = 3, we have  

2
*3

32 3/ 2

2 3 4( ) (1 ) ,
6(1 )

E c  3 3 2 2 2 2 3
(1) (2) (1) (2) (2)2( ) 3 3 9 9 15 .E T

 

Hence, we obtain 

 3 2 2 2 2 3
(2) (1) (2) (1) (2) (2) 33 3 9 9 15 0.c  (A3) 

Next, we substitute the expression (A1) for  into (A2) and (A3). After simplifying, 

we obtain the following two equations:  

 2 2 2
(2) (1) 12 1 0,c  (A4) 

 3 2 2 2 3
(2) 1 (2) (1) (2) 1 (1) 1 38 6 6 3 0.c c c c  (A5) 
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Note that (A4) only has a real solution for (1) , (2)  if 2
1  1.c  This holds for all ,  

because it is equivalent to 2 2/ (1 )  / 2.   

Next, we rewrite (A4) as 2 2 2
(1) 1 (2)1 2c  and substitute this for 2

(1)  in (A5). After 

simplifying, this yields 

 3 2 3
(2) 1 (2) 1 1 34 6(1 ) 2 3  0.c c c c  (A6) 

We show that this third degree polynomial in (2)  has three distinct real roots for 

any shape parameter ,  of which only one root satisfies 2 2
1 (2)1 2 0c  (see below). 

Then, (1)  and  can be computed as:  

 2 2
(1) 1 (2)1 2 ,c  

1 (2).c   

Here, both (2)  and  are unique, while (1)  is unique up to sign. The latter is 

because the distribution of the term (1)  in T  does not depend on the sign of (1)  (it 

is symmetric around zero).  

It remains to show that for any shape parameter ,  the third degree polynomial 

(A6) in (2)  has three distinct real roots, and that exactly one root satisfies 

2 2
1 (2)1 2 0c . 

The discriminant of a general third degree polynomial 3 2ax bx cx d  is 

defined as 

 3 2 2 3 2 218 4 4 27 .D abcd b d b c ac a d   

The polynomial has three distinct roots if and only if 0,D  see e.g. section 10.3 of 

Irving (2004). For the polynomial (A6), the discriminant depends on .  We have  

 3 2 3 3 2
1 1 1 3( ) 16 6 (1 ) 27 16( 2 3 ) .D c c c c   

Using symbolic computation software, it can be verified that 3 2 3(1 ) ( )D  equals 

3 2 3 2 2 3 4 2 3 63456 10368( 2 ) 10368(4 4 ) 864( 48 56 25 4 ) .
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This sixth degree polynomial in  has six complex roots. It follows that ( ) 0D  

for any  if and only if ( ) 0D  for some .  Since (0) 3456,D  we have proven 

that the polynomial (A6) has three distinct real roots for any .  

Setting the derivative of (A6) to zero yields  

 2 2
(2) 112 6(1 ) 0.c    

Hence, the local minimum and local maximum of (A6) are found at  

 (min) 2
(2) 1(1 ) / 2 ,c  (max) 2

(2) 1(1 ) / 2.c   

Note that 2
11 0c  for any ,  as shown below (A5). Also note that the coefficient of 

3
(2)  in (A6) is negative, which implies that (min) (max)

(2) (2) .  

Since the polynomial (A6) has three real roots, there is exactly one root in between 
(min)
(2)  and (max)

(2) .  We have 

 2 (min) 2 2 (max) 2
1 (2) 1 (2)1 2( )   1 2( )   0.c c   

Hence, for the root *
(2)  in between (min)

(2)  and (max)
(2)  it holds that 

2 * 2
1 (2)1 2( )  0.c  This completes the proof.  
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5.6 Appendix B 
Here, we show that the converse of Proposition 1 is not true. That is, for some 

constants ,  (1) ,  (2) ,  there do not exist values for * ,  *  and  that equate the first 

three moments of * * * *T  and 2
(1) (2) .T   

For simplicity, we set   0  and (1)  1.  Note that *T  has a skew-normal 

distribution with parameters * *( , ,  ).  If equating the first three moments of *T  and 

T  would be possible, then also their skewnesses would be equal. That is,  

 33
* *

*
  .

T E TT E T
E E

Var T Var T
 

 

For the left-hand side, we compute 

 3 3 3
(2) (2)

3/ 2 3/ 22 2
(2)

8 6
    .

2 1

E T E TT E T
E

Var T E T E T

 
(B1) 

The skewness of *T  only depends on .  From Azzalini (1985) we obtain 

 3

3
* * 2

3/ 2* 2

2

2
14  .

2 21
1

T E T
E

Var T

 
(B2) 

As (2)  becomes very large, it can be seen that the skewness of T  in (B1) converges 

to  

 8   2 2   2.82.   

As  becomes very large, the skewness of *T  in (B2) converges to  

 3/2
4 2 /  0.9953.

2 1 2 /
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For large values of (2)  the skewness of T  is outside the range of the skewness of 

* .T  We therefore conclude that the converse statement of Proposition 1 does not hold. 
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5.7 Appendix C 

Here, we show that if (2)  is small enough, such that the skewness of T  is not outside 

the range of the skewness of * ,T  that then the first three moments of *T  can be 

equated to the first three moments of .T  Note that we may set   0  and (1)  1 

without loss of generality, since the location and scaling can be absorbed in the 

parameters *  and * .  

Proposition 2. Let 2
(2) ,T  where  has the (0,1)N  distribution, and (2)  is a real 

constant such that 

 3/23
(2) (2)

3/22
(2)

8 6 4 2 /  .
2 1 2 /2 1

 
(C1) 

Let *T  have the skew-normal distribution with parameters * *( , ,  ).  Then, there exist 

parameters * ,  * ,   such that *( )  ( )k kE T E T  for k = 1, 2, 3. 

Proof. Using Azzalini (1985) for the moments of the skew-normal distribution, we 

obtain 

 
(2)( )  ,E T  * * *

2

2( )  ,
1

E T  (C2) 

 

 
2 2

(2)( )  3 1,E T  *2 * * * *2

2

2( )  2 .
1

E T  (C3) 

In Appendix B above, the skewness of T  is given in (B1) and the skewness of *T  in 

(B2). Since the skewness of *T  in (B2) depends only on ,  we estimate  by equating 

the skewnesses of T  and * .T  This is possible by the requirement (C1). Let the 

skewness of T  in (B1) be denoted by .  We substitute 2  / 1 .   

  



 The Skewness Parameter in Modeling Latent Traits | 87 

Setting (B2) equal to  and solving for  yields 

 2/3

2/3 2/3

/ 2
 ,

2 / 2

 (C4) 

with  and  having the same sign. Next, we obtain  as 2 / 1 .   

When  is known, we equate the first and second moments of T  and *T  to obtain 
*  and * .  Since the skewnesses of T  and *T  are equal, it then follows that also 

3 *3( )  ( ).E T E T   

Setting *( )  ( )E T E T  in (C2) yields  

 
* *

(2)
2 .  (C5) 

Setting 2 *2( )  ( )E T E T  in (C3) and substituting (C5) for *  yields after rewriting 

 2
2 * 2
(2)

22 1  1 .   

Since *  is the scaling parameter of a skew-normal distribution, it must be positive. 

Hence, we obtain 

 2
(2)*

2

2 1
.

21

 
(C6) 

After *  is known, we obtain *  from (C5). This completes the proof. 
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5.8 Appendix D 
Here, we will show that the demonstrated relation between the skew-normal factor 

model and the quadratic factor model generalizes to the multiple factor case.  

Proposition 3. Let *
 have a Q dimensional skew-normal distribution, defined by (5) and 

(6), in the canonical form with Q  and 1 0 0 .  Let  

 * * * * * *
1 1

2
 .

Q

q q
q

T   

Let 

 2
11 1 12 1

2
 ,

Q

q q
q

T   

where 1, Q  are mutually independent (0,1)N  variables. Then, for any 1 ,  * ,  * *
1 , , Q  

there exist constants ,  11 ,  12 ,  2 , , Q  such that *( )  ( )k kE T E T  for k = 1, 2, 3. 

Proof. Without loss of generality we set * 0  and *
1 1.  Note that *

1  has a 

unidimensional skew-normal distribution with parameters 1(0,  1,  ),  and * ,q  

  2, ,  ,q Q  are (0,1)N  distributed. Moreover, * *
1 ,  ,  Q  are mutually 

independent. Let * *
0 1 T  and 2

0 11 1 12 1 .T  From Proposition 1 we know 

that for any 1  there exist ,  11 ,  12 ,  such that *
0 0( )  ( )k kE T E T  for k = 1, 2, 3. Let ,  

11 , 12  have these values. Then * *
0 0( )  ( )  ( )  ( )E T E T E T E T  holds. 

We have 

 

2

*2 *2 * * * * * 2
0 0 0 0
*2 * * * * * 2

0 0 0 0

*2
0

2

( )  ( 2 ( ) ( ) )
           ( ) 2 ( ) ( ) ( )

           ( ) ,
Q

q
q

E T E T T T T T T
E T E T E T T E T T

E T

 

 

where we used the independence of *
0T  and * *

0T T in the second step, and 

* *
0( )  0E T T  and *2 2

0 0( )  ( )E T E T  in the third step. We set *
q q  for 

  2, ,  .q Q  Then an analogous expansion of 2( )E T  shows that *2 2( )  ( ).E T E T  

We have 



 The Skewness Parameter in Modeling Latent Traits | 89 

 

2

*3 *3 *2 * * * * * 2 * * 3
0 0 0 0 0 0
*3 *2 * * * * * 2 * * 3

0 0 0 0 0 0

3 *
0 0

2

( )  ( 3 ( ) 3 ( ) ( ) )
           ( ) 3 ( ) ( ) 3 ( ) ( ) ( )

           ( ) 3 ( ) ,
Q

q
q

E T E T T T T T T T T T
E T E T E T T E T E T T E T T

E T E T

 

 

where we used the independence of *
0T  and * *

0T T in the second step, and 
* *

0( )  0,E T T  * * 3
0( )   0,E T T  *3 3

0 0( )  ( )E T E T  and *
0 0( )  ( )E T E T  in the third 

step. As above, an analogous expansion of 3( )E T  shows that *3 3( )  ( ).E T E T  This 

completes the proof. 

As in the univariate case, the full converse result of Proposition 3 does not hold but a 

partial converse result is possible under a condition on the skewness of .T  This result 

is omitted here. 

 






