

University of Groningen

Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas

Zarubina, V.; Nederlof, C.; Linden, B. van der; Kapteijn, F.; Heeres, H.J.; Makkee, M.; Melián-Cabrera, I.

Published in: Journal of Molecular Catalysis A: Chemical

DOI: 10.1016/j.molcata.2013.10.010

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Zarubina, V., Nederlof, C., Linden, B. V. D., Kapteijn, F., Heeres, H. J., Makkee, M., & Melián-Cabrera, I. (2014). Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using widepore transitional aluminas. Journal of Molecular Catalysis A: Chemical, 381, 179-187. https://doi.org/10.1016/j.molcata.2013.10.010

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Supporting Information

Making Coke a more Efficient Catalyst in the Oxidative Dehydrogenation of Ethylbenzene using wide-pore Transitional Aluminas

V. Zarubina,¹ C. Nederlof,² B. van der Linden,² F.Kapteijn,² H.J Heeres¹ M. Makkee² and I. Melián-Cabrera¹*

 University of Groningen, Institute of Technology & Management, Chemical Engineering Department, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

 Delft University of Technology, Faculty of Applied Sciences, Catalysis Engineering, Department of Chemical Engineering, Julianalaan 136, 2628 BL Delft, The Netherlands.

* Corresponding Author: Phone: +31 50 3634267 Fax: +31 50 3634479 E-mail: i.v.melian.cabrera@rug.nl

Figure S-1. NH₃ temperature programmed desorption (TPD) profiles: a) Alu series and b) comparison with a commercial γ -Alumina (Merck 1.01095.1000) calcined at 1000 °C.

Figure S-2. Nitrogen sorption isotherms at -196 °C K for the fresh Alu series.

	Alu500					
Data points	Conversion (%)	Selectivity (%)				
1	35.71	81.36				
2	36.18	82.71				
3	35.62	84.13				
4	36.08	82.64				
5	34.99	82.94				
6	34.98	82.26				
7	34.54	82.79				
Average	35.44	82.69				
σ (%)	1.6	0.9				

Table S-1. Example of the accuracy of the conversion and selectivity quantities.

Sample	Phase	$\frac{V_T}{(\text{cm}^3/\text{g})}$	V_T ' (cm ³ /ml bed) ^b	$\frac{S_{BET}}{(m^2/g \text{ cat.})}$	S' _{BET} ^b (m ² /ml bed)	D _{BJH ads} (Å)	Density ^c (g/cm ³)	Acidity (µmol/g)	Acidity ^b (µmol/ml bed)
Bare ^e	γ	0.639 (0.628)	0.389 (0.382)	272 (227)	165 (138)	84	3.035	637	388
Alu500 ^e	γ	0.649 (0.661)	0.431 (0.439)	271 (228)	180 (152)	86	3.108	_	_
Alu600	γ	0.644	0.446	255	177	93	3.084	-	_
Alu700	γ	0.635	0.402	239	151	101	3.003	-	_
Alu800	γ	0.636	0.436	214	147	118	3.099	-	_
Alu900 ^e	δ	0.608 (0.593)	0.473 (0.461)	179 (138)	139 (108)	138	3.295	540	420
Alu1000	θ	0.492	0.435	119	105	141	3.316	436	385
Alu1050 ^e	θ	0.458 (0.382)	0.327 (0.273)	101 (60)	72 (43)	230	3.376	398	284
Alu1100	θ,α	0.354	0.356	54	54	294	3.658	244	245
Alu1150	θ,α	0.165	0.157	20	19	330 ^d	4.009	_	-
Alu1200	α	0.117	0.143	16	20	293 ^d	4.067	20	25
C1050 ^f	θ,α	0.051	_	11	_	185 ^d	_	_	-

Table S-2. Structural, textural and acidic properties of the fresh thermally treated aluminas.^a

a) N_2 (-196 °C) isotherms are given in Fig.S-2 and NH₃-TPD in Fig. S-1.

b) Quantity per reactor volume.

c) Skeletal density.

d) Geometrical pore size as there is no maximum in the BJH pore size distribution.

e) Values between brackets are derived from Argon physisorption at -186 °C.

f) Ultrapure alumina (commercial: Merck 1.01095.1000) thermally treated at 1050 °C.