

University of Groningen

Characterization of a thermostable methylaspartate ammonia lyase from Carboxydothermus hydrogenoformans

Raj, Hans; Puthan Veetil, Vinod; Szymanski, Wiktor; Dekker, Frank J.; Quax, Wim J.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

Published in: Applied Microbiology and Biotechnology

DOI: 10.1007/s00253-011-3615-6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Raj, H., Puthan Veetil, V., Szymanski, W., Dekker, F. J., Quax, W. J., Feringa, B. L., Janssen, D. B., & Poelarends, G. J. (2012). Characterization of a thermostable methylaspartate ammonia lyase from Carboxydothermus hydrogenoformans. *Applied Microbiology and Biotechnology*, *94*(2), 385-397. https://doi.org/10.1007/s00253-011-3615-6

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Supporting Information for

Characterization of a Thermostable Methylaspartate Ammonia Lyase from *Carboxydothermus hydrogenoformans*

Hans Raj¹, Vinod Puthan Veetil¹, Wiktor Szymanski^{2,3}, Frank J. Dekker⁴, Wim J. Quax¹, Ben L. Feringa², Dick B. Janssen³, and Gerrit J. Poelarends^{1*}

Departments of ¹Pharmaceutical Biology and ⁴Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; ²Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; ³Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

^{*}To whom correspondence should be addressed. Tel.: 31-50-3633354; Fax.: 31-50-3633000; Email: g.j.poelarends@rug.nl

Figures S1, S2, S3, S4, S5, S6, S7, S8 and S9, and the corresponding legends, are provided below.

Ct-MAL	MKIVDVLCTPGLTGFYFDDQRAIKKGAGHDGFTYTGSTVTEGFTQVRQKGESISVLLVLE	60
Ch-MAL	MRIKDVLFVKGSSGFYFDDQKAIKSGAVTDGFTYKGKPLTPGFSRVRQGGEAVSIMLFLE	60
Ct-MAL	DGQVAHGDCAAVQYSGAGGRDPLFLAKDFIPVIEKEIAPKLIGREITNFKPMAEEFDKMT	120
Ch-MAL	NGEIAVGDCVAVQYSGVDGRDPVFLADNFIEVLEEEIKPRLVGYNLVRFREAARYFTNLT *	120
Ct-MAL	VN-GNRLHTAIRYGITQAILDAVAKTRKVTMAEVIRDEYNPGAEINAVPVFAQSGDDRYD	179
Ch-MAL	DKRGKRYHTALRYGLTQALLDAVAKINRTTMAEVIAEEYGLDLTLNPVPLFAQSGDDRYI * *	180
Ct-MAL	NVDKMIIKEADVLPHALINNVEEKLGLKGEKLLEYVKWLRDRIIKLRVREDYAPIFHIDV	239
Ch-MAL	NADKMILKRVDVLPHGLFN-HPAKTGEEGKNLTEYALWLKQRIKTLG-DHDYLPVFHFDV *	238
Ct-MAL	YGTIGAAFDVDIKAMADYIQTLAEAAKPFHLRIEGPMDVEDRQKQMEAMRDLRAELDGRG	299
Ch-MAL	YGTLGTVFNDNLDRIADYLARLEEKVAPHPLQIEGPVDLGSKERQIEGLKYLQEKLITLG	298
Ct-MAL	VDAELVADEWCNTVEDVKFFTDNKAGHMVQIKTPDLGGVNNIADAICYCKANGMGAYCGG	359
Ch-MAL	SKVIIVADEWCNNLSDIKEFVDAGAGGMVQIKSPDLGGVNDIIEAVLYAKEKGTGAYLGG * * * * *	358
Ct-MAL	TCNETNRSAEVTTNIGMACGARQVLAKPGMGVDEGMMIVKNEMNRVLALVGRRK	- 413
Ch-MAL	SCNETDVSAKITVHVGLATGPAQLLVKPGMGVDEGLTIMRNEMMRTLAILQRNKVTFQKKV ** *	/G 420

Figure S1. Amino acid sequence alignment of the MAL proteins from *Clostridium tetanomorphum* (*Ct*-MAL) and *Carboxydothermus hydrogenoformans* Z-2901 (*Ch*-MAL). Identical residues are shaded in gray. The ten active site residues of *Ct*-MAL are indicated by an asterisk.

Figure S2. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed amination of fumarate. The spectra were taken after 7 days of incubation at 22°C. For both *Ch*-MAL and *Ct*-MAL, the ratio of S:P = 1:99, respectively. S, fumarate; P, (*S*)-aspartic acid. The ¹H NMR signals for the enzymatically generated (*S*)-aspartic acid are identical to those found with an authentic standard. Impurity (Tris): δ = 3.5 (s).

Figure S3. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed ammonia addition to 2-ethylfumarate. The spectra were taken after 14 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL, the ratio of S:P₁:P₂ = 35:60:5 and S:P₁:P₂ = 29:48:23, respectively. S, 2-ethylfumarate; P₁, *threo*-(2*S*,3*S*)-3-ethylaspartate (major diastereoisomer); P₂, *erythro*-(2*S*,3*R*)-3-ethylaspartate (minor diastereoisomer). The ¹H NMR signals for 2-ethylfumarate and (2*S*,3*S*)-3-ethylaspartate are reported elsewhere (Akhtar *et al.* 1987). Impurity (Tris): δ = 3.5 (s).

Figure S4. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed ammonia addition to 2-propylfumarate. The spectra were taken after 14 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL, the ratio of S:P = 93:7 and S:P = 39:61, respectively. S, 2-propylfumarate; P, *threo*-(2*S*,3*S*)-3-propylaspartate. ¹H NMR consistent with literature data (Akhtar *et al.* 1987). Impurity (Tris): $\delta = 3.5$ (s).

Figure S5. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed methylamine addition to mesaconate. The spectra were taken after 14 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL, the ratio of S₁:P = 30:70 and S₁:P = 36:64, respectively. S₁, mesaconate; S₂, methylamine; P, *threo*-(2*S*,3*S*)-*N*,3-dimethylaspartate. The ¹H NMR signals for (2*S*,3*S*)-*N*,3-dimethylaspartate are reported elsewhere (Gulzar *et al.* 1997). Impurity (Tris): δ = 3.5 (s).

Figure S6. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed ethylamine addition to mesaconate. The spectra were taken after 14 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL, the ratio of S_1 :P = 70:30 and S_1 :P = 86:14, respectively. S_1 , mesaconate; S_2 , ethylamine; P, tentatively identified as 2-ethylamino-3-methylaspartic acid, the enzymatic synthesis of which has not been reported before. Impurity (Tris): $\delta = 3.5$ (s).

Figure S7. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed methoxylamine addition to mesaconate. The spectra were taken after 14 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL the ratio of S₁:P = 91:9 and S₁:P = 33:67, respectively. S₁, mesaconate; S₂, methoxylamine; P, *threo*-(2*S*,3*S*)-*N*-methoxy-3-methylaspartate. The ¹H NMR signals for (2*S*,3*S*)-*N*-methoxy-3-methylaspartate are reported elsewhere (Gulzar *et al.* 1997). Impurities (Tris): $\delta = 3.5$ (s); (DMSO): $\delta = 2.6$ (s).

Figure S8. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed hydroxylamine addition to mesaconate. The spectra were taken after 7 days of incubation at 22°C. For *Ch*-MAL and *Ct*-MAL the ratio of S:P = 1:99 and S:P = 4:96, respectively. S, mesaconate; P, *threo*-(2*S*,3*S*)-*N*-hydroxy-3-methylaspartate. The ¹H NMR signals for (2*S*,3*S*)-*N*-hydroxy-3-methylaspartate are reported elsewhere (Gulzar *et al.* 1997). Impurity (Tris): δ = 3.5 (s).

Figure S9. ¹H NMR spectra monitoring the *Ch*-MAL and *Ct*-MAL catalyzed hydrazine addition to mesaconate. The spectra were taken after 7 days of incubation at 22°C. For both *Ch*-MAL and *Ct*-MAL complete conversion of substrate to product was achieved. P, *threo*-(2*S*,3*S*)-2-hydrazino-3-methylaspartate. The ¹H NMR signals for (2*S*,3*S*)-2-hydrazino-3-methylaspartate are reported elsewhere (Gulzar *et al.* 1997).

References:

- Akhtar M, Botting NP, Cohen MA, Gani D (1987) Enantiospecific synthesis of 3-substituted aspartic acids via enzymatic amination of substituted fumaric acids. Tetrahedron 43: 5899-5908
- Gulzar MS, Akhtar M, Gani D (1997) Preparation of *N*-substituted aspartic acids via enantiospecific conjugate addition of *N*-nucleophiles to fumaric acids using methylaspartase: synthetic utility and mechanistic implications. J Chem Soc Perkin Trans 1: 649-655