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Most researchers have specific expectations concerning their research
questions. These may be derived from theory, empirical evidence, or both.
Yet despite these expectations, most investigators still use null hypothesis
testing to evaluate their data, that is, when analysing their data they ignore the
expectations they have. In the present article, Bayesian model selection is
presented as a means to evaluate the expectations researchers have, that is, to
evaluate so called informative hypotheses. Although the methodology to do
this has been described in previous articles, these are rather technical and
have mainly been published in statistical journals. The main objective of
the present article is to provide a basic introduction to the evaluation of
informative hypotheses using Bayesian model selection. Moreover, what is
new in comparison to previous publications on this topic is that we provide
guidelines on how to interpret the results. Bayesian evaluation of informative
hypotheses is illustrated using an example concerning psychosocial functioning
and the interplay between personality and support from family.
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Statistical hypothesis evaluation has moved beyond simply testing the
traditional null hypothesis: ‘‘nothing is going on’’ (Van de Schoot, Hoijtink,
& Romeijn, 2011). Recent developments in statistics have rendered tools
that enable the direct evaluation of predetermined informative hypotheses.
In this paper we will introduce one such development: the evaluation of
informative hypotheses formulated with inequality constraints using
Bayesian model selection. Previous literature about the use of Bayesian
statistics to evaluate hypotheses is available (Berger & Pericchi, 1996;
Edwards, Lindman, & Savage, 1963; Gallistel, 2009; Lee, 2007; Myung &
Pitt, 1997; O’Hagan, 1995; Perez & Berger, 2002; Rouder, Speckman, Sun,
Morey, & Iverson, 2009; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010), and also about a Bayesian evaluation of informative hypotheses
(Hoijtink, 1998, 2000, 2001; Hoijtink, Klugkist, & Boelen, 2008; Klugkist &
Hoijtink, 2007; Klugkist, Laudy, & Hoijtink, 2005; Kuiper, Klugkist, &
Hoijtink, 2010; Laudy, Boom, & Hoijtink, 2005; Laudy & Hoijtink, 2007;
Mulder, Hoijtink, & Klugkist, 2010; Mulder, Klugkist et al., 2009; Van de
Schoot, 2010). There are also applied articles emerging in the field of the social
sciences where a Bayesian evaluation of informative hypotheses has been used
(Kammers, Mulder, De Vignemont, & Dijkerman, 2009; Laudy et al., 2005;
Meeus, Van de Schoot, Keijsers, Schwartz, & Branje, 2010; Meeus, Van de
Schoot, Klimstra, & Branje, 2011; Van de Schoot & Wong, 2011; Van Well,
Kolk, & Klugkist, 2008). However, an easy-to-read introduction to the
evaluation of informative hypotheses using Bayesian model selection and
general guidelines on how to interpret the results are still lacking and this
is exactly what we will provide in the current paper. We first introduce
informative hypotheses and Bayesian model selection. Then we provide
guidelines on how to use the methodology and how to interpret the results.
Finally, we provide a real-life example where we demonstrate the guidelines.

WHAT ARE INFORMATIVE HYPOTHESES?

Informative hypotheses contain information about the ordering of means,
regression coefficients or any other statistical parameter and can be
constructed using the following constraints: (1) larger than, denoted by
‘‘4’’; (2) smaller than, denoted by ‘‘5’’; and (3) equal to, denoted by ‘‘¼’’.
Such expectations about the ordering of parameters can stem from previous
studies, a literature review or even academic debate. If no information is
available about the ordering of two parameters, they are separated by ‘‘,’’.
An informative hypothesis can consist of combinations of constraints
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among, for example, a set of means (denoted by m). An example is the
hypothesis H1: {m1, m2}5m3¼ m4, where groups 1 and 2 are both expected to
have smaller mean scores than groups 3 and 4. Also, groups 1 and 2 are not,
but groups 3 and 4 are restricted to have the same value. (In)equality
constraints can also be used between (combinations of) means and a
threshold to explicit effect sizes, for example, H2: m1 – m24 .20; m3 –
m45 .50, where the difference between the means of groups 1 and 2 is
expected to be larger than .20 and where the difference between groups 3 and
4 is expected to be smaller then .50. If no constraints are imposed on any of
the means, and any ordering is equally likely, the unconstrained hypothesis
H3: m1, m2, m3, m4 is obtained.

BAYESIAN STATISTICS

In the current paper we show how to analyse informative hypotheses about
a set of means using the (free) software as described in Mulder, Klugkist
et al. (2009; see also Mulder, Hoijtink et al., 2010). This software can deal
with (M)AN(C)OVA, regression analysis, repeated-measure analyses with
time-varying and time-invariant covariates. Other (free) software is available
for ANCOVA (Klugkist et al., 2005); latent class analyses (Hoijtink, 1998,
2001; Laudy et al., 2005) and order restricted contingency tables (Laudy &
Hoijtink, 2007). A first attempt can best be made using the software
programme ‘‘confirmatory ANOVA’’ (Kuiper & Hoijtink, 2010; Kuiper
et al., 2010). Readers interested in the software can visit www.tinyurl.com/
informativehypotheses.

Example

Consider a very simple example to set the stage for introducing the
methodology. Suppose the research question is whether the mean score on a
dependent variable, say externalizing behavioural problems, differs between
two groups, say over- (denoted by mO) and under-(denoted by mU) controlled
adolescents. Furthermore, suppose the first hypothesis (HA) postulates that
there is no restriction between the means (that is, any combination of means is
admissible). The secondhypothesis (HB) postulates that the difference between
both groups is smaller than 0.10 times the variance to reflect a small effect
size. The third hypothesis (HC) postulates that over-controlled adolescents
score lower on externalizing problem behaviour than under-controlled
adolescents. Formally, the three hypotheses in this simple example are:

HA : mO; mU;

HB : mO � mU < :10� s;

HC : mO < mU:

ð1Þ
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Of course, these hypotheses can be evaluated using classical null
hypothesis testing, or one-sided hypothesis testing. However, when there
are more groups, more variables, or more constraints, null hypothesis
testing is not the appropriate tool see Van de Schoot, Hoijtink et al. (2011)
for a detailed discussion. Moreover, p-values are fundamentally incompa-
tible with measures of evidence.

Bayesian model selection consist of four components.

Admissible parameter space

The first component is the ‘‘admissible parameter space’’, which results from
the (in)equality constraints imposed on the means (see, e.g., Halpern, 2003,
p. 12, for a philosophical introduction to parameter space). Let the squares
in Figure 1 represent the total parameter space for all possible combinations
of mO and mU in the population.

To keep our explanation simple, we assume the parameter space is
bounded between 1–3, but in fact this is not the case, see the appendix for
technical details.

Now, let the admissible parameter space be the total of all possible
combinations of mO and mU that satisfy the restrictions of each of the
hypotheses (i.e., HA, HB, HC). For HA, every combination of mO and mU is
permitted and, therefore, the admissible parameter space of HA is equal to
the total parameter space (left-hand panel of Figure 1). For HB, mO and
mU only a small band is allowed where mO7mU5 .106s. For HC, only
combinations of mO and mU are permitted in which mO is smaller than mU,
which results in the lower triangle in the right-hand panel of Figure 1.
Note that, with respect to the admissible parameter space, the hypotheses
can be ordered from a small parameter space to a large parameter space: HB,
HC, HA.

Within the admissible parameter space a prior distribution needs to
be specified, which is a key characteristic of Bayesian analyses. The

Figure 1. Admissible parameter space.
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methodology employs a so called encompassing prior approach; see the
appendix. The actual specification of this prior distribution is not considered
to be the topic of this paper and the interested reader is referred to Mulder,
Hoijtink et al. (2010) and Mulder, Klugkist et al. (2009). Note that the prior
distribution is set to default in the software.

Likelihood

The second component is the likelihood of specific values of the parameters,
which is the representation of the information about the means in the data
set (see, e.g., Lynch, 2007, pp. 36–37). In Figure 2 an illustrative likelihood
function is plotted as a function of mO and mU. The higher this surface,
the more likely the corresponding combination of mO and mU in the
population becomes. In this hypothetical example the sample means are
1.50 (SD¼ 0.33) for mO and 1.61 (SD¼ 0.39) for mU. So, given the data, the
combination mO¼ 1.50 with mU¼ 1.61 is the most plausible, or the most
likely combination of values for the population means. As can be seen in
Figure 2, the likelihood function achieves its maximum for this combina-
tion. Other combinations of means are less likely. For example, the value of
the likelihood function is much lower for the combination mO¼ 0.50 and
mU¼ 2.10 and hence this combination of values is less likely to be the
population values.

Marginal likelihood

The third component is the marginal likelihood (e.g., Chib, 1995; Kass &
Raftery, 1995), which is a measure for the degree of support for each

Figure 2. The likelihood function plotted as a function of mO and mU.
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hypothesis provided by the data. The marginal likelihood is approximately
equal to the average height of the likelihood function within the admissible
parameter space. Let us elaborate on this.

Recall that Figure 1 presents the admissible parameter space for each
hypothesis and Figure 2 displays the likelihood as a function of mO and mU.
Both pieces of information are combined in Figure 3. The likelihood function
in Figure 2 is now presented as a contour plot in Figure 3. The maximum
value of the likelihood is located in the centre of the smallest circle.
Remember that as youmove away from this centre, the value of the likelihood
of the combination of population means of mO and mU becomes smaller.

Because the admissible parameter space for HA is equal to the total
parameter space, the marginal likelihood of HA can be computed as the
average value of the likelihood in the total parameter space. This value is
only meaningful in comparison to the marginal likelihood values of the
other hypotheses under investigation. For HB the average likelihood value is
computed with respect to the diagonal in Figure 3 and for HC, the average
likelihood value is computed in the lower triangle in Figure 3. The marginal
likelihood values are HA¼ 2.83 e–67; HB¼ 1.81 e–68; HC¼ 5.71 e–67. As can
be seen, HC has the highest value, followed by HA and then HB.

Note that model selection can be done using the well-known model
selection criteria Akaike Information Criterion (AIC) (Akaike, 1981) and
Bayesian Information Criterion (BIC) (Schwartz, 1978). These selection
criteria also combine fit and complexity to determine the support for a
particular model. Note that the BIC is also a Bayesian selection criterion
since it is derived as an approximation to the full Bayes factor. However,
in contrast to Bayesian model selection both the AIC and BIC are as yet
unable to deal with hypotheses specified using inequality constraints. The
problem is that for the hypothesis m1, m2, m3, m4 are two distinct parameters,
but is unclear how many distinct parameters there are for the hypothesis
m15m25m35m4.

Figure 3. Likelihood function of the data within the admissible parameter space.
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If we take a closer look at the plots in Figure 3, we can also observemodel fit
and model size, which are important components of the marginal likelihood.
Many high-likelihood values are located within the admissible parameter
space of HC andHA, but not in HB. This indicates a goodmodel fit for HC and
HA, but not for HB. Moreover, HC has a smaller admissible parameter space
compared with HA and is therefore less complex. Furthermore, note that the
likelihood values in the upper triangle in HC are low and are not taken into
account in the computation of the marginal likelihood for HC, but are taken
into account in the computation of the marginal likelihood for HA.
Consequently, the average likelihood value of HC, and hence its marginal
likelihood, is larger than the average likelihood, marginal likelihood, value
of HA. Although HB is very parsimonious, only small likelihood values are
within the admissible parameter space, which implies a poor model fit. The
admissible parameter space is smallest for HB, the marginal likelihood is
smaller than that of HA and HC because of the ‘‘poor’’ model fit.

In sum, the marginal likelihood rewards a hypothesis with the correct
(in)equality constraints. This is because the average likelihood value is
higher when many small likelihood values are not taken into account. The
smaller the parameter space, the less complex a model becomes. Therefore,
the methodology combines model fit and model size of a hypothesis.

Bayes factors

As was shown by Klugkist et al. (2005; see also Klugkist & Hoijtink, 2007),
informative hypotheses can be compared using the ratio of two marginal
likelihood values, resulting in Bayes factors (denoted by BF). See Kass and
Raftery (1995), for a statistical discussion of the Bayes factor and see the
appendix for technical details on how model fit and model complexity are
taken into account. The outcome represents the amount of evidence in
favour of one hypothesis compared with another hypothesis. The results
may be interpreted as follows: BF¼ 1 states that the two hypotheses are
equally supported by the data; BF4 1 states that the support for one
hypothesis is higher than for another hypothesis.

In our simple example, the BF for HC compared to HA can be obtained
from the marginal likelihoods of both hypotheses:

BFCA ¼
MC

MA
¼ 5:71e�67

2:83e�67
� 2: ð2Þ

For BFCB the result is:

BFBA ¼
MB

MA
¼ 1:81e�68

5:71e�67
� 0:031: ð3Þ
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Now the Bayes factor between HB and HC can be computed by:

BFBC ¼
BFCA

BFBA
¼ 2

0:031
� 64:51: ð4Þ

In conclusion, HC receives two times more support from the data then HA

and 64 times more support than HB. Note that the BFs can also be
computed using a measure for fit and complexity directly, this is elaborated
in the appendix. Recall that Bayes factors provide a direct quantification
of the support in the data for the constraints imposed on the means. With
support we mean: the trade-off between model size and model fit. Every
researcher will agree that 31 times more support seems considerable while,
for example. 1.04 times as much support does not. We refrain from
providing real cut-off scores because we want to avoid creating arbitrary
decision rules. Remember the famous quote about p-values: ‘‘. . . surely,
God loves the .06 nearly as much as the .05’’ (Rosnow & Rosenthal, 1989,
p. 1277). The conclusion based on Bayes factors remains subjective, just
like the interpretation of other measures for support, for example, odd
ratios.

GUIDELINES

When evaluating a set of informative hypotheses using Bayesian model
selection, we recommend the following three-step procedure.

Step 1

In the first step the informative hypotheses have to be formulated. That
is, the expected ordering of the parameters needs to be specified. If there
are conflicting expectations, multiple informative hypotheses may be
specified. The constraints and the observed data are the input for the
software.

Step 2

After running the software, each informative hypothesis under investigation
is provided with a BF against the unconstrained hypothesis. If this BF turns
out to be larger than 1, it can be concluded that there is support from the
data in favour of that particular informative hypothesis. If the BF5 1, it
can be concluded that there no support in the data for the informative
hypothesis. This procedure should be repeated for all informative
hypotheses under investigation. The reason for calculating these BFs, is
to enable inspection of the overall model fit of the hypotheses under
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investigation. In other words, you do not want to perform model selection
among poor hypotheses. Subsequently, the informative hypotheses can be
divided into a set of ‘‘supported’’ hypotheses and a set of ‘‘unsupported’’
hypotheses.

Step 3

In the third step, all the informative hypotheses of interest are compared
with one another (these might include ‘‘unsupported’’ hypotheses if you
want). Next, all mutual BFs can be computed. However, if many
informative hypotheses are considered, it is not practical to present the
BFs for all possible comparisons. Instead you can provide the BFs
comparing the hypothesis with the largest support of Step 1 against each
of the others.

PSYCHOLOGICAL FUNCTIONING, PERSONALITY
AND SUPPORT FROM FAMILY

Introduction

Van Aken and Dubas (2004) investigated whether psychosocial functioning
is the result of the interplay between personality and support from family.
The problem behaviour list was used to obtain parental reports on
adolescents’ behavioural problems. Three subscales were used, namely
externalizing (E), internalizing (I) and social (S) problem behaviour.
Personality types (R, O, U) were denoted using adolescents’ self-reports
on Big-Five personality markers (Gerris et al., 1998). Finally, the relational
support inventory (Scholte, Van Lieshout, & Van Aken, 2001) was used to
measure the support that children report they receive from their parents to
obtain high (H) versus low (L) family support.

Based on personality type (R, O, U), high or low family support (H, L),
362¼ 6 groups were constructed, see Table 1. Let m denote the mean score
on the dependent variable, then mRHE is the mean score for Resilient
adolescents with High family support on the dependent variable Externaliz-
ing behaviour. To analyse this data we follow the three-step procedure
described above.

Step 1

HA states that under-controllers are expected to have the most externalizing
problems and over-controllers are expected to have the most internalizing
problems. Over-controllers and under-controllers are believed to score
higher on social problems compared with resilient adolescents. Moreover,
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no constraints are specified with respect to high/low family support. The
informative hypothesis HA can be formulated as:

ðmRHE; mRLE; mOHE; mOLEÞ < ðmUHE; mULEÞ
HA: ðmRHI; mRLI; mUHI; mULIÞ < ðmOHI; mOLIÞ
ðmRHS; mRLSÞ < ðmOHS; mOLS; mUHS; mULSÞ:

ð5Þ

HB states, additionally to HA, that resilient adolescents function best in all
psychosocial domains in comparison with the other two types of
adolescents. Hence, the informative hypothesis HB contains two additional
constraints in comparison to HA:

ðmRHE; mRLEÞ < ðmOHE; mOLEÞ < ðmUHE; mULEÞ
HB: ðmRHI; mRLIÞ < ðmUHI; mULIÞ < ðmOHI; mOLIÞ
ðmRHS; mRLSÞ < ðmOHS; mOLS; mUHS; mULSÞ:

ð6Þ

Previous research also indicates that it is the combination of personality type
and the quality of social relationships that determines the risk level for
experiencing more problem behaviour. Therefore, additional constraints are
constructed for the third expectation (HC). Over- and under-controllers with
high perceived support from parents are expected to function better in
psychosocial domains than those with low perceived support. For the
resilient group, the level of support from parents is not related to problem
behaviour. The constraints for informative hypothesis HC are:

ðmRHE ¼ mRLEÞðmOHE; mOLEÞ < ðmUHE < mULEÞ
HC: ðmRHI ¼ mRLIÞ < ðmUHI < mULIÞ < ðmOHI < mOLIÞ
ðmRHS¼mRLSÞ < ðmOHS < mOLSÞðmUHS < mULSÞ:

ð7Þ

TABLE 1
Groups of adolescents based on personality type, problem behaviour and support

Problem behaviour

Internalizing Externalizing Social

Resilient High family support mRHI mRHE mRHS

Low family support mRLI mRLE mRLS

Over High family support mOHI mOHE mOHS

Low family support mOLI mOLE mOLS

Under High family support mUHI mUHE mUHS

Low family support mULI mULE mULS
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Step 2

The second step involves comparing HA, HB, and HC with the
unconstrained hypothesis, HU. The results, see the second column of
Table 2, show that all informative hypotheses have a BF 4 1. For example,
the BF between HA and HU is 30.28, indicating that HA receives 30.28 times
more support than HU. From these BFs, it can be concluded that each of the
hypotheses HA, HB, and HC have a good model fit.

Step 3

As we showed before, mutual BFs can be computed using the results of Step
1. The BF of HB against HA is given by BFBA¼BFBU/BFAU¼ 64.20/
30.28¼ 2.12 as explained in Equations 2–4. The support for HB is about
twice as strong as for HA. From the analyses it can be concluded that there is
evidence in favour of HA, but we think 2.12 times as much support is not
much. So, our subjective conclusion might be that additional to the
constraints of HA, there is some evidence that resilient adolescents score
lower on externalizing behaviour than over-controlled adolescents and that
resilient adolescents score lower on internalizing behaviour than under-
controlled adolescents.

The BF of HC versus HB, see the fourth column in Table 2, shows that
there is much support in favour of HC compared with either HA or HB. For
example, the BF for HC against HB is 21.79; in other words there is
approximately 21 times as much support for HC as for HB. From this
analysis it can be concluded that the additional constraints of HC shown in
Equation 4 are a meaningful addition to the constraints of HB.

The results of Bayesian model selection for the example relating to
personality types and problem behaviour provides strong support for the
idea that it is the combination of personality type and the quality of social
relationships that puts adolescents at risk of greater problem behaviour.

As was correctly noticed by one of the reviewers, it can be illustrative to
provide more information than just the Bayes factors. Figure 4 displays the

TABLE 2
Results of Bayesian model selection for the example of Van Aken and Dubas (2004)

Expectation BF* BF** BF***

HA 30.28 1 –

HB 64.20 2.12 1

HC 1399.00 – 21.79

Notes: *BF compared with the unconstrained hypothesis; **BF between HA and HB; ***BF

between HB and HC.
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posterior distributions of the maximum likelihood estimates of the means as
shown in Table 3, the posterior means and their credibility intervals. The
interpretation of a Bayesian 95% credibility interval is that, for example,
there is a 0.95 probability that the mean score for Resilient adolescents with
High family support on the dependent variable Externalizing behaviour lies
in the interval from 1.84 to 1.97 (see the plot in the upper left corner of
Figure 4). These intervals are often used in practice to decide whether means
differ from zero or from other means. It can, for example, be seen that the
posterior mean of mRHE is 1.90 and the posterior mean of mRHS is 1.71. The
credibility intervals do not overlap and, consequently, the hypothesis
mRHE¼ mRHS can be rejected.

DISCUSSION

In the current paper we have shown that Bayesian model selection is a useful
tool when evaluating informative hypotheses. The resulting Bayes factor
quantifies the amount of support received from the data for each informative
hypothesis. We have offered an introduction to the methodology for non-
statisticians and we are the first to present a step-by-step approach to
analysing informative hypotheses with Bayesian model selection.

The major advantage of evaluating a set of informative hypotheses is that
prior information can be incorporated into an analysis. As argued by
Howard, Maxwell, and Fleming (2000), replication is an indispensable tool
in the social sciences. Evaluating informative hypotheses fits within this
framework because results from different research papers can be translated
into different informative hypotheses. The method of Bayesian model
selection can provide each informative hypothesis with the degree of support
supplied by the data. As a result, the plausibility of previous findings can be
evaluated in relation to new data, which makes the method described in this
paper an interesting tool for replication of research results.

TABLE 3
Means and standard deviation (in parentheses) for the example of Van Aken and

Dubas (2004)

Problem behaviour

Internalizing Externalizing Social

Resilient High family support (n ¼ 137) 1.88 (0.43) 1.49 (0.32) 1.69 (0.43)

Low family support (n ¼ 73) 1.93 (0.47) 1.63 (0.38) 1.78 (0.48)

Over High family support (n ¼ 76) 2.04 (0.43) 1.43 (0.24) 1.77 (0.48)

Low family support (n ¼ 82) 2.17 (0.47) 1.57 (0.38) 1.93 (0.49)

Under High family support (n ¼ 72) 2.07 (0.57) 1.52 (0.36) 1.84 (0.52)

Low family support (n ¼ 135) 2.13 (0.53) 1.66 (0.39) 1.94 (0.56)

724 VAN DE SCHOOT ET AL.



Figure 4. Posterior distributions for all groups of Table 1. Note: ‘‘CI’’ denotes the Bayesian

credibility interval.
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For a more detailed comparison of traditional null hypotheses testing and
Bayesian evaluation of informative hypotheses we refer to Van de Schoot,
Hoijtink, Mulder et al. (2011, see also Hoijtink & Klugkist, 2007; Kuiper &
Hoijtink, 2010), who compared Bayesian model selection for the evaluation
of inequality constrained hypotheses with classical null hypothesis testing,
one-sided hypothesis testing and the best of what null hypothesis testing
offers: planned comparisons. Focused analysis of variance (ANOVA)
contrasts (Rosenthal, Rosnow, & Rubin, 2000) or a parametric bootstrap
procedure (Van de Schoot, Hoijtink, & Deković, 2010; Van de Schoot &
Strohmeier, 2011) could also be used to develop inferences regarding
patterns of means. However, as soon as multiple informative hypotheses are
considered, these methods are not sufficient. That is one single informative
hypothesis is compared to either the classical null hypothesis or the
unconstrained hypothesis.

In Bayesian statistics it would also be possible to take into consideration
a priori differences in model odds as well, according to the adage
‘‘extraordinary claims require extraordinary evidence’’ (e.g., Jaynes, 2003).
Future research should focus on how to incorporate such statements in the
evaluation of informative hypotheses.

In conclusion, if researchers in psychology want to learn as much as
possible from their data and if they want to judge the plausibility of
expectations, Bayesian model selection, as described in the current paper, is
a promising and exciting tool.
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APPENDIX

Technical details of the Bayesian methodology for ANOVA

In the appendix we provide more technical details for the methodology of
evaluating informative hypothesis for ANOVA models. Hypotheses with
inequality constraints are nested in the unconstrained model. The Bayes
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factor of an inequality constrained hypothesis, Hi, versus an unconstrained
hypothesis, Hu, can be written as:

BFiu ¼
Mi

Mu
¼ fi

ci
ðA1Þ

where M is the marginal likelihood value, see Equation 2 in the main text.
Moreover, fi can be interpreted as the fit of the model under investigation
and ci as the complexity of Hi. Note that this representation of the BF differs
from the BF in the main text. This is due to the fact that the marginal
likelihood is often difficult to compute and Klugkist et al. (2005) introduced
the BF in Equation A1 as an alternative.

Complexity, ci, is measured as the proportion of the prior distribution of
Hi in agreement with the constraints imposed on the parameters of interest.
According to the encompassing prior approach as proposed by Klugkist
et al. (2005), the prior h(.) for Hu in the context of ANOVA models (with J
means) is given by:

hðm1 . . .mJ;s
2jHUÞ ¼ Nðm1jm0; t20Þ � � � � �NðmJjm0; t20Þ � Inv�Gammaðs2ja; bÞ

ðA2Þ

wherem0 denotes the priormean, t20 the precision (which are the same for each
mean) and a and b are respectively, the shape and the scale parameter of the
inverse gamma distribution. From Equation A2, it can be derived that:

ci ¼
Z
Hi

hðm1 . . . mJ;s
2jHUÞdm1 . . . mJ ðA3Þ

The posterior distribution, gð�Þ, is proportional to the product of the
prior and the likelihood function of the data: gð�Þ / hð�Þ � fð�Þ. If Y is
observed data, model fit fi is then given by:

fi ¼
Z
Hi

gðm1 . . . mJ;s
2jY;HuÞdðm1 . . . mJÞ ðA4Þ

Stated otherwise, fc is the proportion of the posterior distribution of HU

in agreement with Hi. For ANOVA models, the likelihood is given by:

fðyjm1 . . . mJ;s
2Þ ¼ P

n

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p � exp

ðyi � SJ
j¼1mjdijÞ

2

2s2

( )
ðA5Þ

where dij denotes whether a case belongs to group j or not.
The prior parameters, m0; t

2
0, a and b of Equation A2 are obtained using

training data, as is presented in Berger and Pericchi (1996, 2004), O’Hagan
(1995), Perez and Berger (2002) and Mulder and colleagues (2010).

BAYESIAN MODEL SELECTION 729


