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Evaluating Expectations About Negative Emotional States of Aggressive
Boys Using Bayesian Model Selection

Rens van de Schoot, Herbert Hoijtink,
Joris Mulder, Marcel A. G. Van Aken,

Bram Orobio de Castro, and Wim Meeus
Utrecht University, The Netherlands

Jan-Willem Romeijn
Groningen University, The Netherlands

Researchers often have expectations about the research outcomes in regard to inequality constraints
between, e.g., group means. Consider the example of researchers who investigated the effects of inducing
a negative emotional state in aggressive boys. It was expected that highly aggressive boys would, on
average, score higher on aggressive responses toward other peers than moderately aggressive boys, who
would in turn score higher than nonaggressive boys. In most cases, null hypothesis testing is used to
evaluate such hypotheses. We show, however, that hypotheses formulated using inequality constraints
between the group means are generally not evaluated properly. The wrong hypotheses are tested, i.e.. the
null hypothesis that group means are equal. In this article, we propose an innovative solution to these
above-mentioned issues using Bayesian model selection, which we illustrate using a case study.

Keywords: Bayesian model selection, informative hypothesis, power, planned comparison, one-sided
hypothesis testing, aggression, emotional state

Many psychology researchers rely on regression analysis, anal-
ysis of variance, or repeated-measures analysis to answer their
research questions. The default approach in these procedures is to
test the classical null hypothesis that “nothing is going on”: re-
gression coefficients are zero, there are no group differences, and
so on. We argue that many researchers have some very strong prior
beliefs about various components outcomes of their analyses and
are not particularly interested in testing a traditional null hypoth-
esis (see also Cohen, 1990, 1994; Wagenmakers, 2007). For ex-
ample, a researcher might expect that highly aggressive boys
would, on average, score higher on aggressive responses towards
other peers than moderately aggressive boys, who in turn would
score higher than nonaggressive boys. Note that we refer to such
explicit expectations as informative hypotheses.

This aforementioned explicit expectation is clearly not the same as
the traditional null hypothesis: All scores for the boys are equal. Often
researchers are not particularly interested in this null hypothesis.

However, the average researcher specifies the traditional null hypoth-
esis in a robotic way. Note that this is a critique of the researcher and
not of the method, since classical null hypothesis testing is very useful
for testing the null hypotheses if one is interested in it. Even so, there
are already researchers who actually use prior beliefs directly in their
data analyses (see, e.g., Kammers, Mulder, De Vignemont, & Dijk-
erman, 2009; Meeus, Van de Schoot, Keijsers, Schwartz, & Branje, in
press; Meeus, Van de Schoot, Klimstra, & Branje, in press; Van de
Schoot, Hoijtink, & Doosje, 2009; Van de Schoot & Wong, in press;
van Well, Kolk, & Klugkist, 2009).

In this article, we show how subjective beliefs influence analyses in
hidden ways and how they might be incorporated explicitly in data
analysis. That is, we describe, by means of a case study, what can
happen if a researcher has informative hypotheses and uses traditional
frequentist analysis or thoughtful frequentist analysis. Subsequently,
we elaborate on an alternative strategy: the evaluation of informative
hypotheses by means of Bayesian model selection (Hoijtink, 1998,
2001; Hoijtink, Klugkist, & Boelen, 2008; Klugkist, Laudy, & Hoi-
jtink, 2005; Klugkist, Laudy, & Hoijtink, 2010; Kuiper & Hoijtink,
2010; Laudy, Boom, & Hoijtink, 2005; Laudy & Hoijtink, 2007;
Mulder, Hoijtink, & Klugkist, 2009; Mulder, Klugkist, Van de
Schoot, Meeus, Selfhout, & Hoijtink, 2009). Furthermore, we use one
of our own studies (Orobio de Castro, Slot, Bosch, Koops, & Veer-
man, 2003) in the area of experimental psychology to illustrate that
our aim is not to disregard any specific study but to discuss a problem
very common to psychological research, a problem encountered in
our own research as well.

Example: Emotional State in Aggressive Boys

Orobio de Castro et al. (2003) investigated the effects of induc-
ing a negative emotional state in aggressive boys (overall M � 11
years, SD � 1.2 year). The question was whether inducing nega-
tive emotions would make boys with aggressive behavior prob-
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lems attribute more aggressive responses and hostile intentions to
their peers than did a group of nonaggressive boys. The authors
examined three levels of aggression: high, moderate, and none.

The highly aggressive group consisted of boys referred to spe-
cial education for aggressive behavior problems. Informed consent
was obtained from all participants and their parents. The moder-
ately aggressive group consisted of boys in regular education with
teacher-rated externalizing behavior problem scores on the Teach-
er’s Report Form (Achenbach, 1991; for the Dutch version, see
Verhulst, Van der Ende, & Koot, 1997) in the borderline or clinical
range. No socioeconomic status information was made available
from the original article.

The authors induced mild negative emotions by manipulating
participants’ performance in a computer game. Each participant
completed two conditions: a neutral-emotion condition prior to
playing a computer game (neutral) and a negative-emotion condi-
tion following emotional manipulation after unjustly losing the
game (negative). The authors assessed hostile intent attributions
and aggressive responses to other peers by presenting the boys
with eight vignettes concerning ambiguous provocation by peers,
for example:

Imagine: You and a boy in your class are taking turns at a computer
game. Now it’s your turn, and you are doing great. You are reaching
the highest level, but you only have one life left. You never came this
far before, so you are trying very hard. The boy you are playing with
watches the game over your shoulder. He sees how far you have
come. Then he shouts “Watch out! You’ve got to be fast now!” and
he pushes a button. But it was the wrong button, and now you have
lost the game!

Two open-ended questions were asked directly after listening to
each vignette: (a) why the provocateur in the vignette acted the
way he did; and (b) how the participants would respond were they
to actually experience the events portrayed in the vignette. An-
swers to the first question were coded as benign, accidental,
ambiguous, or hostile. The reactions of the boys to the second
question were coded as aggressive, coercive, solution attempt, or
avoidant. The authors calculated respective scores for hostile in-
tentions and responses by counting the number of vignettes in each
condition with a hostile or an aggressive response to the questions.

Expectations

The first expectation (A) was that negative emotion manipula-
tion would invoke more hostile intentions and aggressive re-
sponses at all levels of aggression. This expectation was made on
the basis of Dodge’s (1985) hypothesis that a negative emotional
state makes children more prone to attribute hostile intentions to
other children with whom they interact. The constraints corre-
sponding to the informative hypothesis HA,host in relation to hostile
attribution are displayed in Table 1. It can be seen, for example,
that the mean score for nonaggressive boys in the neutral condition
is expected to be lower than the mean score for nonaggressive boys
in the negative condition, Mneu,non � Mneg,non. Note that the same
constraints hold for aggressive responses (HA,aggr).

A second expectation (B) was that emotion manipulation would
influence aggressive boys more than it would less aggressive boys.
Consequently, the tendency to attribute more hostile intentions to
peers in ambiguous situations was expected to increase more in
highly aggressive boys than in moderately aggressive and nonag-
gressive boys. As was argued by Orobio de Castro et al. (2003),
this hypothesis seems plausible, given the fact that many children
with aggressive behavior problems have histories of abuse, ne-
glect, and rejection (Coie & Dodge, 1998). As a result, these
highly aggressive boys exhibit a greater tendency to attribute
hostile intentions to peers in ambiguous situations than nonaggres-
sive boys do (see also, Orobio de Castro, Veerman, Koops, Bosch,
& Monshouwer, 2002). The constraints corresponding to the in-
formative hypothesis for hostile attribution (HB,host) are displayed
in the middle of Table 1. These constraints imply, for example, that
the difference between the negative and neutral conditions is
smaller for the nonaggressive group than for the moderately ag-
gressive group, [Mneu,non � Mneg,non] � [Mneu,mod � Mneg,mod].
The same constraints also hold for aggressive responses (HB,aggr).

A third expectation (C) was a combination of expectations A
and B. The authors expected that negative emotion manipulation
would invoke more hostile intentions and aggressive responses at
all levels of aggression and, at the same time, that emotion ma-
nipulation would influence aggressive boys more than less aggres-
sive boys (Orobio de Castro et al., 2003). The difference between
the neutral and the negative condition would be larger if boys were

Table 1
Constraints for Hypotheses A, B, and C for Hostile Attribution

Hypothesis Condition

Aggression level

No aggression Moderate High

HA,host Neutral Mneu,non Mneu,mod Mneu,high

∧ ∧ ∧
Negative Mneg,non Mneg,mod Mneg,high

HB,host Mneg,non – Mneu,non � Mneg,mod – Mneu,mod � Mneg,high – Mneu,high

HC,host Neutral Mneu,non Mneu,mod Mneu,high

∧ ∧ ∧
Negative Mneg,non Mneg,mod Mneg,high

and
Mneg,non – Mneu,non � Mneg,mod – Mneu,mod � Mneg,high – Mneu,high

Note. M indicates a mean score for an aggression level within a condition (e.g., Mneu,non is the mean score for non-aggressive boys in the neutral
condition).

204 VAN DE SCHOOT ET AL.

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e 
A

m
er

ic
an

 P
sy

ch
ol

og
ic

al
 A

ss
oc

ia
tio

n 
or

 o
ne

 o
f i

ts
 a

lli
ed

 p
ub

lis
he

rs
.  

Th
is

 a
rti

cl
e 

is
 in

te
nd

ed
 so

le
ly

 fo
r t

he
 p

er
so

na
l u

se
 o

f t
he

 in
di

vi
du

al
 u

se
r a

nd
 is

 n
ot

 to
 b

e 
di

ss
em

in
at

ed
 b

ro
ad

ly
.



more aggressive. The hypotheses HC,host and HC,aggr combine the
constraints presented in the upper part of Table 1 with the con-
straints presented in the middle of Table 1.

The research question we investigate in the current article is
which of these three informative hypotheses, HA, HB, or HC, is
best supported by the data. We try to answer this research question
using traditional frequentist analysis, thoughtful frequentist anal-
ysis, and Bayesian model selection.

Traditional Frequentist Analysis

The traditional frequentist approach, which is most often used in
practice, is to analyze data like ours using traditional null hypoth-
esis testing. In our example, we used aggressive responses and
hostile intentions as dependent variables in two analyses of vari-
ance (ANOVA) with level of aggression (high, moderate, and no
aggression) as a between-participants factor and condition (neu-
tral/negative) as a within-participants factor. Three null hypotheses
could be tested for both hostile intentions and aggressive re-
sponses:

H0,1: There is no difference among levels of aggression;

H0,2: There is no difference between the condition means;

H0,1�2: There is no interaction between level of aggression
and the condition.

The results of these tests are presented in Table 2 (significant
results are in bold). It can be seen in this table that for both
aggressive responses and hostile intentions, there appear to be
significant differences between aggression level means and that
there were no differences between condition means for both ag-
gressive responses and hostile intentions. However, the only sig-
nificant result for the interaction effect is found for hostile attri-
bution (i.e., Level of Aggression � Condition). Many researchers
would perform a follow-up analysis, which we also do, but we first
show what happens if the informative hypotheses HA, HB, and HC

are evaluated using the null hypotheses H0,1, H0,2, and H0,1�2 .

What Goes Wrong?

Although traditional null hypothesis testing has been the dom-
inant research tool for the latter half of the past century, it suffers
from serious complications if used in the wrong way—that is,
when the null hypotheses H0,1, H0,2, and H0,1�2 are used to deter-
mine which informative hypothesis, HA, HB, or HC, is best sup-
ported by the data. Let us elaborate on this.

The first and most vital problem is that there is no straightfor-
ward relationship between the informative hypotheses under in-
vestigation and the null hypotheses that are actually being tested.
Orobio de Castro et al. (2003) were not interested in testing the
hypotheses H0,1, H0,2, and H0,1�2 that were tested in the ANOVA.
Although Wainer (1999) argues in “One Cheer for Null Hypoth-
esis Significance Testing” that the null hypothesis can be useful in
some cases, many researchers have no particular interest in the null
hypothesis (see, e.g., Cohen, 1990, 1994). So why test the null
hypothesis if one is not interested in it?

Furthermore, the informative hypotheses HA, HB, and HC differ
from the traditional alternative hypotheses: “not H0,1,” “not H0,2”,
and “not H0,1�2.” As can be seen in Table 2, some of the null
hypotheses are rejected in favor of the alternative hypothesis
(significant results are in bold), but what does this tell us? For
example, for hostile attribution there is a main level of aggression
difference and an interaction between level of aggression and
condition. Does this provide any evidence that one of the three
informative hypotheses is more likely than the other? Clearly, the
answer is “no,” because neither the null hypotheses nor the alter-
native hypotheses resemble any of the informative hypotheses
under investigation.

In conclusion, using traditional null hypothesis testing does not
result in a direct answer to the research question at hand. This issue
is usually solved by a visual inspection of the sample means. When
inspecting Table 3, which shows the descriptive statistics (i.e.,
standardized means), it appears that there is a violation of Expec-
tation A with regard to hostile attribution: the mean of the nonag-
gressive group is lower in the negative condition than it is in the
neutral condition, rather than higher. Does this imply that Expec-
tation A is not supported by the data? Or is this a random devia-
tion? The mean differences for hostile attribution between the
neutral and negative condition for non-, moderate- and high-
aggressive boys, presented in the lower part of Table 3, are in
agreement with the constraints of Expectation B. However, does
this imply that HB is preferred over HA? What if there had been a
small deviance of the constraints imposed on the mean differences:
�.45, �.46, .45? Or what if there had been a larger deviance
between the mean differences: �.45, �.55, .45? When would the
difference be large enough to conclude that the informative hy-
pothesis was preferred?

Multiple Hypothesis Testing and Power

Alongside the complication of using it the wrong way, the
procedure of traditional null hypothesis testing itself suffers from
a number of complications. We discuss two important issues here:
an increase of Type I errors due to multiple analyses and the loss
of power that results from the adjustment often used to correct for
these errors.

Multiple tests are typically needed to evaluate the informative
hypotheses at hand, and this can be problematic (e.g., Maxwell,
2004). In our example, six F tests were performed. In general,
multiple testing increases the family-wise error rate, which is the
probability of incorrectly rejecting at least one null hypothesis of
all of those tested. For example, for two independent tests and an
alpha level of .05 per test, the probability of correctly concluding
that both null hypotheses are not rejected is .95 � .95 � .90, and
for six tests, .956 � .74. In the latter case, the probability of

Table 2
Results of the Two 3 � 2 Univariate Analyses of Variance

Variable

Hostile Aggressive

F p F p

Aggressive level (df: 2, 55) 2.91 .047 8.82 <.001
Condition differences (df: 2, 55) 1.10 .29 0.82 .36
Interaction (df: 2, 54) 3.18 .049 1.46 .24

Note. Significant results are in bold.
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incorrectly rejecting at least one null hypothesis is 1 � .74 � .26.
Note that the six tests in Table 1 are not independent, but in this
situation, the overall alpha level is higher than .05 as well.

A solution to the problem of Type I error inflation is to control
the overall alpha level by using, for example, the often-used
Bonferroni correction. For this procedure, the overall alpha level is
divided by the number of tests performed. The price for using such
a correction is a severe reduction in power (see Cohen, 1992).
Correcting the alpha level also requires a larger sample size to
maintain sufficient power, which may not always be realistic. In
our running example, ethical and clinical considerations urge us to
limit to an absolute minimum the number of boys with severe
behavior problems who can be asked to participate in such a taxing
manipulation. These sample size restrictions are evident in many
studies in our field. Moreover, the Bonferroni correction is not
unproblematic; the procedure is rather conservative, meaning that
the smaller the alpha level, the lower the power. Improvements on
the Bonferroni procedure have been developed, including the false
discovery rate (Benjamini & Hochberg, 1995) or the Holm-
Bonferroni method (Holm, 1979); for an overview see Hsu (1996).
However, larger sample sizes are still needed in these cases, and it
remain difficult to determine how the overall alpha level should be
corrected with all of these methods.

For example, when using any form of correction, should the
overall alpha be corrected separately for each dependent variable?
Or should the overall alpha be corrected by using the total number
of tests? The answers to these questions are not clear. If we were

to use the Bonferroni correction
�

3
for our example, then the

significant results for hostile attribution disappear, and the conclu-
sion should be that there are no group main differences and that
there is no interaction between group and condition. The null
hypothesis cannot be rejected, but what does this say about the
informative hypotheses HA, HB, and HC?

For aggressive responses, aggression level differences remain

significant when using
�

3
, implying that (Mnon,neg � Mnon,neu) �

(Mmod,neg � Mmod,neu) � (Mneg,high � Mneu,high), where M is the
mean score of a group within a condition. A significant result
would indicate that (0.52 � 0.47 � 0.99) � (1.02 � 1.08 �
1.10) � (1.12 � 0.93 � 2.05), but what can we learn from this
with respect to HA, HB, and HC? Clearly, the answer is “not
much.” Even if we pursue this significant result further using
post-hoc comparisons, these comparisons do not provide informa-
tion about the informative hypotheses A, B, or C.

Thoughtful Frequentist Analysis

What have we learned so far? Testing the null hypotheses
H0,1, H0,2, and H0,1�2 followed by a visual inspection of the data is
not the appropriate tool for evaluating the informative hypotheses
HA, HB, and HC. If a researcher has explicit expectations in the
form of inequality constraints between means, he or she might be
better off using alternative procedures. In this section, we use
thoughtful frequentist analysis, in other words, planned compari-
sons, to evaluate HA, HB, and HC.

First, three one-sided t-tests could be performed to evaluate HA:

Mneu,non � Mneg,non � phostile � .22/ 2; paggr � .60/ 2	;

Mneu,mod � Mneg,mod � phostile � .88/ 2; paggr � .60/ 2	;

Mneu,high � Mneg,high � phostile � .02/ 2; paggr � .06/ 2	.

To evaluate HB, planned comparisons could be used; a good
primer is presented in Rosenthal, Rosnow, and Rubin (2000), who
introduced several types of contrasts. In our example, HB could be
evaluated using the linear contrast �1 � 
Mneu,non � Mneg,non � �
0 � 
Mneu,mod � Mneg,mod� � 1 � 
Mneu,high � Mneg,high�. A
researcher who expects a monotonic relationship can create
lambda weights that represent that hypothesis (see Rosenthal et al.,
2000). For now, we will use a linear increase, and since this
hypothesis is also directional, we expect an increase in the differ-
ence between conditions; the resulting p value can be divided by
two. The results are a significant increase for hostile attribution
( p � .008/2) but a nonsignificant result for aggression ( p � .32/2).
Both pieces of information (i.e., the results of the one-sided t tests
and planned comparison) need to be combined to evaluate HC, but
it is unclear how to do so.

Although the above procedure generates better results than the
naive procedure presented in the previous section, there is still one
major problem related to thoughtful frequentist analysis. Recall
that we wanted to evaluate HA, HB, and HC. Using planned
comparisons, in whatever form, results again in testing the null
hypothesis. These tests are clearly not the same as evaluating HA,
HB, and HC. A different approach is called for, and this is what we
do in the next section.

Bayesian Evaluation of Informative Hypotheses

As put forward by Walker, Gustafson, and Frimer (2007, p.
366), “the Bayesian approach offers innovative solutions to some
challenging analytical problems that plague research in . . . psy-
chology” (see also Howard, Maxwell, & Fleming, 2000; Lee &

Table 3
Emotion Ratings by Aggression Level and Condition

Hypothesis Condition

Hostile Aggressive

No aggression Moderate High No aggression Moderate High

HA,host Neutral 0.15 0.39 �0.27 0.52 1.02 1.12
∧ ∧ ∧ ∧ ∧ ∧

Negative �0.20 0.43 0.18 0.47 1.08 0.93

HB,host �0.45 � 0.04 � 0.45 �0.05 � 0.06 � �0.19
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Pope, 2006; Lee & Wagenmakers, 2005). The core idea of Bayes-
ian inferences is that a priori beliefs are updated with observed
evidence and both are combined in a so-called posterior distribu-
tion. In the social sciences, however, only a few applications of
Bayesian methods can be found; one good example is presented in
Walker, Gustafson, and Hennig (2001). The authors used standard
statistical techniques as well as a Bayesian approach to investigate
consolidation and transition models in the domain of moral rea-
soning. The posterior distribution of reasoning across stages of
moral reasoning was used to predict subsequent development.
Another example is the Schulz, Bonawitz, and Griffiths (2007)
study about causal learning processes in preschoolers. Bayesian
inference was used in this article to provide a rationale for updat-
ing children’s beliefs in light of new evidence and was used to
explore how children solve problems.

Bayes in the Social Sciences

An important contribution Bayesian methods can offer to the
social sciences is the evaluation of informative hypotheses formu-
lated with inequality constraints using Bayesian model selection.
Many technical papers have been published about this method in
statistical journals (Hoijtink, 1998, 2001; Hoijtink et al., 2008;
Klugkist et al., 2005; Klugkist et al., 2010; Kuiper & Hoijtink,
2010; Laudy et al., 2005; Laudy & Hoijtink, 2007; Mulder et al.,
2009; Mulder et al., 2009). Applied psychology/social science
articles that use this method to evaluate hypotheses have been
published as well.

For example, in a study by van Well et al. (2008), the authors
investigated whether a possible match between sex or gender role
identification on the one hand and gender relevance of a stressor
on the other hand would increase physiological and subjective
stress responses. A first expectation represented a sex match effect;
participants were expected to be most reactive in the condition that
matched their sex. In a similar way, gender match, sex mismatch,
and gender mismatch effects were evaluated using Bayesian model
selection software.

Another example is the study by Meeus et al. (in press). In this
study, Bayesian model selection was used to evaluate the plausi-
bility of certain patterns of increases and decreases in identity
status membership on the progression and stability of adolescent
identity formation. Moreover, expected differences in prevalence
of identity statuses between early-to-middle and middle-to-late
adolescents and males and females were evaluated. In sum, Bayes-
ian model selection as described in, for example, Hoijtink et al.
(2008), is gaining attention and is a flexible tool that can deal with
several types of informative hypothesis.

The major advantage of evaluating a set of informative hypoth-
esis using Bayesian model selection is that prior information can
be incorporated into an analysis. As was argued by Howard,
Maxwell, and Fleming (2000), replication is an important and
indispensible tool in the social sciences. Evaluating informative
hypotheses fits within this framework because results from differ-
ent research papers can be translated into different informative
hypotheses. The method of Bayesian model selection can provide
each informative hypothesis with the degree of support provided
by the data. As a result, the plausibility of previous findings can be
evaluated in relation to new data, which makes the method de-

scribed in this article an interesting tool for replication of research
results.

Another advantage of evaluating informative hypotheses is that
more power is generated with the same sample size. An increase in
power is achieved because using the data to directly evaluate HA, HB,
and HC by directly evaluating HA versus HB versus HC is more
straightforward than testing several null hypotheses that are not di-
rectly related to the hypotheses of interest. Besides, when HA versus
HB versus HC are directly evaluated, there is no need to deal with
contradictory results or problems arising as a result of multiple testing.

Software

In this study, we analyzed the informative hypotheses of our
example using the software presented in Mulder et al. (2009; see
also Mulder et al., 2009). The method described in this article can
be used to deal with many complex types of (in)equality con-
straints in multivariate linear models, for example, multivariate
analysis of covariance (MANCOVA), regression analysis, and
repeated-measure analyses with time varying and time in-varying
covariates. A typical example of an informative hypothesis in the
context of regression analysis can be found in Deković, Wissink,
and Meijer (2004), who hypothesized that adolescent disclosure is
the strongest predictor of antisocial behavior, followed by either a
negative or positive relation with the parent.

Software is also available for evaluating informative hypotheses
in AN(C)OVA models (Klugkist et al., 2005; Kuiper & Hoijtink,
2010) and latent class analysis (Hoijtink, 1998, 2001; Laudy et al.
2005), as well as order-restricted contingency tables (Laudy &
Hoijtink, 2007; see also Klugkist et al., 2010). Readers interested
in this software can visit http://www.fss.uu.nl/ms/informativehy-
pothesis. Users of the software need only provide the data and the
set of constraints; the Bayes factors are computed automatically by
the software. A first attempt in analyzing data can best be made by
using the software program “confirmatory ANOVA” (Kuiper,
Klugkist, & Hoijtink, 2010). We refer to the book of Hoijtink et al.
(2008) as a first step for interested readers.

Introduction to Bayesian Model Selection

In this section, we provide a brief introduction to the evaluation of
informative hypotheses formulated with inequality constraints using
Bayesian model selection. The main ideas are introduced below; we
refer interested readers to Lynch (2007) for a general introduction to
Bayesian analysis and to Gelman, Carlin, Stern and Rubin (2004) for
a technical introduction to Bayesian analysis. For incorporating in-
equality constraints in the context of Bayesian model selection, we
refer interested readers to Hoijtink et al. (2008).

Bayes Factor

As was shown by Klugkist et al. (2005), informative hypotheses
can be compared using the ratio of two marginal likelihood values,
which is a measure for the degree of support for each hypothesis
provided by the data (see, e.g., Hoijtink et al., 2008). This ratio
results in the Bayes factor; see Kass and Raftery (1995) for a
statistical discussion of the Bayes factor. The outcome represents
the amount of evidence in favor of one hypothesis compared with
another hypothesis.
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Returning to our example of Orobio de Castro et al. (2003), the
informative hypotheses HA, HB, and HC can be evaluated using
Bayesian model selection. To do so, we first compare these infor-
mative hypotheses to a so-called unconstrained hypothesis, de-
noted by Hunc. A hypothesis is unconstrained if no constraints are
imposed on the means. The comparison with Hunc is made because
it is possible that all informative hypotheses under investigation do
not provide an adequate description of the population from which
the data were sampled. In that case, the unconstrained hypothesis
will be favored by Bayesian model selection. Hence, Bayesian
model selection protects a researcher against incorrectly choosing
such a “bad” hypothesis.

As was shown by Klugkist et al. (2005), the Bayes factor (BF)
of HAversus Hunc can be written as

BFA,unc �
fi

ci
, (1)

where fi can be interpreted as a measure for model fit and ci as a
measure for model complexity of HA. The Bayes factor of HA

versus HB can be written as:

BFA,B �
BFA,unc

BFB,unc
. (2)

The Bayes factor in Equation 2 combines model fit and com-
plexity and represents the amount of evidence, or support from the
data, in favor of one hypothesis (say, HA) compared to another
hypothesis (say, HB).

The results may be interpreted as follows: BFA,B � 1 states that
the two hypotheses are equally supported by the data; BFA,B � 10
states that the support for HA is 10 times stronger than the support
for HB; BFA,B � 0.25 states that the support for HB is four times
stronger than the support for HA. Note that there is no cut-off value
provided; we return to this issue in the next section, but let us first
reanalyze our example elaborate on fi and ci.

Example Reconsidered

To reanalyze the data of Orobio de Castro et al. (2003), we
computed the Bayes factors using two analysis of variance models,
one for hostile attribution and one for aggressive response. The
results are presented in Table 4.

For hostile attribution, the BFA,unc of HAcompared with Hunc is
0.24. This implies that HA is not better than the unconstrained
hypothesis and is consequently not supported by the data (account-
ing for model fit and complexity). The BFB,unc of HB compared
with Hunc is 4, indicating that support from the data is 4 times

stronger for HB than for Hunc. The BFC,unc indicates that support
from the data is 1.5 times stronger for HCthan for Hunc. In sum,
only HB and HC are supported by the data.

Using these results, one can compute a Bayes factor between two
informative hypotheses. The resulting Bayes factor is equal to the
ratio of the Bayes factor for each informative hypothesis compared
with the unconstrained hypothesis using Equation 2. The BFB,C for

hostile attribution between HB and HC is
4

1.5
� 2.66, which

means that the support for HB is 2.66 times stronger than the
support for HC. A comparison with HA is not necessary since the
constraints of this hypothesis are not supported by the data any-
way. In conclusion, there is no support for the expectation that an
increase in hostile intentions takes place for all three groups
following emotion manipulation, but there is support for the ex-
pectation that the increase in hostile intentions becomes larger
when the groups consist of more aggressive boys.

Similar computations can be performed for the aggressive re-
sponse; see Table 4. However, none of the hypotheses under
investigation are better than an unconstrained hypothesis. Conse-
quently, none of the hypotheses gives an adequate description of
the population from which the data were sampled. As a result,
there is no increase in aggressive response following emotion
manipulation, and there is no support for the expectation that the
increase in aggressive response becomes larger when the groups
consist of more aggressive boys. A combination of both hypoth-
eses, HC, receives even less support.

Complexity and Fit

For a better understanding of the Bayes factor and its relation
with model fit and model complexity, we elaborate on fi and ci. As
was shown before, Bayesian model selection provides the degree
of support for each hypothesis under consideration and combines
model fit and model complexity. It has a close link with classical
model selection criteria such as the Akaike information criterion
(AIC; Akaike, 1981) and the Bayesian information criterion (BIC;
Schwarz, 1978) that also combine fit and complexity to determine
the support for a particular model. However, in contrast with
Bayesian model selection, these classical criteria are as of yet
unable to deal with hypotheses specified using inequality con-
straints (Mulder et al., 2009; Van de Schoot, Romeijn & Hoijtink,
2009). In the specific application of Bayesian model selection used
in this article, the Bayes factor’s selection criteria also combine
model fit and complexity, but it is able to account for inequality
constraints. As we now illustrate, complexity and fit are (although
implicitly) also important parts of Bayesian model selection.

Table 4
Estimates for Bayes Factors (BFs) Against Hunc, Model Fit, and Model Complexity for HA, HB,
and HC

Hypothesis

Hostile Aggressive

fi ci BF fi ci BF

HA .06 .25 0.24 .23 .25 0.92
HB .64 .16 4.00 .02 .16 0.12
HC .03 .02 1.50 1e�6 .02 0.00
Hunc 1 1 1 1 1 1
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Model complexity. The first component of the Bayes factor is
model complexity, ci, which can be computed before observing any
data. The Bayes factor incorporates the complexity of a hypothesis by
determining the number of restrictions imposed on the means. Note
that model complexity is independent of the data because it is the
proportion of the prior distribution in agreement with the constraints.
Let us elaborate on this using our running example.

According to Sober (e.g., 2002), the simplicity of a hypothesis can
be seen as an indicator of the amount of information the hypothesis
provides. Classical model selection tools favor models that allow for
fewer possibilities and call such models simpler. Relating this to, for
example, the AIC and BIC, where complexity is measured as the
number of parameters in a model, the more dimensions are “shaved”
away, the simpler the model becomes. We maintain that there is also
such a natural relation between introducing inequality constraints and
ruling out possibilities, that is, when specifying such inequality con-
straints, a researcher also “shaves” away parameter space volume. In
sum, a simple hypothesis contains more restrictions and more infor-
mation and as such, is more specific and should be favored by the
model selection procedure.

Returning to our example, the most complex hypothesis is
always Hunc, in the sense that all combinations of means are
allowed and no constraints are imposed. Therefore, ci for Hunc is
equal to 1; see Table 4. Let us consider the hypotheses specified
for hostile attribution. There are two constraints specified for HB

(see Table 1). Consequently, not all combinations of means are
possible. HB is therefore considered simpler than Hunc. Three
constraints are specified for HA, and this hypothesis is even sim-
pler than HB. The simplest hypothesis is HC, because here the most
information is added: the constraints of HA in addition to the
constraints of HB. With respect to complexity, the hypotheses can
be ordered from simplest to most complex: HC, HB, HA.

In Table 4, estimates for model complexity are displayed and
our expected ordering for both hostile attribution and aggression is
confirmed. That is, the proportion of the prior distribution in
agreement with the constraints for HA is .25 and for HC only .02,
making this latter hypothesis less complex because more informa-
tion is specified in term of the number of inequality constraints.

Model fit. After observing some data, the second component
of the Bayes factor is model fit, fi. Loosely formulated, it quantifies
the amount of agreement of the sample means with the restrictions
imposed by a hypothesis.

Consider the sample means in Table 3. The observed sample
means fit perfectly with an unconstrained hypothesis because no
constraints are imposed on the means. Consequently, Hunc always
has the best model fit compared with any other informative hy-
pothesis and fi � 1; see Table 4. With respect to the informative
hypothesis on hostile attribution, it appears that one constraint is
violated for HA: The sample mean of the nonaggressive group for
the neutral condition is higher for the negative condition rather
than lower. As a result, the model fit of HA is worse than the model
fit for Hunc. For HB there appeared to be no violations of the
constraints. Since HC is a combination of the constraints of HA and
HB, there is one violation of the constraints imposed by this
hypothesis. In sum, with regard to model fit, HB performs better
than HA and HC, respectively.

In Table 4, estimates for model fit for the three informative
hypotheses on hostile attribution are displayed and as can be seen,
the expected ordering is confirmed. With regard to three informa-

tive hypotheses on aggression, the fit is rather low for all three
hypotheses. After computing fi and ci, the Bayes factor shown in
Equation (1) can be computed, for example, for hostile attribution:

BFB,unc �
fi

ci
�

.64

.16
� 4. (3)

As was correctly noticed by one of the reviewers, it can be illustrative
to provide more information than just the Bayes factors in terms of
model fit and model complexity. Information about the posterior
distributions of the means and their credibility intervals can be found
in Figure 1. The interpretation of a Bayesian 95% credibility interval
is that, for example, the posterior probability that Mneu,non for hostile
attribution lies in the interval from �.32 to .66 is .95 (see, e.g., Lynch,
2007). These intervals are often used in practice to decide whether
means differ from zero or from other means. It can, for example, be
seen that the posterior mean Mneu,non for aggression is .58 and that there
is a .95 probability that it is between .32 and .86. This credibility
interval does not include zero and, consequently, the null hypothesis
Mneu,non � 0 is rejected. Furthermore, it can be seen that the credi-
bility intervals for Mneu,non and Mneg,non for aggression show an overlap,
so the constraint Mneu,non � Mneg,non is not supported by the data.
Suppose we observed the same results (i.e., posterior means) but with
a larger sample size: The posterior distributions would be more
peaked. Hence, the overlap of the credibility intervals for Mneu,non and
Mneg,non will disappear. Consequently, the fit of the model would
increase. In the next section, we elaborate on the relation between
model fit on one hand, and effect size and sample size on the other
hand.

Bayes Factors Versus p Values

Recall that a Bayes factor provides a direct quantification of
support as evidenced in the data for two competing hypotheses.
Most researchers would agree that 100 times more support seems
to be quite a lot and, for example, that 1.04 times more support is
not that much. However, clear guidelines are not provided in the
literature, and we do not provide these either. We refrain from
doing so because we want to avoid creating arbitrary decision
rules. Remember the famous quote about p values: “[. . .] surely,
God loves the .06 nearly as much as the .05” (Rosnow &
Rosenthal, 1989, p. 1277).

To gain insight into the interpretation of Bayes factors in com-
parison with p values, consider the following imaginary example.
Suppose there are six means, denoted by M1, . . . , M6, and that the
informative hypothesis of interest is HD: M1 � M2 � M3 � M4 �
M5 � M6. We created data in such a way that the sample means
and variance correspond exactly to population values, as shown in
Footnote 1 in Table 5. Now let us compare

1. The F test for traditional frequentist analysis,

2. Planned comparisons for thoughtful frequentist analysis
assuming a linear increase

�� 2.5 � M1 � � 1.5 � M2 � � .5 � M3 � .5 �

M4 � 1.5 � M5 � 2.5 � M6	,
and

3. Bayesian evaluation of informative hypotheses using
BFs as described above for BFD,unc.
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We ran these analyses for different populations with a small and
medium effect, a small and large sample size, and zero, one, and
two violations of the ordering; see Table 5. Comparison of the
resulting p values with the Bayes factors provides insight into the
interpretation.

As can be seen in Table 5, for some of the data, the classical F
test is not significant, although there are differences between the
means within the population (i.e., Populations 2, 6, 8). This result
indicates a power problem that is not shared by the planned
comparison and the Bayes factor. The results for the planned

comparison indicate that for all populations, apart from the null
Population 1, there is a significant linear increase in the six means
even with one or two violations of the constraints.

Inspection of the Bayes factors indicates that their value is depen-
dent on, first, effect size. Compare, for example, Population 2 with
Population 4, with Bayes factors 29 versus 91, respectively. Second,
consider the sample size and compare, for example, Population 2 with
Population 3, with Bayes factors 29 versus 470, respectively. Finally,
look at the number of violations. Compare, for example, Populations
2, 6, and 8 with 0, 1, and 2 violations and with Bayes factors of 29,

Figure 1. Posterior distributions for all groups on the dependent variables hostile attribution and aggressive
responses. Note that “mn” denotes posterior mean and “CI” denotes the Bayesian credibility interval.
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20, and 4, respectively. In the latter population there is still support for
the informative hypothesis, but 4 is clearly not a great deal of support
in comparison to the other, much larger, results.

Recall the posterior means presented in Figure 1. Suppose the
sample size is increased; then the posterior distributions will
become more peaked, and the overlap between distributions will
disappear. Stated otherwise, the Bayes factor will increase with
increasing sample size because of an increase in model fit. The
same holds for an increase in effect size, that is, the further the
posterior means are away from each other, the less overlap there is
between distributions.

What can be learned from this exercise? First, Bayes factors are
sensitive for effect size, the number of violations, and sample size.
When comparing informative hypotheses, the complexity of each
hypothesis under investigation is independent of these three con-
cepts, as we showed before. It is the fit of the model that is
influenced by the three concepts; in other words, the fit of a model
will increase with higher effect sizes, a decrease in the number of
violations, and an increase in sample size. Second, in this section
we specified only one single informative hypothesis, which we
evaluated with Bayes factors and p values. It is interesting to note
that the Bayes factor tells us exactly how much better a certain
informative hypothesis is against another hypothesis. In compari-
son, a p value tells us the probability, given that the null hypothesis
is true, of observing the same data or more extreme data than those
actually observed. The p value, however, is often misinterpreted as
the probability that the null hypothesis is true. Recall that if we
were to specify more informative hypotheses, it would be difficult,
or even impossible, to use p values as was shown before.

Conclusion

In this article, we showed how subjective beliefs influence
analyses in hidden ways and how they might be incorporated
explicitly. Researchers in developmental psychology often have
explicit expectations about their research questions, or as Lee and
Pope (2006) say, “In the real-world much is usually already known
about a problem before data are collected or observed.” As we
have shown, these expectations can be translated into informative
hypotheses. However, as we demonstrated with a case study, the
average researcher wants to evaluate such informative hypotheses

but tests a set of null hypotheses. We argued that researchers
should not use traditional frequentist analysis, not even thoughtful
frequentist analysis, if they are not interested in the conclusion that
the observed data either are or are not in agreement with the null
hypothesis. Rather, researchers should directly evaluate all of the
informative hypotheses under investigation without relying on a
test of the null hypothesis. This can be done using Bayesian model
selection. This way, researchers can use all of the knowledge
available from previous investigations and can learn more from
their data than they can with traditional null hypotheses testing. All
criticisms of null hypothesis testing aside, the best argument for
evaluating informative hypotheses is probably that, like Orobio de
Castro et al. (2003), many researchers want to evaluate a set of
hypotheses formulated with inequality constraints but have been
unable to do so because the statistical tools were not yet available.
As this article has illustrated, these tools are available to any
researcher.
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