

 University of Groningen

Controlling the order pool in make-to-order production systems
Germs, Remco

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Germs, R. (2012). Controlling the order pool in make-to-order production systems. University of Groningen,
SOM research school.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/5ea5193a-eeb6-4344-8e14-619be97a74cc

Controlling the Order Pool in Make-To-Order

Production Systems

Remco Germs

Publisher: University of Groningen

Groningen, The Netherlands

Printer Ipskamp Drukkers B.V.

Enschede, The Netherlands

ISBN: 978-90-367-5262-6 (book)

978-90-367-5261-9 (e-book)

c© 2012, Remco Germs

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system of any nature, or transmitted in any form or by any means, electronic, mechan-

ical, now known or hereafter invented, including photocopying or recording, without

prior written permission of the author.

This document was prepared using LATEX.

Controlling the Order Pool in Make-To-Order

Production Systems

Proefschrift

ter verkrijging van het doctoraat in de

Economie en Bedrijfskunde

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. E. Sterken,

in het openbaar te verdedigen op

donderdag 19 januari 2012

om 14.30 uur

door

Remco Germs

geboren op 23 mei 1981

te Stadskanaal

Promotor: Prof. dr. ir. J. Slomp

Copromotores: Dr. J. Riezebos

Dr. N. D. van Foreest

Beoordelingscommissie: Prof. dr. N. Vandaele

Prof. dr. I. F. A. Vis

Prof. dr. W. H. M. Zijm

Opgedragen aan mijn vriendin,

Lutiena Bouwers.

Contents

1 Introduction 1

1.1 Make-To-Order Production . 2

1.2 Controlling the Order Pool . 3

1.3 Research Objectives and Themes 7

2 Order Release: Unit-Based Pull Systems 15

2.1 Introduction . 16

2.2 Pull Systems . 17

2.3 Research Questions . 23

2.4 Experimental Design . 26

2.5 Results . 28

2.6 Conclusions . 33

3 Order Acceptance: State-Dependent Bulk Queues 37

3.1 Introduction . 38

3.2 Applications and Literature Review 39

3.3 Model . 41

3.4 Special Cases . 42

3.5 Semi-Regenerative Analysis of the Model 45

3.6 Algorithmic Aspects . 52

3.7 Performance Measures . 53

3.8 Numerical Examples . 55

4 Order Acceptance: Setups & Strict Lead Times 61

4.1 Introduction . 62

4.2 Theoretical Background . 64

4.3 Production System, Admissible Policies, and Objective Function . 65

4.4 The Markov Decision Process . 69

4.5 Numerical Study . 75

4.6 Conclusions and Extensions . 85

5 Order Acceptance: Family-Dependent Lead Times 87

5.1 Introduction . 88

5.2 Model Framework . 90

5.3 Heuristic Policies . 94

5.4 Numerical Study . 96

5.5 Summary and Extensions . 104

6 Summary and Suggestions for Further Research 107

Bibliography 112

Samenvatting (Summary in Dutch) 123

Dankwoord 127

Chapter 1

Introduction

This chapter discusses the importance of short and reliable delivery times for

make-to-order companies. It distinguishes three production control decisions

that affect the delivery performance of such companies. Two of them, order

acceptance and order release, are the focus of the research in this thesis. This

chapter provides an overview of the order acceptance and order release problems

that are explored and how they relate to the overall problem of achieving short

and reliable delivery times.

1

1.1 Make-To-Order Production

In this thesis we focus on manufacturing firms that operate in a make-to-order

(MTO) environment. In such an environment, all operations necessary to man-

ufacture each specific product start after the receipt of a customer order. This

manufacturing strategy allows firms to produce a high diversity of products in

small quantities.

The MTO strategy is gaining more importance. The trend of outsourcing stan-

dard products that can be produced to forecast to low-wage countries has encour-

aged manufacturers in Western economies to shift their production from make-to-

stock to make-to-order. Technological developments have given manufacturing

companies the ability to provide their customers a large number of options in their

products without incurring high additional costs for such customization. Along

with this has come an increased demand for customized products which has led

to a growth in the diversity of products that are produced to order (Stevenson

et al., 2005).

In addition, customers today expect much faster and reliable delivery of their

products than was acceptable in the past (Suri, 2010). Since MTO production

is driven by customer orders, the length and predictability of time to complete

an order (throughput time) directly determines the length and reliability of the

delivery time of an order. As a result, for MTO firms it is becoming more and

more of strategic importance that the throughput time of an order is short and

predictable.

However, throughput times in MTO firms are in general long and unpredictable.

Due to the high diversity of end-products, there is a high level of variability with

respect to the routings (sequence of workstations visited by an order) and the

processing times of orders. As a consequence, different orders with distinct pro-

cessing requirements compete on the shop floor for the capacity of the same set

of resources (i.e. workstations and workers). The limited capacities of the man-

ufacturing resources cause orders to wait for the availability of these resources,

resulting in queues of orders. In fact, the actual process time of an order (in-

cluding setups, downtime, etc.) typically represents only a small fraction (5 to

10 percent) of the total throughput time of an order, while the majority of the

extra time is spent on waiting in queues (Bradt, 1983, Hopp and Spearman,

2008). In addition, due to setup times and the high variability of arrivals, rout-

ings and processing times, the throughput times of orders in MTO environments

are unpredictable.

2

This thesis is motivated by the aforementioned observations and mainly concen-

trates on policies for controlling the queues in MTO production so that delivery

dates can be met, whilst good use is made of the available capacity. We continue

in Section 1.2 with a discussion on how production control can influence the

length of queues in MTO production. Section 1.3 introduces the main research

problems addressed in this thesis.

1.2 Controlling the Order Pool

Production control can influence the length of queues by means of input or output

control decisions. Input control regulates the amount of work (workload) that

is allowed to flow into the production system, onto the shop floor or into a

particular queue. Output control is the control of orders out of the production

system, shop floor or queue and is achieved by adjusting capacity. In this thesis

we focus on input control decisions and consider production capacity to be a given

constraint, limited in the short run by the output control decision. In many MTO

environments in which machines are the primary constraint the assumption that

capacity is fixed in the short run is realistic; controlling short term fluctuations

in workload by adjusting capacity is simply too costly in machine-capacitated

production environments.

There are three decision moments in the flow of an order at which input control

can regulate the length of queues in an MTO production system (Land and

Gaalman, 1996):

(i) Dispatching – day to day shop floor control;

(ii) Release – short term production planning;

(iii) Acceptance – medium term production planning.

Traditionally a lot of attention has been given to the dispatching decision which

is concerned with the choice which order to select next for processing after the

operation of another order has been completed. The dispatching decision is made

locally and on-line at each workstation and is generally based on some priority

rule. Literally hundreds of different dispatching rules have been proposed by

researchers as well as practitioners (see Blackstone Jr. et al., 1982, Haupt, 1989,

Ramasesh, 1990, for extensive surveys) which makes this topic a bit overem-

phasized considering the fact that dispatching is a relative weak mechanism to

control the length of queues, especially, if used alone (Hendry et al., 1998).

3

In this thesis we therefore focus on stronger instruments to control the length

of queues: order release and order acceptance. Figure 1.1 illustrates these two

decision moments in the flow of an order through an MTO production system. In

what follows we provide a short description of the order release and order accep-

tance decisions, discuss their importance and concentrate on the most important

ingredients of MTO production which complicate the control of queues at these

decision moments. We refer to Land (2004) and the references therein for a more

detailed summary on research regarding input control.

ac
ce

pt
an

ce

re
le

as
e

co
m

pl
et

io
n

shop

floor

order

pool

throughput time

floor time

Figure 1.1: Order acceptance and order release decisions in the flow of an order.

1.2.1 Order Release

Order release decides when an order is authorized to enter the shop floor and

to start its first operation. Until the release of an order to the floor, the order

is just an item in the order pool (see Figure 1.1). In this thesis we focus our

attention on an order release method that has become one of the cornerstones

of modern manufacturing practice (Hopp and Spearman, 2004): pull production.

A pull production system controls the throughput time of orders by constraining

the workload on the shop floor.

The simplest way to constrain the workload on the shop floor is by controlling

the number of orders on the shop floor. Alternatively, the workload can be

constrained by controlling the work content (processing time) of orders. Pull

systems that control the number of orders on the shop floor are referred to as unit-

based and pull systems that constrain the workload based on the work content of

orders as load-based. The simplest unit-based pull system that is also applicable

in MTO production is CONWIP (Hopp and Spearman, 2008). CONWIP is a

4

system that uses cards to maintain a constant maximum amount of orders on

the shop floor. The most comprehensive example of a load-based pull system is

Workload Control (WLC, see Thürer, 2011, for a recent literature review). WLC

methods regulate the release of jobs by considering the current load (e.g., at

each workstation), workload constraints and order characteristics (e.g., processing

time).

The main reason for constraining the amount of work on the shop floor is to

control the shop floor time of orders. By Little’s law (Little, 1961), for a given

arrival rate of orders a low level of average total workload on the shop floor implies

a short average floor time. An additional advantage of controlled release is that

it creates a transparent shop floor situation and therefore makes problems in the

production process more noticeable (Hopp and Spearman, 2004). Our empirical

findings (Slomp et al., 2009) also show that reducing the workload on the shop

floor leads to improved quality of work and improved productivity of workers.

In spite of these advantages, many authors (e.g., Kanet, 1988, Melnyk and Ra-

gatz, 1988) have long-since dismissed the concept of pull production in MTO

environments, arguing that while controlled release reduces the shop floor time

of orders, the total throughput time of orders increases. This is because the

workload constraint blocks the release of orders whenever the workload limit is

reached. When this happens, arriving orders have to wait in the order pool until

the workload on the shop floor drops below the limit. Constraining the release

of orders to the shop floor therefore increases the order pool time. As a result,

they argue that the reduction in the floor time will be offset by the increase in

the order pool time.

Recent literature (e.g., Land, 2004, Vandaele et al., 2008, Thürer, 2011) shows

that some load-based pull system are able to reduce the total throughput time, if

the system improves the balance of the workload on the shop floor, such that the

variability of the workload at each workstation decreases. These pull methods are

able to balance the workload on the shop floor by restricting the release of orders

to workstations that are busy and by releasing orders to workstations that are

waiting for work. The resulting more balanced arrival pattern of orders at each

workstation leads to less blocking of the release of orders and thereby to a shorter

order pool time for a given floor time. A disadvantage of load-based pull systems

is their complexity. One of the problems with the implementation of advanced

control systems is that the workforce does not understand the underlying logic

of the system (Hendry et al., 2008). Hence, with respect to implementation,

an important advantage of unit-based pull systems is their simplicity. However,

5

whether unit-based pull systems can reduce shop floor and total throughput time

simultaneously is still an open question.

1.2.2 Order Acceptance

As can be seen from Figure 1.1, the first decision moment in the flow of an order

at which the amount of work in the production system can be controlled is order

acceptance. Order acceptance largely determines the throughput time of orders

in an MTO environment. Accepting too many orders leads to an over-loaded

production system, in which throughput times increase and orders are increas-

ingly delivered late (Ebben et al., 2005). Order acceptance thereby determines

the constraints for the subsequent order release decision: once too many orders

have been accepted, orders remain in the order pool for too long thereby missing

their promised delivery dates. Hence the order release decision can itself only be

fully effective if the queue of orders in the order pool is also controlled.

The decision which orders to accept and which to reject depends on the strategic

direction of the firm, the current status of capacity already allocated, and the

profitability of the order in question (Slotnick, 2011). In particular, there is a

trade-off between the revenue brought in by a particular order, and all of its

associated costs of processing, which includes the opportunity costs of having to

reject later arriving orders.

There are a number of ways that firms can respond to the trade-off between

cost of capacity and per-order revenue. The first option is to try to negotiate or

renegotiate on delivery dates and prices. In the past, much research has been

done in related areas of lead time estimation (Slotnick and Sobel, 2005, Öztürk

et al., 2006), revenue management (Çelik and Maglaras, 2008), and due-date

setting (Baker and Bertrand, 1981, Baker, 1984, Cheng and Gupta, 1989). In

this thesis, we approach the trade-off by limiting ourselves to the decision which

orders to accept and reject. In particular, the decision-maker is faced with a

stream of randomly arriving orders and has the option of rejecting some of those

orders if the available capacity is insufficient to meet promised delivery dates.

Due to the high variety of products, the large number of customers, and un-

certainty in demand in MTO environments, the order acceptance problem is in

general very complex. In order to reduce the complexity of the order acceptance

problem typically some form of order classification is applied. That is, orders

are grouped into families based on similar production characteristics, order lead

6

times and revenues.

Order acceptance policies differ in the amount of information they use from the

state of the production system (e.g., the workload and progress of previously ac-

cepted but not yet completed orders). At one extreme we have static admission

policies that specify a priori whether each order family is admitted, based on the

revenue that orders of this family generate and their expected capacity require-

ments. This specification is made independently of information about the state

of the production system and is equivalent to determining whether one order

family is preferred over the other. As an example, irrespective of the available

capacity, a wholesaler generally does not accept small orders as the processing of

small orders is not profitable at the low prices they quote.

On the other hand, dynamic admission policies make the decision of admitting

an arriving order contingent on the current level of congestion upon arrival in

the production system, in addition to the order family. Thereby dynamic strate-

gies offer more flexibility in the allocation of resource capacity among different

order families. Besides the use of state information, the performance of the pro-

duction system can be improved significantly if order acceptance and scheduling

decisions are considered jointly. This is especially important when a company

faces large setup times from manufacturing one order family to another. Most

literature on order acceptance however considers the two issues (order acceptance

and scheduling) separately, undermining the company’s profit and degrading the

company’s service level (Carr and Duenyas, 2000). This joint acceptance and

scheduling problem recently received a lot of attention (see, e.g., Huang et al.,

2011, Slotnick, 2011).

1.3 Research Objectives and Themes

Characteristics of MTO environments (such as the high variety of products, setup

times, due-dates, random arrival of customer orders) make the control of queues

in these environments a complex problem. A first approach to find good ways

to control the length of queues in such a complicated situation is to analyze

simple models that include only the most important ingredients of the complex

real problem (Wijngaard, 2007). Second, the general insights obtained from

these simple models can then be evaluated in more complex (possibly simulation)

models, to check how robust these findings are and whether they can be used in

real situations. Our focus in this thesis will be on the first part of this approach.

7

The main research objectives of this thesis are as follows:

1. To better understand the underlying mechanisms of good order acceptance

and order release policies for MTO production environments;

2. To use these insights to develop simple order acceptance and order release

policies to control queues in MTO production so that delivery dates can be

met, whilst good use is made of the available capacity.

The reason to look explicitly for simple policies is that in MTO environments

control decisions are often made by people. For a successful implementation of

a control policy it is crucial that the workers understand the underlying logic of

the policy (Fransoo et al., 2011). This makes it possible to use their insights and

experience which further contributes to the performance of the control policy.

The thesis consists of two research themes corresponding to the two input control

decisions we consider. In the first theme we consider the order release decision

while the second theme focuses on the order acceptance decision. The following

two paragraphs outline the content of these two research themes.

Theme 1 Order Release A popular way of controlling the workload on

the shop floor is by means of unit-based pull systems. The popularity of these

unit-based systems is for a large extent due to their ease of control (Hopp and

Spearman, 2004) as this can be done using no more then a set of cards. Figure 1.2

illustrates how the CONWIP unit-based pull system uses cards to control the

release of orders onto the shop floor.

shop floor:
network of workstations,
orders waiting in queues

order pool

card box
order departures

order arrivals

card returns to card box

Figure 1.2: Representation of the CONWIP unit-based order release system.

In the figure, the shop floor is modeled as a network of workstations, each with

a number of orders waiting to be processed. We see accepted orders entering the

order pool. Signals are used to authorize the release of orders to the shop floor.

Although these signals can be electronic we refer to them as cards.

8

The cards control the release of orders as follows. An order may only enter the

shop floor if a free card can be attached to it. Upon completion, the order leaves

the shop floor to fulfill the customers demand while the detached card is placed

in a card box, where it waits until it is attached to a new order in the order book.

In this system, each time an order leaves the shop floor the order book receives

a signal to authorize the release of a new order. Because no order can enter the

shop floor without a card attached to it, the number of orders on the shop floor

is constrained by the number of cards circulating on the shop floor and in the

card box.

Literature on unit-based pull systems that are applicable in MTO environments is

scarce (Stevenson et al., 2005, Framinan et al., 2003). The unit-based pull systems

that do seem suitable for MTO companies – POLCA, CONWIP and m-CONWIP,

according to Stevenson et al. (2005) and Hopp and Spearman (2008) – receive

only limited attention in performance comparisons. Moreover, all research into

the performance of unit-based pull systems focuses on shop floor throughput time

and workload levels and not on the performance indicator that is most relevant

for MTO companies: total throughput time.

The first research theme of this thesis aims at making a start to fill this gap

in the literature by analyzing throughput time performance and applicability of

unit-based pull systems in an MTO environment. The following three papers

contributing to the first theme are published or accepted for publication in in-

ternational academic journals:

1. Slomp, J., J. A. C. Bokhorst and R. Germs. 2009. A lean production

control system for high-variety/low-volume environments: A case study

implementation. Production Planning & Control 20(7) 586–595.

2. Germs, R. and J. Riezebos. 2010. Workload balancing capability of pull

systems in MTO production. International Journal of Production Research

48(8) 2345–2360.

3. Ziengs, N., J. Riezebos and R. Germs. 2011. Placement of effective work-

in-progress limits in route-specific unit-based pull systems. Accepted for

publication in the International Journal of Production Research.

Slomp et al. (2009) investigate by means of a case study/action research method

how a unit-based pull system can be successfully implemented in a high-variety/-

low-volume MTO environment. Germs and Riezebos (2010) and Ziengs et al.

(2011) use a simulation model to address the question whether unit-based pull

9

systems are able to reduce the total throughput time by improving the workload

balance in an MTO system.

From these three papers we have selected the second paper to be included in this

thesis as Chapter 2. The reason being that the author of this thesis is the first

author of that paper.

Theme 2 Order Acceptance The second and major theme of this thesis

concerns the problem of accepting and processing a stream of randomly arriving

orders.

We start with considering a firm that supplies one type of product on order.

Customer orders arrive randomly; each order concerns a batch of one product

type. The firm has a single production process with finite capacity that produces

the products in a batch-wise manner. To control the throughput times of orders,

the firm has the possibility to reject customer orders. The problem of the firm

is to determine a good acceptance strategy such that a given throughput time

performance can be realized; and to find a batch service policy that determines,

once a service batch is finished, when to start a new batch service.

This production situation has many applications. Good examples of batch-wise

production systems are the ovens that can be found in the aircraft and manufac-

turing industry. A typical batch-wise process in the aircraft industry concerns the

hardening of synthetic parts (Hodes et al., 1992, Van der Zee et al., 2001). Batch

sizes are limited by the physical size of the oven and by a process constraint,

which determines a maximum fill rate for the oven. The trade-off involved in

the decision when to start a new batch service includes the balancing of rejec-

tion costs and logistical costs (e.g., stock keeping, machine utilization) against

customer service requirements (e.g., short and reliable throughput times). Ad-

ditional applications that possess more or less similar characteristics are in the

serving of passengers by elevators, shuttle busses and ferries, and congestion con-

trol mechanisms to regulate transmission rates in packet-switched communication

networks.

The described systems are known in the literature as batch arrival and batch ser-

vice queues (usually called bulk queues) with restricted accessibility. A queueing

system has restricted accessibility if not every customer (order) is admitted to

the system. For such a system the admittance of an order will in general depend

on the state of the queueing system at the moment of it’s arrival. A system with

a limited number of places in queue is a typical example of restricted accessibility

10

(Cohen, 1969): an arriving order that does not find sufficient room in the queue

is not admitted.

To determine optimal system configuration, good admission control policies, and

optimal batch sizing policies for these bulk queueing systems, it is helpful for

managers and operators to be able to compute relevant performance measures,

such as the average time of orders in the system (i.e., throughput time), moments

of the number of accepted orders and rejection probabilities for arriving orders.

In this thesis we therefore develop a simple, numerically stable, and efficient

algorithmic method that allows the performance evaluation of various alterna-

tive system configurations and policies for bulk queueing systems with restricted

accessibility.

The following two papers that consider the bulk queueing system with restricted

accessibility are published or are under review for journal publication at the time

of finishing this thesis:

1. Germs, R. and N. D. van Foreest. 2010. Loss probabilities for theMX/GY /

1/K bulk queue. Probability in the Engineering and Informational Sciences

24 457–471.

2. Germs, R. and N. D. van Foreest. 2011b. Analysis of finite-buffer state-

dependent bulk queues. Under revision.

We included Germs and Van Foreest (2011b) in this thesis as Chapter 3 as this

paper generalizes the model considered in Germs and Van Foreest (2010).

We continue by considering a production situation in which we generalize the

above situation by including two important ingredients which are present in many

MTO environments: setup times and due-dates. That is, we consider a produc-

tion situation in which different items are produced on one machine. Customer

orders drive the production and belong to product families, and have family de-

pendent due-date, size, and profit margin. When production changes from one

family to another a setup time is incurred. Orders are to be delivered on-date to

customers and orders may be rejected if these orders cause late deliveries. For

this production situation, it is critical to selectively accept and schedule customer

orders, so that neither manufacturing capacity gets wasted on setups nor high

profit earning orders are turned down because low profit earning orders have been

previously accepted. This requires that order acceptance and scheduling decisions

are considered jointly instead of separately, as mentioned before in Section 1.2.2.

11

Following Markowitz, Reiman, and Wein (2000), Markovitz and Wein (2001) and

Winands et al. (2011) we will refer to this order acceptance and scheduling prob-

lem as the Customized Stochastic Lot Scheduling Problem (CSLSP) with strict

due-dates.

There are many papers illustrating that the CSLSP is a common problem in

practice; the Ph.D. thesis of Ten Kate (1995) contains an industrial motivation

for this problem and describes specific applications, e.g., in a cardbox production

plant and in the production of granulated plastics. Some other applications

described in the open literature are in the production of steel tubes of various

kinds and lengths to order (see Bertrand et al., 1990), production of baseball bats

from aluminium tubes of different diameters (see Schmidt et al., 2001), scheduling

of packaging pharmaceuticals on order (see Strijbosch et al., 2002) and forming

effective batch sizes for an NMR scanner (see Vandaele et al., 2003).

The off-line counterpart of the CSLSP (that is, a scheduling problem in which all

orders are known in advance rather than become known in the course of time) is a

special case of the (NP-hard) Vehicle Routing Problem with selective pickups and

time windows, which has many applications, e.g., in reverse logistics operations

(Gutiérrez-Jarpa et al., 2010). Efficient (heuristic) algorithms for solving the off-

line CSLSP have recently been proposed by Oǧuz et al. (2010) and Huang et al.

(2011).

Literature on how to approach the CSLSP is however very limited and mostly

simulation based, such as Wester et al. (1992), Ten Kate (1995), Van Foreest et al.

(2010). The detailed state description which is necessary to make rescheduling

decisions upon order acceptance makes an analytical approach for finding an

optimal policy for the CSLSP impossible for realistic problem instances. In this

thesis we aim to make a start at filling this gap in the literature by studying a

method to formulate the CSLSP as a Markov decision process (MDP) to gain

insight into the optimal control of the production system.

The following two papers related to the CSLSP with strict due-dates are pub-

lished or submitted for journal publication at the time of finishing this thesis:

1. Germs, R. and N. D. van Foreest. 2011a. Admission policies for the cus-

tomized stochastic lot scheduling problem with strict due-dates. European

Journal of Operational Research 213(2) 375–383.

2. Germs, R. and N. D. van Foreest. 2011c. Order acceptance and sequenc-

ing policies for a make-to-order environment with setup times and family-

12

dependent lead times. Submitted.

Germs and Van Foreest (2011a) provide an MDP formulation for CSLSP with

strict due-dates and use the MDP to benchmark the performance of a simple

heuristic acceptance/scheduling policy. Germs and Van Foreest (2011c) extend

the model by considering family-dependent lead times. The papers are comple-

mentary to each other so we included Germs and Van Foreest (2011a) and Germs

and Van Foreest (2011c) in this thesis as Chapter 4 and Chapter 5. We tried to

remove overlap in these chapters by skipping the literature overview section and

the formal specification of MDP model in Chapter 5 of the thesis.

13

14

Chapter 2

Order Release: Unit-Based

Pull Systems

In this chapter we study the throughput time performance of three order release

policies that control the number of orders on the shop floor by just using a set of

cards: CONWIP, m-CONWIP and POLCA. Due to their ease of control, these

so-called unit-based pull systems are widely implemented in practice. However,

all research into the performance of these pull systems focuses on shop floor

throughput time and workload levels and not on the performance indicator that

is most relevant for make-to-order companies: total throughput time. Their

effectiveness in terms of reducing total throughput time is questioned. Theory

states that an improvement in the average total throughput time will be due

to the workload balancing capability of an order release system, but that many

order release systems lack this capability. This chapter shows that this workload

balancing capability exists for POLCA and m-CONWIP, but not for CONWIP.

The magnitude of the effect differs strongly and depends on the configuration of

the system, the order arrival pattern and the variability of the processing time

of the orders.

15

2.1 Introduction

Nowadays, many make-to-order (MTO) companies focus on realising short through-

put times as a competitive edge. Material control is an important part of the

chain of tools used in realising short throughput times. A material control system

regulates the flow of goods on the shop floor. This includes the authorisation to

start an order, the release of new material on the shop floor, setting priorities

for orders that are waiting to be processed, and initiating the start of succeeding

activities, such as transport, quality control, etc.

Pull systems are a special type of material control system. They aim to control

the throughput times of orders by constraining the amount of work (workload)

on the shop floor (Hopp and Spearman, 2004). The simplest way to constrain

the workload on the shop floor is by controlling the number of orders on the shop

floor. Alternatively, the workload can be constrained based on the work content

(processing time) of orders. We refer in this chapter to pull systems that control

the number of orders on the shop floor as unit-based pull systems and to pull

systems that constrain the workload based on the work content of orders as load-

based pull systems. The Kanban material control system (Sugimori et al., 1977)

is a well-known unit-based pull system, while WLC (Work Load Control, see

Gaalman and Perona (2002) for a discussion) is the most sophisticated example

of a load-based pull system. We restrict our attention to unit-based pull systems

that control the throughput time of orders in an MTO environment. However,

unit-based pull systems that are applicable in an MTO environment are scarce.

This chapter discusses the throughput time performance of three unit-based pull

systems that, according to Stevenson et al. (2005), appear to be suitable in an

MTO environment: POLCA, CONWIP and m-CONWIP.

The throughput time performance of a pull system in an MTO environment

depends on its capability to create a balanced distribution of the workload among

the workstations on the shop floor. This capability of a pull system is known in

the literature as the workload balancing capability (Land and Gaalman, 1998).

The workload balancing capability of a pull system results in better control of the

time of arrival of orders at the workstations on the shop floor. As a consequence,

the average queue length required in front of these workstations to achieve a

given utilisation level becomes smaller. This reduces the time between the release

and completion of an order and might reduce the time between the arrival and

completion of an order. We refer to the former as the shop floor throughput

time and to the latter as the total throughput time of orders (see Section 2.2

16

for a detailed description of these two throughput time measures). We call the

workload balancing capability of a pull system effective when the constraint on

the workload results in both a reduction of the average shop floor throughput time

and average total throughput time compared with the unconstrained system.

There are few published reports that are able to demonstrate the effective work-

load balancing capability of pull systems. The literature on workload control

(e.g., Kanet, 1988, Melnyk and Ragatz, 1988) even suggests the existence of a

paradox related to the absence of this workload balancing capability in unit-based

pull systems. While practical implementations show significant reductions in the

total throughput time of orders, simulation studies show that constraining the

workload on the shop floor leads to both shorter shop floor throughput times and

longer total throughput times. There are some studies, such as those of Land

and Gaalman (1998), Breithaupt et al. (2002), and Land (2004), that show the

existence of an effective workload balancing capability in load-based pull systems.

However, we are not aware of any study that shows the existence of an effective

workload balancing capability in unit-based pull systems.

The central question posed in this chapter is whether unit-based pull systems

can have an effective workload balancing capability in an MTO environment.

We introduce an MTO production system that perfectly suits pull systems that

are able to balance the workload. By means of a simulation study, we analyse

the workload balancing capability of POLCA, CONWIP and m-CONWIP in this

specific production system. In the simulation study several experimental factors

are varied, such as the processing time of orders and the order arrival pattern,

to determine their influence on the magnitude of the workload balancing effect.

The structure of this chapter is as follows. Section 2.2 focuses on pull systems in

MTO environments and describes the characteristics of the three unit-based pull

systems considered in this chapter. Section 2.3 presents the research questions

and Section 2.4 the design of the simulation study. Section 2.5 discusses the

results and Section 2.6 concludes.

2.2 Pull Systems

As briefly mentioned in the Introduction, the literature on unit-based pull systems

that are applicable for an MTO environment is scarce. Well-known unit-based

pull systems such as Kanban are designed for make-to-stock (MTS) situations,

as they use small intermediate stocks. In these pull systems, cards or containers

17

(bins) are directly related to a specific product type. For example, an empty

bin signals that it should be filled with exactly the same product type as before.

For MTO companies, such a direct relation between signal and product type

is not practically viable. MTO companies face a much greater product variety,

which would lead to an unreasonable large number of different bins. In turn,

the repetition of identical orders is not that frequent, which would lead to long

waiting times of the intermediate stock in a bin. The combination of both effects

would result in large work-in-process inventories.

There are some unit-based pull systems that are applicable in MTO companies

(Stevenson et al., 2005). However, the unit-based pull systems that seem suitable

for MTO companies (POLCA, CONWIP and m-CONWIP according to Steven-

son et al. (2005)) receive only limited attention in performance comparisons.

Framinan et al. (2003) provide an overview of 15 comparison studies of CON-

WIP with other material control systems, but only two of these studies consider

the applicability of these systems in an MTO environment. The POLCA system

is not included in one of these comparison studies. Fernandes and do Carmo-

Silva (2006) do include the performance of POLCA, but again only for an MTS

system. Studies that analyse the throughput time performance of unit-based

pull systems in an MTO environment are therefore still largely lacking. This

chapter aims at making a start to fill this gap in the literature by considering

the throughput time performance of POLCA, CONWIP and m-CONWIP in an

MTO environment.

To determine the throughput time performance of these unit-based pull systems,

we distinguish in this chapter three (complementary) measures of the throughput

time of orders that can be influenced by controlling the workload in an MTO

production system. Figure 2.1 illustrates these measures graphically by the flow

of an order through an MTO production system. Orders arrive at the production

system and the material control system determines when an order is released to

the shop floor. Until release to the shop floor the order waits in the order pool. As

Figure 2.1 illustrates, we refer to the average time an order spends waiting in the

order pool as the average order pool time (OPT) and to the average time between

the release and completion of an order as the average shop floor throughput time

(STT). The average total throughput time (TTT) is defined as the average time

between the arrival and completion of an order and is therefore the sum of OPT

and STT.

Pull systems can influence the STT by constraining the workload on the shop

floor. If the total workload on the shop floor is low, according to Little’s law

18

A
rr

iv
al

R
el

ea
se

C
om

pl
et

io
n

shop

floor

order

pool

TTT

STT

TTT: Average total throughput time

STT: Average shop floor throughput time

OPT OPT: Average order pool time

Figure 2.1: Throughput time measures in an MTO production system.

(Little, 1961), the STT will be short. However, a short STT does not necessarily

mean a short TTT. The workload constraint blocks the release of orders whenever

the workload limit is reached. When this happens, arriving orders have to wait

in the order pool until the workload on the shop floor drops below the limit.

Constraining the release of orders to the shop floor therefore increases the OPT.

As a result, the reduction in the STT can be offset by the increase in the OPT.

To reduce the TTT, the pull system must improve the balance of the workload

on the shop floor, such that the variability of the workload at each workstation

decreases. Pull systems can balance the workload on the shop floor by restricting

the release of orders to workstations that are busy and by releasing orders to

workstations that are waiting for work. The resulting more balanced arrival

pattern of orders at each workstation leads to less blocking of the release of

orders and thereby to a shorter OPT for a given STT. In case the constraint on

the workload imposed by the pull system results in a reduction in STT that is

higher than the increase in OPT, we call the workload balancing capability of

the pull system effective for this workload constraint.

Figures 2.2(a) and (b) illustrate workload balance in a shop floor consisting of

four workstations (A, B, C and D).

A

C

D

B

xx
xx
x
xxxxxx

x
xxxxxxx A

C

D

Bx x
x
x

xx
xxx x

(a) (b)

Figure 2.2: Shop floor without (a) and with (b) workload balancing.

19

Two types of orders (represented by black and white rectangles in the figure) are

produced that differ with respect to the routing they follow on the shop floor.

White orders follow route A→B→C, whereas black orders follow route A→B→D.

In Figure 2.2(a), the workload on the shop floor is not balanced. That is, work-

station C is very busy, whereas workstation D is waiting for orders. Since a

considerable amount of work directed for workstation D is waiting to be pro-

cessed at workstations A and B, the opposite situation will occur when worksta-

tion C enters an idle period. This means that the variability of the workload at

workstations C and D is also large.

Figure 2.2(b) shows the same shop floor, but this time the workload is balanced

among the workstations. The variability of the workload at the workstations in

this system is lower and throughput times will be shorter than in the unbalanced

shop floor of Figure 2.2(a).

The workload balancing capability of a pull system is mainly determined by

its pull structure, i.e. the specific pattern of control loops that regulates the

workload on the shop floor (Gaury, 2000). In the next subsections we describe

the pull structure of CONWIP, m-CONWIP and POLCA in detail.

2.2.1 CONWIP and m-CONWIP

The simplest unit-based pull system that is also applicable in MTO production is

CONWIP (Hopp and Spearman, 2008). The CONWIP system can be explained

by considering the production system in Figure 2.3.

A

C

D

B

Control loop

Order pool

Figure 2.3: CONWIP controlled MTO production system.

The production system consists of an order pool and four workstations (A, B, C

and D). The flow of orders between workstations A, B, C and D in the system is

depicted by the thick arrows. After release, orders can follow two different rout-

ings on the shop floor. The dashed loop shows the part of the production system

20

where the workload is controlled by cards. This loop is called the control loop.

The CONWIP system has one control loop that constrains the total workload

on the shop floor. This works as follows. An order may only enter the shop floor

if a free card can be attached to it. Upon completion, the order leaves the shop

floor to fulfil the customer’s demand while the attached card is removed and then

returns to the entrance of the shop floor, where it waits until it is attached to

another order in the order pool. In the CONWIP system, each time an order

leaves the shop floor the order pool receives a signal to authorise the release of

a new order. Because no order can enter the shop floor without a card attached

to it, the number of orders on the shop floor is constrained by the number of

cards circulating on the shop floor. CONWIP uses a single control loop covering

all workstations on the shop floor. This loop constrains the workload on the

shop floor, but does not balance the work across the workstations. Therefore,

the CONWIP system has no workload balancing capability.

Instead of using just one control loop for the whole shop floor, we can introduce

a CONWIP loop for every possible routing on the shop floor. We denote such a

system an ‘m-CONWIP’, where m stands for multiple CONWIP loops. Figure 2.4

gives an illustration of an m-CONWIP system. There are two routings on the

shop floor and, therefore, the m-CONWIP system consists of two CONWIP loops.

The two loops in this system balance the work among routings A→B→C and

A→B→D by constraining the amount of orders that are allowed in these routings

separately.

A

C

D

B

AÆBÆC Loop

Order pool

AÆBÆD Loop

Figure 2.4: m-CONWIP controlled MTO production system.

In the CONWIP and m-CONWIP system that we consider in this chapter, a

free card signals the release opportunity of a new order for the loop to which the

card belongs. This means that in the order release decision, the processing time

of the new order is not taken into account. Hence, CONWIP and m-CONWIP

constrain the release based on the numbers of orders on the shop floor and are

therefore unit-based pull systems.

21

2.2.2 POLCA

POLCA (Suri, 1998, Riezebos, 2010) is a pull system according to the definition of

Hopp and Spearman (2004) because of its triggering authorisation mechanism.

The triggering mechanism is a card system, which can be implemented either

physically or electronically (Vandaele et al., 2008). Figure 2.5 displays a POLCA

controlled MTO production system. In the POLCA system, each control loop

covers two workstations. An order is allowed to start production on a given

workstation when a card becomes available for the loop the order is trying to

enter. Similar to the CONWIP system, the number of cards in a loop constrains

the number of orders that are allowed in that loop.

A

C

D

B

BÆC Loop

Order pool

BÆD Loop

AÆB Loop

Figure 2.5: POLCA controlled MTO production system.

POLCA uses overlapping loops for orders that need to visit more than two work-

stations, as shown in Figure 2.5. The overlapping loops ensure that workstations

A and B will only process orders for which, in the near future, capacity becomes

available in workstations C and/or D downstream. For example, if no card B→C

is available in workstation B, this means that workstation C is backlogged with

work. Working on an order destined for workstation C would only increase the

inventory on the shop floor, since workstation C has a lack of capacity to work

on this order. It is better to process another order, for example one that needs

further processing in workstation D. In this way the POLCA system balances

work between workstations C and D (Suri and Krishnamurthy, 2003).

The basic POLCA system is indifferent with respect to the amount of work (in

processing time units) represented by a POLCA card and is thereby a unit-based

pull system. However, the original POLCA system can be transformed into a

load-based version such that the number of cards in each loop is replaced by an

allowable workload (in processing time units) for that loop. This system provides

a more adequate and robust representation of available capacity in settings in

which the processing times of production orders vary significantly and product

22

mix changes occur frequently (Vandaele et al., 2008). In this chapter we consider

the basic, unit-based POLCA system.

2.3 Research Questions

In the previous section we discussed how the pull structures of POLCA, CON-

WIP and m-CONWIP control the workload in an MTO production system and

that the TTT is a good indicator for the workload balancing capability of pull

systems. Since CONWIP has no workload balancing capability, we expect that

constraining the workload in a CONWIP controlled MTO production system

increases the TTT of orders. In Sections 2.1 and 2.2 we explained that the m-

CONWIP and POLCA systems balance the workload in the system in different

ways. m-CONWIP uses multiple CONWIP loops, one for every routing in the

production system, to balance the workload among the different routings in the

production system. POLCA balances the workload by releasing an order based

on the available capacity in the next workstation in the order’s routing. Which

of these two pull structures has the best performance with respect to workload

balancing is one of the research questions we would like to address in this chapter.

Besides the pull structure we expect that the configuration of the system has a

large influence on the workload balancing capability. The configuration of a pull

system is defined as “the set of card numbers to be placed in the control loops”

of the pull system (Gaury, 2000, p. 12). If the number of cards in each control

loop is large, the workload on the shop floor is hardly constrained by any of the

control loops of the pull system. This configuration can be used to represent a

push system with immediate release, since in a push system there is no explicit

contrain on the workload that can be on the shop floor (Hopp and Spearman,

2004).

Figure 2.6 shows an illustrative example of the STT and TTT performance of

a pull system that has effective workload balancing capability. The points in

the figure represent the STT and TTT performance of different configurations

of the pull system. In the figure, the point at the right end of the curve shows

the throughput time performance of a push system. Note that, at this point, the

TTT and STT are equal since the OPT is zero in the push system.

When we move to the left of the curve, by reducing the number of cards in the

control loops, the configurations become more constrained and the STT decreases

while the OPT increases. In this example, when the configurations become more

23

STT

TTT

Pull system

Push system

STT reduction <
increase in OPT

OPT

STT reduction >
increase in OPT

Figure 2.6: Illustrative example of effective workload balancing capability.

constrained the TTT first decreases and after a certain point the TTT increases

rapidly. For the configurations below the dashed line in the figure, the reduction

in STT, compared with the push system, is greater than the increase in OPT. This

means that these configurations show the effective workload balancing capability

of the pull system. For the configurations above the dashed line the increase in

the OPT offsets the decrease in the STT. The lowest point of the curve shows the

configuration for which the pull system obtains its optimal TTT performance.

The difference between the TTT of this point and the TTT of the push system

measures the maximum TTT reduction that can be obtained by the pull system.

We expect that an effective workload balancing capability will not only depend

on the structure and configuration of the pull system. From the literature on

queueing theory (see, e.g., Buzacott and Shanthikumar, 1993) we know that

factors such as the order arrival pattern and the variability of the processing

time of orders also have to be taken into account. Variability in the order arrival

pattern increases the average queue length in front of the workstations on the

shop floor and, thereby, the choice of orders in front of the control loops. We

expect that this increase in choice improves the balancing capability of the control

loops and reduces the blocking of the release of orders.

Variability in the processing time of orders increases the variability of the work-

load (in terms of processing time units) released into a control loop. This is

24

because the pull systems that we consider in this chapter control the workload

on the shop floor based on the numbers of orders on the shop floor and not on

the processing times of orders. Variability of the workload in a control loop in-

creases the variability of the workload at each workstation and, thereby, decreases

the workload balance. Therefore, we expect that processing time variability has

a negative impact on the workload balancing capability of the unit-based pull

systems. Note that processing time variability also increases the average queue

length in front of the workstations in the system and, thereby, the choice of or-

ders in front of the control loops. We expect, however, that this positive effect

on the workload balancing capability will be offset by the negative effect caused

by increased variability of the workload in the control loops.

The central question of this chapter is whether m-CONWIP and POLCA can

have effective workload balancing capability. We mentioned in this section the

factors that we expect to influence the effective workload balancing capability of

pull systems. Together with our central question, these expectations lead to the

following four research questions that we address in this chapter.

(1) Does the TTT of orders increase when the workload in an MTO production

system is controlled by a CONWIP system?

(2) How do POLCA and m-CONWIP perform with respect to workload balanc-

ing?

(3) What influence has the configuration of POLCA and m-CONWIP on the

workload balancing capability of these pull systems?

(4) How sensitive is the workload balancing capability of POLCA and m-CONWIP

to factors such as the order arrival pattern and the variability of the process-

ing time of orders?

25

2.4 Experimental Design

In the previous section we formulated our research questions. We use a simulation

model to analyze the these questions. In the next two subsections, we discuss

the simulated production system and the performance measurements in detail.

2.4.1 Simulation Model

Figure 2.7 shows the topology of the simulated MTO production system. This

type of MTO system can be denoted as a divergent segmented MTO system,

where orders generally visit more than one operation (Hyer and Wemmerlöv,

2002). It perfectly suits pull systems that are able to balance workload. This spe-

cific topology of a production system enables us to identify whether m-CONWIP

and POLCA can have effective workload balancing capability and whether ex-

perimental factors, such as the order arrival pattern and the variability of the

processing time of orders, have a significant impact on the workload balancing

capability of these pull systems.

A

B

C

D

E50
%

50%
50

%

50%

F

G

50
%

50%

Figure 2.7: Topology of simulated production system.

The production system consists of seven workstations (A to G) and an order

pool. Each workstation can handle one order at a time. The capacity of the

workstations is assumed to be constant during the experiments. Each operation

requires one specific workstation. Customer orders are handled in an MTO strat-

egy. The routing of an order becomes known at the moment the order arrives

and the arriving orders are uniformly distributed over the four different routings

in the production system.

Workstation processing time is either deterministic or Erlang-2 distributed. To

ensure that all workstations have the same utilization level we set the (mean)

processing time of workstation A to one time unit, of workstations B and C to

two time units and of workstations D, E, F and G to four time units. The arrival

26

rate is such that the workstations have an average utilisation level of 80%, 85% or

90%. The inter-arrival time is either deterministic or exponentially distributed.

The number of orders arriving simultaneously (batch size) can be either 1 or

10. Orders are processed on a First Come First Served (FCFS) basis at each

workstation.

2.4.2 Performance Measurement

Table 2.1 summarises the experimental factors and their experimental levels that

we consider in our simulation study. The distribution of the inter-arrival time,

utilisation level (ρ) and the batch size (B) of orders are used as intermediate

variables to measure the influence of the order arrival pattern on the workload

balancing capability of the pull systems. The distribution of the processing time

of orders is used as a variable to measure the influence of processing time vari-

ability on the workload balancing capability.

Table 2.1: Experimental factors.

Factor Experimental levels

Order arrival pattern

Inter-arrival time Deterministic, exponential

Utilisation (ρ) 80%, 85%, 90%

Batch size (B) 1, 10

Processing time variability

Processing time Deterministic, Erlang-2

To generate scenarios for the simulation study we consider a full factorial design

for the combinations of inter-arrival time, utilisation, batch size and processing

time. For a given scenerio, we simulate the POLCA, CONWIP and m-CONWIP

system and vary the number of number of cards in the control loops. We start

with a large number of cards, such that the release of orders is not constrained

by any of the control loops. Then we decrease the number of cards in the control

loops gradually, such that the configurations of the pull systems become more

constrained. Note that an identical number of cards in the CONWIP, POLCA

and m-CONWIP systems does not mean that the STT in these systems is the

same. For example, due to the overlapping loops, the number of cards in a

POLCA configuration will generally be larger than the number of cards in an

m-CONWIP configuration for a given STT level.

27

In each simulation experiment we determine the STT and TTT performance of

the pull system. If we plot the STT performance against the TTT performance for

different configurations of a pull system, we obtain a performance curve similar to

that shown in Figure 6. By comparing the curves for CONWIP, m-CONWIP and

POLCA for a given scenario, we can determine the difference of the throughput

time performance of these pull systems.

Naturally, we are interested in the optimal throughput time performance of the

pull systems for a given scenario. Therefore, we determine for each pull system

the configuration for which the pull system obtains the shortest TTT. Determin-

ing the optimal configuration of a pull system can be a difficult task, especially

when a pull system consists of multiple control loops. Gaury (2000) gives a short

review of the techniques that can be used for determining the optimal configu-

ration of a pull system. We simply use an exhaustive search to determine the

optimal configuration of the pull system.

The simulation model is constructed in DESIMP, a discrete event simulation

library within Delphi. DESIMP is very fast, flexible and suitable for this type

of research. We use common random numbers to reduce the variance across

experiments. Each experiment consists of 100 independent experiments with a

run length of 100,000 time units. All experiments include a warm-up period of

25,000 time units in order to eliminate the initial transient. If we state that there

is a performance difference between two experiments in the following section, the

significance can be shown by a paired t-test at the 95% confidence level.

2.5 Results

This section presents the results of the simulation experiments. It gives an in-

depth analysis of the workload balancing capabilities of CONWIP, POLCA, and

m-CONWIP.

In Figure 2.8 we give a graphical representation of the throughput time perfor-

mance of the pull systems for three different scenarios (a, b and c). In all three

scenarios the utilisation level is 85% and the batch size is 1. Hence, the scenarios

(a), (b) and (c) only differ with respect to the distribution of the inter-arrival

time and processing time of orders. This allows us to understand the influence

of variability in the inter-arrival time and processing time on the throughput

time performance of the pull systems. In Tables 2.2 and 2.3 on page 31 and 33

we show the throughput time performance of POLCA and m-CONWIP for a

28

broader range of experimental factors.

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40

STT

TTT

CONWIP(a) POLCA(a) m-CONWIP(a)

CONWIP(b) POLCA(b) m-CONWIP(b)

CONWIP(c) POLCA(c) m-CONWIP(c)

Figure 2.8: TTT and STT performance of CONWIP, POLCA and m-CONWIP. Sce-

nario (a) deterministic inter-arrival and processing time, (b) exponential inter-arrival

time and deterministic processing time, (c) exponential inter-arrival and Erlang-2 pro-

cessing time.

We first consider the simulation experiments of scenario (a) in Figure 2.8. In this

scenario, both the inter-arrival time and processing time of orders are determin-

istic. Hence, the curves CONWIP(a), POLCA(a) and m-CONWIP(a) show the

throughput time performance of CONWIP, POLCA and m-CONWIP for the case

where there is no randomness in the inter-arrival and processing time of orders.

Figure 2.8 shows that when the configuration of CONWIP(a) becomes more con-

strained (i.e. when we move from right to left along the curve), the TTT increases

immediately. This result confirms our expectation concerning the throughput

time performance of CONWIP (see Section 2.3): because the CONWIP system

has no workload balancing capability, any reduction in the STT obtained by con-

straining the workload on the shop floor is offset by an increase in the OPT. When

the configurations of m-CONWIP(a) and POLCA(a) become more constrained,

29

the TTT first decreases (only slightly for POLCA(a), see also Table 2.2) and

after a certain point the TTT increases rapidly. POLCA(a) reaches this point

much earlier than m-CONWIP(a) and this means that m-CONWIP obtains a

better performance in terms of STT and TTT than POLCA for scenario (a).

Note that because both pull systems are able to reduce both the TTT and STT,

the workload balancing capability of POLCA and m-CONWIP is effective.

In scenario (b), the inter-arrival time of orders is exponential, while the process-

ing time of orders is deterministic. The introduction of randomness in the inter-

arrival time of orders in scenario (b) naturally increases the STT and TTT for

all pull systems compared with scenario (a). However, the relative performance

of the pull systems does not alter. If we compare the curves m-CONWIP(a)

and POLCA(a) with the curves m-CONWIP(b) and POLCA(b), we see that

an increase in the variability of the inter-arrival times results in larger TTT re-

ductions that can be realised by POLCA and m-CONWIP. This confirms our

expectation that an increase in the average queue length in front of the work-

stations in the production system improves the workload balancing capability of

the pull systems.

In scenario (c), the inter-arrival time of orders is exponential and the processing

time is Erlang-2. Introducing variability in the processing time of orders has a

strong negative effect on the workload balancing capability of m-CONWIP and

POLCA, as can be seen from a comparison of scenarios (b) and (c) in Figure 2.8.

For scenario (c), the POLCA system has no effective workload balancing capa-

bility, while the optimal throughput time performance of m-CONWIP is only

slightly below that of the push system (see also Table 2.2). This result confirms

our expectation that increased processing time variability has a negative impact

on the workload balancing capability of m-CONWIP and POLCA.

In Tables 2.2 and 2.3 we show the optimal throughput time performance of

POLCA and m-CONWIP in terms of the percentage TTT and STT reduction

these two pull systems achieve in their optimal configuration, relative to, respec-

tively, the TTT and STT of the push system. Recall from the previous section

that the optimal configuration of a pull system is defined as the configuration

for which the pull system obtains the shortest TTT. Note that we have omitted

the performance of the CONWIP system in these tables since the CONWIP sys-

tem has no effective workload balancing capability and, therefore, the optimal

configuration of the CONWIP system is equal to the push system.

Table 2.2 contains the optimal throughput time performance of m-CONWIP and

30

POLCA for different scenarios, given the restriction that the same number of

cards is used in every control loop. The curves in Figure 2.8 already indicate

a relationship between the variability in the inter-arrival and processing time of

orders and the effective workload balancing capability of the pull systems. The

results in Table 2.2 confirm that increased variability in the inter-arrival time of

orders improves the workload balancing capability of POLCA and m-CONWIP.

Table 2.2 also confirms the negative influence of increased processing time vari-

ability on the workload balancing capability of POLCA and m-CONWIP.

Table 2.2: Throughput time performance of m-CONWIP and POLCA. The percentages

show the TTT and STT reduction obtained by m-CONWIP and POLCA in their opti-

mal configuration relative to the TTT and STT of the push system. The configurations

of m-CONWIP and POLCA are optimal given the restriction that the same number of

cards is used in each control loop.

Deterministic inter-arrival time Exponential inter-arrival time

POLCA m-CONWIP POLCA m-CONWIP

B ρ %TTT %STT %TTT %STT %TTT %STT %TTT %STT

Deterministic processing time

1 80% 0.47 1.14 1.56 23.09 2.23 8.56 10.13 39.34

85% 0.71 1.43 3.23 34.30 2.73 9.13 13.40 50.40

90% 1.09 2.49 6.56 50.12 3.31 11.61 17.31 63.71

10 80% 1.15 9.17 6.37 35.69 5.22 30.31 19.65 75.63

85% 1.05 5.10 8.21 44.30 5.47 38.42 21.66 81.35

90% 1.21 4.81 10.68 56.49 5.67 43.25 23.54 87.09

Erlang-2 processing time

1 80% 0.00 0.00 0.00 0.00 0.00 0.00 1.44 11.56

85% 0.00 0.00 0.00 0.00 0.00 0.00 1.71 14.80

90% 0.00 0.00 0.00 0.00 0.00 0.00 2.38 18.79

10 80% 0.00 0.00 0.00 0.00 0.00 0.00 4.39 47.33

85% 0.00 0.00 0.00 0.00 0.00 0.00 4.94 48.46

90% 0.00 0.00 0.00 0.00 0.00 0.00 5.25 52.94

Table 2.2 further shows that the other intermediate variables of the order arrival

pattern, the utilisation level and batch size, influence the TTT reduction that

can be realised by m-CONWIP and POLCA. For instance, given a deterministic

inter-arrival and processing time and a batch size of 1, the TTT reduction for

m-CONWIP increases from 1.56% to 6.56% if the utilisation increases from 80%

to 90%. In general, we see from Table 2.2 that the percentage of TTT reduction

obtained by m-CONWIP increases with increasing utilisation level. This means

31

that, for m-CONWIP, workload balancing has more of an effect for higher levels of

utilisation. Land (2004) shows that the same relationship between utilisation and

workload balancing exists for load-based pull systems. For the POLCA system

we see that this relationship does not hold for the scenarios with deterministic

inter-arrival and processing time and a batch size of 10. The exception to the

rule is caused by the restriction we put on the number of cards that can be used

in each control loop. This restriction reduces the set of allowable configurations

for POLCA. As can be seen from Table 3 the relationship between utilisation

and workload balancing holds for POLCA if we consider all configurations of

POLCA.

Table 2.2 also shows that the batch size has a large effect on the TTT performance

of m-CONWIP and POLCA. For instance, given a deterministic inter-arrival and

processing time and a utilisation level of 80%, the TTT reduction for m-CONWIP

increases from 1.56% to 6.37% as a result of the increased batch size. Utilisation

and batch size both increase the average queue length in front of the workstations

in the system, and thereby the choice of orders in front of the control loops. The

results in Table 2.2 again confirm our intuition that an increase of choice in orders

improves the balancing capability of the pull systems and reduces the blocking

of the release of orders.

Table 2.3 contains the optimal throughput time performance of m-CONWIP and

POLCA, without any restriction on the number of cards used in the control

loops. We have excluded from this table the experiments with Erlang-2 process-

ing times, because for these experiments the POLCA system has no effective

workload balancing capability. Note that the optimal configuration for the m-

CONWIP system does not change after relaxing the restriction on the number of

cards. For the POLCA system, however, the optimal configuration has changed.

In the optimal configuration of POLCA, the number of cards in the loops A→B

and A→C is infinite, which means in fact that the workload released to the shop

floor is not constrained. Note that the optimal POLCA configuration is therefore

not consistent with the definition of a pull system. The infinite number of cards

in the loops A→B and A→C results in a POLCA configuration that does not use

overlapping loops (see Section 2.2.2) to balance the workload on the shop floor.

This remarkable result implies that the control loops B→D, B→E, C→F and

C→G are completely responsible for the effective workload balancing capability

of POLCA.

32

Table 2.3: Throughput time performance of m-CONWIP and POLCA. The percent-

ages show the TTT and STT reduction obtained by m-CONWIP and POLCA in their

optimal configuration relative to the TTT and STT of the push system. With respect

to the optimal configuration, there is no restriction on the number of cards used in a

control.

Deterministic inter-arrival time Exponential inter-arrival time

POLCA m-CONWIP POLCA m-CONWIP

B ρ %TTT %STT %TTT %STT %TTT %STT %TTT %STT

Deterministic processing time

1 80% 3.72 3.72 1.56 23.09 6.12 6.12 10.13 39.34

85% 5.57 5.57 3.23 34.30 7.76 7.76 13.40 50.30

90% 8.30 8.30 6.56 50.12 9.69 9.69 17.31 63.71

10 80% 3.36 3.36 6.37 35.69 6.31 6.31 19.65 75.63

85% 4.56 4.56 8.21 44.30 6.84 6.84 21.66 81.35

90% 6.77 6.77 10.68 56.49 7.34 7.34 23.54 87.09

2.6 Conclusions

For MTO companies, short average total throughput time (TTT) is of strategic

importance for winning orders. Pull systems aim to reduce the throughput times

by controlling the workload on the shop floor. Constraining the workload on

the shop floor reduces the average time orders spend on the shop floor (STT)

compared with the unconstrained production system. However, the restricted

release of orders onto the shop floor increases the average time orders spend

waiting before being released (i.e., the average order pool time or OPT) due to

the blocking of the release of orders. As a result, the reduction in STT might

be offset by the increase in the OPT. The literature on workload control shows

that a reduction in the TTT can only be obtained if the release mechanism not

only reduces the workload, but also improves the balance of the workload on the

shop floor. This literature, however, shows the existence of an effective workload

balancing capability only in load-based pull systems. The problem we addressed

in this chapter is whether unit-based pull systems, that are easier to understand

and thereby easy to implement in practice than load-based systems, can also

improve the workload balance on the shop floor such that both the STT and

TTT are reduced.

To obtain insight into this problem we used simulation to analyse the throughput

time performance of three unit-based pull systems that are considered applicable

33

in MTO environments: POLCA, CONWIP and m-CONWIP. The results of our

simulations show that unit-based pull systems can reduce both the TTT and STT,

and that the magnitude of the reduction is dependent on the pull structure, on the

configuration of the pull system and on the order arrival pattern and processing

time variability of the orders.

The pull structure of CONWIP has no workload balancing capability and our

simulation results show that constraining the workload in a CONWIP controlled

MTO production system increases the TTT of orders. The overlapping loops in

the POLCA system bring forward some workload balancing capability compared

with CONWIP, but these loops do not perfectly detect and signal an imbalance

in workload. As a result, POLCA faces a longer TTT for a given STT than

m-CONWIP, the system with the best workload balancing capability.

Our results further show that the configuration of the pull system has a large

influence on the workload balancing capability. When the configurations of a pull

system become more constrained, the STT decreases, while the OPT increases.

If the pull system has effective workload balancing capability, constraining the

amount of work on the shop floor will first result in a STT reduction (compared

with the unconstrained system) that outweighs the increase in OPT. After a

certain point the configurations become too constrained and the OPT increases

rapidly and finally overcompensates the decrease in STT.

Our simulation studies show that an increase in the choice of orders in front of

the control loops of POLCA and m-CONWIP improves the workload balancing

capability of these pull systems. Such an increase in the choice of orders can

occur, for example, due to an increase in the variability of the inter-arrival times of

orders. Variability of the workload in a control loop increases the variability of the

workload at each workstation and, thereby, decreases the workload balance. This

is because the pull systems that we consider in this chapter control the workload

based on the number of orders on the shop floor and not on the processing time

of orders, i.e. are unit-based instead of load-based. Our simulation results show

that processing time variability has a large negative impact on the workload

balancing capability of the unit-based pull systems considered in this chapter.

Although this chapter shows that unit-based pull systems can reduce both the

TTT and STT, our simulation studies also show that as soon as the manufac-

turing conditions become more realistic (i.e. when variability in the processing

times of orders is introduced), the increase in the OPT off-sets the decrease in the

STT. An important issue that requires additional study is whether the through-

34

put time performance of POLCA and m-CONWIP can be improved if the release

of orders is load-based instead of unit-based. A remarkable result of this chapter

shows that, in the optimal configuration of POLCA, the final control loops are

fully responsible for the effective workload balancing capability of POLCA. An

interesting issue for future research is whether this result can also be found in

production systems with different topologies than that considered here.

35

36

Chapter 3

Order Acceptance: State-

Dependent Bulk Queues

We showed in Chapter 2 that unit-based release policies can reduce the total

throughput time in a make-tor-order production system by balancing the work-

load, but the magnitude of the effect is rather small. In the second part of the

thesis we therefore focus on a stronger instrument to control delivery times while

making good use of the available capacity: order acceptance.

In this chapter we propose a queueing approach for studying the performance

of simple order acceptance policies for a make-to-order production system in

which orders arrive and are served in batches by a single machine. To determine

optimal system configuration and good order acceptance policies, we model the

production system as a batch arrival batch service (bulk) queue with restricted

accessibility. Such queueing systems have rich applications in manufacturing,

service operations, computer and telecommunication systems.

Our principle result in this chapter is the development of a unifying method

to study the performance of a general class of queueing systems that covers

many bulk queueing systems with restricted accessibility as special cases. We use

semi-regenerative analysis to develop a numerically stable method for calculating

the limiting probability distribution of the queue length process. Based on the

limiting probabilities, we present various performance measures for evaluating

admission control and batch service policies, such as the loss probability for an

arriving group of customers and for individual customers within a group. We

demonstrate our method by means of numerical examples.

37

3.1 Introduction

Group arrival and batch service queues (usually called bulk queues) have many

applications in manufacturing, service operations, computer and telecommuni-

cation systems. Since most of these systems have finite buffer capacity, it is of

interest to study queueing systems with finite queue size. For example, in manu-

facturing systems, there is limited waiting room before workstations in assembly

lines, material handling systems, or cellular manufacturing cells. In service sys-

tems such as facilities, there are limited circulation systems (elevators, stairways,

and corridors) and finite storage areas (MacGregor Smith and Cruz, 2005). Fi-

nally, in computer and telecommunication systems, routers and switches that

regulate the transmission of information packages have finite buffer capacity.

In many of these applications the arrival and service rate depend on the state

of the queue. For example, a long queue can “discourage” arriving customers

(Dshalalow, 1997) leading to queue-length dependent balking. Another example

consists of systems where the server is a human being and the perception of the

workload may directly influence the server’s productivity (Bekker, 2004, Bekker

et al., 2004). Besides the arrival and service rate, the size of arriving group and

service batches may be queue length dependent. For instance, when the queue

length hits the maximum buffer capacity, a situation can occur that a newly

arriving group of customers does not find enough room in the queue and that

a part of the group has to be refused from entering the system. Furthermore,

service batch sizes are typically determined by the capacity of the server (i.e.

the maximum number of customers that can be served simultaneously) and the

number of customers waiting in queue, e.g., in the serving of people by elevators,

shuttle buses, and ferries. Finally, the batch service time can also depend on

the batch size; typically larger batches require more service time. In all these

applications, it is helpful to be able to compute relevant performance measures,

such as average time in system, moments of the number of customers in queue

and loss probabilities for arriving groups of customers, or individual customers

within a group. This allows operators to determine optimal system configuration,

good admission control policies, or optimal batch sizing policies.

In this chapter we develop a simple, numerically stable, and efficient algorithmic

method that allows the performance evaluation of a general queueing system

that contains all of the above examples as special cases. The queueing system

that we study for our purpose is the finite-buffer state-dependent bulk queue:

M(n)X(n)/G(n)Y (n)/1/K+B. Here M(n) and G(n) correspond to the state-

38

dependent arrival and batch service processes, the exponents X(n) and Y (n)

represent the (random) state-dependent sizes of the arriving groups and service

batches, the capacity of the queue is limited by K, and, finally, the maximal

service capacity is B. The formal analysis of this queueing system is considered

an open problem in the queueing literature (Dshalalow, 1997) and thereby our

research makes a start to fill a gap in literature. To do so, we use a semi-

regenerative analysis to obtain the limiting probabilities of the queueing process,

which in turn allows the computation of many performance measures relevant for

selecting the best system configuration.

The chapter is organized as follows. In Section 3.2 we provide applications of

the finite-buffer state-dependent bulk queue and review literature related to the

analysis of the model. After introducing the M(n)X(n)/G(n)Y (n)/1/K+B model

in Section 3.3 we illustrate in Section 3.4 how various special cases and applica-

tions are covered by the model. In Section 3.5 we present the semi-regenerative

analysis of the model and obtain the limiting probabilities in terms of recurrence

relations. Section 3.6 presents the algorithmic aspects of our solution method and

Section 3.7 defines various performance measures of the model. In Section 3.8

we use numerical examples to demonstrate our method.

3.2 Applications and Literature Review

Before reviewing related literature, we sketch two practical scenarios leading

to bulk queue models with finite buffers and state-dependent arrival or service

processes.

A typical batch-wise process in the aircraft industry concerns the hardening of

synthetic parts (Hodes et al., 1992, Van der Zee et al., 2001). These parts arrive

in groups from preceding manufacturing steps and are hardened in an oven in a

batch-wise manner. Upon arrival the parts enter a buffer where they wait until

they are loaded into the oven. The maximum time parts can stay in the buffer

is limited due to strict quality constraints. In particular, if parts stay more than

T time units in the buffer, the products become worthless for any further use.

The time limit is operationalized by constraining the capacity of the buffer to

K parts. Furthermore, service batch sizes are limited by the physical size of

the oven, and processing times (including preparation times) are independent of

the number of parts in a batch. Once processing has started, no interruption is

allowed, i.e. no addition or extraction of parts is possible during the production

39

process. Given these characteristics, a control policy is required that determines,

once a service batch is finished, when to start a new batch service in such a way

that logistical costs and product loss are minimized and a given service level is

reached. This process can be modeled as a finite-buffer state-dependent bulk

queue. The arrival group sizes correspond to the synthetic parts which are state-

dependent due to the finite capacity of the buffer. A service batch corresponds to

the parts that are hardened in the oven in a batch-wise manner and the service

batch size is also dependent on the number of parts waiting in the buffer. Other

production systems that possess more or less similar characteristics are ovens that

are used for the diffusion/oxidation process in the manufacture of semiconductor

wafers (Fowler et al., 1992, Uzsoy et al., 1994) and the burn-in operation of a

manufacture of medical diagnostic units (Hopp and Spearman, 2008).

Bulk queueing systems are also often found in transportation since mass transit

vehicles are natural batch servers to which passengers arrive in groups of vary-

ing size. Furthermore, arriving passengers may decide to take another mode of

transport when the queue length becomes excessive which makes state-dependent

arrival rates a realistic assumption. The single server system is generally found

in the form of a shuttle between two or more campuses of an institution, see

e.g. (Deb, 1978, Weiss, 1979). The travel time does not depend on the number

of passengers aboard and the fixed travel cost is only minimally affected by the

number of passengers carried. Given these characteristics, an operating policy is

required that determines when to dispatch the shuttle such that service cost and

passenger waiting time are minimized. The state-dependent finite-buffer bulk

queue is a reasonable model to evaluate dispatching rules for the shuttle bus

problem.

Besides for practical examples, the formal analysis of the M(n)X(n)/G(n)Y (n)/1/

K+B model is also theoretically a challenging problem. There is a long tradition

in the development of algorithmic methods for computing the limiting proba-

bilities of generalizations of the M/G/1/K queueing process, e.g. cf. Neuts

(1977) and Takagi (1993). The M/G/1/K queue with state-dependent arrival

and service rates was first analyzed by Courtois and Georges (1971) using the

embedded Markov chain approach. However, as Gupta and Rao (1998) pointed

out, the method presented by Courtois and Georges (1971) is numerically unsta-

ble. A stable recursive algorithm for computing the limiting probabilities of the

M/G/1/K queue with state-dependent arrival rates has been given by Tijms and

Van Hoorn (1981). Schellhaas (1983) and Gupta and Rao (1998) generalized the

model of Tijms and Van Hoorn (1981) by allowing state-dependent service times,

40

using respectively a semi-regenerative approach and the supplementary variable

method.

Comparatively less work has been done to introduce state dependencies into

finite-buffer M/G/1 bulk queues. In the survey on queueing systems with state-

dependent parameters, Dshalalow (1997) mentions that it is still an open problem

to generalize the state-dependent M/G/1/K model for group arrivals and batch

services. In recent years, however, significant contributions have been made to

the development of algorithmic methods for computing the limiting probability

of MX/GY /1/K+B bulk queues under various rejection policies, cf. Nobel

(1989), Dudin et al. (2005), Chang et al. (2004) and Germs and Van Foreest

(2010). Also the literature on queueing models with different types of batch

service policies has grown over the years. In Medhi (2003) and Chaudry and

Templeton (1983) a comprehensive treatment of bulk queues with batch service

can be found. However, in all of the aforementioned research on bulk queues, none

of the input or service parameters of the queueing models are state-dependent.

3.3 Model

We consider a single server queue at which groups of customers arrive according

to a state-dependent Poisson process with finite rate λi when the queue contains

i customers. We note that λi denotes the rate at which groups of customers

arrive; note that, due to the finite capacity K of the queue, the arrival rate can

be different from the rate at which groups of customers are accepted. The sizes

of the arriving groups form a sequence of independent integer random variables,

distributed as the generic random variable Xi with probability mass function

P{Xi = k} = xi(k), k > 1. Here and in the sequel, the subscript i will always

refer to the dependence on the queue length (number of customers waiting for

service) at the moment of customer arrival or service completion (the context

will always clarify which of the two cases apply).

Due to the limited capacity of the queue, it can occur that a newly arriving group

does not find enough room in the queue. As a consequence, a decision has to be

made which part of the group is to be refused from entering the system. Hence,

dependent on the rejection policy in use and the queue length, the distribution

of the size of an accepted group may differ from the distribution of the size of an

arriving group. Let the sizes of the accepted groups be distributed as the generic

random variable X̂i with P{X̂i = k} = x̂i(k), k > 0. We refer to Section 3.4 for

41

examples that illustrate how to define the x̂i(k) for various rejection policies.

Customers are served in FCFS order in service batches. Service batch sizes are

independent integer random variables, distributed as the generic random variable

Yi with distribution P{Yi = k} = yi(k), for k = 0, . . . , B, where B is the maximal

server capacity. Here yi(0) denotes the probability that no customers are taken

into service and that, as a consequence, the server enters an idle period. A

situation in which it is reasonable to keep the server idle while there are customer

waiting in queue is when the aim is to minimize average waiting time of customers

in the system. In fact, (Aalto, 2000, Deb and Serfozo, 1973) prove that it is

optimal to start serving customers only when the number of customers in queue

exceeds some threshold a. Note that yi(k) = 0 if k > i, since it is impossible

to take k customers into service when there are only i < k customers in queue.

We assume that any arrival during a service joins the queue, if accepted. (Thus,

if a group arrives to find k > 0 customers in service, the group cannot join the

batch already undergoing service.) Batch service times Si,k are assumed to be

independent of the arrival process, but may depend on the service batch size

k and on the queue length i, and form a set of independent random variables

distributed as Gi,k(s) = P{Si,k 6 s}. We assume E (Si,k) <∞ for all i, k.

3.4 Special Cases

In this section we illustrate that M(n)X(n)/G(n)Y (n)/1/K+B model covers a

large class of well-known finite-buffer single server queueing models. The models

are loosely ranked in order of complexity. As later models are in most cases

extensions of previous models, we only specify the parameter settings in which

these models differ from the previous models.

We extend the finite-buffer single server model mainly in two directions: dif-

ferent service batching policies, and rejection (blocking) policies. We choose to

implement the service (rejection) policies by means of specific choices for yi(k)

(x̂i(k)).

3.4.1 M/G/1/K+1 Queue

This queue is the base model for the other models and can be derived by taking

λi = λ, xi(1) = 1 andGi,k(·) = G(·), for i, k > 0, in theM(n)X(n)/G(n)Y (n)/1/K+

B model. Since customers are blocked when K customers are in queue it follows

42

that x̂i(1) = 1 if i < K and x̂i(0) = 1 if i > K. Observe that the server does not

idle if the queue is not empty and serves the customers one by one. Therefore,

y0(0) = 1 and yi(1) = 1 for all i > 0.

3.4.2 M/GY /1/K+B Queue with Random Batch Service

In this model the server has a random capacity Y . The actual number of cus-

tomers accepted in a given service period equals the whole queue, or the current

batch capacity, whichever is less (see Bagchi and Templeton (1973)). To imple-

ment the policy, we set

yi(k) =



















P{Y = k}, if k < i,
∑∞

k=i P{Y = k}, if k = i,

0, otherwise.

A practical example of the random batch-service policy can be found in the

semiconductor industry, where it is frequently observed that circuit boards are

processed in random batches (Hochbaum and Landy, 1997).

3.4.3 M/G[a,b]/1/K+b Queue with Minimal Batch Service

With the minimal batch service policy the server only serves batches of size at

least a and not larger than b, that is, P{Yi = min{i, b}} = 1 only when i > a.

To implement the policy, we set yi(0) = 1 if i < a and yi(k) = 1{k = min{i, b}}

if i > a.

Deb and Serfozo (1973) show that the minimal batch service policy is optimal

for a batch service queue where costs are incurred for serving the customers and

for holding them in the system. Aalto (2000) generalizes the result to queueing

systems with compound Poisson arrivals. Note that if the cost of serving is set

to zero, minimizing the expected averaged cost is equivalent to minimizing the

average waiting time. Applications of this batch service policy are abundant and

can be found in the serving of people by elevators, ferries, and shuttle buses;

the transhipment of mail, and military supplies; the processing of computer pro-

grams, job applications and library books; and the production, inventory control

and shipment of commercial products (Deb and Serfozo, 1973).

43

3.4.4 M/G[b,b]/1/K+b Queue with Full Batch Service

The full batch service policy is contained in the previous model by setting a = b.

3.4.5 MX/G/1/K+1 Queue with Partial Acceptance

Since the queue length is bounded, and group sizes may be larger than 1 we need

to decide how to handle arriving groups whose size exceeds the free capacity. In

case of partial acceptance, whenever the size of the arriving group and the queue

length i at an arrival epoch exceed K, only the part of the batch that fits into

the buffer is accepted (i.e. K − i customers). Hence, for i < K

x̂i(k) =







xi(k), if i+ k < K,
∑

l>k xi(l), if i+ k = K,

and x̂i(0) = 1 for i = K.

This policy has many application in manufacturing, service, computer and telecom-

munication system as the partial batch acceptance policy utilizes the buffer space

in an optimal manner so that the loss probability of customers is rather low.

3.4.6 MX/G/1/K+1 Queue with Complete Rejection

In a make-to-order situation where a group of customers represents a batch of

products belonging to one order, it is often not possible to allow partial accep-

tance of individual products. The same holds for telecommunication systems

where a group of customers is interpreted as a set of packages belonging to one

information unit (Dudin et al., 2005). For these situations it is more realistic to

select the complete rejection or the complete acceptance admission policy.

Under the complete rejection policy the complete arriving group is rejected if

its size exceeds the available buffer space. It is not difficult to see that the

distribution of X̂i for the complete rejection model is given by x̂i(k) = xi(k)1{i+

k 6 K}, for k > 1. Observe that under the complete rejection policy, x̂i(0) is

the probability that at an arrival epoch all customers in the group are rejected.

Hence, x̂i(0) =
∑

k>K−i xi(k).

44

3.4.7 MX/G/1/K+1 Queue with Complete Acceptance

In situations where customers arrive in large groups the complete rejection policy

has a rather high loss probability. The complete acceptance policy may provide in

these cases a much better performance. Under this policy, a group is completely

accepted whenever part of it can be accepted and therefore x̂i(k) = xi(k) if i < K

and x̂i(0) = 1 if i > K.

The complete acceptance discipline suggest a presence of some additional place

for admitting a whole group which can not be completely placed into the buffer.

This is however not a problem in many real life systems. For instance, if we

model a computer system we can consider RAM (Random Access Memory) as a

finite buffer. In case of buffer overflow, the information that does not fit into the

RAM can be placed into extended or expanded memory (Dudin et al., 2005).

3.4.8 M(n)/G(n)/1/K Queue

In this model, the arrival and service process are dependent on the number of

customers in the system (i.e. the number of customers in the queue plus the one

in service in case the server is busy). The model, and some special cases of it (e.g.

the machine repairman problem), has been discussed extensively by Schellhaas

(1983) and Gupta and Rao (1998). As we will discuss in Remark 3.5.3, we can

let the arrival rate depend on the status of the server by replacing the λi in the

model by λi,l, where l = 1 if the server is busy and l = 0 otherwise. Now, let

the index m denote the number of customers in the system, then we can cover

the M(n)/G(n)/1/K queue by defining λ0,0 = λ0, if m = 0, and λm−1,1 = λm,

if m > 0.

3.5 Semi-Regenerative Analysis of the Model

We start with characterizing the state of the M(n)X(n)/G(n)Y (n)/1/K+B queue

and defining the limiting probabilities of the queue length process. Next, we

derive a procedure to compute these limiting probabilities.

3.5.1 Preliminaries

To characterize the state of the M(n)X(n)/G(n)Y (n)/1/K+B system at an ar-

bitrary point in time t, we need to specify both the queue length and the server

45

state at t. To see this, note that in the present model the service policy may idle

the server even when customers are present in queue. Therefore, knowing the

number of customers in queue at time t is not sufficient to determine whether

the server is idle or busy at t. Let the queue length process {Q(t), t > 0} take

values in the finite set E ⊂ N, while the busy process {B(t), t > 0} takes val-

ues in {0, 1}, so that B(t) = 1 when the server is busy at time t and B(t) = 0

otherwise. The system is now characterized by the right continuous, bi-variate

process {Q(t), B(t)}, which is assumed to have left limits in t.

The server observes the queue length at service completion epochs and at arrival

epochs of customers when the server is idle. Let 0 = T0 < T1 < T2 < · · · be the

ordered sequence of these epochs, and let {Qn, n > 0} denote the (embedded)

queue length process as observed by the server at these times, that is, we define

Qn =







Q(Tn−), if Tn is a service completion epoch,

Q(Tn−) + X̂Q(Tn−), if Tn is an arrival epoch and the server is idle.

Thus Qn is either the queue length just before service completion or the queue

length just after the acceptance of (part of) the group of customers. Then it

is clear (although it requires some technical arguments, see e.g. Çinlar (1975)

or Asmussen (2003)) that {Qn, Tn} is a Markov renewal process embedded in

{Q(t), B(t)}, so that {Q(t), B(t)} is a semi-regenerative process. This means

that for any n the conditional distribution of {Q(t + T0 + · · · + Tn), B(t + T0 +

· · · + Tn)}t>0 given T0, . . . , Tn, Q0, . . . , Qn = i is the same as the conditional

distribution of {Q(t), B(t)} given T0 = 0 and Q0 = i. Hence, to characterize the

conditional distribution of {Q(t), B(t)} it suffices to specify the behavior Q(t)

and B(t) on the interval [T0, T1). Let T0 = 0 and Q0 = i, then {Q(t), B(t)} must

satisfy for t ∈ [0, T1),

B(t) = 1{Yi > 0}, (3.1a)

where 1{A} is the indicator function of the set {A}, and

Q(t) =







i, if Yi = 0,

i− Yi + Zi−Yi
(t), if Yi > 0,

(3.1b)

since if Yi = 0 the server remains idle during [0, T1) and if Yi > 0 it takes a batch

of size Yi into service while the random variable Zi(s) represents the number

of accepted arrivals during [0, s] given that at the start of the interval the queue

length is i and the server is busy. Note that Q(t) > 0 for all t > 0, since yi(k) = 0

if k > i, and {Zi(s)} is a pure birth process.

46

We assume that the embedded Markov chain {Qn} with state space E is irre-

ducible and aperiodic and that the Markov renewal process {Qn, Tn} is aperiodic.

Since E is also finite, it follows that {Qn} is positive recurrent.

Assuming that all these conditions are satisfied, the limiting distributions π of the

embedded Markov chain {Qn} and p of the semi-regenerative process {Q(t), B(t)}

exist. That is, for j ∈ E,

πj = lim
n→∞

P{at time Tn, j customers wait in queue}

= lim
n→∞

P{Qn = j}

pj,0 = lim
t→∞

P{at time t, j customers wait in queue and the server is idle}

= lim
t→∞

P{Q(t) = j, B(t) = 0}

pj,1 = lim
t→∞

P{at time t, j customers wait in queue and the server is busy}

= lim
t→∞

P{Q(t) = j, B(t) = 1}.

(3.2)

3.5.2 Analysis

We next derive a method to compute the limiting distributions of the embedded

Markov chain {Qn} and the semi-regenerative process {Q(t), B(t)}. We start

with deriving a numerically stable procedure to compute the semi-Markov kernel

H = {Hi(j, t); i, j ∈ E, t > 0} corresponding to the Markov renewal process

{Qn, Tn}. We recall from Çinlar (1975) or Asmussen (2003) that the elements

Hi(j, t) of H over E are defined as

Hi(j, t) = P{Qn+1 = j, Tn+1 − Tn 6 t | Qn = i}

= P{Q1 = j, T1 6 t | Q0 = i}.
(3.3)

To start the computation ofH we expand the definition ofHi(j, t) by conditioning

on Yi;

Hi(j, t) =

i
∑

k=0

P{Yi = k}P{Q1 = j, T1 6 t | Q0 = i, Yi = k}.

Observe that when Yi = 0, T1 corresponds to an idle period that starts with i

customers in queue and ends within t time units with the arrival of a group of

customers from which j − i are accepted. Hence,

P{Q1 = j, T1 6 t | Q0 = i, Yi = 0} = (1 − e−λit) x̂i(j − i).

47

Otherwise, when Yi = k > 0, T1 corresponds to a batch service of size k that

starts with i customers in queue and ends within t time units during which j−i+k

customers are accepted. Writing Ri(m, s) = P{Zi(s) = m} for the probability

to accept m customers during a service interval of duration s that starts with i

customers in queue, we have that for k > 1

P{Q1 = j, T1 6 t | Q0 = i, Yi = k} =

∫ t

0

Ri−k(j − i+ k, s) dGi,k(s).

Now we can expand the expression for Hi(j, t) as

Hi(j, t) = yi(0)(1−e−λit) x̂i(j−i)+

i
∑

k=1

yi(k)

∫ t

0

Ri−k(j−i+k, s) dGi,k(s). (3.4)

From (3.4), it is obvious that it remains to find a suitable expression to com-

pute Ri(m, s). In the following lemma we present an efficient recursion for this

purpose.

Lemma 3.5.1. The probability that in a service period of duration s, m cus-

tomers are accepted, given that just after the start of the service i customers are

in queue, can be written as

Ri(m, s) =

∞
∑

n=0

Ui(m,n)e−λs (λs)n

n!
, (3.5)

for some (finite) λ > maxi∈E λi, and where Ui(m,n) satisfies the following re-

cursion for i ∈ E and n,m > 0,

Ui(m,n+ 1) = Ui(m,n) +
λi+m

λ
[x̂i+m(0) − 1] Ui(m,n)

+

m−1
∑

l=0

λi+l

λ
x̂i+l(m− l)Ui(l, n),

(3.6)

with initial conditions

Ui(m, 0) =







1, if m = 0,

0, if m > 0.

Proof. Since the group inter-arrival times are exponentially distributed it follows

for sufficiently small h > 0 that

Ri(m, s+ h) = [1 − λi+mh(1 − x̂i+m(0))]Ri(m, s)

+ h

m−1
∑

l=0

λi+l x̂i+l(m− l)Ri(l, s) + o(h).

48

Subtracting Ri(m, s) at both sides, dividing by h, and taking the limit h ↓ 0 we

arrive at the Kolmogorov forward equation

d

ds
Ri(m, s) = λi+m(x̂i+m(0) − 1)Ri(m, s) +

m−1
∑

l=0

λi+l x̂i+l(m− l)Ri(l, s). (3.7)

By the finiteness of the λi, there exist a finite λ such that λ > maxi∈E λi.

Therefore, we can use the uniformization method and substitute the form

Ri(m, s) =
∞
∑

n=0

Ui(m,n)e−λs (λs)n

n!
(3.8)

in (3.7) for any such λ. After simplifying the result, we obtain (3.6).

The initial conditions follow from observing in (3.8) that Ri(m, 0) = Ui(m, 0),

and that Ri(m, 0) = 1{m = 0}.

Remark 3.5.1. Observe that Ui(m,n) can be interpreted as the probability to

accept m customers given that n groups of customers arrived since the start of

the service epoch and given that the number of customers in queue just after the

start of the service epoch was i.

Now we have all the tools to compute the semi-Markov kernel H and obtain the

transition matrix P = {P (i, j); i, j ∈ E} of the embedded Markov chain {Qn} by

taking the limit of H as t → ∞. From the assumption that {Qn} is an ergodic

Markov chain, it follows that the limiting distribution π exists and is the unique

solution (up to normalization) of

πj =
∑

i∈E

πiHi(j,∞)

=
∑

i∈E

πi [yi(0)x̂i(j − i) + V (i, j)] ,
(3.9)

where

V (i, j) =

i
∑

k=1

yi(k)

∞
∑

n=0

Ui−k(j − i+ k, n)ai,k(n)

which we obtain after substituting (3.5) for Ri(k, s) in (3.4) and reorganizing so

that the integrations reduce to the mixed Poisson probabilities

ai,k(n) =

∫ ∞

0

e−λs (λs)n

n!
dGi,k(s). (3.10)

To proceed from π to p we use semi-regeneration in the following theorem. First,

let C denote the length of the interval between two successive embedded Markov

49

points Tn and Tn+1. Supposing that Qn = i, observe that C is a service interval

of length Si,k when Yi = k > 1, and an inter-arrival time when Yi = 0. Therefore,

the expected cycle time Ci is

E (Si) :=
∞
∑

k=1

yi(k)E (Si,k),

if a service starts with a queue length Qn = i while it is yi(0)/λi when the server

idles. Hence,

E (C) = E (E (C|Q)) =
∑

i∈E

πi

[

yi(0)

λi

+ E (Si)

]

.

Note that it may occur that λi = 0 for some i ∈ E. We require in such states that

yi(0) = 1 to prevent that i is an absorbing state. In such cases set yi(0)/λi ≡ 0.

Theorem 3.5.2. The limiting distribution p satisfies

pj,0 =
yj(0)

λj

πj

E (C)
, (3.11a)

pj,1 =
∑

i∈E

πi

E (C)
Ve(i, j) (3.11b)

where

Ve(i, j) =
i

∑

k=1

yi(k)
∞
∑

n=0

Ui−k(j − i+ k, n) ae
i,k(n), (3.11c)

ae
i,k(n) =

∫ ∞

0

e−λs (λs)n

n!
[1 −Gi,k(s)]ds. (3.11d)

Proof. To prove (3.11) we use Çinlar (1975, Theorem 6.6.12) which states that

for j ∈ E and l ∈ {0, 1}

pj,l =
1

E (C)

∑

i∈E

πi

∫ ∞

0

ψi(t, j, l)dt, (3.12)

provided that {Qn, Tn} is an ergodic process, E (C) < ∞, and the function

t → ψi(t, j, l) = P{Q(t) = j, B(t) = l, T1 > t | Q0 = i} is directly Riemann

integrable for every i, j ∈ E and l ∈ {0, 1}.

To check these conditions, note that the first two conditions are true by the

assumptions made in Section 3.3. From (3.1), (3.4), and the fact that T1 equals

a service time Si,k when Yi = k > 1, and an inter-arrival time when Yi = 0, it

follows that

ψi(t, j, l) =



















yi(0) e−λit, if l = 0, j = i,
∑i

k=1 yi(k)Ri−k(j − i+ k, t)[1 −Gi,k(t)], if l = 1,

0, else.

(3.13)

50

It is clear that ψi(t, i, 0) = yi(0) e−λit is directly Riemann integrable for any

i ∈ E. From (3.13) we have that ψi(t, j, 1) 6 maxk6i{1 − Gi,k(t)} for i, j ∈ E.

Note that 1 − Gi,k(t) is directly Riemann integrable since it is non-increasing

and
∫ ∞

0 [1 −Gi,k(t)]dt = E (Si,k) <∞. Hence, t→ ψi(t, j, l) is directly Riemann

integrable for every i, j ∈ E and l ∈ {0, 1}.

For l = 0, (3.11a) follows directly from (3.12) and (3.13). Let l = 1 and j ∈ E.

Then by (3.12), (3.13), (3.5),

pj,1 =
1

E (C)

∑

i∈E

πi

i
∑

k=1

yi(k)

∫ ∞

0

Ri−k(j − i+ k, t)[1 −Gi,k(t)]dt

=
∑

i∈E

πi

E (C)

i
∑

k=1

yi(k)

∞
∑

n=0

Ui−k(j − i+ k, n)

∫ ∞

0

e−λt (λt)
n

n!
[1 −Gi,k(t)]dt.

This proves (3.11b).

Remark 3.5.3. So far, the arrival process may only depend on the number of

customers in queue and not on the status of the server (i.e. whether the server

is idle or busy) at the moment of customer arrival. Dependence of the arrival

process on the status of the server can easily be included in our model at the

expense of an additional index l, where l = 1 if the server is busy and l = 0

otherwise. Now we define λi,1 (λi,0) to be the rate at which customers arrive

when there are i customers in queue and the server is busy (idle). In a similar

way we extend the definitions of the probabilities xi,l(k) and x̂i,l(k), for l = 0, 1.

The equations needed for the computation of the limiting probabilities π and

p, which we derived in this section, can now be adapted to cover the described

extension. First observe that the λi and x̂i(k) in Equation (3.6) all correspond

to the arrival rates and group sizes during a busy period and therefore can be

replaced by λi,1 and x̂i,1(k), respectively. Furthermore, the yi(0) x̂i(j− i) part in

(3.9) and λi in (3.11a) (and in E (C)) correspond to the group size and arrival rate

of customers to an idle server and can be replaced by yi(0) x̂i,0(j− i) and λi,0, re-

spectively. With these small modifications we can generalize our model to include

the dependence of the arrival process on the status of the server. In Section 3.4 we

showed that this generalization enables us to study the M(n)/G(n)/1/K where

the number of customers in the system (instead of in the queue) is limited by K.

51

3.6 Algorithmic Aspects

Now we summarize the approach for computing the limiting probabilities at

embedded, i.e., πj , and arbitrary epochs, i.e., pj , and we show how the precision

of our numerical method can be specified in advance.

The numerical method that we have developed in the previous section leads to

the following algorithm

Step 1 Compute (by numerical integration or if possible explicitly) the mixed

Poisson probabilities ai,k(n) and ae
i,k(n) from relations (3.10) and (3.11d).

Step 2 Compute Ui(k, n) for i ∈ E and k, n > 0, by means of the recursion (3.6).

Step 3 Use standard numerical procedures to compute π from (3.9).

Step 4 Compute p using the relations in Theorem 3.5.2.

To compute πj to a given precision ǫ > 0 it suffices to compute Ui(k, n) and the

probabilities ai,k(n) up to some finite Ni, where

Ni = min

{

m;

m
∑

n=0

i
∑

k=1

yi(k)ai,k(n) > 1 − ǫ

}

.

This follows, since, c.f. (3.9),

V (i, j) = VNi
(i, j) + eNi

,

where

V (i, j) =

i
∑

k=1

yi(k)

∞
∑

n=0

Ui−k(j − i+ k, n) ai,k(n),

VNi
(i, j) =

i
∑

k=1

yi(k)

Ni
∑

n=0

Ui−k(j − i+ k, n) ai,k(n),

and eNi
satisfies

eNi
=

i
∑

k=1

yi(k)
∑

n>Ni+1

Ui−k(j − i+ k, n) ai,k(n) 6
∑

n>Ni+1

i
∑

k=1

yi(k)ai,k(n),

since the probabilities Ui−k(j − i+ k, n) 6 1. Therefore,

eNi
6 1 −

Ni
∑

n=0

i
∑

k=1

yi(k)ai,k(n) 6 ǫ.

52

Similar reasoning applies to the computation of pj,1.

Finally, note that the computations in our approach only involve additions and

multiplications of positive and bounded numbers, thereby preventing a loss a

significant digits. Observe also that explicit expressions for the ai,k(n) and ae
i,k(n)

can be given for the cases of deterministic and phase-type services.

3.7 Performance Measures

In this section we derive a set of relevant performance measures such as the aver-

age number of customers in queue (Lq), the average waiting time in queue (Wq),

the server utilization (ρ) and the loss probability of a group of customers and of

an arbitrary customer within a group. All these performance measures can be

obtained from the limiting probabilities pj,k, c.f. the definition in Equation (3.2).

Since pj,k is the probability that the queue contains j customers and the server is

in state k ∈ {0, 1}, pj = pj,0 +pj,1 is the limiting probability that at an arbitrary

point in time j customers are waiting in queue. Now it easily follows that

ρ = 1 −
∑

j∈E

pj,0 =
∑

j∈E

pj,1 λ′ =
∑

j>0

λj pj E (X̂j) (3.14a)

Lq =
∑

j∈E

j pj Wq =
Lq

λ′
(3.14b)

where λ′ is the acceptance rate of customers.

The loss probability of a group of customers and of an arbitrary customer within

a group clearly depend on the rejection policy. Common rejection policies are

the ones we discussed in Section 3.4, i.e., partial acceptance, complete rejection

and complete acceptance. In what follows, we discuss the computation of the

loss probabilities for these three rejection policies.

3.7.1 Complete Acceptance

In the sequel, let Γ and γ, respectively, correspond to the event that a group is

lost and that an arbitrary customer is lost. Then it is not difficult to check that

for the complete acceptance policy

P{Γ} = P{γ} = 1 −

K−1
∑

j=0

pj .

53

3.7.2 Complete Rejection

Recall from Section 3.4 that under the complete rejection policy the probability

that customers in an arriving group are rejected is x̂i(0) =
∑

k>K−i+1 xi(k).

Therefore,

P{Γ} =

K
∑

i=0

pi x̂i(0). (3.15)

To calculate the rejection probability for an arbitrary customer, we use the fol-

lowing renewal-theoretic result (Burke, 1975):

qk := P{an arbitrary customer belongs to a group of size k} =
k x(k)

E (X)
, (3.16)

with x(k) =
∑

i∈E pi xi(k) and E (X) =
∑

k>1 k x(k). Define q̄k =
∑∞

m=k qm to

be the probability that an arbitrary customer belongs to a group of size greater

or equal to k. Then

P{γ} =

K
∑

i=0

P

{

γ

∣

∣

∣

∣

∣

customer sees i customers

in queue upon arrival

}

pi

=
K

∑

i=0

P

{

customer belongs to a group

of size larger than K − i

}

pi

=

K
∑

i=0

pi q̄K−i+1.

(3.17)

3.7.3 Partial Acceptance

Under the partial acceptance policy it is preferable to interpret Γ as the event

that a group of customers overflows, i.e. when an arriving group does not fit

completely into the queue (see Nobel (1989)). Then it is easy to check that

P{Γ} =
K

∑

i=0

pi

∑

k>K+1−i

xi(k).

To calculate the rejection probability for an arbitrary customer, we define for

k > 1

ηk := P{an arbitrary customer occupies the kth position in the group}

=
∑

m>k

x(m)

E (X)
,

54

where the last equation follows by conditioning on the event that “an arbitrary

customer belongs to a group of size k” and then using (3.16). Let η̄k =
∑∞

m=k ηm

denote the probability that an arbitrary customers occupies a position greater or

equal to k in his group. Then analogous to the derivation of (3.17) we obtain

P{γ} =

K
∑

i=0

pi η̄K−i+1.

3.8 Numerical Examples

In this section we apply the model to the numerical analysis of three examples, a

batch queueing process with queue length dependent balking, a queuing process

subject to holding cost and loss, and a batch arrival/service process subject to

queue length dependent batch arrival sizes and batch size dependent service rates.

Our code is available on request.

3.8.1 Bulk Queues with State Dependent Balking and Ser-

vice Rates

Consider a single server shop. Customers require varying amounts of service.

With little amount of work in the system, all customers are prepared to enter

the system, but when there is a large amount of work, the ‘large’ customers still

enter while most of the ‘small’ customers balk. As is commonly the case (see,

e.g., (Bekker, 2004, Bekker et al., 2004)), the server increases the service rate

when the queue becomes longer. We assume complete acceptance, and K to be

so large that the probability of overflow is negligible.

As a concrete example, suppose that the service requirement of a large customer

is 10 times that of a small customer. We model this by letting the service require-

ment of a small (large) customer correspond to a batch size of k = 1 (k = 10)

unit. Large customers arrive at the system at rate λl = 5 per hour. We imple-

ment the balking behavior of the small customers by taking λs,i = max{0, 10−i}.

Then, take λi = λs,i + λl, and set

xi(k) =



















λs,i/λi, for k = 1,

λl/λi, for k = 10,

0, else.

(3.18)

Since we assume complete acceptance: x̂i(k) = xi(k) if i < K and x̂i(0) = 1 if

55

i > K. Let service take place in single units, thus, yi(1) = 1 for all i > 0 and

y0(0) = 1. Note that the queue length corresponds now to the workload in queue.

For simplicity we assume deterministic service times. When the queue length is

long, however, the employee feels more stress, and therefore works at a higher

rate. This is implemented by taking Si,k ≡ (90 + i/5)−1 for all i, k.

For the case with K = 50 we find that the acceptance rate, see Equation 3.14a,

λ′ = 56.1 per hour, ρ = 0.6119, Lq = 5.678, and γ = Γ = 0.0009. As a

simple reference we compare this system to an M/D/1 queue with load ρ =

(5 · 10 + 10)/90 = 2/3, which leads to Lq(M/D/1) = 2/3. Clearly, this value is

much lower than 5.678, leading us to conclude that simpler queueing models are

not accurate models for general batch queueing processes.

3.8.2 Minimal Batch Service Queues with Holding and Setup

Costs

Consider a batch service system subject to setup and service costs, holding costs

and rejecting costs. A natural batch service policy for this system is to start

service only when the queue length exceeds some threshold a and then serve as

many customers as possible. In this section we compute for thisMX/G[a,b]/1/K+

b queueing process, see Section 3.4.3, the costs as a function of the threshold

parameter a. We consider also three loss policies: complete rejection, complete

acceptance and partial acceptance. As in Aalto (2000) we assume that the holding

cost is ch per customer in queue per unit time, a service cost ck + cs j is incurred

at each service epoch when j is the batch service size, and a rejection cost of cr

per unit.

Let π and p denote the limiting distribution of the queue length process at em-

bedded and arbitrary epochs, respectively. It is easy to check that the average

rejection costs per time unit under the complete acceptance (RCca), complete re-

jection (RCcr) and partial acceptance (RCpa) policy can be expressed as follows

RCca = cr
∑

i>K

pi

∞
∑

j=1

xi(j) j = cr
∑

i>K

pi E (Xi)

RCcr = cr

K
∑

i=0

pi

∞
∑

j=K+1−i

xi(j) j

RCpa = cr

K
∑

i=0

pi

∞
∑

j=K+1−i

xi(j) (j −K + i).

56

Now the average cost per time unit under the minimal batch service policy and

rejection policy ξ ∈ {ca, cr, pa} can be expressed as ACξ(a) = HC(a)+SC(a)+

RCξ, where the average holding cost

HC(a) = ch
∑

i>0

pi i,

and average service cost per time unit

SC(a) =
B

∑

i=a

πi (ck + cs i) +
∞
∑

i=B+1

πi (ck + csB).

As a concrete example, suppose for all i ∈ E, λi = 0.2, xi(1) = 0.25, xi(3) = 0.5,

xi(5) = 0.25, E (Xi) = 3, service is deterministic, i.e., Si,k ≡ 10 for all k, i,

B = 10, andK = 10. The parameters x̂i(k) and yi(k) are defined as in Section 3.4

for the three rejection policies and the minimal batch service policy. Furthermore,

the cost parameters are given by ch = 5, ck = 10, cs = 5 and cr = 50. In Table 3.1

we present the costs per unit time for different values of the threshold a.

Table 3.1: Long run average holding cost (HC), service cost (SC), rejection cost (RC)

and total cost (AC) for the rejection policies Partial rejection (pr), Complete rejection

(cr) and Complete admission (ca) as functions of the minimal batch service threshold a.

a 1 2 3 4 5 6 7 8 9 10

HCca 14.90 14.47 14.37 14.42 14.78 15.44 16.94 18.49 21.15 24.52

SCca 35.37 33.75 33.02 30.61 28.99 27.60 26.05 25.06 24.22 23.52

RCca 10.75 10.28 10.05 9.26 8.66 8.11 7.61 7.50 7.91 9.21

ACca 61.02 58.49 57.45 54.30 52.43 51.14 50.60 51.06 53.28 57.25

HCpr 13.24 12.86 12.81 13.00 13.45 14.19 15.62 16.84 18.61 20.70

SCpr 34.14 32.57 31.99 29.53 28.02 26.74 25.01 23.89 22.30 20.46

RCpr 15.32 14.63 14.36 13.11 12.26 11.47 11.57 12.41 16.23 22.87

ACpr 62.70 60.06 59.15 55.64 53.74 52.41 52.20 53.15 57.13 64.03

HCcr 12.83 12.47 12.43 12.65 13.13 13.89 15.44 16.73 18.84 21.27

SCcr 32.89 31.51 30.96 28.65 27.24 26.03 24.30 23.19 21.40 19.38

RCcr 21.46 20.48 20.10 18.36 17.17 16.07 20.53 23.31 33.63 43.31

ACcr 67.27 64.47 63.49 59.66 57.54 55.99 60.27 63.24 73.87 83.97

It is easy to find that the optimal minimal batch service threshold value a⋆ is

6 for the complete rejection policy, 7 for the partial acceptance and complete

acceptance policies. Thus, the threshold value increases when the acceptance

policy is less ’strict’. This is as expected, since the policy makes a trade-off

between set-up costs, i.e., a cost ck is incurred for each service interval, and the

57

rejection costs. Setting the threshold a to a lower value increases the long run

average setup costs but lowers the rejection costs.

3.8.3 Queueing at Thrill Rides at Fairs

Consider now the queueing process at a thrill ride such as the ‘Freak Out’ (see

Wikipedia1 for a description). Customers arrive in groups, and are served in

batches. Larger groups tend to balk less quickly, as the customers in one group

also take pleasure (hopefully) in each other’s company. The service time of a

batch depends on the batch size, since each customer in the rider requires a safety

check before the ride can take off. The problem is to determine the minimal batch

size, i.e., the a parameter of the previous model, that maximizes the number of

persons entering, i.e., paying.

As a simple numerical illustration, suppose couples, i.e., two customers, arrive

at rate λs,i = max{0, 1 − i/14} per minute, while groups of 4 persons arrive as

λl,i = 0.25 1{i 6 20}, where 1{·} is the indicator function. Set λi = λs,i + λl,i,

take

xi(k) =



















λs,i/λi, for k = 2,

λl,i/λi, for k = 4,

0, else.

(3.19)

and assume complete acceptance. The service time of a batch consists of the time

of the actual ride, 2 (very long) minutes, 1 minute of loading and unloading, and

5 seconds per safety check. Assuming that the service time does not depend on

the queue length, the service distribution then becomes Si,k = 3 + k/12 minutes,

where k is the batch size. Finally, the Freak Out has 16 seats, so the maximal

batch size is 16.

Clearly, the revenue rate equals the rate λe at which customers enter the system,

which is given by

λe =
∑

i∈E

pi(2λs,i + 4λl,i)

Note that the maximal entering rate occurs when Q(t) = 0, which in this case

becomes 2λs,0 + 4λl,0 = 3 per minute.

Table 3.2 shows the dependency of λe on the minimal threshold parameter a.

1http://en.wikipedia.org/wiki/Freak_Out_(ride)

58

Interestingly, greedy service leads for this model to higher revenues than full

batch service.

Table 3.2: Revenue rate λe as a function of the minimal batch service threshold a.

a 2 4 6 8 10 12 14 16

λe 2.3204 2.3239 2.3230 2.2988 2.2319 2.1148 1.9495 1.6844

59

60

Chapter 4

Order Acceptance: Setups

& Strict Lead Times

A limitation of the stylized production situation we considered in Chapter 3 is

that two important characteristics of many make-to-order production systems are

not included: setup times and due-dates. In this chapter we therefore extend the

production situation of Chapter 3 as follows. We consider the admission control

and scheduling of customer orders in a production system that produces different

items on a single machine. Customer orders drive the production and belong to

product families, and are fully characterized by their lead time, processing time,

and reward. When production changes from one family to another a setup time

is incurred. Moreover, if an order cannot be accepted, it is considered lost upon

arrival. The problem is to find a policy that accepts/rejects and schedules orders

such that long run profit is maximized. This problem finds its motivation in

batch industries in which suppliers have to realize high machine utilization while

delivery times should be short and reliable and the production environment is

subject to long setup times.

We model the joint admission control/scheduling problem as a Markov deci-

sion process (MDP) to gain insight into the optimal control of the production

system and use the MDP to benchmark the performance of simple heuristic ac-

ceptance/scheduling policies. Numerical results show that the heuristic performs

very well compared with the optimal policy of the MDP for a wide range of

parameter settings, including product family asymmetries in arrival rate, order

size, and order reward.

61

4.1 Introduction

In this chapter we consider a production-to-order environment in which a single

bottleneck machine produces one product family at a time and is subject to

significant setup times when the product family changes. The sequence in which

families can be produced is arbitrary, rather than, for instance, cyclic. Orders

for all families arrive with geometrically distributed inter-arrival times, require

deterministic service time and have strict lead time. If an arriving order cannot

be produced within its lead time, it is rejected upon arrival. The aim of the

production system is to maximize the long run acceptance probability, or in case

the rewards per order may differ among the families, the long run expected reward

per arriving order.

This production situation has numerous applications. The Ph.D. thesis of Ten

Kate (1995) contains an industrial motivation for this problem. Schmidt et al.

(2001) are concerned with efficiently producing baseball bats. Vandaele et al.

(2003) focus on forming effective batch sizes for an NMR scanner. Strijbosch

et al. (2002) concentrate on the scheduling of packaging pharmaceuticals on or-

der. Following Markowitz et al. (2000), Markovitz and Wein (2001) and the

survey paper of Winands et al. (2011) we refer to this production situation as

a customized stochastic lot scheduling problem (CSLSP) with strict lead times.

Here, the term customized refers to make-to-order characteristic of the production

situation, contrary to e.g. the Stochastic Economic Lot Sizing Problem (SLSP)

in which production is make-to-stock hence allows more freedom in deciding the

moment, type and quantity of item to produce.

Clearly, maximizing the long run expected reward per arriving order requires a

policy that accepts orders and schedules the accepted orders. Designing good

policies is, however, not entirely trivial since the acceptance and scheduling de-

cisions are subtlety related: the acceptance depends on a schedule of previously

accepted orders, and if the order is accepted, the order should be scheduled such

that all already present orders are produced within their lead times. To illus-

trate, consider the policy that separates each two accepted orders by a setup

and applies a FIFO service discipline. This policy is certainly simple, but also

unattractive as it leads to a low acceptance rate. Intelligent policies should try

to form ‘runs’ of orders of the same family to reduce the fraction of time spent

on setups. In fact, it may sometimes be better to reject orders even when the

schedule allows to accept it, the idea being that given the contents of the current

schedule the rejection leaves room for later, more attractive, arrivals.

62

The fact that the CSLSP with strict lead times and rejections is a rather intricate

system explains that previous work, such as Bertrand et al. (1990), Ten Kate

(1995), Van Foreest et al. (2010), uses simulation to compare the performance

of several heuristic scheduling and acceptance policies. While this approach

is certainly powerful, simulation just allows to compare the performance of one

heuristic to another, but provides no means to actually benchmark these heuristic

policies against an optimal policy when this optimal policy is unknown.

The contribution of this chapter is fourfold. First, we present a Markov decision

process (MDP) formulation for the CSLSP. An important element in the char-

acterization of the MDP is the formulation of admissible actions that determine

the acceptance/rejection of orders and the formation of job schedules: Upon ar-

rival of a new customer order the planner has the option to accept or reject the

arriving order. If the planner chooses to accept the order, the planner next has

to decide how to form a new schedule with the accepted but not yet completed

orders. Any action that results in a schedule in which orders are produced in time

is in principle an admissible action for planner. Note that this set of admissible

actions is large and contains many actions that are not interesting for the plan-

ner. Moreover, if we want to consider the complete set of admissible actions, the

size of the problem becomes too large to solve by means of an MDP approach.

As a first attempt to gain insight into good acceptance and scheduling policies

using an MDP approach we therefore restrict the set of admissible scheduling

actions to two actions that seem to be the most interesting for the planner: one

action that combines a new order with a run of the same family in the schedule;

and another action that generates a new run for an accepted order.

The second contribution of this chapter is that we use the theory of stochastic

dynamic programming to find the optimal policy for this CSLSP. By modeling the

system as an MDP, we obtain (numerically) the optimal policy by policy iteration,

and analyze its structure and its performance. We show on the one hand that

the structure of the optimal policy is difficult (if not impossible) to characterize

in closed form in general. On the other hand, we provide support that in case

of two families with equal order size and reward the optimal policy has a simple

threshold structure. Third, we use the optimal policy to effectively benchmark

a heuristic threshold policy developed in the earlier simulation studies. The

motivation here is that this heuristic is easy to understand and implement, for

instance in a spreadsheet, hence has large practical value. When, by means of

benchmarking, it can be shown that this threshold policy performs well compared

to the optimal policy, it might suffice in practice to just use this heuristic, rather

63

than the more elaborate optimal policy. Fourth, we provide an improvement of

the best heuristic policy of Van Foreest et al. (2010). This modification, while

conceptually simple, allows the improved heuristic to cope with product type

asymmetries, such as different job sizes, job rewards, arrival rates. We show that

that in all these circumstances the modified heuristic performs excellently, and

outperforms the previously known heuristic considerably.

This chapter is organized as follows. In Section 4.2 we discuss related work. Sec-

tion 4.3 presents the model of the production system, the admissible policies, and

the optimization problem. Section 4.4 describes the associated Markov decision

process and formulates the heuristic policies. Section 4.5 shows the results, and

Section 4.6 concludes.

4.2 Theoretical Background

Although variations of the CSLSP with strict lead times have been investigated

previously, the analysis by means of MDPs has, to the best of our knowledge,

not been addressed before in the literature.

Polling models, see for instance Takagi (1990) or Winands et al. (2011), form an

interesting class of relaxations of our production situation, but are not entirely

suitable, for at least three reasons. First, many polling systems are concerned

with unlimited queues, while the restriction to meet lead times in our situation

puts a natural limit on the length of the schedule. Polling models that do consider

finite queue sizes, for instance Takagi (1991), Kim and Van Oyen (2000), relate a

single queue to each product family. In our case, however, the queueing capacity

can be fully shared among all families. Second, numerous polling models that

include setups, e.g., Kleinrock and Levy (1988), Righter and Shantikumar (1998),

Markovitz and Wein (2001), assume that the server incurs a setup even when it

visits an empty queue. This is a reasonable assumption for polling models of

telecommunication systems since the locations between the queues are physically

separated and the server (token) has to visit a queue to see whether it is empty

or not. However, setting up a machine for non-present families appears quite

unnatural for the scheduling problems occurring in manufacturing situations;

planners usually have a complete view of the order portfolio. Third, many polling

models, see e.g., Reiman and Wein (1998), are concerned with cyclic policies.

However, our earlier work shows that it is detrimental to cyclically serve the

product families for the CSLSP with strict lead times; the heuristic threshold

64

policy performs at least a few percent better. Strategies that use fixed polling

tables, such as developed by Boxma et al. (1991), also seem hard to apply here.

As the lead times of the orders in the production system need to be respected,

the content of the schedule is highly dynamic. Moreover, the schedules we are

concerned with may contain multiple runs of one product family. This last aspect

has a further consequence in that policies such as, e.g., ‘serve a queue of orders of

the same family to exhaustion’, see for instance Liu et al. (1992), are not suitable

here. It may be necessary to switch service from one family to another before all

orders of the family in service are produced.

Also the approach of Vandaele et al. (2003) is not suitable for our case. They

consider fixed group sizes for orders with the same family and optimize over the

sizes of the groups. However, in the resulting policy group completion times are

not guaranteed, hence orders may not meet their lead times.

In this work we are concerned with the online CSLSP, i.e., the set of future orders

is unknown at the moment of arrival. Related recent work addresses the offline

CSLSP, i.e., the orders with strict lead times are given before hand. The offline

CSLSP of accepting and scheduling n independent jobs with release dates, lead

times, and family setup times on a single machine to maximize total reward is NP-

hard in the strong sense, since it is a generalization of the problem ‘Sequencing

with release times and deadlines’ (Garey and Johnson, 1979, p. 236). Oǧuz

et al. (2010), for example, develop three heuristic algorithms for this problem

in which they also consider sequence dependent setup times. Gutiérrez-Jarpa

et al. (2010) develop an exact branch-and-price algorithm for the related Vehicle

Routing Problem with selective pickups and time windows.

4.3 Production System, Admissible Policies, and

Objective Function

We start with describing the production system. Next, in Section 4.3.2, we

introduce the decisions that govern the acceptance and scheduling of arriving

orders. Section 4.3.3 discusses the objective function.

4.3.1 Production System

The production situation is modeled as follows. A single server receives a stream

of orders at arrival epochs 0 = T0 6 T1 6 T2, The inter-arrival times Ti+1−Ti

65

are i.i.d., integer valued, and geometrically distributed with success parameter p,

that is, according to

P (Ti+1 − Ti = k) = p(1 − p)k, for k = 0, 1, 2,

Observe that the inter-arrival time can be zero, i.e., k = 0, and thereby multiple

orders may arrive at the same time. Since E(Ti+1 − Ti) = (1 − p)/p, the arrival

rate λ = p/(1−p). Arriving orders belong to family f , which is one of N possible

families, with probability qf , independent of anything else. Thus, the arrival rate

of family f is λf = λqf . A job of family f—we use the word ‘job’ and ‘order’

interchangeably—requires bf time units of service, where bf is deterministic and

integer valued. An order can be rejected upon arrival, but if accepted it is

scheduled for service such that it can be produced within a lead time of length

h, which is the same for all families. (We provide motivation for this choice

below.) Whenever two subsequent orders in the schedule belong to different

product families a setup of (integer valued) duration s, which is the same for

all families, is inserted between these two orders. When an order arrives at an

empty system, a setup is not necessary if the last produced order is of the same

family as the arriving order. Service of orders and setups is non-preemptive, and

the server is assumed to never fail, so that all accepted orders can be produced

in time.

With regard to the scaling of the system, observe that without loss of generality

it is possible to scale the lead time and the sizes of the jobs and setups such that

at least for one family the jobs have unit time length or the setup time is of unit

length.

The above model allows, formally, for family-dependent lead times. However, in

industry, see, e.g., Ten Kate (1995), it is standard practice to use a uniform lead

time, as it is not so clear how to exploit different lead times. Families with long

lead times can claim more machine capacity and then families with shorter lead

times, and in general, this form of unfairness appears to be quite undesirable and

hard to resolve when different lead times are allowed.

4.3.2 Admissible Actions and Policies

We now describe the actions that determine the acceptance/rejection of orders

and the formation of job schedules.

The admissible decisions, Combine, Spawn, and Reject, are deterministic (only

dependent on the state of the schedule), and illustrated by means of the schedule

66

instance in Table 4.1. Admissible policies are stationary and non-anticipative

with respect to the arrival process and work-conserving (non-idling if the schedule

contains orders).

Table 4.1: An instance of a schedule of accepted orders. The symbols ‘R’, ‘G’, and ‘B’,

refer to order colors, ‘s’ to a setup. The size of the schedule is 14 positions. Jobs and

setups have unit length here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R R s B B B s G s R

The Combine action aims at reducing the fraction of setups by trying to combine

a new order with a run of the same family, i.e., a set of consecutive orders of the

same ‘kin’. By simple pairwise interchange arguments, see e.g., Pinedo (2008), it

is easy to see that the optimal sequence of jobs within a run is Earliest Due-Date

first—the reward cannot increase by inserting arriving orders before orders of the

same family—hence, the Combine action adjoins accepted orders only to the end

of a run. To illustrate, suppose a ‘blue’ order arrives. The schedule in Table 4.1

contains one blue run, that is, at positions 4, 5, and 6. The Combine action

tries to join the order with this run by inserting it at position 7 and shifting

the already present orders at positions 8 and 10 back to positions 9 to 11. In

case either one of the orders at positions 8 and 10 will be late as a result of the

insertion, Combine is not allowed to insert this new order at position 7.

The Spawn decision adjoins a new order to the end of the schedule so that it

‘spawns’ a new generation of its family. This acceptance will necessarily introduce

a setup between the last family and the new order. Hence, Spawn schedules the

just arrived job at position 12 and inserts a setup at position 11. Thus, to accept

such an order the schedule should at least provide room for the setup and the

order. If the contents of the schedule is such that both Combine and Spawn are

admissible, the former action is always chosen. From a practical point of view

this is entirely reasonable: why delay an order more than necessary?

The Reject decision simply rejects the arriving order.

For later purposes we define the slack of an accepted job as the amount of time

that is available to insert other, later arriving, orders in front of the accepted

job. For instance, suppose that the ‘red’ order in position 10 has a lead time of

14. Then the slack of this red job is 4 since 4 time units are available to insert

other jobs in front of the job before it will be late.

67

4.3.3 Objective Function

The last step of the model specification consists of formulating a reward structure.

We set the acceptance reward for a job of family f equal to rf > 0 and the

earliness cost to zero. The underlying motivation is that we assume that serving

orders early is acceptable when this potentially leads to accepting more orders.

(In the case of patients this seems to be even an advantage.) Hence, the reward

for accepting an order must be higher than the cost of producing early. We also

set the setup cost equal to zero. However, inserting setups arbitrarily cannot be

optimal, since a setup takes away a position in the schedule thereby preventing

potential rewards. There is no tardiness cost, as jobs cannot be late.

The objective is to find the maximal long run average reward of the production

system. More formally, given policy π, let Aπ(k) be the sum of the rewards of

accepted orders among the first k arrivals. Then the long run expected reward

per arriving order, Jπ, takes the form

Jπ = lim
k→∞

E (Aπ(k))

k
. (4.1)

The objective is to find

J⋆ = max
π

Jπ, (4.2)

where the maximization is taken over the class of admissible policies. As an

aside, (4.1) is often formulated in terms of an limit inferior. However, since the

state space is finite, this subtlety is unnecessary as the limit exists by Proposition

8.1.1 of Puterman (1994).

A convenient related performance indicator is the rate of accepted reward λJπ .

In case the reward per job is equal to the job length, the reward function Jπ

represents the long run average fraction of accepted work, and λJπ corresponds

to the utilization.

Finally, to study the fairness of a policy it is of interest to define performance

indicators per product family. For a given policy π, let Aπ
f (kf) be the sum of the

rewards of accepted orders of family f among the first kf arrivals of family f .

Then under policy π, the long run expected reward per arriving order of family

f , Jπ
f , is given by

Jπ
f = lim

kf→∞

E (Aπ
f (kf))

kf

. (4.3)

and the long run expected fraction of accepted orders of family f by Wπ
f = Jπ

f /rf .

68

4.4 The Markov Decision Process

We now turn to modeling the above production situation as a Markov decision

process (MDP). An MDP consists of a set of states, a set of decisions, state

transition functions P (x′|x, a) representing the transition probability from state

x to a future state x′ conditional on choosing decision a, and a function R(x, a)

that provides the reward earned when taking decision a in state x. For general

background on the definition and analysis of Markov decision processes we refer

to Puterman (1994) or Tijms (2003).

As the specification of the system state x is somewhat involved, we characterize

the format of a state in Section 4.4.1. The actions have already been introduced in

Section 4.3.2; we only need to formalize the actions, which we do in Section 4.4.2.

Section 4.4.3 presents the state transition functions. The rewards R(x, a) are al-

ready clear from Section 4.3.3: only decisions that lead to the acceptance of an

order of family f generate positive reward rf . Section 4.4.4 explains a conve-

nient method to generate the state space of the Markov chain. In Section 4.4.5

we formulate the heuristic threshold policy in terms of the notation developed

and in Section 4.4.6 we evaluate the optimal and threshold policy. Finally, in

Section 4.4.7 we discuss a suitable method to aggregate the MDP for instances

for which job size, arrival rate and reward are identical for all families. This

method allows us to considerably extend the system sizes suitable to study.

4.4.1 Format of a State

Let us characterize a system state such that it contains sufficient information

for the actions of the MDP. First, recall that the decision epochs coincide with

the arrival epochs, hence we only have to specify the state of the system at these

epochs. Next, it is actually not necessary to store information about all individual

orders in the schedule. In fact, the Reject action needs no state information at all.

The Spawn action requires only the length of the schedule and the size and family

of the new job. The Combine action needs only the slack of the ‘tightest’ orders

of the runs, i.e., the orders with the least slack per run, since if the tightest order

of a run is in time, all orders in the run will be in time. Thus, a state consists

of the sequence of runs, and, per run, the family, length (including a setup), and

slack of the ‘tightest’ job.

To cast the above in suitable notation, write x = (σ; f) where σ denotes the

contents of the schedule and f indicates the family of the arriving order. The

69

schedule σ is an ordered tuple of runs (σ1, . . . , σn). A run σi, i > 2, is also an

ordered tuple (fi, δi, li), where fi is the run’s family, δi the slack of the tightest

order, and li the length (including setup time). The first run σ1 needs no slack

information, since maintaining a run’s slack is only relevant to ensure that earlier

runs cannot become too long; however there are no runs in front of σ1, and thus,

σ1 = (f1, l1). When the schedule is empty, we write σ = (f1, 0), where f1 is the

last produced family.

A simple observation allows us to reduce the information in x still further. Since

arriving orders cannot be combined with runs in front of a tight run, nor can

new runs be spawned before this tight run, the family and slack of these runs are

superfluous, hence the lengths of these runs can be added simply to the length

of the tight run, and the tight run must be the first run in the family. More

formally, suppose that the kth run in the schedule is tight. Then the schedule

σ = (σ1, . . . , σn) can be aggregated into the schedule σ′ = (σ′
1, σ

′
2, . . . ,), where

σ′
1 = (fk,

∑k
i=1 li), σ

′
2 = σk+1, . . .

The last step is to show how to project back the slack of a newly accepted job

to the slack of the tightest job of a run. Suppose that an arriving order of

family f with lead time h is to be combined with run σk. Then
∑k

i=1 li is the

amount of work in front of the new job, and the slack of the new job is therefore

h−
∑k

i=1 li − bf . Since δk was the slack of the tightest job before the acceptance,

δ′k = min{δk, h−

k
∑

i=1

li − bf}, (4.4)

must be new slack of the tightest job in run k. In case the job is spawned, the

slack of the tightest job in the new run is simply

δn+1 = h− |σ| − bf − s. (4.5)

4.4.2 Actions and Operators

Making a transition from one state to the next involves three steps. The first

step is to apply one of the actions Reject, Spawn, and Combine to the arriving

order. The second step consists of generating the time to the next arrival epoch,

and removing the related amount of workload from the schedule. In third step, a

new arriving order is generated. We implement each step by means of operators,

to be defined now. For notational convenience, let |σ| =
∑n

i=1 li denote the total

amount of work in the schedule including setups.

70

First we associate the actions Reject, Spawn and Combine to operators R,S,C

which map states x = (σ; f) to schedules σ = (σ1, . . . , σn). The operator R

simply removes the arriving order:

R (σ; f) = σ;

S adjoins the order to the end of the schedule,

S (σ; f) = (σ1, . . . , σn, (f, δn+1, s+ bf)) ,

where δn+1 is defined in (4.5), s denotes the length of a setup, and bf the size of

the new job; and the operator C combines the arrival with the last run of family

f in the schedule:

C (σ; f) = (σ1, . . . , σk−1, (f, δ
′
k, lk + bf), σk+1, . . . , σn), (4.6)

where δ′k is defined in (4.4), and we assume without loss of generality that σk is

the last run of family f in the schedule.

For each state x, the set A(x) contains the actions that can be applied to x.

Specifically, since the Reject action is always possible, R ∈ A(x) for all x. With

regard to the Combine action, C ∈ A(x) if the insertion of the new order of

family f by Combine does not lead to any other job in the schedule becoming

late. In more formal terms, suppose σk is the last run of family f in σ, as in (4.6).

Then the insertion is allowed if δi > bf for all i > k + 1. Finally, S ∈ A(x) when

C /∈ A(x) and |σ| + bf + s 6 h, i.e., the length of the schedule that results after

the operation of S on x is less than or equal to h.

We next need the time shift operator T , which maps a schedule to a schedule,

to implement the effect on the schedule when the time to the next arrival epoch

is one time unit. Clearly, if the schedule is not empty and the time to the next

arrival epoch is one time unit, (part of) the first run of the schedule is produced,

and the slack of the remaining runs is reduced by one time unit. Specifically,

while temporarily extending the definition of T to operate on single runs so that

we can also write Tσ = (Tσ1, . . . , T σn), we have

Tσ = ((f1, 0)), if l1 = 0 and n = 1,

T σ = ((f1, l1 − 1), T σ2, . . . , T σn), if l1 > 1,

T σ = ((f2, l2 − 1), T σ3, . . . , T σn), if l1 = 0 and n > 1,

T σi = (fi, hi − 1, li), if i > 2.

(4.7)

Shifting by m > 0 time units is simple, just apply the m times composition Tm.

No shift in time is represented by T 0, which is the identity operator.

71

The last operator Ff maps a schedule to a state by augmenting σ with an arriving

order of family f :

Ff (σ) = (σ; f) , f = 1, . . . , N.

4.4.3 Transition Matrices

With the above operators we can map a state x to a future state, and hence

describe the transition matrices associated to each of the actions Reject, Spawn,

and Combine.

If the next order arrives m time units from now and is of family f , then for any

a ∈ A(x) we write x′fm = (Ff ◦ Tm ◦ a)(x) for the next state. The set F (x) of

future states of x is given by

F (x) =
{

x′fm

∣

∣ x′fm = (Ff ◦ Tm ◦ a)(x), for a ∈ A(x), 0 6 m 6 |a(x)|, 1 6 f 6 N
}

,

(4.8)

recall that |a(x)| denotes the length of a schedule after the operation of a on x.

The transition matrices now follow easily: the probability to jump from state x

to a state x′fm ∈ F (x) is

P
(

x′fm

∣

∣

∣
x, a

)

= qf p(1 − p)m, if m < |a(x)|, (4.9)

and

P
(

(

(f1, 0); f)
∣

∣

∣
x, a

)

= qf
∑

m>|a(x)|

p(1−p)m = qf (1−p)|a(x)|, if m > |a(x)|,

(4.10)

where again f1 is the last produced family.

4.4.4 State Space

The formal characterization of the state space S requires to enumerate all possi-

ble schedules. However, this is a cumbersome task due to the interaction between

orders and setups. By far the easiest way to generate S is by induction. Using

the set of future states of x as defined in (4.8), let S(i+1) =
⋃

x∈S(i) F (x), and

take as initial set S(0) = {((f, 0); g)|f, g = 1, . . . , N}. Once there is an i such that

S(i+1) = S(i), it must be that S = S(i). Observe that this iterative procedure

72

stops trivially, due to the finiteness of schedule length and number of different

families.

Although there is no simple way to generate the state space which allows us to

compute the size of the state space, this size must increase very rapidly as a

function of N and h. To obtain a rough indication, suppose that each of the

N families has a run in the schedule. The runs are separated by a setup, and

each run contains at least one job. Thus, roughly speaking, each run consumes

at least two positions of the schedule, one setup and one job. As a consequence,

the number of free positions left in the schedule must be h − 2N . Clearly, each

of these free positions can be occupied by an order, yielding Nh−2N possible

schedules. In fact, there must be more feasible schedules, since runs can have

different due-date slacks, there may also be less than N families present in the

schedule, and not all positions in the schedule need be filled.

4.4.5 The Heuristic Threshold Policy

With the machinery developed above it is easy to model the system under the

threshold policy as an MDP.

For a given state x, the threshold policy always applies the Combine action if

C ∈ A(x). If C 6∈ A(x), the Spawn action is chosen, provided |S(x)| 6 ch,

where c is some constant smaller than 1, typically around 0.8. If this also fails,

the order will be rejected. Clearly, as this policy is deterministic, and makes

decisions based only on the state of the schedule and the newly arriving order, it

is stationary, hence admissible.

The intuition behind this policy is as follows. Any time spent on setups does not

increase the reward function as defined in (4.2), and potentially decreases it as

setup time cannot be used to process orders. Hence, policies that encourage the

formation of long runs, without violating the lead time constraints, appear the

most interesting. Furthermore, in case the load of one family does not suffice to

fill the machine capacity, it is obvious that the capacity should be shared among

a few families, hence, runs of orders of families should alternate. However, as

soon as multiple families share the capacity, they are in effect ‘competing’ for the

capacity. As is generally the case, and shown in Van Foreest et al. (2010), a good

policy should regulate this competition. In fact, we show there that if the load

is high and the Spawn action is not regulated, typical runs contain just one or

two jobs. A good policy should regulate the Spawn action to create combination

73

potential : runs may only start when the schedule is not full so that the first job

of a run is not tight when the run starts. Since a threshold to enable or disable

the Spawn action is about the simplest policy possible, we use this threshold in

the heuristic policy.

If the threshold value c is uniform for the families, we expect the threshold policy

to work well in symmetric cases, that is, in production situations in which the

contending families have roughly similar arrival rates, rewards, and job sizes.

However, when there is asymmetry, it may become better to make the threshold

values family dependent.

4.4.6 MDP Computation

The objective of the MDP is to maximize the long run expected reward per

arriving order J⋆ (see Section 4.3.3). To compute the optimal policy we use

policy iteration, which comes down to solving for a function v⋆, a policy π⋆, and

a constant g⋆ such that

v⋆(x) = min
a∈A(x)







R(x, a) − g⋆ +
∑

y∈S

P (y|x, a)v∗(y)







π⋆(x) = argmin
a∈A(x)







R(x, a) +
∑

y∈S

P (y|x, a)v∗(y)







, x ∈ S.

Then π⋆ is an optimal control and g⋆ is equal to the solution J⋆ of (4.2). For

further details see (Tijms, 2003, Chapter 6).

To compute the performance of the threshold policy we solve for a function v,

and a constant g such that

v(x) = R(x, t(x)) − g +
∑

y∈S

P (y|x, t(x))v(y),

where t(x) implements the action taken by the threshold policy in state x. Then g

is the long run average reward under the threshold policy.

4.4.7 Further Aggregation in the Symmetric Case

In the case the families are symmetric, i.e., the arrival rates, job sizes and rewards

are equal for all families, it turns out that it is not necessary to store information

concerning the family of a run in the schedule. Because of the symmetry in

74

arrival rate, an arriving order is of family f with probability 1/N . Recall that a

new run can only be spawned if it is not possible to combine the arriving order

with a run of the same family in the schedule. Since we keep only track of runs

in the schedule to which new orders can be combined (i.e. runs preceding a tight

runs are aggregated, see Section 4.4.1) it follows that the number of runs in the

schedule cannot exceed the number of families and that each family has at most

one run in the schedule. Therefore, the probability that an arriving order sees

upon arrival a run in the schedule to which it can be combined is n/N , where n

denotes the number of runs in the schedule.

The state of the system x can now be aggregated into a tuple (σ;m) where

σ = (l1;h2, l2; . . .) denotes the content of the schedule and m is an indicator that

denotes the run of the schedule to which the arriving order can be combined (in

case m > 1) or the case that no run in the schedule is from the same family as

the arriving order (in case m = 0). For example, x = ((2; 5, 3; 8; 2); 1) depicts

the state in which an arriving order can be combined with the first run in the

schedule.

It is apparent that the operators C,R, and S of Section 4.4.2 and the state

transition probabilities of Section 4.4.3 have to be converted to the aggregated

process. As this is relatively easy we refrain from including the details.

4.5 Numerical Study

In this section we are concerned with the performance of the threshold policy

implemented as an MDP and compare this to the optimal performance obtained

by policy iteration.1 We investigate the effect of various system parameters.

First, in Section 4.5.1, we consider symmetric cases, that is, situations in which

the families have identical characteristics. From the results, we will learn that

the threshold policy has (near) optimal performance, which makes it interesting

to investigate whether the threshold policy resembles the optimal policy. This

is done in Section 4.5.2 by means of a statistical analysis of the structure of the

optimal policy. In Section 4.5.3 we study the effect of asymmetries in job size,

arrival rate per family, and reward and provide in Section 4.5.4 an analysis of the

structure of the optimal policy for asymmetric instances.

For notational convenience we use vectors b, q and r, to denote the job size,

1We implemented all algorithms in python and numpy, which are freely available on the

web. At request the code used for the computation can be obtained from the author.

75

arrival fraction and reward per family. For instance, b = (b1, b2) = (1, 3) specifies

the scenario in which the job size of the first (second) family is 1 (3). Throughout

we restrict the total load of the system ρ = λ
∑

f qfbf to the interval [0.5, 1.2].

Higher or lower values appear less relevant to study from a practical point of

view. The parameters N and h determine the size of the state space and are

therefore bounded by computer memory.

The reasoning in Section 4.4.4 shows that cases with, e.g., N = 8 and h = 30

such as considered in Van Foreest et al. (2010) are completely out of reach for an

analysis by means of MDPs. We have to restrict the numerical analysis here to

cases with N ∈ {2, 3, 4, 5}, and lead time that decrease as a function of N from

h = 30 to h = 10.

4.5.1 Influence of c, h, ρ, s and N

In our first experiment we study the effect of the threshold parameter c, the

system load ρ, and the lead time h, for N = 3 symmetric families.

Figure 4.1 shows the influence of the threshold parameter c on the long run

accepted reward J per arriving order as obtained by the threshold and optimal

policy. The graphs for ρ = 0.5, 0.9, and 1.2 present the dependence on ρ. Taking

h = 10, 14, and 18, in the upper left, upper right, and lower panel shows the

influence of h.

The figure allows us to make a number of interesting observations. First of all,

the expected reward J per arriving order decreases as a function of ρ. This is

natural: when for instance ρ = 1.2 at least 20% of the offered load has to be

rejected. Second, since the graphs of the expected rewards of the threshold and

optimal policy touch for some value of c, the threshold policy can have (near)

optimal performance. Third, when c is large, in the order of 1, the threshold

policy performs quite badly. This is due to the fact that it gives rise to schedules

in which short runs of jobs alternate with setups, see Van Foreest et al. (2010) for

further detail. On the other hand, when c ≈ 0, the performance also deteriorates

because runs only start when the schedule is nearly empty, hence the server

idles quite often. Fourth, the best value of c becomes smaller as ρ becomes

larger. This is as expected: the higher the load, the more combination potential

by using the Combine action, hence longer runs. Comparing the panels in a

clockwise direction, to understand the behavior of h, we see that the average

reward J increases. This is not surprising since longer lead times also enable

76

more combination potential.

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0.5

0.9

1.2

Lead time h = 10

Threshold parameter c

A
cc

ep
te

d
re

w
a
rd

J

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0.5

0.9

1.2

Lead time h = 14

Threshold parameter c

A
cc

ep
te

d
re

w
a
rd

J

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

0.5

0.9

1.2

Lead time h = 18

Threshold parameter c

A
cc

ep
te

d
re

w
a
rd

J

Figure 4.1: The long run accepted reward J per arriving order as a function of the

threshold parameter c for the threshold and optimal policy. The straight lines corre-

spond to the performance of the optimal policy which, of course, cannot not depend

on c. The highest, middle and lowest graphs correspond to ρ = 0.5, 0.9, and 1.2, re-

spectively. The upper left, upper right, and lower panel correspond to h = 10, 14,

and 18. The other parameters are as follows: N = 3, s = 1, b = r = (1, 1, 1), and

q = (1/3, 1/3, 1/3).

Similar figures for N = 2, 4, and 5 and for different setup times s (not included

here) show also that the threshold policy has (near) optimal performance when

c is set appropriately.

4.5.2 Structure of the Optimal Policy for Symmetric In-

stances

From the results of the previous sections it appears that a suitable threshold

policy might be optimal which in turn would imply that the optimal Spawn–

Reject decision has a threshold structure. To investigate this observation more

77

formally we follow an approach, proposed in Haijema et al. (2007), to visualize

the structure of the optimal policy by grouping states x into sets

Ss
m(a) = {x |S ∈ A(x), |S(x)| = m,π⋆(x) = a}, if a ∈ {S,R},

Sc(a) = {x |C ∈ A(x), π⋆(x) = a}, if a ∈ {C,R},
(4.11)

where π⋆(x) is the optimal action in state x. For example, Ss
6(S) is the set of

states with |S(x)| = 6 and for which it is optimal to spawn a new run rather

than reject the arriving order. Let η⋆(S̃) =
∑

x∈S̃ η
⋆(x), where η⋆(x) is the

steady state fraction of time the π⋆-controlled MDP spends in state x.

Table 4.2 shows the frequencies η⋆ (Ss
m(S)) (in percentages) and η⋆ (Ss

m(R)) for

m = 2, . . . , 10, and N = 2, b = r = (1, 1), s = 1, h = 10, ρ = 1.2 and

q = (1/2, 1/2). We see that the optimal Spawn–Reject decision is based only on

|S(x)|, and that there is a threshold at |S(x)| = 7, just as for the best thresh-

old policy. Pertaining to the Combine–Reject decision the table shows that the

optimal policy always chooses Combine whenever C ∈ A(x). Combining these

observations we conclude that for this set of parameters the threshold policy with

threshold parameter c = 7/h = 0.7 is equal to the optimal policy.

Table 4.2: Frequency table of η⋆ (Ss
m(S))×100% and η⋆ (Ss

m(R))×100%, m = 2, . . . , 10,

for the Spawn–Reject and Combine–Reject decision. The parameters of the case are as

follows: N = 2, h = 10, ρ = 1.2, s = 1, b = r = (1, 1), and q = (1/2, 1/2).

|S(x)| 2 3 4 5 6 7 8 9 10 Total

Spawn 0.80 0.97 1.64 1.66 1.95 2.75 0.00 0.00 0.00 9.77

Reject 0.00 0.00 0.00 0.00 0.00 0.00 4.48 5.19 5.25 14.93

Total

Combine 62.46

Reject 0.00

To investigate whether a threshold policy is optimal in more general circum-

stances we next consider forN = 2 families a full factorial design of instances with

lead time (h ∈ {10, 12, . . . , 30}), setup time (s ∈ {1, 2}), job size (bf ∈ {1, 2}),

reward (rf ∈ {1, 2}) and load (ρ ∈ {0.5, 0.6, . . . , 1.2}). The results (not included

here) show the threshold policy with suitably chosen threshold c to be optimal

always.

We next study a case with N = 3 families. Now, as is demonstrated by Table 4.3,

the optimal Spawn–Reject decision no longer has a clear threshold. Although this

78

is somewhat disappointing (the simple threshold policy can no longer be optimal),

not all structure is lost: in 97.55% (= 100−2.45) of the states the threshold policy

with c = 0.7 still takes the same decisions as the optimal policy.

Table 4.3: Frequency table for Spawn–Reject and Combine–Reject decision. The param-

eters of the test instance are as follows: N = 3, h = 10, ρ = 1.2, s = 1, b = r = (1, 1, 1),

and q = (1/3, 1/3, 1/3).

|S(x)| 2 3 4 5 6 7 8 9 10 Total

Spawn 1.04 1.25 2.33 2.86 4.21 3.60 0.00 0.00 0.00 15.29

Reject 0.00 0.00 0.00 0.00 0.00 2.45 8.30 8.00 6.10 24.85

Total

Combine 51.47

Reject 0.00

To further investigate the quality of the threshold policy we compute the dif-

ference in performance between the optimal policy and the best threshold pol-

icy for the symmetric instances with unit job size and reward, setup time s ∈

{1, 2}, load ρ ∈ {0.5, 0.6, . . . , 1.2}, lead time h ∈ {10, 12, . . . , 18} for N = 3,

h ∈ {10, 11, . . . , 15} for N = 4, and h ∈ {10, 11, 12, 13} for N = 5. The his-

togram in Figure 4.2 shows the results. Clearly, the best threshold policy is

never more than 1% off, and in the majority of the cases the performance is

within 0.2% of the optimal policy.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

Percentage difference

N
u
m

b
er

o
f
in

st
a
n
ce

s

Optimal and uniform threshold policy

Figure 4.2: Histogram of percentage of performance difference between the optimal

policy and the best threshold policy for symmetric instances with N > 2 product

families.

79

We infer from a more detailed analysis of states that the optimal policy will, in

general, not have a simple structure. For instance, for the case in Table 4.3, the

optimal decision in state ((f1 = 3, l1 = 2), (f2 = 1, δ2 = 2, l1 = 3); f = 2) is

Spawn, while in ((f1 = 3, l1 = 3), (f2 = 1, δ2 = 2, l2 = 2); f = 2) it is Reject.

Still, both states have |S(x)| = 7, an order of family 2 arrives, and the order of

families and the due-date slacks of the runs are the same. The only difference is

in the length of the first and second run.

4.5.3 Asymmetry in Job Size, Arrival Rate and Reward

Next we study the influence of asymmetries in job size, arrival rate and reward

on the performance of the threshold policy. Figure 4.3 shows for N = 3, h = 12,

s = 1 the reward rate and the fraction of accepted orders of family 1 and 2

as obtained by the optimal policy (i.e., λJ⋆, W ⋆
1 and W ⋆

2) and best threshold

policy (i.e., λJ t, W t
1 and W t

2) for three scenarios: asymmetry in job size, with

b = r = (3, 1, 1) and q = (1/3, 1/3, 1/3); asymmetry in arrival rate, with q =

(0.1, 0.8, 0.1) and b = r = (1, 1, 1); and asymmetry in reward with r = (1, 2, 2),

b = (1, 1, 1) and q = (1/3, 1/3, 1/3). The figure shows that, except for the scenario

q = (0.1, 0.8, 0.1), the threshold policy performs remarkably well. The case with

asymmetry in arrival rate is, however, exceptional: just one family has a high

arrival rate and, consequently, does not have to compete with the other families.

As a result, the threshold policy does not work well, and there is also no need to

decrease c.

Of particular interest is also the observation that the optimal policy becomes

less fair with respect to fraction of accepted order of family 1 and 2 when the

load increases. For instance, in scenario r = (1, 2, 2) the two families with a

high reward per accepted order receive under the optimal policy a much higher

acceptance fraction than the family with a low reward per accepted order. This

difference is much less pronounced under the threshold policy. On the other

hand, the performance of the best threshold policy is just a few percent lower

than the optimal policy. Apparently, sharing the resource in a rather fair way, as

the threshold policy achieves, does not necessarily have to come at the expense

of a large penalty on the total reward.

Next we investigate if the loss in performance due to family asymmetries can be

repaired by making the threshold parameter family dependent. Let cf denote

the threshold parameter for family f . For a given state x = (σ; f), the family-

dependent threshold policy always applies the Combine action if C ∈ A(x), while

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.7 0.9 1.1 1.3

Load ρ

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

b = (3, 1, 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.7 0.9 1.1 1.3

Load ρ

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

q = (0.1, 0.8, 0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.5 0.7 0.9 1.1 1.3

Load ρ

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

r = (1, 2, 2)

Figure 4.3: The reward rate and the fraction of accepted orders of family 1 and 2

as obtained by the optimal policy (i.e., λJ⋆, W ⋆
1 and W ⋆

2) and best threshold policy

(i.e., λJt, W t
1 and W t

2) as a function of the load ρ. (Due to symmetry, the fraction of

accepted orders for families 2 and 3 are equal; hence the results for family 3 are not

shown.) The upper left panel shows the results for b = r = (3, 1, 1), the upper right

panel for q = (0.1, 0.8, 0.1) and the lower panel for r = (1, 2, 2).

81

if C /∈ A(x) it chooses the Spawn action provided |S(x)| 6 cf h. Figure 4.4 shows

the performance of the best family-dependent threshold policy for the same three

asymmetric cases considered in Figure 4.3. It is apparent that family-dependent

threshold parameters can be found such that the performance difference between

the family-dependent threshold and the optimal policy is negligible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.7 0.9 1.1 1.3

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

Load ρ

b = (3, 1, 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.7 0.9 1.1 1.3

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

Load ρ

q = (0.1, 0.8, 0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.5 0.7 0.9 1.1 1.3

λJ⋆ W ⋆
1 W ⋆

2

λJt W t
1 W t

2

Load ρ

r = (1, 2, 2)

Figure 4.4: The cases are identical to those in Figure 4.3 except that now the threshold

c = (c1, c2, c3) is family-dependent instead of uniform for all families.

82

4.5.4 Structure of the Optimal Policy for Asymmetric In-

stances

Now that we have seen that the (family-dependent) threshold policy can also give

(near to) optimal performance for asymmetric instances, provided the threshold

parameters are chosen suitably, it becomes of interest to investigate whether

the optimal Spawn–Reject decision has a threshold structure for asymmetric

instances. To do so, we redefine the sets Ss
m(a) in (4.11) as follows

Ss
m,g(a) = {x |S ∈ A(x), f = g, |S(x)| = m,π⋆(x) = a}, if a ∈ {S,R}. (4.12)

For example, Ss
6,1(S) is the set of states with |S(x)| = 6, an arriving job of family

1 and for which it is optimal to spawn a new run rather than reject the arriving

order.

Table 4.4 shows η⋆
(

Ss
m,g(S)

)

and η⋆
(

Ss
m,g(R)

)

for m = 2, . . . , 10 and g = 1, 2,

while N = 2, b = (1, 1), r = (2, 1), s = 1, h = 10, ρ = 1.2 and q = (1/3, 2/3).

Clearly, the optimal Spawn–Reject decision is based only on |S(x)| and the family

of the arriving order, and there is a threshold at |S(x)| = 10 for arriving orders

of family 1 and at |S(x)| = 6 for family 2 orders, just as for the best family-

dependent threshold policy. However, the results for the Combine–Reject decision

show that for this set of parameters it is not optimal to always combine when

C ∈ A(x).

Table 4.4: Frequency table for Spawn–Reject and Combine–Reject decision. The pa-

rameters of the case are as follows: N = 2, h = 10, ρ = 1.2, s = 1, b = (1, 1), r = (2, 1),

and q = (1/3, 2/3).

|S(x)| 2 3 4 5 6 7 8 9 10 Total

Fam. 1
Spawn 0.48 0.58 0.89 0.87 0.83 0.77 0.69 0.64 0.22 5.97

Reject 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fam. 2
Spawn 0.56 0.68 1.27 1.39 2.08 0.00 0.00 0.00 0.00 5.97

Reject 0.00 0.00 0.00 0.00 0.00 3.71 4.08 3.87 3.21 14.87

Total

Combine 57.53

Reject 10.99

To investigate this observation in more general circumstances we consider a full

factorial design of asymmetric instances that differ with respect to the number of

families (N ∈ {2, 3, 4}), setup time (s ∈ {1, 2}), arrival rate, job size (bf ∈ {1, 2}),

83

reward (rf ∈ {1, 2}), load (ρ ∈ {0.7, 0.9, 1.1}) and lead time (h ∈ {10, 15, 20, 25}

for N = 2; h ∈ {9, 12, 15} for N = 3; and h = 10 for N = 4). The results show

more generally that when job sizes or rewards are asymmetric it is not optimal

to always combine if C ∈ A(x). The optimal Spawn–Reject decision has still a

threshold structure, but only when N = 2. Thus, we conclude that an optimal

(family-dependent) threshold policy can only be found when N = 2 and job sizes

and rewards are symmetric.

As for the symmetric instances it is interesting to investigate the quality of the

threshold policy for asymmetric instances. Figure 4.5 shows two histograms

displaying the performance difference between the optimal policy and the best

threshold policy, and between the optimal policy and the best family-dependent

threshold policy.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14

Percentage difference

N
u
m

b
er

o
f
in

st
a
n
ce

s

Optimal and uniform threshold policy

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.5 1 1.5 2

Percentage difference

N
u
m

b
er

o
f
in

st
a
n
ce

s

Optimal and family-dependent threshold policy

Figure 4.5: Histogram of percentage of performance difference between the optimal and

uniform threshold policy (upper panel) and the optimal and family-dependent threshold

policy (lower panel) for a large number of asymmetric instances.

84

The upper histogram shows that the threshold policy is rather robust to asym-

metries in the family parameters. For the majority of cases the best threshold

policy performs within a few percent of the optimal policy. The lower histogram

shows that the best family-dependent threshold policy achieves near optimal per-

formance; it never performs less than 2% optimal, and in the vast majority of

the cases the performance is within 0.1% optimal.

4.6 Conclusions and Extensions

We developed a Markov decision model of the customized stochastic lot schedul-

ing problem with strict lead times and rejections. With this MDP we can compare

a heuristic policy (the threshold policy) to the optimal policy of the MDP. It is

shown, within the numerical regimes considered here, that when the families are

symmetric in job size, arrival rate and reward, it is possible to find a threshold

parameter c such that the difference in performance between the threshold and

optimal policy is negligible. Moreover, the performance of the threshold policy

proves actually rather robust to asymmetries in the family parameters. This

is rather remarkable as the heuristic is primarily designed to resolve contention

for the machine capacity among symmetric families. Second, it appears that the

threshold policy is usually more fair than the optimal policy in that, for instance,

the family with the smallest reward per order, receives a higher share of the ca-

pacity under the heuristic than under the optimal policy. Third, by making the

threshold c family-dependent, i.e., cf for family f , the threshold policy can again

be tuned to perform (near) optimal for asymmetric cases. The analysis based on

MDPs has a clear advantage in that it is exact, rather than heuristic. On the

other hand, this approach suffers from a state space explosion, thereby making it

difficult to study situations with many families, long lead times, or many types

of actions.

The Markov decision model of the CSLSP makes it relatively straightforward

to consider numerous extensions. (To keep the number of variations within this

study within limits we chose not to incorporate these extra degrees of freedom

here.) For instance, job sizes may become random, as long as the support of

distribution is restricted to, for instance, {1, . . . , 8} when the number of families

is 3 and the lead time is 30. The distribution may also become family dependent,

just as setup times. It is also possible to make the service time stochastic, by a

simple modification of the shift operator T . However, when service times become

85

stochastic, the lead times may no longer be guaranteed, hence the model should

be extended with other performance measures, for instance tardiness.

As a first attempt to gain insight into good acceptance and scheduling policies

for the CSLSP, we restricted the set of scheduling actions to the two actions

that are most interesting for the planner: Combine and Spawn. In the original

CSLSP, however, any action leading to a permutation of the schedule in which

orders are produced in time is an admissible scheduling action for the planner. A

next suggestion for further research is to refine and extend the set of admissible

scheduling actions available to the planner. An interesting action to consider is

‘Change Sequence’ which refines the Combine action by allowing the planner to

change the sequence of runs such that an arriving order can be combined with a

run of the same family in the schedule.

The exploration of family-dependent lead times is of interest as well. However, as

lead time differences appears to give rise to strong unfairness among the product

families, it is unclear whether this will be a practically viable implementation.

We address this problem in the next chapter.

It would be also of interest to find a simple analytic model to estimate the good

(optimal) values, possibly family dependent, for the threshold parameter c. The

current frequency table approach works well, but is based on the knowledge of

the optimal policy. However, for large non-trivial systems it is impossible to

find an explicit form for the optimal policy, at least within reasonable time and

resources. Hence, we need other methods to efficiently find the best values for

the thresholds.

A final suggestion for further research is to consider a mixed environment in

which only some orders have a strict lead time, while other orders are make-to-

stock. These latter orders can be used to fill the schedule and produce longer

runs. On the other hand, inserting such jobs somewhere in the ‘middle’ of the

schedule pushes back orders with strict lead times, so that there is less room for

future combinations. It would be of practical interest to design simple but useful

insertion decisions rules for this mixed case.

86

Chapter 5

Order Acceptance: Family-

Dependent Lead Times

To make the order acceptance and scheduling decisions for the production situ-

ation of Chapter 4 (CSLSP) easier, it is common practice to use standard lead

times for all families. That is, the supplier commits itself to delivering all or-

ders within the same lead time independent of the family of the order, so that

as a consequence all lead times are equal to the shortest desirable lead time.

While allowing for family-dependent lead times makes the planning situation

more complicated, it may result in a significant gain in profit compared to us-

ing standard lead times as more orders can be accepted. However, it is not so

clear from literature how order acceptance and scheduling policies can exploit

lead time differences, whether the gain in profit outweighs the extra efforts of

dealing with additional planning complexity and how this trade-off depends on

the characteristics of the production situation.

The goal of this chapter is to develop a tractable and implementable policy for

the CSLSP with family-dependent lead times and offer managerial insights into

when it is attractive to use family-dependent or standard lead times. We do so

by extending the Markov decision process (MDP) model developed in Chapter 4

such that it allows for family-dependent lead times. Our numerical results show

that for a large number of instances the optimal order acceptance and scheduling

policy for the MDP can use the differences in family lead times to generate

significant benefits for the supplier. A detailed analysis of the data provides some

insight into when it is (not) interesting to allow for family-dependent lead times,

87

although it remains difficult to predict by how much precisely the performance

will increase. We also develop a set of practically simple (threshold) policies to

control the acceptance and scheduling of orders and present a method to tune the

involved thresholds. Numerical results show that the threshold policies perform

(very) well compared to the optimal policy in a wide range of parameter settings,

including product family asymmetries in arrival rate, job size, job reward, and

lead times.

5.1 Introduction

We consider a supplier in the batch process industry that sells different items to

multiple downstream customers. This supplier has limited capacity available to

serve randomly arriving customer orders. Orders are grouped into families with

similar production characteristics, and when production changes from one family

to another, a setup time is incurred. The supplier is allowed to reject orders, but

if he accepts an order he commits to delivering it in time. Accepting orders is

interesting as it results in a family-dependent reward. Clearly, one of supplier’s

goals is to maximize the long run profit. This, however, is a difficult problem

since the acceptance decisions and scheduling decisions, due to the setup times,

interact. This joined acceptance and scheduling problem is commonly referred

to the Customized Stochastic Lot Scheduling Problem (CSLSP) with strict lead

times, c.f. Winands et al. (2011) and Chapter 4.

Typically suppliers make such production situations somewhat simpler by impos-

ing a (hierarchical higher level) planning structure. One traditional approach is

to generate cyclic production schemes and use these schedules to quote customer

order delivery dates, see e.g., Bertrand et al. (1990). This procedure, however,

leads to highly variable due-date quotations. The delivery date may be quite early

(the process has just been set up for that product family), but may also be quite

far away in the future (the manufacturing of that product family has just been

finished, and the order has to wait for the complete length of the cycle). Clearly,

long or unpredictable supplier lead times are unattractive for customers down-

stream in the supply chain: in make-to-stock situations it leads to maintaining

large downstream stock levels, while in make-to-order situations it leads to low

customer satisfaction. Thus, to limit the lead times, and the inherent variability,

cycle times are usually rather short. This, however, has another drawback: the

utilization is low because the fraction of time spent on setups is large. Moreover,

88

since orders arrive randomly so that there may be low demand for some families

during the cycle horizon and large demand for others, the predefined cyclic struc-

ture hinders the exploitation of streaks of good luck. In particular, Van Foreest

et al. (2010) show for the CSLSP with strict lead times that simple threshold

policies considerably outperform cyclic policies. Thus, cyclic policies, although

simple to understand, have considerable drawbacks in terms of utilization of the

bottleneck and due-date variability.

Another approach to reduce the complexity of the production situation, for in-

stance in MRP, is to quote standard lead times. That is, the supplier commits

itself to delivering all orders within the same lead time independent of the family

of the order, so that as a consequence all lead times are equal to the shortest

desirable lead time. One reason to use standard lead times is that it is not so

clear how to exploit situations with family-dependent lead times. Families with

long lead times have more ‘opportunity’ to claim the available capacity, thereby

potentially leading to unfair division of capacity among the families. As an un-

desirable consequence, the long run profit of a naive policy might even decrease

in a production situation in which low reward families are offered long lead times

as compared to a situation in which the low reward families have the same (or

shorter) lead times than the high reward families. The use of standard lead times

is therefore often seen in process industries, see e.g. Ten Kate (1995).

However, allowing for family-dependent lead times may result in a significant

gain in profit compared to using standard lead times as more orders can be

accepted. An interesting problem is therefore to investigate whether the gain in

profit outweighs the extra efforts of dealing with additional planning complexity

and how this trade-off depends on the characteristics of the production situation.

The goal of this chapter is to develop a tractable and implementable policy for

the CSLSP with family-dependent lead times and offer managerial insights into

when it is attractive to use family-dependent or standard lead times. We do so

by extending the Markov decision process (MDP) model developed in Chapter 4

such that it allows for family-dependent lead times. Our numerical results show

that for a large number of instances the optimal order acceptance and scheduling

policy for the MDP can use the differences in family lead times to generate

significant benefits for the supplier. A detailed analysis of the data, however,

shows that it is difficult to find structure in how individual model parameters

influence the extra gain that can be obtained from using family-dependent lead

times. To provide more insight, we introduce the concept of relative reward rate

γf for family f , which is a measure that considers several model parameters

89

jointly. It turns out that γf is a reasonable indicator when it is (not) interesting

to allow for family-dependent lead times, although it does not predict by how

much precisely the performance will increase.

The optimal policy we find by solving the MDP is not very useful since it is too

complex for practical purposes. We therefore also develop a set of practically

simple (threshold) policies to control the acceptance and scheduling of orders

and present a method to tune the involved thresholds. Numerical results show

that the threshold policies perform (very) well compared to the optimal policy

in a wide range of parameter settings, including product family asymmetries in

arrival rate, job size, job reward, and lead times.

The structure of the chapter is as follows. In Section 5.2 we describe the produc-

tion situation and the allowed (admissible) decisions. Section 5.3 discusses the

structure of the threshold policies. In Section 5.4 we study the performance of

the optimal policy, and evaluate the performance of heuristic policies. Here we

also introduce a refinement of the threshold policy introduced earlier and show

that this refinement is a substantial improvement. Section 5.5 concludes. Finally,

we refer to Section 4.2 for a review on literature related to the CSLSP.

5.2 Model Framework

In Section 5.2.1 we present a model of the CSLSP with family-dependent lead

times. In Section 5.2.2 we address the decision structure of policies that ac-

cepts/rejects and schedules orders. Finally, Section 5.2.3 defines relevant perfor-

mance indicators and the objective function.

5.2.1 Model

The production situation at the supplier is modeled as a single machine that

receives a stream of orders at arrival epochs 0 = T0 6 T1 6 T2, We assume

that the interarrival times of customer orders Ti+1 − Ti are independent and

identically distributed, integer valued, and geometrically distributed with success

parameter p, that is, according to

P(Ti+1 − Ti = k) = p(1 − p)k, for k = 0, 1, 2, . . .

Observe that the inter-arrival time can be zero and thereby multiple orders may

arrive at the same time. Since E (Ti+1 − Ti) = (1 − p)/p, the arrival rate of

90

customer orders λ = p/(1 − p). Arriving orders belong to family f , which is

one of N possible families, with probability qf , independent of anything else.

Thus, the arrival rate of family f is λf = λqf . A job of family f requires bf

time units of service, where bf is deterministic and integer valued. A job can

be rejected upon arrival, but if accepted it is scheduled for service such that

it can be produced within a constant lead time of length hf , which is family

dependent. Whenever two subsequent orders in the schedule belong to different

product families a setup of (integer valued) duration s, which is the same for

all families, is inserted between these two orders. When an order arrives at an

empty system, a setup is not necessary if the last produced order is of the same

family as the arriving order. Service of orders and setups is non-preemptive, and

the server is assumed to never fail, so that all accepted orders can be produced

in time.

The reward structure for the supplier is simple. We set the acceptance reward for

a job of family f equal to rf > 0 and the earliness cost to zero. The underlying

motivation is that we assume that serving orders early is acceptable when this

potentially leads to accepting more orders. Hence, the reward for accepting an

order must be higher than the cost of producing early. We assume without loss

of generality that there is no penalty associated with rejecting an order. We also

take the setup cost equal to zero. However, inserting setups arbitrarily cannot be

optimal, since a setup takes away a position in the schedule thereby preventing

potential rewards. There is no tardiness cost, as jobs cannot be late.

5.2.2 Decisions

Clearly at each arrival epoch it is necessary to decide whether to accept or reject

the arriving order, and if it is accepted, it is required to decide where to insert the

order in the schedule. In this section we illustrate the acceptance/rejection and

scheduling decisions available to (the planner of) the production system by means

of an example. The formal specification of these decisions is rather involved. We

refer the reader to Section 4.4 for the details.

Consider first the reference schedule in Table 5.1 which contains orders and set-

ups, all of unit length. We assume 8, 15, and 8 as lead times for families 1, 2,

and 3, respectively. Clearly, the schedule contains two runs of orders: the first

run is of family 1 and contains two orders; the second run is of family 2 and

contains three orders. We also assign a slack to each accepted job, which is the

amount of time that is available to insert other, later arriving, orders in front of

91

the accepted job. For instance, the order in position 4 has a due-date of 12 and

therefore 8 time units are available to insert other jobs in front of it before it will

be late. Since setups cannot be late they do not have a slack. Below we discuss

the Combine, Spawn and Reject action.

Table 5.1: The reference schedule.

Position 1 2 3 4 5 6

Family 1 1 s 2 2 2

Due-date 3 4 - 12 14 15

Slack 2 2 - 8 9 9

The Combine action tries to combine an arriving order with a run of its ‘kin’ in

the schedule, with the aim of reducing the fraction of setups. By simple pairwise

interchange arguments, see e.g., Pinedo (2008), it is easy to see that the optimal

sequence of jobs within a run satisfies the Earliest Due-Date (EDD) rule—the

reward cannot increase by inserting arriving orders before orders of the same

family—hence, the Combine action adjoins accepted orders of family f only to

the end of the last run of family f in the schedule. To illustrate, suppose an order

of family 1 arrives with a lead time of 8 time units. The schedule in Table 5.1

contains one run of family 1, that is, at positions 1 and 2. The Combine action

tries to join the new order with this run by inserting it at position 3 and shifting

the already present orders at positions 4–6 back to positions 5–7. Clearly, the

shifted orders will not be too late as a result of the insertion. The Combine action

then leads to the new schedule depicted in Table 5.2. The Combine action is not

allowed in case one of the shifted orders would have been too late.

Table 5.2: The schedule that results after a new order of family 1 has been combined

at position 3 at the end of the first run.

Position 1 2 3 4 5 6 7

Family 1 1 1 s 2 2 2

Due-date 3 4 8 - 12 14 15

Slack 2 2 5 - 7 8 8

The Spawn action tries to ‘spawn’ a new generation of its family in a fashion

similar to the EDD rule. Suppose an order of family 3 arrives with a lead time

of 8 time units. The schedule in Table 5.1 contains no run of family 3 and

therefore in order to accept the new order it is necessary to spawn a new run of

92

family 3. Observe that there is sufficient slack to spawn a new run of family 3

at three positions in the schedule: at the beginning of the schedule; after the

run of family 1; and after the run of family 2. However, as service of orders and

setups is non-preemptive, it is not allowed to spawn a run at the beginning of

this schedule; thus the first option is not allowed. Table 5.3 shows the resulting

schedule after spawning the arrival behind the run of family 1 and the run of

family 2. We see this schedule is in EDD order, and, it provides combination

potential : since the order of family 3 has a slack of 4 it still allows to accept

orders in front of it.

Table 5.3: The schedule that results after an order of family 3 is spawned in Schedule

1 behind the run of family 1.

Position 1 2 3 4 5 6 7 8

Family 1 1 s 3 s 2 2 2

Due-date 3 4 - 8 - 12 14 15

Slack 2 2 - 4 - 6 7 7

In Table 5.4 the order of family 3 has been spawned behind the run of family 2.

Now the slack of the new order has been reduced to zero, and we say that this

order is tight, which implies that no other order can be inserted in front of it.

Table 5.4: The schedule after the order of family 1 is spawned in Schedule 1 behind the

run of family 2.

Position 1 2 3 4 5 6 7 8

Family 1 1 s 2 2 2 s 3

Due-date 3 4 - 12 14 15 - 8

Slack 2 2 - 6 7 7 - 0

It is clear that the schedule in Table 5.3 is the more favorable of the two. We

therefore allow the Spawn action to only insert new runs such that the EDD

order is maintained within the schedule after the acceptance.

These examples also show that the Combine action does not insert a setup, while

the Spawn action does. For this reason we prefer the Combine action over the

Spawn action when the schedule allows both actions.

The Reject action is trivial: it just rejects the arriving order.

93

5.2.3 Performance Indicators and Objective Function

To define the performance indicators of interest for a given acceptance and

scheduling policy π let Aπ(k) be the sum of the rewards of accepted orders

among the first k arrivals. Then the long run expected reward per arriving order

under policy π, J(π), takes the form

Jπ = lim
k→∞

E (Aπ(k))

k
. (5.1)

The objective is to find the maximal long run average reward of the production

system and the optimal policy π⋆, i.e., we solve

J⋆ := Jπ⋆

= max
π

Jπ, π⋆ = arg max
π

Jπ, (5.2)

where the maximization is taken over the class of stationary and non-anticipative

(with respect to the arrival process) policies.

In the numerical analysis we use policy iteration, (see, e.g., Tijms, 2003, Chapter

6), to compute the performance measures.

5.3 Heuristic Policies

In this section we introduce two simple heuristic policies: a greedy policy and

a threshold policy. It is known, see Van Foreest et al. (2010), that the greedy

policy does not work well under high loads. However, as this policy is nearly

trivial, while the threshold policy still requires some slight tuning (of the family-

dependent thresholds), it is of interest to see how much can be gained by the

threshold policy as compared to the greedy policy.

The greedy policy first tries to combine a new arriving order with a run. If

Combine is not possible, it tries to spawn the order. If both Combine and Spawn

are not allowed, the policy rejects the order altogether. Observe that the greedy

policy does not restrict the Spawn decision at all. However, it is apparent that a

good policy should regulate, in some sense, this action. To see this, suppose that

a new arriving order spawns a new run and suppose that this run is tight. Then

no further order can be combined in front of this new run, thereby removing all

combination potential in the schedule.

A simple heuristic method to prevent such ‘tight’ spawns to occur is to use a

threshold for the Spawn decision: a new run may only start when the first job in

94

the new run is not too tight (i.e. has sufficient due-date slack), thereby leaving

room for later orders to combine with other runs in the schedule. This idea

results in the threshold policies we study in this chapter. Given a set of family-

dependent threshold parameters 0 6 cf < hf , where hf is the family-dependent

lead time, the heuristic threshold policy has the following structure:

• Choose Combine if the schedule and the arriving order allow this.

• If Combine fails, choose Spawn only if allowed and the due-date slack of

the arriving order is greater or equal than cf after acceptance of the order.

• otherwise, Reject.

Observe that the greedy policy can be obtained as a special case of this threshold

policy by setting cf = 0 for all families f , that is, spawning a run is always

allowed if it is possible.

A remaining issue is to actually determine the best threshold. In Section 5.4.4

we describe this in detail.

95

5.4 Numerical Study

In this section we investigate the influence of quoting family-dependent lead times

on the performance of the CSLSP under the optimal, threshold and greedy policy

for the scenarios discussed next.

5.4.1 Scenarios

To investigate the effect of using family-dependent lead times instead of standard-

ized lead times on the system performance, we compute the long run expected

reward per arriving order for a full factorial design of scenarios, with parameters

as specified in Table 5.5, which lead to some 17K scenarios.

Table 5.5: The parameter values considered in the full factorial design.

Families Parameters Values

N = 2

Load ρ = 0.7, 0.9, 1.1

Setup time s = 1

Job size b = (1, 1), (1, 2), (2, 1)

Lead time h1 = 6, 8, 10; h2 = h1, h1 + 2, . . . , 24

Reward r1/b1 = 1; r2/b2 = 0.5, 0.75, . . . , 1.5

Arrival fraction q = (0.1, 0.9), (0.2, 0.8) . . . , (0.9, 0.1)

N = 3

Load ρ = 0.7, 0.9, 1.1

Setup time s = 1

Job size b = (1, 1, 1), (1, 1, 2), (2, 2, 1)

Lead time h1 = h2 = 6, 8, 10; h3 = h1, h1 + 2, . . . , 20

Reward r1/b1 = r2/b2 = 1; r3/b3 = 0.5, 0.75, . . . , 1.5

Arrival fraction q = (1, 1, 1)/3, (1, 1, 2)/4, (2, 2, 1)/5, (2, 1, 1)/4,

(2, 1, 2)/5

N = 4

Load ρ = 0.7, 0.9, 1.1

Setup time s = 1

Job size b = (1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 2, 1)

Lead time h1 = h2 = h3 = 6, 8; h4 = h1, h1 + 2, 10, 12

Reward r1/b1 = r2/b2 = r3/b3 = 1;

r4/b4 = 0.5, 0.75, . . . , 1.5

Arrival fraction q = (1, 1, 1, 1)/4, (1, 1, 1, 2)/5, (2, 2, 2, 1)/7,

(2, 2, 1, 1)/6, (1, 1, 2, 2)/6

For notational convenience we use vectors h, b, q and r, to denote the lead times,

job size, arrival fraction and reward per family. For instance, b = (b1, b2) = (1, 2)

96

specifies the scenario in which the job size of the first (second) family is 1 (2).

The motivation behind the choices is as follows. The load of the system ρ =

λ
∑

f qfbf varies from light (0.7) to heavy (1.1); higher or lower values appear

less relevant to study from a practical point of view. The job size bf can be small

(1) or large (2). The parameters N and h determine the size of the state space

and are therefore bounded by computer memory. To analyze the effect of the

increasing lead times of product families we increased the lead time of the last

family (i.e. family N) in steps of 2 time units. Hence for each scenario with fixed

N, ρ, b, r, q, s we have a ‘reference’ case with standard lead times h = (h1, . . . , h1)

and cases with increased lead times for family N , i.e. h = (h1, . . . , h1, hN) with

hN > h1. Finally, we set the reward per unit processing time rf/bf of the families

with standard lead times to 1, and vary the reward per unit processing time of

family N from small (0.5) to high (1.5).

5.4.2 Effect of Family-Dependent Lead Times on the Re-

ward per Arriving Order

As a measure to compare the influence of family-dependent lead times we use

the relative gain

R⋆ =
J⋆(hN)

J⋆(h1)
,

where J⋆(x) is the long run expected reward per arriving order associated with

the optimal policy for a scenario with fixed N, ρ, b, r, q, s and h = (h1, . . . , h1, x).

Thus, we compare the long run expected reward per arriving order of a scenario

with h = (h1, . . . , h1, hN) to the ‘reference’ case with standard lead times h =

(h1, . . . , h1).

Figure 5.1 shows jitter plots1 for the relative gain of the optimal policy for all

scenarios of Table 5.5 as a function of hN . Taking h1 = 6, 8, and 10, in the upper

middle, lower left, and lower right panel shows the influence of h1. The results

in all three plots show clearly that R⋆ never decreases, and that the gain can be

substantial, sometimes even up to more than 15%. The figures show that the

1A jitter plotter is a scatter plot in which each data point is shifted by a random amount.

The aim of a jitter plot is to make the clustering in a collection of data points visually more

clear. This graph is created by shifting each data point horizontally by a random amount. If

we’d just plotted the data in a true, two-dimension fashion, too many of the points would’ve

overlapped, making it difficult to detect clustering. See Janert (2010) for more information on

jitter plots.

97

highest relative gains are obtained for scenario’s that have the smallest values

of h1, which is intuitive since for these scenario’s the reference cases have the

tightest lead times.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 8 10 12 14 16 18 20 22 24

h1 = 6

Lead time hN

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10 12 14 16 18 20 22 24

h1 = 8

Lead time hN

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 12 14 16 18 20 22 24

h1 = 10

Lead time hN

Figure 5.1: Jitter plots of the relative gain R⋆ as a function of the lead time hN for

the optimal policy. The upper middle, lower left and lower right panel correspond to

h1 = 6, 8, and 10.

In trying to understand better how individual model parameters influence the

relative gain we made numerous multi-dimensional scatterplots of the data2. This

further analysis, however, did not reveal any significant structure. A measure that

provides more insight is the relative reward rate of family f

γf =
βf

N−1
∑N

i=1 βi

, (5.3)

where βf = λqfrf/bf is the reward rate of family f per unit job. Thus, families

2The data files can be obtained from the author at request.

98

with γf > 1 ‘bring in relatively more money’ per unit job. We therefore expect

that increasing the lead time of orders with high γ has a stronger influence on

R⋆ than increasing the lead time of orders with a low γ.

Next, for a given bar of dots in Figure 5.1 we are interested in whether γ can

indeed explain if a scenario ends up in the upper or lower part of bar. For

instance, take the third bar in the upper middle panel of Figure 5.1 corresponding

to h1 = 6 and hN = 12. Then we would like γ to explain for each scenario in

this bar if it has a high or low value of R⋆. To visualize the dependence of R⋆

on γ for given values of h1 and hN , Figure 5.2 shows R⋆ as a function of γN for

scenario’s with h1 = 6, hN = 12 (left panel) and h1 = 6, hN = 24 (right panel).

The figure shows that R⋆ increases up to γN ≈ 1.3 but then starts to decrease.

The reason is that here the arrival fraction of family N is high compared to the

other families, so that there is not much competition for the capacity between the

families (family N orders claim most). The graphs for other parameter values

(not included here) show similar behavior so that we conclude that γf can serve

as a rough indicator whether family f should be allowed longer lead times.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 0.5 1 1.5 2

h = (6, 12)

Relative reward rate γN

R
el

a
ti
v
e

g
a
in

R
⋆

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 0.5 1 1.5 2

h = (6, 24)

Relative reward rate γN

R
el

a
ti
v
e

g
a
in

R
⋆

Figure 5.2: The relative gain R⋆ as a function of the relative reward rate γN for the

optimal policy. The left and right panel correspond to h = (6, 10) and (6, 24).

5.4.3 Analysis of the Threshold Policy

The results of the previous subsection show that under the optimal policy sig-

nificant extra rewards can be obtained when the lead times of families with a

high relative reward rate γ are allowed to become longer than the lead times of

the other families. Chapter 4 showed that the structure of the optimal policy is

99

hard to characterize. In this section we explore the performance of the simpler

heuristic policies of Section 5.3.

Similar to Figure 5.1 we show in Figure 5.3 the relative gain Rt = J t(hN)/J t(h1),

where J t(·) is the long run expected reward per arriving order achieved by the

threshold policy.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 8 10 12 14 16 18 20 22 24

h1 = 6

Lead time hN

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10 12 14 16 18 20 22 24

h1 = 8

Lead time hN

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 12 14 16 18 20 22 24

h1 = 10

Lead time hN

Figure 5.3: Jitter plots of the relative gain Rt as a function of the lead time hN for

the threshold policy. The upper middle, lower left, and lower right panel correspond to

h1 = 6, 8, and 10.

The jitter plots show that in the majority of the cases the threshold policy is also

able to achieve a significant gain. This is, however, not always the case: we see

that for some situations the relative gain Rt is less then one, so that it is actually

detrimental to the system as a whole to allow one family to have a larger lead

time than the other families.

To obtain a better understanding of the occasional poor performance of the

100

threshold policy we use a frequency table approach, c.f., Haijema et al. (2009) and

Section 4.5.2, to analyze one such problematic case. Table 5.6 shows a frequency

table for Combine–Reject decision of the optimal policy of the scenario N = 2,

h = (6, 8), ρ = 1.1, s = 1, b = (1, 1), r = (1.0, 0.5), and q = (0.5, 0.5).

Table 5.6: Frequency table for Combine–Reject decision of the optimal policy of the

scenario N = 2, h = (6, 8), ρ = 1.1, s = 1, b = (1, 1), r = (1.0, 0.5), and q = (0.5, 0.5).

L 0 1 2 3 4 5 6 7 Total

Fam. 1
Combine 3.74 6.20 10.64 7.49 5.53 4.49 — — 39.09

Reject 0.00 0.00 0.00 0.00 0.00 0.00 — — 0.00

Fam. 2
Combine 1.53 3.27 5.49 1.48 0.00 0.00 0.00 0.00 11.77

Reject 0.00 0.19 1.30 1.75 0.74 0.17 0.14 0.08 4.37

Let Lf be the length of the run to which an arriving order of family i can be joined

in the schedule (for instance, L1 = 2 in the scenario of Table 5.1 and L2 = 3).

Then, for instance, the number 10.64 in the first row is the percentage of arriving

orders for which the following three conditions are satisfied simultaneously: 1)

the arriving order belongs to family 1; 2) the optimal policy chooses to combine

it; 3) the length of the run to which the arriving order can be joined in the

schedule is L1 = 2. The number 1.30 in the fourth row is the percentage of

arriving orders that belong to family 2 but are rejected by the optimal policy

since the run length is L2 = 2.

Now it is evident from Table 5.6 that the optimal policy always combines jobs of

family 1 whenever possible; thus, the Combine–Reject decision of the threshold

policy and the optimal policy are identical for this family. However, for orders of

family 2 the behavior of the optimal policy is less simple. In fact, when L2 = 1

the optimal policy rejects the arriving order for some states, and for other states

it combines the order; we see similar behavior when L2 = 2 and 3. Thus, for

family 2 the optimal policy and the threshold policy are not identical. A similar

analysis carried out for the Spawn–Reject decision shows that the Spawn–Reject

decision of the optimal policy is of threshold type.

In hindsight, the fact that the optimal policy does not use a threshold for family 2

orders is natural. Family 2 orders are less profitable than family 1 orders. Thus,

allowing runs of family 2 orders to grow and thereby claim capacity results in

less room for the more profitable orders of family 1. This observation also shows

the flaw in the threshold policy: It accepts any order whenever this order can be

combined, even when such an order is unattractive on the long run.

101

5.4.4 An Improved Threshold Policy

To repair the deficiency just indicated we propose to adapt the threshold policy

such that it also includes a threshold on the Combine action. Given a set of

family-dependent threshold parameters 0 6 cf < hf and 0 6 df 6 hf , the

improved threshold policy has the following structure:

• If Combine is allowed, choose Combine only if Lf < df .

• If Combine fails, choose Spawn only if allowed and the due-date slack of

the arriving order is greater or equal than cf after acceptance of the order.

• otherwise, Reject.

Before we present the performance of this improved threshold policy we describe

how we use frequency analysis to obtain good thresholds for the Combine action.

The idea is to set the threshold such that the improved policy and the optimal

policy have maximal overlap. Formally, write ff,C(j) (ff,R(j)) for the percentage

of states for which the optimal policy chooses to combine (reject) an order of

family f when Lf = j. For example, in Table 5.6, we have f2,C(2) = 5.49. Now

compute for all levels Lf the number

Ff (Lf) =

Lf−1
∑

j=0

ff,C(j) +

hf
∑

j=Lf

ff,R(j)

and set the threshold df at the level at which Ff (Lf) is maximal. Thus, for the

case of Table 5.6, we take d1 = h1 = 6. That is, no matter the length of the run

of family 1 orders, the new order is combined with this run. For family 2, we see

that F2(0) = 4.37, F2(1) = 1.53 + 4.37 = 5.90, etcetera, leading to an optimal

threshold value of d2 = 3.

To find optimal thresholds for the Spawn–Reject decision we use a similar ap-

proach. Note for completeness that in this case we do not use the family run

length Lf of the arriving order, but the due date slack as explained in Section 5.3.

The relative gains Rit for this improved threshold policy are shown in Figure 5.4.

It is apparent that the improved threshold policy works much better. Hardly

any ‘bad’ scenarios remain, and even when the performance does decrease it is

by a tiny amount (i.e., less than 0.5%). A similar comparison shows that the

‘old’ threshold policy never outperforms the improved policy. This is as expected

since the improved policy contains the ‘old’ threshold policy as a special case.

102

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 8 10 12 14 16 18 20 22 24

h1 = 6

Lead time hN

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 10 12 14 16 18 20 22 24

h1 = 8

Lead time hN

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 12 14 16 18 20 22 24

h1 = 10

Lead time hN

Figure 5.4: Jitter plots of the relative gain Rit as a function of the lead time hN for

the improved threshold policy. The upper middle, lower left, and lower right panel

correspond to h1 = 6, 8, and 10.

We finally compare in Figure 5.5 the performance of all three heuristic policies to

the optimal policy. The figure shows three jitter plots of Jp(·)/J⋆(·) where p in-

dicates, in order, the greedy policy (g), the threshold policy (t) and its improved

version (it). These jitter plots make dramatically clear that the improved thresh-

old policy is better than the old threshold policy, which in turn is (much) better

than the greedy policy. Note also that the improved threshold policy performs

within 1% of the optimal policy.

103

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Jp(·)/J⋆(·)

g

t

it

Figure 5.5: Jitter plots of the long run expected reward per arriving order of the greedy

(g), threshold (t) and improved threshold (it) policies relative to the performance of

the optimal policy.

5.5 Summary and Extensions

In this chapter we considered the Customized Stochastic Lot Scheduling Prob-

lem (CSLSP) in which orders have family-dependent strict lead times, i.e., any

order that cannot be delivered before its due-date has to be rejected at arrival.

Moreover, we allowed the lead time to be dependent on the family. The reason

to consider such systems is that previous work shows that extending the lead

time can significantly increase the performance of the system. However, not all

families allow such long lead times. Thus, it might be interesting to allow for

differences in the family lead times, such that the families that require short lead

times do not unnecessarily constrain the lead times of the other families, and the

system can still benefit by achieving a higher average reward per arriving order.

As in Chapter 4 we modeled the production system as a Markov decision process

(MDP) and computed the optimal policy. We showed for a large number (> 17K)

of scenarios that under the optimal policy of the MDP an increase in lead time

of one family never has a detrimental effect on the performance; in fact in many

cases significant extra rewards can be obtained. However, increasing one lead

time does not always results in extra rewards. To better understand when it is

(not) interesting to allow for asymmetric lead times we introduced the concept

of relative reward rate γf for family f . It turns out that γf is a reasonable

indicator when some lead times can be increased, however, it does not predict

by how much precisely the performance will increase. It would certainly be of

interest to develop a simple analytical model to estimate the system performance.

104

Van Foreest et al. (2010) contains one such model, but we have been unable to

extend this such that it can cope with the situation we deal with in this chapter.

Such models should be helpful to understand in which cases the long run profit

increases when some families are allowed to use longer lead times.

We then developed a class of policies that uses a threshold to control the Spawn

action. A performance analysis shows that this class of policies works well in

the majority of the cases, but not always so. In fact, in some instances the

performance actually degrades under the threshold policy when the lead time

increases, contrary to what we see for the optimal policy: then the performance

never becomes less. Thus, this class of threshold policies is not entirely robust.

To repair this problem we propose to also use thresholds for the Combine action.

Interestingly, the best such improved threshold policy structurally perform within

1% of the optimal policy, and are robust against asymmetric lead times.

Finally, we included the results of the greedy policy, which can be considered as a

special case of the threshold policies in the sense that all thresholds are ‘switched

off’. The greedy policy is very simple indeed, and it is of interest to see whether

the more involved threshold policies provide sufficient extra reward to motivate

their deployment. It turns out that the greedy policy does not perform well,

hence we do not propose such policy as a viable option.

105

106

Chapter 6

Summary and Suggestions

for Further Research

In this thesis we analyzed and developed order acceptance and order release poli-

cies to control queues in make-to-order (MTO) production systems. Controlling

the time orders spend waiting in queues is crucial for realizing short and reliable

delivery times, two performance measures which are of strategic importance for

many MTO companies. Order acceptance and order release are the two most im-

portant production control mechanisms to influence the length of these queues.

In order to draw our attention to major trade-offs that MTO companies have

to consider in their order acceptance and order release decisions we focused our

models on the main characteristics of MTO systems, such as random (batch)

order arrival, routing variability, fixed capacities, setup times and due-dates.

The main research objectives of this thesis are: (i) to better understand the

underlying mechanisms of good order acceptance and order release policies for

MTO production environments; and (ii) to use these insights to develop simple

order acceptance and order release policies to control queues in MTO production

systems so that delivery dates can be met, whilst good use is made of the available

capacity. In the first part of this thesis, that consists of Chapter 2, we focused on

the order release decision while Chapters 3, 4 and 5 form the second part in which

we looked at the order acceptance decision. In what follows, we summarize the

main findings from each individual chapter and provide suggestions for further

research.

In Chapter 2 we studied the throughput time performance of three order release

107

policies that control the number of orders on the shop floor using no more than

a set of cards: CONWIP, m-CONWIP and POLCA. Due to their ease of con-

trol, these so-called unit-based pull systems are widely implemented in practice.

However, all research into the performance of these pull systems focuses on shop

floor throughput time and workload levels and not on the performance indica-

tor that is most relevant for MTO companies: total throughput time. Previous

research also shows that the total throughput time performance of pull systems

largely depends on their capability to create a balanced distribution of the work-

load among the workstations on the shop floor and that many systems lack this

capability. We developed a simulation model to compare the throughput time

performance of CONWIP, POLCA and m-CONWIP. Our simulations show that

unit-based pull systems can improve the workload balance on the shop floor and

reduce the average total throughput time. More specifically, CONWIP has no

workload balancing capability and our results show that limiting the workload

in a CONWIP controlled MTO production system increases the average total

throughput time of orders. The overlapping loops in the POLCA system bring

forward some workload balancing capability compared with CONWIP, but they

do not perfectly detect and signal an imbalance in workload. As a result, POLCA

faces a longer average total throughput time for a given shop floor throughput

time than m-CONWIP, the system with the best workload balancing capability

for the stylized production system we considered.

To identify whether unit-based pull systems can reduce the average total through-

put time, we simulated an MTO system with divergent routings and three pro-

duction stages in each routing. This divergent ‘topology’ perfectly suits pull

systems that are able to balance workload. A suggestion for further research is

to extend our research to other topologies such as convergent and Jackson net-

works or typologies with longer routings. In the paper of Ziengs et al. (2011)

we make a first a start in this direction by studying the workload balancing

capability of POLCA for a divergent topology with long routings.

A next suggestion for further research is to use a queueing approach to analyze

the throughput time performance of unit-based pull systems. The main advan-

tage of a queueing approach compared to simulation is that it allows for a quick

evaluation of many alternatives of pull system configurations for a given (MTO)

production system. For instance, mixed multi-class queueing networks can be

used to analyze the performance of variants of CONWIP (such as m-CONWIP)

that use a control loop for one or more routings in the production system. Liter-

ature on mixed queueing network is however scarce. The most important reason

108

for this lack of literature is that the network is very difficult to analyze analyti-

cally. Most of the work on performance evaluation is therefore based on approx-

imate analysis. Several approximation algorithms for mixed queueing networks

are available in the literature, see e.g., Avi-Itzak and Heyman (1973), Baynat

and Dallery (1996) and Buitenhek et al. (2000). Our research shows that these

approximate algorithms are not precise enough to show the workload balancing

effect we found in Chapter 2 for the m-CONWIP system, so it is of interest to re-

fine these methods. Performance evaluation of more complicated pull structures

such as POLCA is probably the most challenging direction for further research.

Although we showed in Chapter 2 that unit-based release policies can reduce the

total throughput time in MTO production system by balancing the workload,

the magnitude of the effect is rather small. In the second part of the thesis we

therefore focused on a stronger instrument to control queues in MTO production

systems: order acceptance.

In Chapter 3 we proposed a queueing approach for studying the performance

of simple order acceptance policies for an MTO production system in which

orders arrive and are serviced in batches by a single production process. We

modeled the production system as a batch arrival batch service (bulk) queue with

restricted accessibility. Our main contribution in this chapter is the development

of a simple, numerically stable, and efficient algorithmic method that allows the

performance evaluation of a general class of queueing systems that covers many

bulk queueing systems with restricted accessibility as special cases. By means of

numerical experiments we illustrated how our method can be used to compute

relevant performance measures, such as the average time of orders in the system

(i.e., throughput time), moments of the number of accepted orders and rejection

probabilities for arriving orders.

A limitation of the stylized production situation we considered in Chapter 3 is

that two important characteristics of many MTO systems are not included: setup

times and due-dates. In Chapters 4 and 5 we therefore extended the production

situation of Chapter 3 as follows. We considered a production system that pro-

duces different items on a single machine. Customer orders drive the production

and belong to product families, and have family-dependent lead time, size, and

profit margin. When production changes from one family to another a setup

time is incurred. Orders are to be delivered on-date to customers and orders

may be rejected if these orders cause late deliveries. This production situation is

referred to in the literature as the Customized Stochastic Lot Scheduling Prob-

lem (CSLSP) with strict lead times. For this production situation it is critical to

109

selectively accept and schedule customer orders, so that neither manufacturing

capacity gets wasted on setups nor high profit earning orders are turned down

because low profit earning orders have been previously accepted.

In Chapter 4 we provided a Markov decision process (MDP) formulation for the

CSLSP with strict lead times. In this MDP we restricted the set of scheduling

actions to two actions, Combine and Spawn, which are most relevant for the

planner of the production system: the Combine action controls the formation of

runs of orders of the same family while the Spawn action controls the generation

of new runs of product families. Given these two scheduling actions we showed

that a threshold type of policy has near optimal performance. The threshold

policy restricts the generations of new runs by rejecting arriving orders when the

length of the schedule exceeds a predefined threshold, thereby leaving room for

later orders to combine with other runs in the schedule. Compared to the optimal

policy of the MDP, the threshold policy is easy to understand and implement,

for instance in a spreadsheet, hence has large practical value.

A limitation of the model of Chapter 4 is that we assumed that orders have

standard lead times. That is, we assumed that the supplier commits itself to

delivering all orders within the same lead time independent of the family of the

order, so that as a consequence all lead times are equal to the shortest desirable

lead time. While allowing for family-dependent lead times makes the planning

situation more complicated, it may result in a significant gain in profit compared

to using standard lead times as more orders can be accepted. However, it is not

so clear from literature how order acceptance and scheduling policies can exploit

lead time differences and whether the gain in profit outweighs the extra efforts

of dealing with additional planning complexity.

In Chapter 5 we therefore explored the effect of quoting family-dependent lead

times on the long run average reward for the CSLSP. By extending the MDP

model of Chapter 4 such that it allows for family-depedent lead times, we showed

that under the optimal policy an increase in lead time of one order family never

has a detrimental effect on the performance; in fact in many cases significant

extra rewards can be obtained. Also the threshold policy defined above works

well in the majority of the cases, but not always. In fact, in some instances the

performance actually degrades under the threshold policy when the lead time

increases, contrary to what we see for the optimal policy. Thus, the threshold

policy is not entirely robust. To repair this problem we proposed to also use

thresholds for the Combine action. Interestingly, our results show that the best

such improved threshold policy structurally performs within 1% of the optimal

110

policy, and is robust against asymmetric lead times.

Although variations of the CSLSP with strict lead times have been investigated

previously, the analysis by means of MDPs has not been addressed before in the

literature. As a first attempt to gain insight into good acceptance and schedul-

ing policies using an MDP approach, we restricted the set of scheduling actions

available to planner of production system to two basic actions. In the original

CSLSP, however, any action leading to a permutation of the schedule in which

orders are produced in time is an admissible action. An interesting direction for

further research is to refine and extend the set of actions such that the MDP

model closer represents the original CSLSP. In Section 4.6 we proposed one such

action (i.e., the ‘Change Sequence’ action) that could be of interest to consider

for the planner.

A next suggestion for further research is to develop an analytic model to de-

termine good parameters for threshold policy. In Chapter 4 and 5 we used the

optimal policy of the MDP to determine good threshold parameters. A major

drawback of this approach is that for realistic problem instances it is impossible

to find the optimal policy of the MDP, at least within reasonable time and re-

sources. Hence, we need other methods to efficiently find the best values for the

thresholds.

To conclude, the starting point of our research was that order acceptance and

release policies that are easy to understand and thereby easy to implement in

practice can help MTO companies to improve their delivery performance. With

respect to order release we showed that some unit-based pull systems can improve

simultaneously total and shop floor throughput time performance while previous

research could only show this for more complicated load-based systems. With

respect to order acceptance we showed that simple threshold type of policies have

near optimal performance. Most research, however, focuses on complicated poli-

cies to improve performance. We showed that relatively simple order acceptance

and release policies can already lead to significant performance improvements.

111

112

Bibliography

Aalto, S. 2000. Optimal control of batch service queues with finite service capacity

and linear holding costs. Mathematical Methods of Operations Research 51(2)

263–285.

Asmussen, S. 2003. Applied Probability and Queues. Springer-Verlag, New York.

Avi-Itzak, B., D. P. Heyman. 1973. Approximate queuing models for multipro-

gramming computer systems. Operations Research 21(6) 1212–1230.

Bagchi, T. P., J. G. C. Templeton. 1973. A note on the MX/GY /1,K bulk

queueing system. Journal of Applied Probability 10(4) 901–906.

Baker, K. R. 1984. Sequencing rules and due-date assignments in a job-shop.

Management Science 30(9) 1093–1104.

Baker, K. R., J. W. M. Bertrand. 1981. An investigation of due-date assignment

rules with constrained tightness. Journal of Operations Management 1(3) 109–

120.

Baynat, B., Y. Dallery. 1996. A product-form approximation method for gen-

eral closed queueing networks with several classes of customers. Performance

Evaluation 24(3) 165–188.

Bekker, R. 2004. Finite buffer queues with workload-dependent service and arrival

rates. Ph.D. thesis, Eindhoven University of Technology, The Netherlands.

Bekker, R., S. C. Borst, O. J. Boxma, O. Kella. 2004. Queues with workload-

dependent arrival and service rates. Queueing Systems 46(3–4) 537–556.

Bertrand, J. W. M., J. C. Wortmann, J. Wijngaard. 1990. Production Control:

A Structural and Design Oriented Approach. Elsevier, Amsterdam.

113

Blackstone Jr., J. H., D. T. Phillips, G. L. Hogg. 1982. A state-of-the-art survey of

dispatching rules for manufacturing job shop operations. International Journal

of Production Research 20(1) 27–45.

Boxma, O. J., H. Levy, J. A. Weststrate. 1991. Efficient visit frequencies for

polling tables: Minimization of waiting cost. Queueing Systems 9(1–2) 133–

162.

Bradt, L. J. 1983. The automated factory: Myth or reality? Engineering: Cornell

Quartely 17(3) 26–31.

Breithaupt, J.-W., M. J. Land, P. Nyhuis. 2002. The workload control concept:

theory and practical extensions of Load Oriented Order Release. Production

Planning and Control 13(7) 625–638.

Buitenhek, R., G.-J. Van Houtum, W. H. M. Zijm. 2000. AMVA-based solution

procedures for open queueing networks with population constraints. Annals of

Operations Research 93(1–4) 15–40.

Burke, P. J. 1975. Delays in single-server queues with batch inputs. Operations

Research 23(4) 830–833.

Buzacott, J. A., J. G. Shanthikumar. 1993. Stochastic Models of Manufacturing

Systems . Prentice Hall, Englewood Cliffs, New Jersey.

Carr, S., I. Duenyas. 2000. Optimal admission control and sequencing in a make-

to-stock/make-to-order production system. Operations Research 48(5) 709–

720.

Çelik, S., C. Maglaras. 2008. Dynamic pricing and lead-time quotation for a

multiclass make-to-order queue. Management Science 54(6) 1132–1146.

Çinlar, E. 1975. Introduction to Stochastic Processes . Prentice-Hall, Englewood

Cliffs, New Jersey.

Chang, S. H., D. W. Choi, T.-S. Kim. 2004. Performance analysis of a finite-

buffer bulk-arrival bulk-service queue with variable server capacity. Stochastic

Analysis and Applications 22(5) 1151–1173.

Chaudry, M., J. G. C. Templeton. 1983. A First Course in Bulk Queues. John

Wiley & Sons, New York.

114

Cheng, T. C. E., M. C. Gupta. 1989. Survey of scheduling research involving

due date determination decisions. European Journal of Operational Research

38(2) 156–166.

Cohen, J. W. 1969. Single server queue with restricted accessibility. Journal of

Engineering Mathematics 3(4) 256–284.

Courtois, P. J., J. Georges. 1971. On a single server finite queuing model with

state-dependent arrival and service processes. Operations Research 19(2) 424–

435.

Deb, R. K. 1978. Optimal dispatching of a finite capacity shuttle. Management

Science 24(13) 1362–1372.

Deb, R. K., R. F. Serfozo. 1973. Optimal control of batch service queues. Ad-

vances in Applied Probability 5(2) 340–361.

Dshalalow, J. H. 1997. Queueing systems with state dependent parameters. J.H.

Dshalalow, ed., Frontiers in Queueing: Models and Applications in Science

and Engineering. CRC Press, Boca Raton, Florida, 61–116.

Dudin, A. N., A. A. Shaban, V. I. Klimenok. 2005. Analysis of a queue in the

BMAP/G/1/N system. International Journal of Simulation: Systems, Science

and Technology 6(1–2) 13–23.

Ebben, M. J. R., E. W. Hans, F. M. Olde Weghuis. 2005. Workload based order

acceptance in job shop environments. OR Spectrum 27(1) 107–122.

Fernandes, N. O., S. do Carmo-Silva. 2006. Generic POLCA – A production and

materials flow control mechanism for quick response manufacturing. Interna-

tional Journal of Production Economics 104(1) 74–84.

Fowler, J. W., G. L. Hogg, D. T. Phillips. 1992. Control of multiproduct bulk

service diffusion/oxidation processes. IIE Transactions 24(4) 84–96.

Framinan, J. M., P. L. Gonzalez, R. Ruiz-Usano. 2003. The CONWIP production

control system: review and research issues. Production Planning and Control

14(3) 255–265.

Fransoo, J. C., T. Wäfler, J. R. Wilson, eds. 2011. Behavioral Operations in

Planning and Scheduling. Springer, Heidelberg.

Gaalman, G. J. C., M. Perona. 2002. Workload control in job shops: an intro-

duction to the special issue. Production Planning and Control 13(7) 565–567.

115

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to

the Theory of NP-completeness . Freeman, New York.

Gaury, E. G. A. 2000. Designing pull production control systems: customization

and robustness. Ph.D. thesis, University of Tilburg, The Netherlands.

Germs, R., J. Riezebos. 2010. Workload balancing capability of pull systems in

MTO production. International Journal of Production Research 48(8) 2345–

2360.

Germs, R., N. D. Van Foreest. 2010. Loss probabilities for the MX/GY /1/K+B

bulk queue. Probability in the Engineering and Informational Sciences 24(4)

457–471.

Germs, R., N. D. Van Foreest. 2011a. Admission policies for the customized

stochastic lot scheduling problem with strict due-dates. European Journal of

Operational Research 213(2) 375–383.

Germs, R., N. D. Van Foreest. 2011b. Analysis of finite-buffer state-dependent

bulk queues. Under revision.

Germs, R., N. D. Van Foreest. 2011c. Order acceptance and scheduling policies

for a make-to-order environment with setup times and family-dependent lead

times. Submitted.

Gupta, U. C., T. S. S. Srinivasa Rao. 1998. On the analysis of single server finite

queue with state dependent arrival and service processes: M(n)/G(n)/1/K.

OR Spectrum 20(2) 83–89.

Gutiérrez-Jarpa, G., G. Desaulniers, G. Laporte, V. Marianov. 2010. A branch-

and-price algorithm for the vehicle routing problem with deliveries, selective

pickups and time windows. European Journal of Operational Research 206(2)

341–349.

Haijema, R., J. Van der Wal, N. M. Van Dijk. 2007. Blood platelet produc-

tion: optimization by dynamic programming and simulation. Computers and

Operations Research 34(3) 760–779.

Haijema, R., N. M. Van Dijk, J. Van der Wal, C. S. Sibinga. 2009. Blood platelet

production with breaks: optimization by sdp and simulation. International

Journal of Production Economics 121(2) 464 – 473.

116

Haupt, R. 1989. A survey of priority rule-based scheduling. OR Spectrum 11(1)

3–16.

Hendry, L., M. Land, M. Stevenson, G. Gaalman. 2008. Investigating implemen-

tation issues for workload control (wlc): A comparative case study analysis.

International Journal of Production Economics 112(1) 452–469.

Hendry, L. C., B. G. Kingsman, P. Cheung. 1998. The effect of workload control

(WLC) on performance in make-to-order companies. Journal of Operations

Management 16(1) 63–75.

Hochbaum, D. S., D. Landy. 1997. Scheduling semiconductor burn-in operations

to minimize total flowtime. Operations Research 45(6) 874–885.

Hodes, B., B. Schoonhoven, R. Swart. 1992. On line planning van ovens. Tech.

rep., University of Twente, Enschede, The Netherlands.

Hopp, W. J., M. L. Spearman. 2004. To pull or not to pull: What is the question?

Manufacturing & Service Operations Management 6(2) 133–148.

Hopp, W.J., M.L. Spearman. 2008. Factory Physics . McGraw-Hill/Irwin, New

York.

Huang, S., M. Lu, G. Wan. 2011. Integrated order selection and production

scheduling under MTO strategy. International Journal of Production Research

49(13) 4085–4101.

Hyer, N. L., U. Wemmerlöv. 2002. Reorganizing the Factory: Competing Through

Cellular Manufacturing. Productivity Press, Portland, OR.

Janert, P.K. 2010. Gnuplot in Action: Understanding Data with Graphs . Man-

ning Publications, Greenwich, CT.

Kanet, J. J. 1988. Load-limited order release in job shop scheduling systems.

Journal of Operations Management 7(3) 44–58.

Kim, E., M.P. Van Oyen. 2000. Finite-capacity multi-class production scheduling

with setup times. IIE Transactions 32(9) 807–818.

Kleinrock, L., H. Levy. 1988. The analysis of random polling systems. Journal

of Operations Research 36(5) 716–732.

Land, M. J. 2004. Workload control in job shops, grasping the tap. Ph.D. thesis,

University of Groningen, The Netherlands.

117

Land, M. J., G. J. C. Gaalman. 1996. Workload control concepts in job shops:

A critical assesment. International Journal of Production Economics 46/47

535–548.

Land, M. J., G. J. C. Gaalman. 1998. The performance of workload control

concepts in job shops: Improving the release method. International Journal of

Production Economics 56/57 347–364.

Little, J. D. C. 1961. A proof for the queuing formula: l = λw. Operations

Research 9(3) 383–387.

Liu, Z., P. Nain, D. Towsley. 1992. On optimal polling policies. Queueing Systems

11(1–2) 59–83.

MacGregor Smith, J., F. R. B. Cruz. 2005. The buffer allocation problem for

general finite buffer queueing networks. IIE Transactions 37(4) 343–365.

Markovitz, D. M., L. M. Wein. 2001. Heavy traffic analysis of dynamic cyclic poli-

cies: A unified treatment of the single machine scheduling problem. Operations

Research 49(2) 246–270.

Markowitz, D. M., M. I. Reiman, L. M. Wein. 2000. The stochastic economic lot

scheduling problem: Heavy traffic analysis of dynamic cyclic policies. Opera-

tions Research 48(1) 136–154.

Medhi, J. 2003. Stochastic Models in Queueing Theory. Academic Press, San

Diego.

Melnyk, S. A., G. L. Ragatz. 1988. Order review/release and its impact on the

shop floor. Production and Inventory Management Journal 29(2) 13–17.

Neuts, M. F. 1977. Algorithmic Methods in Probability Theory. North-Holland,

Amsterdam.

Nobel, R. D. 1989. Practical approximations for finite-buffer queueing models

with batch arrivals. European Journal of Operational Research 38(1) 44–55.

Oǧuz, C., F. Sibel Salman, Z. Bilgintürk Yalçin. 2010. Order acceptance and

scheduling decisions in make-to-order systems. International Journal of Pro-

duction Economics 125(1) 200–211.

Öztürk, A., S. Kayaligil, N. E. Özdemirel. 2006. Manufacturing lead time esti-

mation using data mining. European Journal of Operational Research 173(2)

683–700.

118

Pinedo, M. L. 2008. Scheduling: Theory, Algorithms, and Systems. Springer,

New York.

Puterman, M. L. 1994. Markov Decision Processes, Discrete Stochastic Dynamic

Programming. J. Wiley & Sons, New York.

Ramasesh, R. 1990. Dynamic job shop scheduling: A survey of simulation re-

search. Omega 18(1) 43–57.

Reiman, M. I., L. M. Wein. 1998. Dynamic scheduling of a two-class queue with

setups. Operations Research 46(4) 532–547.

Riezebos, J. 2010. Design of POLCA material control systems. International

Journal of Production Research 48(5) 1455–1477.

Righter, R., J. G. Shantikumar. 1998. Multiclass production systems with setup

times. Operations Research 12(3) 146–153.

Schellhaas, H. 1983. Computation of the state dependent probabilities in M/G/1

queues with state dependent input and state dependent service. OR Spectrum

5(4) 223–228.

Schmidt, E., M. Dada, J. Ward, D. Adams. 2001. Using cyclic planning to manage

capacity at Alcoa. Interfaces 31(3) 16–27.

Slomp, J., J. A. C. Bokhorst, R. Germs. 2009. A lean production control sys-

tem for high-variety/low-volume environments: A case study implementation.

Production Planning & Control 20(7) 586–595.

Slotnick, S. A. 2011. Order acceptance and scheduling: A taxonomy and review.

European Journal of Operational Research 212(1) 1–11.

Slotnick, S. A., M. J. Sobel. 2005. Manufacturing lead-time rules: Customer

retention versus tardiness costs. European Journal of Operational Research

163(3) 825–856.

Stevenson, M., L. C. Hendry, B. G. Kingsman. 2005. A review of production

planning and control: The applicability of key concepts to the make-to-order

industry. International Journal of Production Research 43(1) 869–898.

Strijbosch, L. W. G., R. M. J. Heuts, M. L. J. Luijten. 2002. Cyclical packaging

planning at a pharmaceutical company. International Journal of Operations

& Production Management 22(5) 549–564.

119

Sugimori, Y., K. Kusunoki, F. Cho, S. Uchikawa. 1977. Toyota production sys-

tem and kanban system: materialization of just-in-time and respect-for-human

system. International Journal of Production Research 15(6) 553–564.

Suri, R. 1998. Quick Response Manufacturing: A Companywide Approach to

Reducing Leadtimes . Productivity Press, Portland, OR.

Suri, R. 2010. It’s About Time: The Competitive Advantage of Quick Response

Manufacturing. Productivity Press, New York.

Suri, R., A. Krishnamurthy. 2003. How to plan and implement polca: A material

control system for high-variety or custom-engineered products. Tech. rep.,

Center for Quick Response Manufacturing, (www.qrmcenter.org), University

of Wisconsin-Madison, WI.

Takagi, H. 1990. Queueing analysis of polling models: an update. H. Takagi,

ed., Stochastic Analysis of Computer and Communication Systems. Elsevier,

267–318.

Takagi, H. 1991. Analysis of finite-capacity polling systems. Advances in Applied

Probability 23(2) 373–387.

Takagi, H. 1993. Queueing Analysis: Finite Systems. North–Holland, Amster-

dam.

Ten Kate, H. 1995. Order acceptance and production control. Ph.D. thesis,

University of Groningen, The Netherlands.

Thürer, M. 2011. Workload control: An assessment. Ph.D. thesis, University of

Coimbra, Portugal.

Tijms, H. C. 2003. A First Course in Stochastic Models. John Wiley & Sons,

Chichester.

Tijms, H. C., M. H. Van Hoorn. 1981. Algorithms for the state probabilities and

waiting times in single server queueing systems with random and quasirandom

input and phase-type service times. OR Spectrum 2(3) 145–152.

Uzsoy, R., C. Y. Lee, L. A. Martin-Vega. 1994. A review of production plan-

ning and scheduling models in the semiconductor industry, part ii: Shop-floor

control. IIE Transactions 26(5) 44–55.

Van der Zee, D. J., A. Van Harten, P. Schuur. 2001. On-line scheduling of

multi-server batch operations. IIE Transactions 33(7) 569–586.

120

Van Foreest, N. D., J. Wijngaard, J. T. Van der Vaart. 2010. Scheduling and

order acceptance for the customised stochastic lot scheduling problem. Inter-

national Journal of Production Research 48(12) 3561–3578.

Vandaele, N., I. Van Nieuwenhuyse, S. Cupers. 2003. Optimal grouping for a

nuclear magnetic resonance scanner by means of an open queueing model.

European Journal of Operational Research 151(1) 181–192.

Vandaele, N., I. Van Nieuwenhuyse, D. Claerhout, R. Cremmery. 2008. Load-

based POLCA: an integrated material control system for multiproduct, multi-

machine job shops. Manufacturing & Service Operations Management 10(2)

181–197.

Weiss, H. J. 1979. The computation of optimal control limits for a queue with

batch services. Management Science 25(4) 320–328.

Wester, F. A. W., J. Wijngaard, W. H. M. Zijm. 1992. Order acceptance strate-

gies in a production-to-order environment with setup times and due-dates.

International Journal of Production Research 30(6) 1313–1326.

Wijngaard, J. 2007. Models for production planning and control. H. Corsten,

H. Missbauer, eds., Productions- und Logistikmanagement . Liber Amicorum

Zäpfel, Vahlen, 195–207.

Winands, E. M. M., I. J. B. F. Adan, G. J. Van Houtum. 2011. The stochastic

economic lot scheduling problem: A survey. European Journal of Operational

Research 210(1) 1–9.

Ziengs, N., J. Riezebos, R. Germs. 2011. Placement of effective work-in-progress

limits in route-specific unit-based pull systems. International Journal of Pro-

duction Research Article in press.

121

122

Samenvatting

Dit proefschrift richt zich op de analyse en het ontwerp van orderacceptatie- en

ordervrijgaveregels voor het beheersen van wachttijden in klantordergestuurde

(MTO) productiesystemen. Het beheersen van de tijd die orders moeten wachten

op beschikbare productiecapaciteit is cruciaal voor het realiseren van korte en be-

trouwbare doorlooptijden, twee prestatie-indicatoren die van strategisch belang

zijn voor veel MTO-bedrijven. Orderacceptatie en ordervrijgave zijn de twee be-

langrijkste productiebeheersingsmechanismen voor het bëınvloeden van de lengte

van wachttijden. Om een beter begrip te krijgen van de afwegingen die MTO-

bedrijven moeten maken in hun orderacceptatie- en ordervrijgavebeslissingen

richt dit proefschrift zich in de modellering op de belangrijkste (zogenoemde

eerste orde) kenmerken van MTO-systemen, zoals routing variabiliteit, beperkte

productiecapaciteit, omsteltijden, strikte leveringsvoorwaarden en onzekerheid in

het aankomstpatroon van orders.

De voornaamste onderzoeksdoelstellingen van dit proefschrift zijn: (i) het verkrij-

gen van beter inzicht in de onderliggende mechanismen van goede orderacceptatie

en ordervrijgaveregels voor MTO-productieomgevingen, en (ii) het gebruiken van

deze inzichten om eenvoudige orderacceptatie- en ordervrijgaveregels te ontwikke-

len om wachttijden in MTO-productiesystemen te beheersen. Het proefschrift is

als volgt ingedeeld: Hoofdstuk 2 richt zich op de ordervrijgavebeslissing, waarna

de Hoofdstukken 3, 4 en 5 de orderacceptatiebeslissing behandelen.

Hoofdstuk 2 onderzoekt de doorlooptijdprestaties van drie ordervrijgaveregels die

het aantal orders op de werkvloer beheersen door slechts gebruik te maken van een

verzameling kaarten: CONWIP, m-CONWIP en POLCA. Door hun eenvoudige

bediening worden deze zogenaamde unit-based pull-systemen op grote schaal

gëımplementeerd in de praktijk. Echter, al het onderzoek naar de prestaties

van deze pull-systemen richt zich op de doorlooptijd en aantallen orders op de

werkvloer en niet op de prestatie-indicator die het meest relevant is voor MTO-

bedrijven, namelijk de totale doorlooptijd van orders, dus inclusief de tijd die

orders wachten op vrijgave naar de werkvloer. Eerder onderzoek toont ook aan

dat de totale doorlooptijdprestatie van pull-systemen grotendeels afhangt van hun

vermogen om een evenwichtige verdeling van de werklast tussen de werkplekken

op de werkvloer te creren en dat in veel systemen dit vermogen ontbreekt. Dit

hoofdstuk ontwikkelt een simulatiemodel om de doorlooptijdprestaties van CON-

WIP, POLCA en m-CONWIP te vergelijken. De simulaties tonen aan dat unit-

based pull-systemen de werklastverdeling op de werkvloer kunnen verbeteren

en kunnen zorgen voor een vermindering van de gemiddelde totale doorloop-

tijd. CONWIP heeft geen werklastbalanceringsmogelijkheden en de resultaten

laten dan ook zien dat een beperking van de werklast in het CONWIP gecon-

troleerde MTO-productiesysteem de gemiddelde totale doorlooptijd van orders

vergroot. De overlappende lussen in het POLCA-systeem zorgen voor beperkte

werklastbalancering in vergelijking met CONWIP. Echter, doordat de POLCA-

lussen onvoldoende onbalans in werklast detecteren en signaleren heeft POLCA

een mindere doorlooptijdprestatie dan m-CONWIP, het systeem met de beste

werklastbalanceringsmogelijkheden.

Hoewel Hoofdstuk 2 laat zien dat de regels voor unit-based vrijgave de totale

doorlooptijd in een MTO-productiesysteem kunnen verminderen door het balan-

ceren van de werklast, is de omvang van het effect vrij klein. Het tweede deel van

het proefschrift richt zich daarom op een krachtiger instrument om wachttijden

in MTO productiesystemen te beheersen: orderacceptatie.

Hoofdstuk 3 introduceert een wachtrijmethode voor het bestuderen van de presta-

tie van eenvoudige orderacceptatieregels voor een MTO-productiesysteem waarin

orders aankomen en worden bediend in batches door één machine. Het produc-

tiesysteem is gemodelleerd als een batch-aankomst batch-service (bulk) wachtrij-

systeem met beperkte toegankelijkheid. De belangrijkste bijdrage in dit hoofd-

stuk is de ontwikkeling van een eenvoudige, numeriek stabiele en efficinte algo-

ritmische methode die de prestatie-evaluatie mogelijk maakt van een orde van

wachtrijsystemen die vele bulk wachtrijsystemen met een beperkte toegankelijk-

heid als speciale gevallen omvat. Door middel van numerieke experimenten

wordt aangetoond hoe de methode kan worden gebruikt om relevante prestatie-

indicatoren te berekenen, zoals de gemiddelde doorlooptijd van orders, momenten

van het aantal geaccepteerde orders en de kans op het afwijzen van orders.

Een beperking van de gestileerde productiesituatie uit Hoofdstuk 3 is dat twee

belangrijke eigenschappen, die in veel MTO-systemen voorkomen, niet worden

meegenomen: omsteltijden en strikte leveringstijden. Hoofdstuk 4 en 5 breiden

124

daarom de productiesituatie van Hoofdstuk 3 als volgt uit. Er wordt in deze

hoofdstukken gekeken naar een productiesysteem dat verschillende producten

op een enkele machine produceert. Klantorders sturen het productiesysteem en

behoren tot verschillende productfamilies. Verder kenmerken klantorders zich

door familieafhankelijke leveringstijden, productietijd en winstmarge. Wanneer

de productie verandert van de ene familie naar de andere dan kost dit om-

steltijd. Orders dienen op tijd te worden geleverd aan klanten en orders kunnen

geweigerd worden als ze leiden tot laattijdige leveringen. Deze productiesitu-

atie staat in de literatuur bekend als het Customized Stochastic Lot Scheduling

Problem (CSLSP) met strikte leveringstijden. Voor deze productiesituatie is het

essentieel om orders selectief te accepteren en in te plannen op de machine, zodat

noch productiecapaciteit wordt verspild aan omsteltijd, noch orders met een hoge

winstmarge worden afgewezen, omdat orders met een lagere winstmarge in een

eerder stadium eerder zijn geaccepteerd.

In Hoofdstuk 4 wordt een Markov beslissingsproces (MDP) formulering gegeven

voor het CSLSP met strikte leveringstijden. In dit MDP is de verzameling van

scheduling-acties beperkt tot twee acties, Combine en Spawn, die het meest rele-

vant zijn voor de planner van het productiesysteem: de Combine-actie regelt de

vorming van (productie)reeksen van orders van dezelfde familie, terwijl de Spawn-

actie de generatie van nieuwe reeksen van productfamilies regelt. Gegeven deze

twee scheduling-acties laat dit hoofdstuk zien dat een heuristische beslisregel, die

op basis van een drempelwaarde orders accepteert, vrijwel een optimale prestatie

levert. Deze drempelwaarderegel beperkt de generatie van nieuwe reeksen door

het afwijzen van nieuwe orders wanneer de lengte van het schema groter is dan

een vooraf bepaalde drempelwaarde. Hierdoor kunnen orders die later arriveren

gecombineerd worden met andere reeksen in het rooster. Vergeleken met de opti-

male beslisregel voor het MDP is de drempelwaarderegel eenvoudig te begrijpen

en te implementeren, bijvoorbeeld in een spreadsheet, en heeft het dus grote

praktische waarde.

Een beperking van het model van hoofdstuk 4 is dat er aangenomen wordt dat

orders standaardlevertijden hebben. Deze aanname houdt in dat de leverancier

zich verplicht tot het leveren van alle orders binnen dezelfde vooraf afgespro-

ken doorlooptijd, onafhankelijk van de productfamilie van de order. Als gevolg

hiervan moeten alle doorlooptijden gelijk zijn aan de kortste gewenste doorloop-

tijd. Ondanks dat familieafhankelijke leveringstijden het planningsprobleem in-

gewikkelder maken, zou dit kunnen resulteren in een significante winsttoename

in vergelijking tot het gebruik van standaardlevertijden omdat meer orders kun-

125

nen worden geaccepteerd. De literatuur geeft echter geen duidelijkheid hoe

orderacceptatie- en schedulingsregels rekening kunnen houden met verschillen

in de doorlooptijd en of de winsttoename opweegt tegen de extra inspanningen

die de extra planningscomplexiteit met zich meebrengt.

Hoofdstuk 5 onderzoekt daarom het effect van het gebruik van familieafhankelij-

ke doorlooptijden op de lange termijn op de gemiddelde winst voor het CSLSP.

Door het MDP-model uit Hoofdstuk 4 uit te breiden naar familieafhankelijke

doorlooptijden, laat Hoofdstuk 5 zien dat onder de optimale beslisregel een toe-

name van de doorlooptijd van een productfamilie nooit een nadelig effect op de

prestaties heeft; in veel gevallen kan zelfs een aanzienlijke winst worden behaald.

Ook de drempelwaarderegel zoals hierboven beschreven werkt goed in de meerder-

heid van de onderzochte gevallen, maar niet altijd. In bepaalde gevallen zorgt

de drempelwaarderegel voor een afname van de prestatie wanneer de doorloop-

tijd toeneemt, in tegenstelling tot wat we zien voor de optimale beslisregel. Dit

laat zien dat de drempelwaarderegel niet helemaal robuust is. Om dit probleem

te herstellen wordt een drempelwaarderegel voor de Combine-actie voorgesteld.

Een interessante uitkomst is dat de resultaten laten zien dat de bestverbeterde

drempelwaarderegel structureel binnen 1% van de optimale beslisregel presteert,

en dus robuust is tegen asymmetrische doorlooptijden.

126

Dankwoord

De afgelopen vier jaar van mijn promotie zijn in een recordtempo voorbij gevlo-

gen. Behalve dat de tijd gevoelsmatig sneller gaat naarmate je ouder wordt, is

in mijn beleving de belangrijkste factor het plezier geweest waarmee ik vier jaar

lang heb kunnen werken aan mijn proefschrift. Veel collega’s en vrienden hebben

daar aan bijgedragen en een aantal van hen wil ik hier in het bijzonder bedanken.

Allereerst wil ik mijn promotor Jannes Slomp en mijn copromotoren Jan Riezebos

en Nicky van Foreest bedanken voor hun vertrouwen in mij en voor de vrijheid

die ik heb gekregen om mijzelf in zeer verschillende richtingen te kunnen on-

twikkelen. Jannes wil ik bedanken voor het benadrukken dat toepasbaarheid

voorop moet staan op de momenten waarop ik door wilde slaan in het oplossen

van geavanceerde, maar weinig relevante, wiskundige modellen. Jan bedank ik

voor het verschaffen van gedetailleerd commentaar op mijn stukken, voor het

waarborgen van de lijn van mijn proefschrift en voor de hulp na mijn promotie

bij het solliciteren. En dan Nicky: bedankt voor de grote inhoudelijke bijdrage

die jij hebt geleverd aan mijn proefschrift, dit ondanks het feit dat je pas in het

tweede jaar van mijn promotie formeel mijn begeleider bent geworden. Onder

jouw begeleiding heb ik enorme vooruitgang op het methodologische vlak kun-

nen boeken. Jouw enthousiasme voor nieuwe problemen is bovendien een grote

stimulans voor mij geweest om mijn carrire in de wetenschap voort te zetten. Ik

hoop dat wij in de toekomst nog aan de vele interessante problemen, waar we

tijdens mijn promotie aan zijn begonnen, maar die helaas niet in de lijn van dit

proefschrift pasten, kunnen samenwerken.

Naast mijn begeleiders wil ik Jacob Wijngaard en Hans Nieuwenhuis bedanken

voor de interesse die zij bij mij hebben gewekt voor het bestuderen en toepassen

van stochastische modellen.

Verder zijn er veel collega’s en vrienden die inhoudelijk niet of zeer weinig aan de

totstandkoming van dit proefschrift hebben bijgedragen, maar die op het persoon-

lijke vlak zeer belangrijk voor mij zijn geweest. De belangrijkste hierin is zonder

twijfel Justin, mijn kamergenoot gedurende de vier jaren van mijn promotie. Als

ik alle tijd die wij aan ongein hebben besteed effectief in mijn proefschrift had

kunnen stoppen, dan had ik waarschijnlijk nooit weekenden of avonden hoeven

doorwerken en had ik mijn proefschrift in een eerder stadium kunnen afronden.

Daar staat tegenover dat ik altijd met ontzettend veel plezier naar mijn werk

ben gegaan en als ik alles nog een keer over mocht doen, dan zou ik jou zeer

zeker weer als kamergenoot wensen. Uit de categorie collega’s, vrienden, sport-

en koffiemaatjes wil ik Onur en Kristian bedanken voor de prettige afleiding waar

jullie tijdens mijn promotie voor hebben gezorgd en ik hoop in de toekomst zowel

op wetenschappelijk als op persoonlijk vlak nog mooie momenten met jullie te

beleven.

Tot slot wil ik mijn familie en mijn vriendin Lutiena bedanken voor hun onder-

steuning tijdens mijn promotie. Met name voor Lutiena was het niet gemakke-

lijk om mij vooral ’s avonds en in het weekend aan mijn onderzoek te laten

werken. Desondanks was ze altijd vol begrip en vaak een extra stimulans voor

het afronden van de puntjes waar ik niet zo gemotiveerd voor was. Ook in deze

onzekere periode waarin ik binnen en buiten Nederland solliciteer op een baan

in de academische wereld is Lutiena’s steun onvoorwaardelijk. Dit terwijl het

voor haar minstens zo lastig gaat worden om in een nieuwe omgeving een nieuw

leven op te bouwen. Lutiena, ik hou van jou en als dank voor je steun heb ik dit

proefschrift aan jou opgedragen.

128

