

 University of Groningen

Harmonization by simulation
Nowok, Beata

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nowok, B. (2010). Harmonization by simulation: a contribution to comparable international migration
statistics in Europe. [s.n.].

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/f4ac7e64-8ba8-4b5f-a2a6-73424856c987

66

6. Analysis of data on origin-destination
migration dynamics with R

Abstract. This chapter presents a collection of R functions that can be used to explore and analyze
data on origin-destination migration flows. We aim to introduce the reader to simple routines
developed in R that help to understand the complexities of migration data. The presented functions
allow us to simulate origin-destination relocation trajectories and derive aggregate measures that
are directly related to dynamics of international migration. The measures include number of
migrations, which can be viewed as conditional relocations, number of transitions over a one-year
period, population size and person-years lived during a one-year period. Some selected results of
the functions are plotted to illustrate some useful graphics functionalities that are available in R.

6.1. Introduction

The aim of this chapter is to illustrate how R software can be used to facilitate the explora-
tion and understanding of data on origin-destination migration flows. R is an open-source
programming language and software environment for statistical computing and graphics (R
Development Core Team, 2009). The presented routines, therefore, can be immediately
implemented by anyone interested. The software and contributed extension packages are
available from the Comprehensive R Archive Network (CRAN) repository, which can be
found at http://cran.r-project.org/. The main R Web site, http://www.r-project.org, provides
all essential information about R. It lists the on-line manuals, related books and other
materials.

http://cran.r-project.org/�
http://www.r-project.org/�

HARMONIZATION BY SIMULATION

88

We present a collection of R functions. One function simulates individual origin-
destination relocation histories, where relocation is a change of a country of residence. The
other functions produce aggregate measures related to origin-destination population
dynamics. The basic measure is the number of migrations. Compared to defining reloca-
tion, defining migration includes some additional conditions referring generally to duration
of residence. A description of various migration definitions and their ambiguities can be
found in Chapters 3 and 4 of this book.

All measures are compiled for the whole virtual population. Such aggregate data
are usually available in practice. They should therefore be treated as an accessible basis for
estimating the parameters of the underlying relocation processes. If estimates use the
simulated numbers, the results should approximate the parameters of the process that was
initially used to create relocation sample paths. The knowledge of the underlying processes
provides a basis for deriving the requested migration measures.

A function for simulating relocation trajectories is described in Section 6.2. Func-
tions for producing aggregate measures are the subject of Section 6.3. Section 6.4 includes
a graphic presentation of some selected results of the functions. The last section concludes
the chapter. A complete code for the functions and the example, together with some
explanations, is provided in the Appendix.

6.2. Simulation

The aim of the simulation is to generate continuous-time relocation histories of individuals
who may repeatedly relocate among a finite number of countries. The relocation paths are
generated using the function simOD(). The simulation is carried out by determining the
next transition times and the next states visited for all individuals in the initial population.
The population numbers in each state at time zero are given in an argument vector Ni. An
ending time of the observation is determined by tmax. For a given individual, the
simulation terminates when the time of relocation occurrence is greater than tmax.
 The argument tdist specifies interarrival time distribution. The default exponen-
tial distribution corresponds to tdist = "exp". Another possible choice is to assume
that survival time follows a Weibull distribution and set tdist = "weibull". If an
exponential model is assumed, the origin-destination relocation intensities are specified in
matrix M. This matrix is organized so that rows correspond to origin countries and columns
correspond to destination countries. The diagonal of the matrix is ignored. The dimensions
of matrix M have to correspond to the number of considered countries. In the case of the
Weibull distribution, a scale parameter is equal to an inverse of an appropriate transition
intensity given in matrix M. A common shape parameter shapeWeibull has to be
additionally specified.

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

89

 An optional argument returnMulti is a scalar specifying relatively higher
intensity of return migration to the state of residence at the beginning of observation. For
ease of exposition, we refer to this state as the country of birth. The relative impact of
returnMulti can be of two types, indicated by a returnType argument. If re-
turnType = 1, the intensity for a particular origin-destination flow is relatively higher
for people born in a destination state, which results in the higher total intensity of leaving
the current state regardless of direction. If returnType = 2, the intensity of relocation
to a state of birth is higher than to other possible destinations with no impact on the total
intensity of leaving the current state. The intensities of relocating in other directions are
relatively decreased.
 A further argument, occur, may be used to specify occurrence dependence. A
function describing occurrence dependence has to be predefined and its name must be
given here.
 The simOD() function also allows one to control for some heterogeneity among
population members. The optional argument X is a data frame with time-constant covari-
ates and B is a vector of corresponding coefficients. The observed covariates given in data
frame X change the intensity rates proportionally by exp(BX). The additional argument
zdist specifies a distribution of unobserved heterogeneity from which random values are
drawn. The possible choices are zdist = "gamma" or zdist = "unif". In the case of
a uniform distribution, exponentially transformed values are applied. Depending on the
distribution additional parameters have to be specified. For "gamma" they include
shapeGamma and scaleGamma. For "unif" they include minUnif and maxUnif.
 In the simplest default case, all individuals considered are characterized by the
same constant origin-destination specific intensities of relocations. Thus, an exponential
interarrival time distribution is assumed. The simOD() function then only requires a
matrix M of the origin-destination transition intensities, a vector Ni with starting popula-
tion stocks in each state and an ending time of the observation, tmax. For three thousand
individuals distributed evenly among three countries, an example call to the simOD()
function would be of the form

> sim <- simOD(M = matrix(c(NA, 0.1,0.05,
 0.2, NA, 0.2,
 0.1, 0.3, NA), nrow = 3, byrow = T),
 Ni = c(1000,1000,1000), tmax = 20)

We assign the result to an object called sim in order to save it for further analysis. Similar
assignments are carried out for other functions throughout the text and no adjustments are
needed before the presented code can be run. The result of the simOD() function is a data
frame that has the following structure

HARMONIZATION BY SIMULATION

90

> sim
 ID time state
1 1 0.00 1
2 1 20.25 1
3 2 0.00 1
4 2 1.79 3
5 2 2.92 2
6 2 4.02 3
7 2 6.05 3
...

For each individual distinguished by a unique identifier ID, it gives times of relocations
(time) and countries of residence following relocations (state). The value of the
state variable corresponding to time equal to zero refers to a country of residence at
the beginning of the observation period. A country of residence at the end of the observa-
tion period is indicated by state at time greater than tmax. For non-migrants it is the
same as a country of residence at the onset of observation and for migrants it is a destina-
tion country of the last observed relocation. If we control for heterogeneity across indi-
viduals, the observed values of covariates or random values of unobserved heterogeneity
are added to the final output of the function simOD() as additional columns in a data
frame.

6.3. Migration measures

Aggregate measures are derived for the whole virtual population that is combined from the
individual relocation histories generated by the simOD() function. We present functions
that produce statistics that are directly related to the dynamics of international migration.
The annual number of migrations (conditional relocations) is obtained using a migra-
tions() function. It also returns individual trajectories of countries of de jure residence,
which are utilized in other functions. A transitions() function produces the number
of transitions over a one-year period, that is, the number of migrants that are usually
estimated from a comparison of current country of residence and country of residence one
year ago. A population() function returns population size and person-years lived
during a year. All these functions use data argument, an output of the function si-
mOD(). A second argument, tdef, is a vector of duration criteria expressed in years.
These criteria refer to length of residence and they are used to distinguish migrations from
relocations. Before we move on to a presentation of functions it is necessary to clarify the
migration definition that is used in the example.

In order to ensure consistent and complete trajectories of unique countries of resi-
dence and changes thereto, a migration is defined as a relocation that is followed by a
continuous stay of a specified duration in a destination country, provided a person is a non-

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

91

resident thereof. Thus, if an individual leaves his or her country of birth and then relocates
a few times to different foreign countries, but does not reside long enough in any of them
to become a migrant and thereby a member of the population, he or she remains an official
(de jure) resident of the country of birth. This prevents the occurrence of a situation in
which a person does not belong to any population. Note that a person has one unique place
of residence only when all countries use the same minimum-duration threshold. The origin
of migration is a previous country of residence and not a previous country of a short stay
that does not constitute a residence.

The migrations() function produces residence histories of individuals and cal-
culates the aggregate number of migrations as defined above. The result is a list of two
components, ODmx and ODdata. ODmx is an array including annual origin-destination
migration matrices for all years until tmax for all duration thresholds given in tdef. For
simplicity, all countries use the same duration criterion. ODdata is a data frame that
includes, inter alia, information on country of residence (ctr). If we only need the
migration matrices we can use the following command

> M0 <- migrations(data = sim, tdef = seq(0,5,.05))$ODmx
> M0

In order to decrease the execution time, the number of considered duration criteria can be
limited to a few values, for instance, tdef = c(0,.25,.5,1).
 The definition of migration presented above leads to a straightforward correspond-
ing measure of transitions. The transition is reflected in a different country of residence at
the beginning and the end of the year. No additional duration criteria have to be applied.
The transitions() function utilizes the migrations() function in order to obtain
residence histories. This information is used to determine country of residence at the
beginning and end of each year. Whereas the migration measure returned by migra-
tions() represents an event approach to counting migration, the migration measure
returned by transitions() represents a status approach. The output of the transi-
tions() function has the same structure as the ODdata array from the output of the
migrations() function. An example call to the transitions() function would be

> T0 <- transitions(data = sim, tdef = seq(0,5,.05))
> T0

 The population size and person-years lived in the countries are obtained using the
population()function, which could be called as follows

> P0 <- population(data = sim, tdef = seq(0,5,.05))
> P0

The output contains a list of three arrays with figures for each country (in columns) and
each year (in rows). POP includes population numbers at the beginning of each year,
POPavg gives an average annual population size and PY refers to the values of person-

HARMONIZATION BY SIMULATION

92

years. Note that different concepts of the population may be applied. Population size may
refer to the total number of the residents irrespective of their current place of stay (de jure
population). We can also count people present in the country irrespective of their countries
of residence (de facto population). Both population numbers are returned by the popula-
tion()function. They are denoted respectively by ctr and cts in the third dimension
of output arrays POP and POPavg. In addition, population() gives the number of
people who are present in their country of residence (ctrs). The person-years given in the
array PY refers to the same population types as given in arrays POP and POPavg.

6.4. Plotting results

Once the relocation histories have been simulated and the migration measures have been
compiled, any data of interest can be easily extracted for further analysis. The comprehen-
sive graphics functionalities that are available in R play an indispensible facilitative role in
the data exploration. Two illustrative examples are given below. In the first one, we
compare the number of origin-destination specific migrations during a year with the
number of corresponding transitions during a year. The figures are compared for the
various lengths of duration criterion used to determine a country of residence. This
duration threshold is the same for both types of measures of migration considered. In the
second example, we look at person-years of residence in a given country and person-years
of actual stay in that country of residence.
 For the three countries considered in the simulation there are six origin-destination
specific migration flows. We do not consider flows within the countries. We aim to look at
migration and transition counts for each of them. The Trellis graphics system with
multipanel conditioning is particularly useful in such a case. It is provided in R in an add-
on package called lattice. Before we can call a trellis function that is appropriate for
plotting migrations and transitions against duration criterion as used in the definition and
that is conditional on direction of flow, the data available in arrays M0 and T0 have to be
arranged in one data frame. This can be easily done as follows

> M1 <- as.data.frame(as.table(M0)); M1$type <- "migrations"
> T1 <- as.data.frame(as.table(T0)); T1$type <- "transitions"
> MT <- rbind(M1, T1)
> head(MT)
 from to year def Freq type
1 1 1 1 0 0 migrations
2 2 1 1 0 200 migrations
3 3 1 1 0 104 migrations
4 1 2 1 0 111 migrations
5 2 2 1 0 0 migrations
6 3 2 1 0 274 migrations

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

93

An automatically created variable, Freq, is of interest to us. The added variable type
indicates the type of measure. The OD variable denoting the direction of migration, which
will be used as a conditional one for plotting, can be created from information included in
columns from and to

> MT$OD <- factor(paste("From", MT$from, "to", MT$to, sep = " "))

A selection of data to be shown in a graph is a final stage of data preparation. Here we
chose the data for the six international origin-destination flows in the tenth year, for the
various duration criterion def that is used in the definition up to 12 months

> MT$def <- as.numeric(as.character(MT$def))
> MT <- MT[MT$from != MT$to & MT$year == 10 & MT$def <= 12,]

The MT data frame can now be used in the desired trellis function

> trellis.device(color = FALSE)
> xyplot(Freq ~ def | OD, groups = type, data = MT, type = "l",
 as.table = T, xlab = "Duration criterion [months]",
 ylab = "Counts", auto.key = list(space = "bottom",
 points = FALSE, lines = TRUE))

The resulting plot is shown in Figure 6.1. Note that the command preceding the main call
of function xyplot()only changes the display colours to black and white. By default the
trellis plots are printed in colour.

Figure 6.1 Number of origin-destination specific migrations (solid line) and transitions
(dashed line) for various durations up to one year.

HARMONIZATION BY SIMULATION

94

 In the second example dealing with person-years for different population concepts,
a subset of data can be obtained directly from the P0 array. The selection criteria are
assigned to the following variables

> year <- 10
> state <- 2
> duration <- as.character(seq(0,5,.5))

For the chosen year, country (state) and duration thresholds of the person-years of resi-
dence ctr can be presented in one bar plot together with the person-years actually spent in
this country ctrs

> barplot(P0$PY[year, state, c("ctr","ctrs"), duration],
 beside = TRUE, space = c(-0.8,.4), las = 1,
 xlab = "Duration criterion [years]", ylab = "Person-years")

Figure 6.2 shows the obtained bar plot.

Figure 6.2 Person-years of residence (black bars) and person-years of actual stay in country
of residence (grey bars) for various duration criteria in migration definition; country = 2,
year = 10

The differences between the two data series indicate person-years spent by the individuals
in the countries other than their place of residence.

6.5. Conclusions

This chapter has demonstrated a computer implementation of migration data analysis. The
code was developed in the R environment, which has all the statistical, mathematical and
graphical capabilities needed for exploring the data. The open-source nature of R offers
obvious advantages. First, anyone interested can reproduce the analysis simply by re-
executing the scripts. Second, the code can be easily modified to serve one’s needs better.

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

95

Writing and documenting collections of R functions is, therefore, a very useful and
effective way of organizing and communicating about the work.

References

R Development Core Team. 2009. R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.R-project.
org.

HARMONIZATION BY SIMULATION

96

Appendix

This appendix includes a complete R code for the functions simOD(), migra-

tions(), transitions() and population() described in this chapter and also an
example of their application. This example is a collection of all the commands presented in
the text. Note that the migrations(), transitions() and population()
functions use a na.locf() function for replacing each NA with the most recent non-NA
prior to it. It comes from a non-standard package, zoo, which has to be installed
> install.packages("zoo")

and then uploaded
> library(zoo).

#simOD(): simulation of origin-destination relocation trajectories
#---
simOD <- function(M, Ni, tmax, tdist = "exp", shapeWeibull = 0.5,
 returnMulti = 1, returnType = 1, X = NULL, B = NULL,
 zdist = NULL, shapeGamma = 2, scaleGamma = 1/2,
 minUnif = -1, maxUnif = 1, t0 = 0, occur = NULL){

 diag(M) <- NA
 N <- sum(Ni)
 cc <- 1:ncol(M)
 ctb <- rep(cc, Ni)
 corDir <- 1/(returnMulti + ncol(M) - 2)

#covariates (observed heterogeneity)
 if (is.vector(X)) X <- matrix(X, ncol = 1, nrow = N)
 if (is.null(X) | is.null(B)){
 BX <- rep(0, N)
 } else{
 BX <- X %*% B
 }

#unobserved heterogeneity
 if (is.null(zdist)){
 z <- rep(1, N)
 } else if (zdist == "gamma") {
 z <- rgamma(N, shape = shapeGamma, scale = scaleGamma)
 } else if (zdist == "unif") {
 z <- exp(runif(N, min = minUnif, max = maxUnif))
 }

#initial values
 times <- vector("list", N); times[] <- t0
 states <- vector("list", N); states[] <- ctb

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

97

###individual trajectories
 for (n in 1:N){
 #impact of observed and unobserved heterogeneity on intensity
 M.n <- M*z[n]*exp(BX[n])
 #increased intensity of return migration
 if (returnType == 1){
 M.n[,ctb[n]] <- M.n[,ctb[n]] * returnMulti
 } else if (returnType == 2){
 M.n[-ctb[n],] <- rep(corDir*rowSums(M.n[-ctb[n],], na.rm = T),
 ncol(M.n))
 M.n[-ctb[n],ctb[n]] <- returnMulti*M.n[-ctb[n],ctb[n]]
 diag(M.n) <- NA
 }

##timings of relocations and their directions
 i <- 0
 t.cum <- 0
 while (t.cum <= tmax) {
 i <- i+1
 #possible destinations
 Sorig <- states[[n]][i]
 Sdest <- cc[-Sorig]
 #occurrence dependence
 oc <- ifelse(is.null(occur), 1, eval(parse(text = occur))(i-1))
 Rs <- oc*M.n[Sorig,Sdest]; k <- M[Sorig,Sdest]/Rs
 #waiting times to all possible destinations
 if(tdist == "exp"){
 Ts <- rexp(length(cc)-1, rate = Rs)
 } else if (tdist == "weibull"){
 Ts <- rweibull(length(cc)-1, shape = shapeWeibull,
 scale = 1/(Rs*k^(1/shapeWeibull-1)))
 }
 #minimum waiting time and a corresponding direction
 t.cum <- times[[n]][i] + min(Ts)
 times [[n]][i+1] <- t.cum
 states[[n]][i+1] <- ifelse(t.cum <= tmax,
 Sdest[which(Ts == min(Ts))],
 states[[n]][i])
 }

 }

#output preparation
 ns <- unlist(lapply(states, length))
 x <- unlist(times)
 y <- unlist(states)
 msmData <- cbind.data.frame(ID = rep(1:N, ns), time = x, state = y)
 if (!is.null(zdist)) msmData$z <- rep(z, ns)
 if (!is.null(X)){
 msmCov <- matrix(ncol = ncol(X), nrow = sum(ns))
 dimnames(msmCov)[[2]] <- as.list(paste("X", 1:ncol(X), sep = ""))
 for (i in 1:ncol(X)) msmCov[,i] <- rep(X[,i], ns)
 msmData <- cbind.data.frame(msmData, msmCov)
 }
 return(msmData)

}
#---
#end of simOD()

HARMONIZATION BY SIMULATION

98

#migrations(): number of migrations for different duration
#---
migrations <- function(data, tdef){

 cc <- as.numeric(levels(factor(data$state)))
 ccNo <- length(cc)
 tmax <- floor(min(tapply(data$time, data$ID, max)))
 names(data)[3] <- "cts"
 OD.yy.def <- array(dim = c(ccNo, ccNo, tmax, length(tdef)))
 dimnames(OD.yy.def) <- list(from = cc, to = cc, year = 1:tmax,
 def = tdef*12)
 labvar <- c("ID","time","ctb","cts","ctr","mctr")
 ODdata <- array(dim = c(nrow(data), length(labvar),
 length(tdef)))

#country of birth
 data$ctb <- rep(data$cts[data$time == 0],table(data$ID))

#year of relocation
 data$year <- cut(data$time, c(0, 1:tmax), labels = FALSE)

#time till next (dnxt) and since previous (dprv) relocation
 data$dnxt <- c(diff(data$time), NA)
 data$dprv <- c(NA, diff(data$time))
 data[which(data$time == 0 | data$time>=tmax), c("dnxt","dprv")] <- NA

#previous country of stay (pcts)
 data$pcts <- c(NA, data$cts[-length(data$cts)])
 data$pcts[which(data$time == 0)] <- data$cts[data$time == 0]

#first relocation
 migs <- !is.na(data$dnxt)
 data$fst[migs] <- unlist(tapply(1:nrow(data[migs,]),
 data$ID[migs], seq_along))
 data$dprv[data$pcts == data$ctb & data$fst == 1] <- 99

##migration counts for various duration criteria in definition
 for (t in 1:length(tdef)){
 #relocations followed by a stay satisfying duration condition
 data$def.nxt <- cut(data$dnxt, c(tdef[t], Inf), labels = FALSE)
 durres <- which(data$def.nxt == 1)
 fstobs <- which(data$time == 0)
 #countries of residence (ctr)
 data$ctr <- NA
 data$ctr[durres] <- data$cts[durres]
 data$ctr[fstobs] <- data$ctb[fstobs]
 data$ctr <- na.locf(data$ctr)
 #previous countries of residence (pctr)
 data$pctr <- c(NA, data$ctr[-nrow(data)])
 data$pctr[fstobs] <- data$ctr[fstobs]
 #migration as a change of country of residence (mctr)
 data$mctr <- as.numeric(!is.na(data$pctr) &
 data$pctr != data$ctr)
 data$mctr[data$mctr == 0] <- NA
 #origin-destination migration matrices
 OD.yy.def[,,,t] <- with(data, table(from = factor(pctr,cc),
 to = factor(ctr, cc),
 factor(year, levels = 1:tmax), mctr))
 #output data frame with crucial variables
 ODdata[,,t] <- as.matrix(data[,labvar])
 }

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

99

dimnames(ODdata) <- list(1:nrow(ODdata), labvar, def = tdef*12)
return(list(ODmx = OD.yy.def, ODdata = ODdata))

}
#---
#end of migrations()

#transitions(): number of transitions over one year period
#---
transitions <- function(data, tdef){

#country of residence in continuous time
 Ctr <- migrations(data = data, tdef = tdef)$ODdata
 cc <- as.numeric(levels(factor(data$state)))
 ccNo <- length(cc)
 tmax <- floor(min(tapply(data$time, data$ID, max)))
 cuts <- 1:tmax
 names(data)[3] <- "cts"

#country of birth
 data$ctb <- rep(data$cts[data$time == 0], table(data$ID))
 IDs <- unique(data$ID)

#discrete time points (tPts)
 ID <- rep(IDs, each = length(cuts))
 time <- rep(cuts, length(IDs))
 tPts <- data.frame(ID, time)

 mTrans <- array(dim = c(ccNo, ccNo, tmax, length(tdef)))
 dimnames(mTrans) <- list(from = cc, to = cc, year = 1:tmax,
 def = tdef*12)

##transition counts for various duration criteria in definition
 for (t in 1:length(tdef)){
 mig <- cbind(data, Ctr[,c("ctr","mctr"),t])
 mig <- mig[mig$time <= tmax,]
 #country of residence at discrete time points obtained from
 #information on residence at continuous time points
 mD <- merge(mig, tPts, by = c("ID","time"), all = T)
 mD[,c("cts","ctb","ctr")] <- na.locf(mD[,c("cts","ctb","ctr")],
 na.rm = F)
 #country of residence at discrete time points (mD.yy)
 tpts <- mD$time %% 1 == 0
 mD.yy <- mD[tpts,]
 #country of residence one year ago
 mD.yy$pctr <- c(NA, mD.yy$ctr[-nrow(mD.yy)])
 mD.yy$pctr[mD.yy$time == 0] <- NA
 #transition - change of country of residence at discrete time points
 mD.yy$rtrans <- as.numeric(mD.yy$pctr != mD.yy$ctr)
 mD.yy$rtrans[mD.yy$rtrans == 0] <- NA
 #origin-destination transition matrices
 mTrans[,,,t] <- with(mD.yy, table(factor(pctr, levels = cc),
 factor(ctr, levels = cc),
 factor(time, levels = 1:tmax),
 rtrans))
 }

 return(ODtrans = mTrans)

}
#---
#end of transitions()

HARMONIZATION BY SIMULATION

100

#population(): population size and person-years
#---
population <- function(data, tdef){

#country of residence in continuous time
 Ctr <- migrations(data = data, tdef = tdef)$ODdata

 cc <- levels(factor(data$state))
 ccNo <- length(cc)
 tmax <- floor(min(tapply(data$time, data$ID, max)))
 cuts <- 1:tmax
 names(data)[3] <- "cts"
 data$ctb <- rep(data$cts[data$time == 0], table(data$ID))
 IDs <- unique(data$ID)

 POP <- array(dim = c(tmax+1, ccNo, 3, length(tdef)))
 dimnames(POP) <- list(0:tmax, cc, country = c("ctr","cts","ctrs"),
 def = tdef)
 PY <- array(dim = c(tmax, ccNo, 3, length(tdef)))
 dimnames(PY) <- list(1:tmax, cc, country = c("ctr","cts","ctrs"),
 def = tdef)

#discrete time points
 ID <- rep(IDs, each = length(cuts))
 time <- rep(cuts, length(IDs))
 tPts <- data.frame(ID, time)

 for (t in 1:length(tdef)){
 mig <- cbind(data, Ctr[,c("ctr","mctr"), t])
 mig <- mig[mig$time <= tmax,]
 #time between relocations and discrete time points
 mD <- merge(mig, tPts, by = c("ID","time"), all = T)
 mD$year <- cut(mD$time, c(0,cuts), labels = FALSE, right = F)
 mD$tdif[mD$time != tmax] <- unlist(tapply(mD$time, mD$ID, diff))
 mD[,c("cts","ctb","ctr")] <- na.locf(mD[,c("cts","ctb","ctr")],
 na.rm = F)
 #presence in country of residence (ctrs)
 mD$ctrs[mD$ctr == mD$cts] <- mD$ctr[mD$ctr == mD$cts]

 #person-years
 PY[,,"ctr",t] <- with(mD, tapply(tdif,
 list(year, factor(ctr, cc)), sum))
 PY[,,"cts",t] <- with(mD, tapply(tdif,
 list(year, factor(cts, cc)), sum))
 PY[,,"ctrs",t] <- with(mD, tapply(tdif,
 list(year, factor(ctrs,cc)), sum))
 PY[is.na(PY)] <- 0

 #population numbers at discrete time points
 tpts <- mD$time %% 1 == 0
 mD.yy <- mD[tpts,]
 POP[,,"ctr",t] <- with(mD.yy, table(time, state = factor(ctr,cc)))
 POP[,,"cts",t] <- with(mD.yy, table(time, state = factor(cts,cc)))
 POP[,,"ctrs",t] <- with(mD.yy, table(time, state = factor(ctrs,cc)))
 POP[is.na(POP)] <- 0
 }

 ANALYSIS OF DATA ON ORIGIN-DESTINATION MIGRATION DYNAMICS WITH R

101

#average population number
 POPavg <- (POP[-1,,,] + POP[-nrow(POP),,,]) / 2
 return(list(POP = POP, POPavg = POPavg, PY = PY))

}
#---
#end of population()

#The R code for the example given in the text:
#---
#simulation
 sim <- simOD(M = matrix(c(NA,0.1,0.05,0.2,NA,0.2,0.1,0.3,NA),
 nrow = 3, byrow = T), Ni = c(1000,1000,1000), tmax = 20)

#measures
 M0 <- migrations (data = sim, tdef = seq(0,5,.05))$ODmx
 T0 <- transitions(data = sim, tdef = seq(0,5,.05))
 P0 <- population (data = sim, tdef = seq(0,5,.05))

#a trellis plot: migrations and transitions
#rearrangement of data into one data frame
 M1 <- as.data.frame(as.table(M0)); M1$type <- "migrations"
 T1 <- as.data.frame(as.table(T0)); T1$type <- "transitions"
 MT <- rbind(M1, T1)
 MT$OD <- factor(paste("From", MT$from, "to", MT$to, sep = " "))
 MT$def <- as.numeric(as.character(MT$def))
 MT <- MT[MT$from != MT$to & MT$year == 10 & MT$def <= 12,]

 library(lattice)
 trellis.device(color = FALSE)
 xyplot(Freq ~ def | OD, groups = type, data = MT, type = "l",
 as.table = T, xlab = "Duration criterion [months]",
 ylab = "Counts", auto.key = list(space = "bottom",
 points = FALSE, lines = TRUE))

#a bar plot: person-years
 year <- 10
 state <- 2
 duration <- as.character(seq(0,5,.5))
 barplot(P0$PY[year, state, c("ctr","ctrs"), duration],
 beside = TRUE, space = c(-0.8,.4), las = 1,
 xlab = "Duration criterion [years]", ylab = "Person-years")

#---
#end of the example

