
 

 

 University of Groningen

Off-line answer extraction for Question Answering
Mur, Jori

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Mur, J. (2008). Off-line answer extraction for Question Answering. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/8e6cb3cc-8668-4b97-ae05-30be324f35b8


Chapter 5

Extraction based on learned

patterns

5.1 Introduction

Defining patterns by hand is not only very tedious work, it is also hard to come up
with all possible patterns. By automatically learning patterns we can more easily
adapt the technique of off-line answer extraction to new domains. In addition, we
might discover patterns that we ourselves had not thought of. Different directions
in learning patterns can be taken. Two existing approaches are learning with tree

kernel methods and learning based on Bootstrapping algorithms.
Kernel methods compute a kernel function between data instances, where a kernel

function can be thought of as a similarity measure. Given a set of labelled instances,
kernel methods determine the label of a novel instance by comparing it to the labelled
training instances using this kernel function. Tree kernel methods for relation extrac-
tion use information based on grammatical dependency trees (Zelenko and Richardella,
2003; Culotta and Sorensen, 2004; Zhao and Grishman, 2005; Bunescu and Mooney,
2005).

Bootstrapping algorithms take as input a few seed instances of a particular relation
and iteratively learn patterns to extract more instances. It is also possible to start
with a few pre-defined patterns to extract instances with which more patterns can be
learned (Brin, 1998; Agichtein and Gravano, 2000; Ravichandran and Hovy, 2002).

We chose to develop a bootstrapping algorithm based on dependency relations.
Bootstrapping has the advantage that only a set of seed pairs is needed as input, in
contrast to the annotated training data needed for the tree kernel methods. However,
we do adopt the use of dependency trees. The algorithm starts with taking a set of
tuples of a particular relation as seed pairs. It loops over a procedure which starts by
searching for the two terms of a seed pair in one sentence in a parsed corpus. Patterns
are learned by taking the shortest dependency path between the two seed terms. The
new patterns are then used to find new tuples.

109



110 Chapter 5. Extraction based on learned patterns

Several bootstrapping-based algorithms to extract semantic relations have been
presented in the literature before. Some of them were given as examples above and
some of them have been discussed in chapter 1, section 1.2.1 in the light of off-line
information extraction. In the following section we will discuss these approaches and
more in the context of bootstrapping. The authors describe algorithms that work on
different domains and with different levels of automation, but almost all stress the
importance of high precision scores by dwelling upon filtering techniques for selecting
patterns and instances.

5.1.1 Bootstrapping techniques

Hearst (1992) was the first to describe a bootstrapping method to find patterns and
instances of a semantic relation automatically. She focused on the hyponym (is-a)
relation. Starting with three surface patterns including POS-tags discovered by looking
through text, she sketches an algorithm to learn more patterns from the instances
found by these first three patterns. She did not implement an automatic version of
this algorithm, primarily because it was unclear how to find commonalities among the
contexts of the newly found occurrences of the seed pairs.

A semi-automatic bootstrapping method was introduced by Brin (1998). Begin-
ning with a small set of five author-title pairs his system DIPRE expanded it to a high
quality list of over 15,000 books with only little human intervention (during the iter-
ations bogus books were manually removed from the seed lists). Brin defined simple
surface patterns by taking the string starting maximally 10 characters before the first
seed term of an author-title pair and ending maximally 10 characters after the second
seed term. The number of characters in both cases could be less if the line ends or
starts close to the occurrences of the seed terms. To filter out patterns that were too
general the pattern’s length was used to predict its specificity.

Berland and Charniak (1999) used an algorithm based on the approach of Hearst
to extract part-of relations. Patterns are found by taking two words in a part-of

relation and finding sentences in a corpus that have these words within close proximity.
The patterns are used to find new instances. The authors introduce a statistical metric
for ranking the new instances. Their procedure still included a lot of manual work.

Riloff and Jones (1999) present a multi-level bootstrapping technique, increasing
precision by introducing a second level of bootstrapping. The outer bootstrapping
mechanism compiles the results for the inner bootstrapping process and identifies the
five most reliable terms found by the extraction patterns. These five terms are added



5.1. Introduction 111

to the collection of previously used seeds. The complete set of terms is used as seed
set for the next iteration.

Building on the idea of DIPRE by Brin, Agichtein and Gravano (2000) intro-
duced SNOWBALL, the first system that evaluated both the quality of the pat-
terns and the instances at each iteration of the process without human intervention.
They experimented with the headquarters relation consisting of organisation-
location pairs such as Microsoft-Redmond. The patterns include two named entity
tags 〈ORGANISATION 〉 and 〈LOCATION 〉, and their context represented as bag-of-
words vectors. A pattern’s quality is assessed by judging the rate of correctly produced
output by comparing it to output of previous iterations. Only the most reliable pat-
terns were kept for the next iteration.

In Ravichandran and Hovy (2002) the authors apply the technique of bootstrapping
patterns and instances to answer inter alia birthday questions. They collect a corpus of
relevant documents by providing a few manually created seeds consisting of a question
term and an answer term to Altavista. Patterns are then automatically extracted from
the corpus and standardised. The precision of each pattern is calculated as follows:
Take the question term from a seed pair and fit it in at the correct place in the pattern.
For example, the pattern 〈NAME〉 was born on 〈ANSWER〉 becomes Mozart was born

on 〈ANSWER〉. Then count the number of times the pattern occurs with the 〈ANSWER〉
tag matched by any word (Co) and the number of times the pattern occurs with the
〈ANSWER〉 tag matched by correct answer term (Ca). The precision of a pattern is then
Ca/Co. For our experiments we will use this evaluation metric. Patterns yielding a
high precision score are applied to find the answers to questions during the process
of question answering. Remarkably, they do not iterate the process to collect tables
of facts. Such structured data would seem very suitable for the process of question
answering.

Lita and Carbonell (2004) introduced an unsupervised algorithm that acquires
answers off-line while at the same time improving the set of extraction patterns. In
their experiments up to 2000 new relations of who-verb types (e.g. who-invented, who-
owns, who-founded etc.) were extracted from a text collection of several gigabytes
starting with only one seed pattern for each type. However, during the task-based
evaluation in a QA-system the authors used the extracted relations only to train the
answer extraction step after document retrieval. It remains unclear why the extracted
relations are not used directly as an answer pool in the question-answering process.
Furthermore, the recall of the patterns discovered during the unsupervised learning
stage turned out to be too low.



112 Chapter 5. Extraction based on learned patterns

In Etzioni et al. (2005) the authors present an overview of their information extrac-
tion system KnowItAll. Instantiating generic rule templates with predicate labels
such as ‘actor’ and ‘city’ they create all kinds of extraction patterns. Using these
patterns a set of seed instances is extracted with which new patterns can be found
and evaluated. KnowItAll introduces the use of a form of point-wise mutual in-
formation between the patterns and the extracted terms which is estimated from Web
search engine hit counts to evaluate the extracted facts. What is also new in their
method is that they use generic template patterns that are instantiated by predicate
labels depending on the kind of relation. However, many good extraction patterns
do not match a generic pattern. Therefore they included a Pattern Learner to learn
domain-specific rules as well. Using the Pattern Learner increased the coverage of
their system.

Pantel and Pennacchiotti (2006) describe ESPRESSO, a minimally supervised
bootstrapping algorithm that takes as input a few seed instances of a particular rela-
tion and iteratively learns surface patterns to extract more instances. They use the
Web besides a text corpus of 6.3 million words to increase recall. To evaluate the
patterns the authors calculate an association score between a pattern and highly re-
liable instances based on point-wise mutual information. To evaluate the instances
the method works the other way around: calculating an association score between an
instance and highly reliable patterns.

In contrast to the bootstrapping approaches discussed above we learn patterns
based on dependency relations instead of surface patterns. Using dependency relations
we can simply search for the shortest path between the two terms in the dependency
tree. Surface patterns are typically harder to define in a natural and meaningful way.
For Hearst this was the reason to not implement her algorithm. Brin used a window of
maximally ten characters before the first seed term and maximally ten characters after
the second seed term, which may result in patterns starting or ending in the middle
of a word. Ravichandran and Hovy and Pantel and Pennacchioti apply a complex
method based on a suffix tree constructor. The difficulty here is to find suffixes that
are frequent but at the same time not too general.

Another drawback of surface patterns, already explained in chapter 3 is that surface
patterns are not able to handle long-distance dependencies. It is one of the shortcom-
ings listed by Ravichandran and Hovy in their paper: For the question “Where is
London?” their system could not locate the answer in the sentence “London, which
has one of the most busiest airports in the world, lies on the banks of the river Thames”
due to the explosive danger of unrestricted wild-card matching as would be required in



5.1. Introduction 113

a matching pattern. Dependency patterns experience no difficulties in detecting such
long-distance dependencies.

The results of bootstrapping techniques can be used for different purposes. Se-
mantic taxonomies such as WordNet can automatically be constructed and extended.
Ravichandran and Hovy use the learned patterns in their question answering system.

We also intend to use the results for question answering, but in a different way. We
will use bootstrapping techniques to collect answers off-line. Starting with ten seed
answers we automatically find patterns which can be used to find new answers. The
collected answers can be used in the off-line module of a question-answering system
as described in previous chapters.

In the discussion of the literature all kinds of relations came up, from general
relations such as hyponym relations and part-of relations to more specific relations
such as author-title relations, headquarter relations, and birth date relations. For our
experiments we are interested in relations suitable for off-line question answering. In
principle, this includes all the relations mentioned above, depending on the kind of
questions you wish to answer. We will restrict ourselves, however, to about three
relations, namely capital relations, football relations, and minister relations.
More details about our experiments can be found in section 5.3.

To learn patterns using bootstrapping techniques it is imperative to make a good
start. A good seed list is essential. However, for some relations it is easier to come up
with a good set of seeds than for other relations. For instance, for the capital relation
it is very easy to create a list of seed-pairs, since the seeds of a pair are typically in
a one-to-one relation to each other and each consists of only one term. In contrast
to manner-of-death facts which are facts describing how someone died. The manner
of death can be formulated in all kind of ways and therefore it is not obvious how to
formulate the seed pairs. We discuss this issue further in section 5.5.

5.1.2 Aims and overview

A crucial issue for bootstrapping-based algorithms is to ascertain that the patterns
and instances found are reliable in order to avoid the extraction of much noise during
further iterations. Except for Etzioni et al. who try to improve KnowItAll’s recall
and Pantel and Pennacchiotti who try to boost their recall by using general patterns
and the Web, all work discussed above on relation extraction is focused more on
precision than on recall. Many of the previously mentioned methods describe filtering
techniques for both patterns and instances to preserve high precision scores. Brin



114 Chapter 5. Extraction based on learned patterns

states that a recall of just 20% may be acceptable, but an error rate over 10% would
likely be useless for many applications. He says that each pattern need only have
very small coverage when using the web as resource, since it is so vast that the total
coverage of all the patterns can still be substantial.

It seems natural to focus on precision when working with bootstrapping techniques.
Many unreliable patterns will result in noisy sets of instances, which in return will yield
wrong patterns which will extract incorrect instances and so on. The question we are
interested in here is if this view also holds when we apply bootstrapping techniques
for off-line question answering. Do we still need to focus on precision or might the
balance between precision and recall be different? After all, storing the answers offline
opens up the possibility of applying filtering techniques afterwards, for instance by
using frequency counts. Therefore, there is no need to focus on precision during the
extraction process. On the contrary, we have to make sure that in any case the correct
answer is among the facts extracted.

Ravichandran and Hovy applied the technique of bootstrapping for QA. In their
experiments the patterns are used to find answers during the online process of question
answering. First a set of relevant documents is retrieved by feeding the question terms
into a search engine. The following step is matching the learned patterns to the
documents, thus finding candidate answers. The system does not apply a threshold
for precision, all patterns found are used to select candidate answers. The precision
scores of the patterns are used to rank the candidate answers. Answers found by
highly precise patterns are ranked higher.

However, we believe that this technique is also pre-eminently suitable for off-line
answer extraction. We start with ten hand-crafted facts, which we use to find patterns
in a corpus. Applying these patterns again to the corpus we can find new facts. This
process is iterated until a certain stopping condition is reached and then the extracted
facts can be stored before we start the question answering process. An important
additional benefit of the off-line technique is that we do not need to focus on precision
during the bootstrapping procedure. The filtering of noise can be done afterwards.

This observation might alter perspectives on recall and precision for relation ex-
traction using bootstrapping techniques. As we have seen, previous studies in this
area focus on high precision scores. Typically, a high precision score is achieved by
evaluating the patterns and the instances and selecting only those that meet a certain
reliability threshold for the next iteration. Although we cannot ignore precision com-
pletely if we want to avoid generating too much noise, we probably can get by with
less control on precision.



5.2. Bootstrapping algorithm 115

In this chapter we show that aiming at a high precision score during bootstrapping
is not always beneficial for question answering. Our hypothesis is that for off-line
answer extraction low precision scores will not hurt performance of question answering
while it will greatly benefit from high recall scores.

We define a bootstrapping algorithm in which we can employ different levels of
precision by changing the threshold for pattern selection. The algorithm is described
in section 5.2. The experiments are evaluated on the question answering task. More
details are given in section 5.3. In section 5.4 and section 5.5 we discuss our findings
and we conclude in section 5.6.

5.2 Bootstrapping algorithm

We present a bootstrapping algorithm for finding dependency-based patterns and ex-
tracting answers. The algorithm takes as input ten seed facts of a particular question
category. For example, for the category of capital questions we feed it ten country-
capital pairs. On the basis of these ten seed pairs patterns are learned. We use these
patterns to find new facts and these new facts can again be used to deduce patterns.

The algorithm iterates through three separate stages: the pattern-induction stage,
the pattern-filtering stage and the fact-extraction stage. To explore the space in which
to find the ideal balance between recall and precision we can change the threshold
that is employed to select the new patterns in the pattern-filtering stage. Setting the
threshold high means we only select highly reliable patterns for extraction resulting
in highly precise tables of facts. Setting the threshold lower allows more patterns to
pass the filtering stage, which will result in more facts being extracted, but also more
noise. In the next three sections we describe the stages in more detail.

5.2.1 Pattern induction

We start with ten seeds. As an example we take the seed pair Riga and Letland
(Latvia) to find patterns to extract capital-country facts. We search in the corpus for
sentences containing both these terms. The first sentence we find is for example as
follows:

(1) Riga, de hoofdstad van Letland, is een mooie stad
English: Riga, the capital of Latvia, is a beautiful city.



116 Chapter 5. Extraction based on learned patterns

Figure 5.1: Riga, de hoofdstad van Letland

We deduce the pattern from a parsed corpus, so we can start with selecting the
shortest dependency path between the term Riga and the term Letland. The relevant
part of the dependency tree for sentence (1) is shown in figure 5.1. Snow et al. (2004)
also added optional “satellite links” to each shortest path, i.e. single links not already
contained in the dependency path added on either side of each seed term. For general
patterns this can be helpful: Snow et al. search for hypernym relations. The shortest
path between to nodes of a hypernym relation might not contain enough information.
They wished to include important function words like ‘such’ (in “such NP as NP”)
or ‘other’ (in “NP and other NPs”) into their patterns. We implemented this option
as well. However, for specific relations such as employed for open-domain question
answering they are not needed. Almost all patterns we found are without satellites.
And if a pattern included satellites its precision typically did not meet the threshold.

Represented in triples the path from Riga to Letland looks like this:

(2)


〈riga/0, app, hoofdstad/3〉,
〈hoofdstad/3, mod, van/4〉,
〈van/4, obj1, letland/5〉,





5.2. Bootstrapping algorithm 117

Replacing the seed terms and indices by variables we get the following pattern:

(3)


〈Capital/Ca, app, hoofdstad/H〉,
〈hoofdstad/H, mod, van/V〉,
〈van/V, obj1, Country/Co〉,


We have added part-of-speech constraints in the patterns. This means that for terms
to match with the Capital or Country variable they ought to be names.

In this way we find more dependency patterns with the same seed terms. Similarly
we use nine other seed pairs to find patterns. In the end, when the whole corpus is
searched through, we have collected a whole set of patterns. This set of patterns is
transferred to the pattern-filtering stage.

5.2.2 Pattern filtering

In the pattern-filtering stage we only keep the reliable patterns. To find the optimal
balance between precision and recall for off-line answer extraction we perform three dif-
ferent bootstrapping experiments in which we vary the precision threshold for selecting
patterns. The precision of a pattern is calculated in the same way as in Ravichandran
and Hovy (2002). Instead of replacing both seed terms by a variable as in (3), we now
replace only the answer term with a variable. In our Riga example the pattern will
then become:

(4)


〈Capital/Ca, app, hoofdstad/H〉,
〈hoofdstad/H, mod, van/V〉,
〈van/V, obj1, letland/L〉,


For each pattern obtained in the pattern-induction stage, we count how many times
in the corpus the variable matches with any word and we count how many times the
variable matches with the correct answer term according to the seed list. Then the
precision of each pattern is calculated by the formula P = Ca/Co, where Co is the
total number of times the pattern matched a phrase in the corpus and Ca is the total
number of times the pattern matched a phrase in the corpus containing the correct
answer term.

All patterns we select have to be found more than once. For the most lenient
version of our algorithm the additional precision threshold is zero, which means that
we keep all patterns with a frequency higher than one. If we want to give more weight



118 Chapter 5. Extraction based on learned patterns

to precision we make the filtering process more strict: Not only does a pattern have
to occur more than once, its precision score also has to meet a certain threshold, τp.

In the second experiment we set threshold τp at 0.50 and in the third experiment at
0.75, which means that we select only those patterns that were found more than once
and that have a precision score higher or equal to 0.50 or 0.75 respectively. In this
way we can alter the pattern filtering procedure from very lenient to very strict. Using
very lenient patterns will result in extracting many facts, i.e. higher recall, using very
strict patterns will result in extracting mostly correct facts, i.e. higher precision.

The patterns that remain are used in the next stage, the fact-extraction stage.

5.2.3 Fact extraction

The patterns that have passed the filter in the previous stage are matched against the
parsed corpus to retrieve new facts. After retrieval we select a random sample of one
hundred facts and manually evaluate it. If more than τf facts are found the iteration
process is stopped, else all facts are used without any filtering as seeds again for the
pattern-induction stage and the process repeats itself. In our experiments we have set
τf to 5000. This number depends on the size of the corpus, the kind of relation, and
the amount of time there is to process the learning algorithm.

5.3 Experiment

The corpus we use in our experiments is the same corpus used in experiments described
in previous chapters, the CLEF corpus.

We selected three different question types, capital, football, and minister.
Capital and football are binary relations, respectively between a location (France)
and its capital (Paris) and between a soccer player (Dennis Bergkamp) and his club
(Ajax). The minister facts are triple relations between a name (William Perry), a
department (Defence) and a nationality (American) or a country (United States).

The reason we chose the capital relation was that it is a very straightforward rela-
tion: each country typically has one capital and each capital belongs to one country.
The minister and football relations were not yet introduced in earlier chapters. We
chose the football category because we believed that the corpus would contain a lot
of information about football players. We chose the minister relation since we en-
countered minister questions in the CLEF question set. In earlier experiments they
were classified as function questions, but then a slot was missing in the relation. Func-



5.3. Experiment 119

tion relations are between a function and a nationality: French president. Minister
relations are between a function, a nationality and a department: French minister of
foreign affairs. Therefore, we wanted to create a separate table for minister questions.

Since a minister fact comprises three terms, patterns for extracting minister facts
differ slightly from the patterns for binary relations. In this case we select two shortest
dependency paths: one between the person name and the nationality and one between
the person name and the department.

For each of the three question types we created ten seed facts which are listed in
table 5.1, table 5.2, and table 5.3. Some seeds we thought of ourselves, some were
discovered by looking through the corpus, and some were identified by looking at
wikipedia sites.

The initial seeds should be chosen very carefully since they form the basis of the
learning process. In the set of capital seeds we have for example also included the
capital of a province (Drenthe). In addition, we have used both the adjective form of
the country as well as the noun itself to cover a greater variety of patterns. We also
had European-Brussels as a seed pair, since this pair occurred very frequently in the
corpus. However, during experimentation we found out that Europe has many culture
capitals, so it would perhaps have been better to not include this seed pair.

For the football seeds and minister seeds we had to take good care that the seeds
represented facts true in 1994 and 1995, since those are the years covered by the
CLEF corpus. Complete names and last names were used, since that is how the
football players are referred to in the corpus.

For the minister seeds it turned out that due to the way of parsing, the departments
consisted of maximally one term. For that reason we have the seed zaken ‘affairs’
instead of buitenlandse zaken ‘foreign affairs’. This is not ideal, but we think it will
work for it will match with the parsing result of the question and using the d-score

described in chapter 3 which calculates the overlap in dependency relations between
the question and the answer sentence we will find the correct kind of affairs. This
issue is discussed further in section 5.4, page 126.

Last but not least, as Ravichandran and Hovy (2002) also point out, the seeds have
to be selected so that the questions they represent do not have long lists of possible
answers, as this would affect the confidence of the precision scores for each pattern.

After we found ten sound seed pairs we retrieved all sentences from the CLEF
corpus containing at least one of the seed pairs. It did not matter in which order both
seed terms appeared, nor was the search case sensitive. All sentences were parsed by
the dependency-parser Alpino. The two seed terms of a seed pair were localised in



120 Chapter 5. Extraction based on learned patterns

Country Capital

Amerikaanse Washington
Bulgaarse Sofia
Drenthe Assen
Duitsland Berlijn
Europese Brussel
Frans Parijs
Italiaans Rome
Bosnisch Sarajevo
Rusland Moskou
Spaans Madrid

Table 5.1: Ten Capital seeds

Person Club

Litmanen Ajax
Marc Overmars Ajax
Wim Jonk Inter
Dennis Irwin Manchester United
Desailly AC Milan
Romario Barcelona
Erwin Koeman PSV
Jean-Pierre Papin Bayern München
Roberto Baggio Juventus
Aron Winter Lazio Roma

Table 5.2: Ten Football seeds

each sentence. Then we sought the shortest path between these two terms. Optionally
satellite links were added, but as explained earlier, these satellite links did not improve
the performance of the experiments.

We selected only those patterns with a frequency higher than one and we added
part-of-speech constraints depending on the question type. For the football patterns,
for instance, both question term (a football player) and answer term (a football club)
should be names. In the most lenient experiment all these patterns were used to
extract new facts in the CLEF corpus.

For the two other experiments we applied an additional selection step. For one
experiment we took from the set of patterns with a frequency higher than one only



5.3. Experiment 121

Person Department Nationality

Warren Christopher zaak Amerikaans
Javier Solana zaak Spaans
Klaus Kinkel zaak Duits
Sorgdrager justitie Nederlands
Melkert zaak Nederlands
Helseltine handel Brits
Chi Haotian defensie Chinees
Juppé zaak Frans
Willy Claes zaak Belgisch
Jorritsma verkeer Nederlands

Table 5.3: Ten Minister seeds

those patterns with a precision equal to or higher than 50%. For the other experiment
we took from the set of patterns with a frequency higher than one only those patterns
with a precision equal to or higher than 75%. We calculate the precision of the patterns
as described in section 5.2.2. The patterns with a precision that meets the threshold
are used to find new facts in the CLEF corpus.

This process is repeated for two iterations or until we find more than 5000 facts.
Then the process is stopped after the fact-extraction stage. We chose these stopping
conditions for practical reasons; especially the pattern filtering stage can take very
long to process if there are many seeds involved.

The tables were used to answer questions that Joost classified into one of the three
categories, capital, football and minister. Since we wanted to do the evaluation on
more questions than were available in the CLEF set, we created some ourselves. To
find extra capital questions we typed into Google the query Wat is de hoofdstad van
‘What is the capital of’. Football questions were created by asking five people names
of famous football players in 1994 and 1995. With each name we filled a template
question: Bij welke club speelde X? ‘For which club did X play?’. To create extra
minister questions we typed into Google the query Wie is de minister van ‘Who is
the minister of’. Nationalities were added at random. In the end we had 42 capital
questions, 66 football questions and 32 minister questions. We checked for all if the
answer appeared in the corpus. A few example questions with their answers are given
in table 5.4. The complete set of questions is listed in http://www.let.rug.nl/∼mur/

questionandanswers/chapter5/.



122 Chapter 5. Extraction based on learned patterns

Question Answers

Wat is de hoofdstad van Canada? Ottawa
Wat is de hoofdstad van Cyprus? Nicosia
Wat is de hoofdstad van Häıti? Port-au-Prince

Bij welke club speelt Andreas Brehme? 1. FC Kaiserslautern
Bij welke club speelt Aron Winter? Lazio Roma; Lazio
Bij welke club speelt Baggio? Juventus; Milan

Wie is de Poolse minister van financiën? Grzegorz Kolodko;
Kolodko

Wie is de Nederlandse minister van visserij? Bukman; Van Aartsen;
van Aartsen

Wie is de Japanse minister van buitenlandse zaken? Yohei Kono

Table 5.4: Sample of question used for evaluation

5.3.1 Evaluation

We evaluated the tables by implementing them into Joost as Qatar tables. We let
Joost run over all questions en we counted how many questions were answered by
the module Qatar. The system returned a top five list of answers. We counted how
many times the correct answer ended up at rank one and we calculated the mean
reciprocal rank, i.e. for each question we took the reciprocal of the rank at which the
first correct answer occurred or 0 if none of the returned answers was correct. Then
we took the average over all questions. All questions had a correct answer somewhere
in the corpus.

5.3.2 Results

The results are shown in table 5.5, 5.6, and 5.7. For each category we have first listed
the results for the experiments where we selected all patterns found with a frequency
higher than one. This is the most lenient experiment with regard to precision. For the
category capital we found 39 patterns in the first round. These are found using the
ten seed pairs from table 5.1. Applying these 39 patterns we extracted 3405 new facts.
We estimated the precision based on a random sample of hundred facts to be 58%.
When using these table as Qatar module in Joost, we answered 35 of 42 questions
correctly. The mean reciprocal rank was 0.865. For the second round we repeated the
process using 3405 facts. With these facts we found 1306 patterns as presented in the



5.4. Discussion of results 123

table. The 1306 patterns in turn returned 234,684 facts.

The middle part of the tables show the results for the experiment in which we filter
the patterns using a precision threshold of 50%. The last part of the tables finally lists
the results for the experiment in which we apply a filter to select only those patterns
that meet a precision threshold of 75%. For the football experiments and the minister
experiments we stopped the iteration of the process after we found more than 5000
facts, for the capital experiments we stopped after two iterations.

The best performance per category is marked in bold. For the minister results
there was no difference in performance, therefore none of the outcomes is marked in
bold.

5.4 Discussion of results

From the data in table 5.5 about extracting capital facts we can see that using no
precision level at all for pattern selection results in the extraction of so much noise
(the precision of a randomly selected sample was only 1%) that it hurts performance
of the QA task. Only 14 out of 42 questions were answered correctly.

However, the data in this table also show that we do not need high precision
tables to get the best results, since the best results for answering capital questions
was obtained in the second round of iterations with pattern selection at precision level
0.50. The precision of the extracted facts was only mediocre: 49%, compared to 83%
in the experiments with pattern selection at precision level 0.75. The number of facts,
on the other hand, was almost twice as high (4123 vs. 2344). As it turns out, that
was the decisive factor here. 37 out of 42 questions were answered correctly with a
mean reciprocal rank of 0.895.

Analysis of the football table (5.6) shows that it can even be more extreme. The
best result is again for an experiment at the pattern selection precision level 0.50,
but this time there is no significant difference with the result for the experiment with
pattern selection at precision level 0. Large numbers of incorrect facts were extracted
(the precision of the randomly selected samples also was only 1% here), still it did not
hurt performance of the QA task.

This rather contradictory result can be explained by the patterns that were found
for the extraction of football facts. A very frequent pattern we found was (5).

(5)
{
〈NameFootballplayer/Nf, mod, NameClub/Nc〉,

}



124 Chapter 5. Extraction based on learned patterns

Capital # patterns # facts (Prec) # Correct answers MRR
Freq: > 1
1st round 39 3405 (58%) 35 of 42 0.865
2nd round 1306 234,684 (1%) 14 of 42 0.510

Prec: ≥ 50%; Freq: > 1

1st round 24 2875 (63%) 35 of 42 0.851
2nd round 171 4123 (49%) 37 of 42 0.895

Prec: ≥ 75%; Freq: > 1

1st round 17 2076 (83%) 35 of 42 0.839
2nd round 64 2344 (83%) 35 of 42 0.851

Table 5.5: Results for learning capital patterns (Best results in bold)

Football # patterns # facts (Prec) # Correct answers MRR
Freq: > 1
1st round 19 115,296 (1%) 40 of 66 0.659

Prec: ≥ 50%; Freq: > 1

1st round 11 109,435 (1%) 41 of 66 0.667

Prec: ≥ 75%; Freq: > 1

1st round 6 196 (26%) 11 of 66 0.167
2nd round 28 31,958 (2%) 18 of 66 0.312

Table 5.6: Results for learning football patterns (Best results in bold)



5.4. Discussion of results 125

Minister # patterns # facts (Prec) # Correct answers MRR
Freq: > 1
1st round 3 5425 (71%) 23 of 32 0.745

Prec: ≥ 50%; Freq: > 1

1st round 2 4380 (69%) 23 of 32 0.745
2nd round 27 5670 (63%) 23 of 32 0.745

Prec: ≥ 75%; Freq: > 1

1st round 2 4380 (69%) 23 of 32 0.745
2nd round 18 5463 (62%) 23 of 32 0.745

Table 5.7: Results for learning minister patterns

where NameFootballplayer and NameClub are two variables that should match with
names. The pattern matches for example with the phrase in (6).

(6) Jari Litmanen (Ajax).

However, the pattern is so general that it matches with a lot of phrases in the corpus.
For example with abbreviations such as (7):

(7) Rijksuniversiteit Groningen (RUG).

It matches with many other kind of terms as well. That is why we extract so many
incorrect facts. Yet, these incorrect facts typically have nothing to do with football
players, and thus they do not cause incorrect answers to football questions.

No significant differences were found between the results of the experiments per-
formed for the minister category. The reason for this outcome is that only one highly
precise pattern (8) was responsible for the extraction of the majority of facts. On its
own it extracted 4346 facts already. The precision of this pattern as calculated by the
formula P = Ca/Co described in section 5.2.2 was 0.86. Although other patterns are
found, they do not contribute enough to make a difference in the result for the QA
task.



126 Chapter 5. Extraction based on learned patterns

(8)


〈minister/M, app, Name/N〉,
〈minister/M, mod, van/V, obj1, Department/D〉,
〈minister/M, mod, Nationality/N〉,


We can conclude that the results of the experiments for the extraction of capital and
football facts suggest that for the benefit of off-line QA we better focus on high recall
rather than on high precision. This is not contradicted by the results for the minister
experiments. However, the balance between precision and recall can differ over dif-
ferent categories, depending on the kind of patterns discovered. In our experiments
the patterns for the football category extracted a lot of noise, but it did not hurt the
performance. For the capital category we had to be more careful.

Although for each question the corpus contained the correct answer, not all ques-
tions were answered. We did an error analysis to investigate which problems underlay
these omissions.

We frequently observed mismatches between a question term and an answer term.
Examples include Burundisch vs. Burundees, Sicilië vs Siciliaans, Tjetjenië vs. Ts-
jetjenië. This is not a problem specific for learning patterns of course, it is rather a
general question answering problem: mismatching between terms in the question and
terms in the answer. We had created a list of location name variants to cover the
variety of forms in which a name of a location can appear (for example, starting with
a capital or starting with a lower-case letter, as adjective or as nominative, different
ways of spelling, etc.). The list contains 204 entities with an average of 5.6 variants.
Unfortunately, it appeared that some variants were still missing.

It turned out that the departments for the minister questions still pose a problem.
The d-score between the question and the sentence which contains the answer is
used as an additional factor in conjunction with frequency in determining whether an
answer is correct. In the case of a question asking about a minister of social affairs
or economic affairs using frequency only to determine the correct answer would give
the wrong result, since the most frequent minister of any affairs in newspaper text is
typically the minister of foreign affairs. We hoped that a score that combines frequency
and d-score would return the correct answer. In some cases this indeed helped, but
in others the difference in frequency was so large, that in spite of the d-score the
wrong answer still popped up. In the case of capital questions it once went the other
way around: For the question ‘What is the capital of France?’ the system returned the
answer Belfort, found in the sentence: [...] dat Belfort de afgelopen maand de sociale



5.5. General discussion on learning patterns 127

hoofdstad van Frankrijk is geweest, ‘[...] that Belfort had been the social capital of
France last month’. In spite of a higher frequency (20 vs. 1) the correct answer was
not given due to a high d-score for the incorrect answer. The solution for minister
questions might be that the departments are treated as one term. That will give an
exact match with the question term and only the frequency of the minister with the
correct department is taken into account.

A less serious problem for minister questions was that our list of questions1 con-
tained questions about Dutch ministers while the nationality was missing in the answer
sentence, which makes sense using a Dutch newspaper corpus. It is likely that user
questions on Dutch corpora would not include the nationality when asking about a
Dutch minister.

Most errors for football questions were due to the fact that the system had not
derived the pattern needed to extract the answer. More iterations might be needed
and here we encounter the drawback of extracting too much noise. Although the noise
did not hurt performance in the sense that it selected incorrect answers, it did make
it hard to perform a next iteration, since it cost days to process as many seeds as we
found. Instead of taking all facts found as seeds for the next iteration we could select
a sample of only correct facts. This would not only reduce the amount of processing
to be done, it would also help to reduce the amount of incorrect patterns derived.

5.5 General discussion on learning patterns

The difficulty about learning patterns is that you have to come up with a set of good
seeds. For the categories we used in our experiments that can be done quite easily.
However, for a category such as inhabitants, for example, it becomes much harder,
since the answer to an inhabitants question does not always contain one term (e.g.
800,000). Sometimes it consists of two terms (e.g. 8 million) and sometimes it consists
of even more terms (e.g. almost 8 million). The goal is then to find patterns that are
able to handle this, that extract sometimes one term and in other cases several terms
that should be combined to one answer term. To do this automatically during the
process of learning is not easy.

Another problem could occur with inhabitant seeds during the calculation of the
precision of the patterns. To calculate the precision of the pattern we counted how
many times in the corpus the pattern matches with the correct answer term according
to the seed list. Since there are so many variations of answers that can be considered

1See http://www.let.rug.nl/mur/questionsandanswers/chapter5/ministerquestions.txt



128 Chapter 5. Extraction based on learned patterns

correct (e.g. 798,345, 800,000, 800 thousand, almost 800,000, etc), judging an answer
to be correct only when it precisely matches the seed term will result in discarding
correct patterns.

In addition, we saw that a pattern can work very well on the seed list (see as an
example pattern (5) above), even if it in general extracts many incorrect facts. For
example, for the capital category we found pattern (9). Using this pattern with the
Country variable matching with French, the Capital variable will match with Paris
(e.g. the French championships in Paris). Still this is a noisy pattern, because when
Country matches with European (e.g. the European championships in Berlin) or with
national (e.g. the national championships in Heerenveen) we retrieve incorrect facts.

(9)

{
〈kampioenschap/K, mod, Country/C〉,
〈kampioenschap/K, mod, in/I, obj, Capital/Ca〉,

}

This raises doubt as to the value of this evaluation measure.

An alternative measure could be the one introduced by Pantel and Pennacchiotti
(2006). They define the reliability of a pattern as its average strength of association
across each input instance weighted by the reliability of each instance. The formula is
based on point-wise mutual information (PMI) (Cover and Thomas, 1991).

According to Blohm et al. (2007) who compared different filtering functions for
evaluating extraction patterns PMI-based filtering yields a high recall. So this might
be an appropriate evaluation measure for the filtering of learned patterns for answer
extraction. Further investigation needs to be done to determine the precise impact of
other evaluation measures on this task.

Next, we give some examples of patterns we learned, which we might not have
thought of ourselves, together with some matching phrases. For extracting capital
facts we found:

(10) a.

{
〈open/O, su, president/P, mod, Country/C〉,
〈open/O, mod, in/V, obj, Capital/Ca〉,

}

b. [...] Radio Free Europe, is gisteren in Praag geopend door de Tsjechische
president Havel. (AD, September 9th 1995)
English: Radio Free Europe was opened yesterday in Prague by the Czech
president Havel.

c. De Internationale Conferentie over Bevolking en Ontwikkeling die van-
morgen in Käıro door [...] de Egyptische president Mubarak werd geopend



5.5. General discussion on learning patterns 129

[...] (NRC, September 5th 1994)
English: The International Conference on Population and Development
which was opened this morning in Cairo by the Egyptian president Mubarak
[...]

(11) a.

{
〈ben/C, predc, stad/S, mod, van, obj, Country/C〉,
〈ben/C, mod, na/N, obj, Capital/Ca〉,

}

b. Sint-Petersburg is met vijf miljoen inwoners na Moskou de grootste stad
van Rusland [...] (NRC, April 20th 1995)
English: Saint Petersburg is with five million inhabitants the largest city
of Russia after Moscow [...]

c. De staat Córdoba - de gelijknamige hoofdstad is na Buenos Aires de
grootste stad van Argentinië - [...] (NRC, June 26th 1995)
English: The state Córdoba - the capital of the same name is the largest
city of Argentina after Buenos Aires - [...]

For extracting football facts we found:

(12) a.

{
〈ben/C, su, Name/N〉,
〈ben/C, predc, man/M, mod, bij/B, obj, Club/C〉,

}

b. Wim Jonk was de beste man bij Inter. (AD, March 21st 1994)
English: Wim Jonk was the best man of Inter.

c. Romario was de grote man bij Barcelona. (NRC, May 2nd 1994)
English: Romario was the big man of Barcelona.

For extracting minister facts we found:

(13) a.


〈minister/M, mod, van/V, obj1, Department/D〉,
〈zeg/Z, su, minister/M, app, Name/Na〉,
〈zeg/Z, mod, voor/V, obj1, televisie/T〉,
〈televisie/T, mod, Nationality/N〉,


b. Minister van Europese zaken Alain Lamassoure zei gisteren voor de Franse

televisie [...] (NRC, January 3rd 1994)
English: Minister of European affairs Alain Lamassoure said yesterday in
front of the French television [...]

c. Minister van buitenlandse zaken Warren Christopher zei voor de Amerikaanse
televisie [...] (NRC, October 10th 1994)



130 Chapter 5. Extraction based on learned patterns

English: Minister of foreign affairs Warren Christopher said in front of
the American television [...]

These examples show that we also find patterns which often yield correct answers,
but in fact are not inherently correct. In sentences such as ‘Radio Free Europe was
opened yesterday in Prague by the Czech president Havel’ and ‘The International
Conference on Population and Development which was opened this morning in Cairo
by the Egyptian president Mubarak [...]’ the place names are not necessarily the
capitals of the relevant countries. A conference (as well as an radio station) can very
well be located in a city other than the capital. In this sense it is just a coincidence
that the relation between the city and the country is a capital relation.

In other words, the sentence does not support the answer. For QA a supporting
sentence is to be preferred. In TREC and CLEF such answers are typically evaluated
as unsupported answers rather than correct answers. In the end, we will also need
linguistic (that is semantic and syntactic) information besides frequency information
to answer questions correctly.

5.6 Conclusion

In this chapter we automatically learn patterns to extract facts for off-line ques-
tion answering by applying a bootstrapping technique. A crucial issue for existing
bootstrapping-based algorithms is to ascertain that the patterns and instances found
are reliable so as to avoid the extraction of too much noise during further iterations.
It seems natural to focus on precision when working with bootstrapping techniques.
Many unreliable patterns will result in noisy sets of instances, which in return will
yield wrong patterns etc. However, storing the facts off-line lets us use frequency
counts to filter out incorrect facts afterwards, therefore we do not need to focus on
precision during the extraction process. It is of greater importance that we extract at
least the correct answer.

We presented a bootstrapping algorithm for finding dependency-based patterns
and extracting answers. The algorithm takes as input ten seed facts of a particular
question category. On the basis of these ten seed pairs patterns are learned. We use
these patterns to find new facts and these new facts can again be used to deduce
patterns.

Experiments were performed on three different question categories: capital, foot-
ball, and minister. For the capital and football categories the results showed indeed



5.6. Conclusion 131

that runs with a high recall and low precision achieved the best performance for QA,
although for the capital category low precision was more harmful than for the football
category. For the minister category one highly precise pattern was on its own respons-
ible for the extraction of most of the facts, so the results for all experiments in this
category were the same. We conclude that the results of the experiments suggest that
for the benefit of off-line QA we better not focus on high precision and that recall is at
least equally important. However, the balance between precision and recall can differ
over different categories, depending on the kind of patterns discovered.



132 Chapter 5. Extraction based on learned patterns




