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Abstract In this paper, we use a pseudo-Boolean formulation of the p-median prob-
lem and using data aggregation, provide a compact representation of p-median prob-
lem instances. We provide computational results to demonstrate this compactifica-
tion in benchmark instances. We then use our representation to explain why some
p-median problem instances are more difficult to solve to optimality than other in-
stances of the same size. We also derive a preprocessing rule based on our formula-
tion, and describe equivalent p-median problem instances, which are identical sized
instances which are guaranteed to have identical optimal solutions.

Keywords p-Median problem · Pseudo-Boolean polynomial · Data aggregation ·
Equivalent instances

1 Introduction

The p-Median Problem (PMP) is a well known problem among the class of minisum
location-allocation problems. It is defined as follows.

Given a set I of m potential facilities, a set J of n users (or customers), a
distance function c : I × J → �+, and a constant p ≤ m, determine which p

facilities to open so as to minimize the sum of the distances from each user to
its closest open facility.
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The PMP is NP-hard (Kariv and Hakimi 1979), and has many applications in loca-
tion analysis (see Revelle et al. 2008 and references within) and cluster analysis (see
e.g., Mirkin 2005 and references within). A detailed introduction to this problem and
solution methods appear in Reese (2006) and Mladenovic et al. (2007).

The PMP is a generalization of classical Fermat problem defined on three distinct
points in a plane, where the purpose is to find a median point in the plane such that
the sum of the distances from each of the points to the median point induced by
the triangle spanned on these points is minimized. It is also a generalization of the
Weber problem (see Weber 1909) which generalizes the Fermat problem by allowing
n points on a plane, each with a certain weight associated with it (to model client
demands), and finding the weighted median point induced by the polygon spanned
on the n points. For a discussion of Fermat and Weber problems see Krarup and Vajda
(1997).

Hakimi (1964, 1965) generalized the Weber problem to the problem of finding an
absolute median on a graph that minimizes the sum of the weighted distances between
that absolute median and the vertices of the graph. Hakimi has shown that an optimal
absolute median is always located at a vertex of the graph. Similarly Hakimi (1965)
generalized the absolute median to the PMP, again providing a discrete representation
of a continuous problem by restricting the set of feasible solutions to the vertices.

Another common problem within the class of minisum location-allocation prob-
lems is the Simple Plant Location Problem (SPLP), also called the Uncapacitated Fa-
cility Location Problem (UFLP) or the warehouse location problem (see e.g. Revelle
et al. 2008). The SPLP is similar to the PMP, and the methods used to solve one are
often adapted to solve the other. The objective function of the SPLP is one of deter-
mining the cheapest method of meeting the demands of a set of clients J = {1, . . . , n}
from plants that can be located at a subset of a set of candidate sites I = {1, . . . ,m}.
The costs involved in meeting the client demands include the fixed cost of setting
up a plant at a chosen site, and the per unit transportation cost of supplying a given
client from a plant located at a given site. Each plant is assumed to be able to supply
an unlimited quantity of demand. The PMP and SPLP differ in the following details.
First, the SPLP involves a fixed cost for locating a facility at a given location, and
the PMP does not. Second, unlike the PMP, SPLP does not have a constraint on the
maximum number of facilities. Typical SPLP formulations separate the set of can-
didate sites from the set of clients. In the PMP these sets are identical, i.e. I = J .
A recent computational study by Avella et al. (2007) shows that PMP instances with
|I × J | > 360 000 are difficult for commercial MIP codes, mainly due to memory
restrictions.

These two problems are well known problems in cluster analysis (see e.g., Mirkin
2005 and references within). Both form underlying models in several combinator-
ial problems, such as set covering, set partitioning, information retrieval, simplifi-
cation of logical Boolean expressions, airline crew scheduling, vehicle dispatching
(see Goldengorin et al. 2003b and references within) and are subproblems for various
location analysis problems (see Revelle et al. 2008).

As is the case with PMP, each instance of the SPLP admits an optimal solution
in which each client is satisfied by exactly one plant. In Hammer (1968) this fact is
used to derive a pseudo-Boolean representation of the SPLP. The pseudo-Boolean
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polynomial developed in that work has monomials that contain both a literal and its
complement. Subsequently, in Beresnev (1973) a different pseudo-Boolean form has
been developed in which each monomial contains only literals or only their comple-
ments but not both. We find this form easier to manipulate, and hence use Beresnev’s
formulation in this paper which we term as Hammer-Beresnev polynomial.

Based on the Hammer-Beresnev formulation for the SPLP, Goldengorin et al.
(2003a) have derived a pegging rule within a branch-and-peg algorithm. Compu-
tational experiments reveal the advantage of using the branch and peg algorithm,
whose computation times are significantly lower than that of comparable branch and
bound techniques (see Revelle et al. 2008). Goldengorin et al. (2003b) have incorpo-
rated the Hammer-Beresnev function in the data correction approach. These authors
present reduction rules that are significantly more powerful than those suggested by
Khumawala (1972).

Problem reduction is a common technique in integer programming and combinato-
rial optimization; see, for example, Briant and Naddef (2004) and references within.
Classical reduction techniques for PMP instances are based either on good lower
bounds (see e.g., Briant and Naddef 2004) or on reduction tests (see e.g., Avella and
Sforya 1999). In this paper, we present two reduction techniques for PMP instances
using a pseudo-Boolean formulation of PMP due to Hammer (1968) and Beresnev
(1973).

Since the PMP is NP-hard and many polynomially solvable special cases are well
known in the literature (see e.g., the 1-median problem on a cactus in Burkard and
Krarup 1998) it is interesting to examine the use of polynomially solvable special
cases of the PMP to find either an exact or approximate solution to a PMP instance
which is not polynomially solvable. Burkard et al. (1996), p. 155 presents this ques-
tion as an open problem. For the PMP, the question posed in Burkard et al. (1996)
can be phrased as follows:

“Suppose we are given a PMP instance defined on a cost matrix C which does
not belong to a polynomially solvable class of PMP instances. Is it possible to
modify C into a cost matrix D belonging to a polynomially solvable class of
PMP such that an optimal solution to the original problem instance is as close
as possible to the optimal solution of the modified instance?”

In this paper we show that the pseudo-Boolean formulation of the PMP allows us
to find such modifications if the polynomially solvable class of PMP instances is
defined algebraically in terms of the elements in its cost matrix. For this, we describe
the concept of equivalent instances. Moreover, we reduce the problem of finding an
equivalent cost matrix D with the minimum number of columns to the given matrix
C to the well known Dilworth’s decomposition theorem (see e.g. Theorem 14.2 in
Schrijver 2003).

While this paper does not suggest any new algorithm for solving the PMP it
presents some fundamental properties of PMP derived from its pseudo-Boolean rep-
resentation. Our paper is organized as follows. In Sect. 2 of this paper, we adjust
the Hammer-Beresnev pseudo-Boolean formulation of the Simple Plant Location
Problem to the PMP, and show that reducing of similar monomials in the Hammer-
Beresnev pseudo-Boolean polynomial leads to the aggregation of entries in the given
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PMP instance. Section 3 describes the reductions and truncations in the PMP. In
Sect. 4, based on the truncation of degree of Hammer-Beresnev polynomial from
(m − 1) to (m − p) we are further able to aggregate the entries in the Hammer-
Beresnev polynomial use it to develop rules for preprocessing PMP instances. We
also show that the pseudo-Boolean representation allows us to comment on rela-
tive difficulties in obtaining provably optimal solutions to different PMP instances.
Both Sects. 2 and 4 include computational analysis of benchmark instances similar
to instances used in Avella et al. (2007). Section 5 defines the concept of equivalent
instances and describes an algebraic method of modifying the cost matrix of a PMP
instance without disturbing the optimality of any optimal solution to the original in-
stance. This answers Burkard et al.’s open problem affirmatively in the context of
the PMP. It also indicates the relationships with the minimum number of aggregated
columns and Dilworth’s decomposition theorem. Section 6 summarizes the main re-
sults of the paper, and points to directions for future research.

2 A pseudo-Boolean formulation of the PMP

Recall that given sets I = {1,2, . . . ,m} of sites in which plants can be located, J =
{1,2, . . . , n} of clients, a matrix C = [cij ] of costs of supplying each j ∈ J from each
i ∈ I , the number p of plants to be opened, and unit demand at each client site, the
p-Median Problem (PMP) is one of finding a set S ⊆ I with |S| = p, such that the
total cost

fC(S) =
∑

j∈J

min{cij |i ∈ S}

is minimized. An instance of the problem is described by an m × n matrix C = [cij ]
and the number 1 ≤ p ≤ |I |. We assume that the entries of C are nonnegative and
finite. The PMP is thus the problem of finding

S� ∈ arg min{fC(S) : ∅ ⊂ S ⊆ I, |S| = p}. (1)

We now formulate the objective function fC(S) of the PMP in (1) in terms of
a pseudo-Boolean polynomial BC(·). A pseudo-Boolean polynomial is a mapping
f : {0,1}n → �. All pseudo-Boolean polynomials can be uniquely represented as
multi-linear polynomials of the form (see e.g. Boros and Hammer 2002)

f (y) =
∑

S⊆I

cS

∏

i∈S

yi . (2)

Two monomials are said to be similar if their terms are identical. A pseudo-Boolean
polynomial is said to be in the reduced form if it does not contain similar monomials.
The process of creating a reduced form of a general pseudo-Boolean polynomial
by summing up the coefficients of similar monomials is called reduction of similar
monomials.

Our pseudo-Boolean formulation is a penalty-based formulation. For client j , let
�j = (πij , . . . , πmj ) be an ordering of 1, . . . ,m such that cπij j ≤ cπkj j if i < k for
all i, k ∈ {1, . . . ,m}. Also, let �j = (δ1j , . . . , δmj ), where δ1j = cπ1j j , and δrj =
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cπrj j − cπ(r−1)j j for r = 2, . . . ,m. If the plant at location π1j is opened, then the cost
of meeting a unit demand at j is cπ1j j , i.e., δ1j . If it is closed, and the plant at location
π2j is open, then the cost of meeting a unit demand at j is cπ2j j , i.e., cπ1j j + δ2j . In
other words, if we decide not to open a plant at location π1j , then we incur a penalty
of δ2j while meeting a unit demand at j . We call �j the difference vector for client j .

Let us define an m-vector y = (y1, . . . , ym), where yi = 0 if a plant is opened at
location i, and 1 otherwise. Then the cost of satisfying a unit demand at j is given by
the pseudo-Boolean polynomial

f
j
C(y) = δ1j +

m∑

k=2

δkj ·
k−1∏

r=1

yπrj
.

For notational convenience, in order to aggregate the costs for all clients and obtain
a pseudo-Boolean polynomial to describe fC(y), we define an m×n ordering matrix
� = [πij ] and an m × n difference matrix � = [δij ]. The j th column of � is the
transpose of �j , and the j th column of � is the transpose of �j . In terms of � and
�, the objective function fC(S) of PMP is

BC(y) =
n∑

j=1

{
δ1j +

m∑

k=2

δkj ·
k−1∏

r=1

yπrj

}
. (3)

Note that � is unique for a PMP instance if and only if the entries in each of the
columns of C are distinct. � however is unique for a PMP instance. Note also, that the
polynomial in the right hand side of (3) can have similar monomials. In the remainder
of the paper, we assume that such monomials are reduced in the expression of BC(y).

The set of all ordering matrices for a PMP instance with cost matrix C is denoted
by perm(C). It is easy to see that the representation of BC(y) developed in (3) is
identical for all ordering matrices in perm(C). This result is derived in AlBdaiwi et
al. (2009) for the SPLP; the proof of the result for PMP follows along similar lines.

We call a pseudo-Boolean polynomial f (y) a Hammer-Beresnev polynomial if
there exists a PMP instance with cost matrix C and � ∈ perm(C) such that the ob-
jective function of the PMP instance can be represented by f (y) for each y ∈ {0,1}m.
Therefore the function BC(y) developed in (3) is a Hammer-Beresnev polynomial.
Theorem 1 describes the condition under which a general pseudo-Boolean polyno-
mial is a Hammer-Beresnev polynomial.

Theorem 1 A general pseudo-Boolean polynomial is a Hammer-Beresnev polyno-
mial if and only if all its coefficients are non-negative.

Proof The “if” statement is trivial. In order to prove the “only if” statement, consider
a PMP instance defined by the cost matrix C, an ordering matrix � ∈ perm(C), and a
Hammer-Beresnev polynomial BC(y) in which there is a monomial of degree k with
a negative coefficient. Since monomials in BC(y) are contributed by the elements of
C only, a monomial with a negative coefficient implies that δk,j is negative for some
j ∈ {1, . . . , n}. But this contradicts the fact that � ∈ perm(C). �
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We can formulate (1) in terms of Hammer-Beresnev polynomials as

y� ∈ arg min

{
BC(y) : y ∈ {0,1}m,

m∑

i=1

yi = m − p

}
. (4)

3 Reductions and truncations in the PMP

Hammer-Beresnev polynomials allow a compact description of p-median problems,
since they allow reduction of similar monomials. The polynomial obtained from
the original Hammer-Bersnev polynomial through reduction of similar monomials
is called the reduced Hammer-Beresnev polynomial. Example 1 demonstrates the re-
duction process.

Example 1 Consider a PMP instance with m = 4, n = 5, p = 2 and

C =
⎡

⎢⎣

7 15 10 7 10
10 17 4 11 22
16 7 6 18 14
11 7 6 12 8

⎤

⎥⎦ . (5)

A possible ordering matrix for this problem is given by

� =
⎡

⎢⎣

1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2

⎤

⎥⎦

and the difference matrix is given by

� =
⎡

⎢⎣

7 7 4 7 8
3 0 2 4 2
1 8 0 1 4
5 2 4 6 8

⎤

⎥⎦ .

The Hammer-Bersnev polynomial representing total cost function for this instance
in the form of (3) is

BC(y) = [7 + 3y1 + 1y1y2 + 5y1y2y4]
+ [7 + 0y3 + 8y3y4 + 2y1y3y4]
+ [4 + 2y2 + 0y2y3 + 4y2y3y4]
+ [7 + 4y1 + 1y1y2 + 6y1y2y4]
+ [8 + 2y4 + 4y1y4 + 8y1y3y4]

whose monomials can be reduced to yield the reduced Hammer-Beresnev polynomial

BC(y) = 33 + 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4

+ 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4.
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Table 1 Reductions of number of monomials in the objective functions of benchmark instances

Library Instance m Entries in Number of terms Reduction(%)

C matrix in BC(y)

OR pmed15 300 90 000 17 102 81.00

OR pmed26 600 360 000 25 083 93.03

OR pmed40 900 810 000 30 756 96.20

ODM BN48 42 411 329 19.95

ODM BN1284 1284 88 542 85416 3.53

ODM BN3773 3773 349 524 341775 2.22

ODM BN5535 5535 666 639 654709 1.79

TSP D657 657 430 992 367355 14.77

TSP fl1400 1400 1 958 600 836 557 57.29

TSP pcb3038 3038 9 226 406 5 759 404 37.58

Note that the original Hammer-Beresnev polynomial has 20 monomials including
those with zero coefficients, while the reduced Hammer-Beresnev polynomial has
just 10 monomials.

The compactification illustrated in Example 1 is also seen in benchmark PMP
instances. Table 1 presents the extent of reduction in the number of terms in the
objective function obtained by reducing similar monomials in Hammer-Beresnev
polynomials for benchmark PMP instances considered in Avella et al. (2007).
(Recall that in the conventional integer programming formulation of the PMP,
the objective function has as many monomials as the number of entries in the
C matrix.) In Table 1 the first four columns describe the benchmark instance
being examined. The first column shows the library from which the instance
is taken, the second column gives the name of the instance, the third column
gives the number of plants considered in the problem, and the fourth provides
the number of entries in the cost matrix of the instance. The three libraries
considered here, i.e., OR, ODM, and TSP instances are available from OR-
Library (http://mscmga.ms.ic.ac.uk/info.html), Briant and Naddef (2004), and TSP-
library (http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95), re-
spectively. The fifth column in the table gives the number of terms in the reduced
Hammer-Beresnev polynomial for the instance. The last column in the table shows
the extent of reduction in the number of monomials in the objective function through
reduction of similar monomials in the Hammer-Beresnev polynomial corresponding
to the instance. For example, in the pmed15 instance, the cost matrix C had 90 000
entries, while the reduced Hammer-Beresnev polynomial had only 17 102 terms,
leading to a reduction of ((90 000 − 17 102) × 100)/90 000 = 81.00%.

Hammer-Beresnev polynomials are easily manipulated in computer programs, re-
fer to Goldengorin et al. (2003a) for details on data structures to store and manipulate
these polynomials.

The number of monomials in the Hammer-Beresnev representation of a PMP in-
stance can be further reduced by exploiting the fact that for any feasible solution

http://mscmga.ms.ic.ac.uk/info.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
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y to the PMP instance,
∑m

i=1 yi = m − p. This implies that any monomial in the
Hammer-Beresnev polynomial for a PMP instance which can be expressed as a con-
stant multiplied with more than m − p literals necessarily evaluates to zero. This is
formalized in Theorem 2.

Theorem 2 For any PMP instance C with p ≤ m the following assertions hold:

1. The degree of truncated Hammer-Beresnev polynomial BC,p(y) is at most m − p;
2. The truncated Hammer-Beresnev polynomial is equal to the Hammer-Beresnev

polynomial for any feasible solution y to the PMP instance, i.e. BC(y) = BC,p(y).

Proof The assertions follows from the fact that in a PMP instance, exactly p compo-
nents of any feasible solution y equal 0, and therefore, any monomial in a Hammer-
Beresnev polynomial expressed as a product of a constant and m − p + 1 or more
literals will evaluate to zero in any feasible solution. �

Example 1 (continued) Consider for example, the reduced Hammer-Beresnev poly-
nomial derived for the PMP instance corresponding to the cost matrix in Example 1.
Since p = 2, exactly (4 − 2) = 2 of the yi will equal zero in any feasible solution.
Therefore, each cubic term in the BC(y) will evaluate to zero, and the truncated
Hammer-Beresnev polynomial BC,p=2(y) = 33+7y1 +2y2 +2y4 +2y1y2 +8y3y4 +
4y1y4 adequately describes the PMP instance. Notice that this polynomial has only
seven monomials.

As a consequence of Theorem 2, the objective function of a PMP instance with
p ≤ m and a cost matrix C can be described using the following truncated Hammer-
Beresnev polynomial:

BC,p(y) =
n∑

j=1

{
δ1j +

m−p∑

k=2

δkj ·
k−1∏

r=1

yπrj

}
. (6)

A corollary to Theorem 2 is thus a reformulation of the definition of PMPs in
terms of truncated Hammer-Beresnev polynomials.

Corollary 3 A pseudo-Boolean representation of a PMP instance with m plants, n

clients, and a cost matrix C is

y� ∈ arg min

{
BC,p(y) : y ∈ {0,1}m,

m∑

i=1

yi = m − p

}
. (7)

Proof The proof is trivial. �

It follows from Theorem 2 that the largest p entries in any column of the cost
matrix C are inconsequential while obtaining an optimal solution to the PMP. This
leads to the following p-truncation operation.
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Definition 1 For any p ≤ m the column j of matrix C is called p-truncated if the
values of the largest p elements in the column are replaced by cπ(m−p+1)j j ; ties being
broken arbitrarily.

Thus the 1-truncation of a column (corresponding to p = 1) leaves it unchanged,
while a 2-truncation of a column replaces the value of its largest entry with the value
of the second largest entry in the column if the largest entry is unique, and leaves it
unchanged otherwise.

Corollary 4 In a PMP problem instance, every column of PMP matrix C may be
p-truncated without affecting the optimality of the optimal solution to the instance.

Proof The proof is straightforward from Theorem 2 and the discussion above. �

Example 1 (continued) Consider the PMP instance given in Example 1. A classical
integer programming formulation (see e.g., Revelle et al. 2008) for the problem is
given below.

Decision Variables: ȳi = 1 if plant i is open, and 0 otherwise, for each i ∈ I , and
xij = 1 if client j ’s demand is supplied by plant i, 0 otherwise, for each i ∈ I , and
j ∈ J .

Model:

Minimize
4∑

i=1

5∑

j=1

cij xij (8)

subject to

4∑

i=1

xij = 1, j = 1, . . . ,5 (9)

xij ≤ ȳi , i = 1, . . . ,4; j = 1, . . . ,5 (10)

4∑

i=1

ȳi = 2 (11)

yi, xij ∈ {0,1}, i = 1, . . . ,4; j = 1, . . . ,5. (12)

This formulation has 24 binary decision variables, and 46 constraints. Its objective
function (8) has 20 terms.

We now present a pseudo-Boolean formulation of the same problem. The 2-
truncated pseudo-Boolean objective function for this cost matrix is BC,p=2(y) =
33 + 7y1 + 2y2 + 2y4 + 2y1y2 + 8y3y4 + 4y1y4. If we define three decision vari-
ables z5 = y1y2, z6 = y3y4, z7 = y1y4, we can represent the objective function as
BC,p=2(y) = 33 + 7y1 + 2y2 + 2y4 + 2z5 + 8z6 + 4z7. Even though z5, z6, and
z7 can attain values of 0 or 1, given the nature of the objective of the formulation,
it suffices to define them as non-negative continuous variables. The mixed Boolean
mathematical program based on the pseudo-Boolean formulation is given below.
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Decision Variables: yi = 0 if plant i is open, and 0 otherwise, for each i ∈ I , and
z5 = y1y2, z6 = y3y4, z7 = y1y4.

Model:

Minimize 7y1 + 2y2 + 2y4 + 2z5 + 8z6 + 4z7 (13)

subject to

4∑

i=1

yi = 2 (14)

y1 + y2 − z5 ≤ 1 (15)

y3 + y4 − z6 ≤ 1 (16)

y1 + y4 − z7 ≤ 1 (17)

yi,∈ {0,1}, i = 1, . . . ,4 (18)

zi,≥ 0, i = 5, . . . ,7. (19)

Note that this formulation has only 4 binary decision variables, 3 continuous decision
variables and 11 constraints.

The mixed Boolean formulation based on the pseudo-Boolean formulation is prac-
tically useful in solving large PMP instances. For example, the conventional model
for the fl1400 instance with p = 400 could not be solved to optimality using state-
of-the-art branch and price and cut algorithm (see Avella et al. 2007), but our mixed
Boolean pseudo-Boolean formulation of the instance could be solved to optimal-
ity in 598.48 seconds running on a personal computer with Pentium IV with a 1.8
GHz processor and 1 Gb RAM. The code was written in Microsoft Visual C++ us-
ing Cplex 8.0. The pseudo-Boolean formulation had 173 992 terms in the objective
function compared to 1 958 600 terms in the objective function for the conventional
formulation. The optimal cost for this instance was found to be 4914.

4 Preprocessing PMP instances

The p-truncation operation described in the previous section allows us to reduce the
search space for an optimal solution to a PMP instance. In particular, it allows us
to fix some of the components of an optimal solution to a given PMP instance. This
preprocessing operation is formalized in Theorem 5.

Theorem 5 Assume that in a given PMP instance with p < m, all the entries corre-
sponding to a particular row i in the cost matrix C are changed when p-truncation
operations are performed on all columns of C. Then there exists an optimal solution
y� = (y�

1, . . . , y�
m) to the instance with y�

i = 1.
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Proof Consider any column j of C. Since the entry for row i has changed after the
p-truncation operation for this column, πij > m − p + 1. Hence there will be no
monomial in the truncated Hammer-Beresnev polynomial containing yi that is de-
rived from column j . If this is true for all columns in C, then the truncated Hammer-
Beresnev polynomial for the instance will not contain any monomial containing yi .
The result follows from this observation. �

Example 2 Consider a PMP instance with m = 4, n = 5, p = 3 and

C =
⎡

⎢⎣

7 15 10 7 10
10 17 4 11 22
16 7 6 18 14
11 7 6 12 8

⎤

⎥⎦ . (20)

After 3-truncation, the truncated cost matrix is

Cp=3 =
⎡

⎢⎣

7 7 6 7 10
10 7 4 11 10
10 7 6 11 10
10 7 6 11 8

⎤

⎥⎦ . (21)

In this case, from Theorem 5, we conclude that there exists an optimal solution
with y3 = 1. Since p = 3, setting y3 = 1 immediately solves the problem, and the
optimal solution is found to be y = (0,0,1,0).

Theorem 5 provides interesting insights regarding changes in the degree of dif-
ficulty of solving a PMP instance when the value of p changes. As the value of p

increases, the number of entries in any column whose values are revised through the
p-truncation procedure increases. So, the higher the value of p, the greater is the
chance that a particular entry in a column of the cost matrix would be revised. Hence
the chance that all the entries in a particular row in the C matrix are revised through
the p-truncation procedure increases with increasing values of p. This implies that
the chance that Theorem 5 can be applied to conclude that an optimal solution to a
PMP instance would not require a particular plant to be open (i.e., y�

i = 1 for that
particular plant i) increases with increasing p values. This in turn implies that for a
particular cost matrix, if the value of p is increased, yi values for a larger number of
plants would be set to 1, and the instance would be easier to solve. This explains why
for a particular p0 < m/2, PMP instances with p = p0 are more difficult to solve
than instances on the same cost matrix with p = m − p0 even though the number of
feasible solutions to the two are identical.

Let I � be a minimum cardinality subset of rows of C such that at least one min-
imum among the entries of each column of C occurs in a row in I �. Let p� = |I �|,
and p′ is the smallest p such that Theorem 5 implies y∗

i = 1. Then for a PMP in-
stance with p1 > p�, there exist optimal solutions to the instance which would have
open plants that do not serve any client. Further, if p1 > p�, the number of optimal
solutions to the instance is bounded below by

(
m−p�

p1−p∗
)
. So for such instances, proving

optimality of an optimal solution to the instance becomes progressively more diffi-
cult as the value of p increases. This increase in difficulty continues until the value
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Table 2 p′ and p� values for
benchmark instances Library Instance m p′ p�

OR pmed15 300 180 285

OR pmed26 600 452 581

OR pmed40 900 644 882

ODM BN48 42 27 35

ODM BN1284 1284 653 1211

ODM BN3773 3773 3385 3742

ODM BN5535 5535 2179 5503

TSP D657 657 477 653

TSP fl1400 1400 1177 1395

TSP pcb3038 3038 3026 3033

of p increases to (m − p�)/2. After that, it becomes progressively easier to prove
when p increases further. Table 2 presents p′ and p� values for benchmark instances
introduced in Table 1.

5 Equivalent PMP instances

Since truncated Hammer-Beresnev polynomials allow reduction of similar monomi-
als, for a particular value of p, it is possible for multiple PMP instances with different
cost matrices to have the same truncated Hammer-Beresnev polynomial representa-
tion of their objective functions. If two PMP instances of the same size, i.e., with same
values of m and n, have the same truncated Hammer-Beresnev polynomial represen-
tation of their objective functions, then their set of feasible solutions are identical,
and the same solution has identical costs in the two instances. In particular, optimal
solutions to the two instances are identical and have identical costs. Such PMP in-
stances are called p-equivalent. Formally, p-equivalent PMP instances are defined as
follows.

Definition 2 Two PMP instances defined on cost matrices C and D are called p-
equivalent if C and D are of the same size and if BC,p(y) = BD,p(y).

Remark 1 If two equal sized PMP instances defined on cost matrices C and D are
p0-equivalent, then for each ordering matrix �C ∈ perm(C), there exists an ordering
matrix in �D ∈ perm(D) such that the first p0 rows of �C are identical to the first
p0 rows of �D .

Since Hammer-Beresnev polynomials of PMP instances can be generated in poly-
nomial time, and have a number of monomials that is polynomial in the size of the
instance, it is possible to check p-equivalence of two instances in polynomial time
for any p ≤ m, even though the PMP itself is a N P -hard problem.
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The condition of p-equivalence provided in Definition 2 is only a sufficient condi-
tion for two PMP instances to have the same optimal solution. Example 3 illustrates
that it is not a necessary condition.

Example 3 Consider two PMP instances with m = n = 2, p = 1 and cost matrices

C =
[

3 3
5 5

]
and D =

[
1 1
2 2

]
.

Clearly, the truncated Hammer-Beresnev functions BC,p(y) = 6 + 4y1 and
BD,p(y) = 2 + 2y1 are different. However, both instances have the same unique
optimal solution, (0,1).

We next characterize the set of all PMP instances defined on cost matrix D that
are p-equivalent to a given PMP instance defined on cost matrix C. This set is can be
defined as

PC,p = {
D ∈ �m×n+ : BC,p = BD,p

}
. (22)

PC,p can be rewritten as

PC,p =
⋃

�∈perm(C)

PC,p,�,

and

PC,p,� = {
D ∈ �m×n+ : BC,p = BD,p,� ∈ perm(D)

}
. (23)

We show that the set PC,p,� can be described by a system of linear inequalities.
Let us choose � = [ψij ] ∈ perm(C) and � = [πij ] ∈ perm(D) such that the first

p rows of � are identical to the first p rows of �. Actually the choice of the partic-
ular � and � is unimportant since the truncated Hammer-Beresnev polynomials for
all permutations within perm(·) are in a PMP instance are identical (see AlBdaiwi
et al. 2009). Let the difference matrices corresponding to C and D be �C and �D

respectively. The truncated Hammer-Beresnev polynomial for C and D are

BC,p(y) =
n∑

j=1

δC
1j +

n∑

j=1

m−p∑

k=2

δC
kj ·

k−1∏

r=1

yψrj

and

BD,p(y) =
n∑

j=1

δD
1j +

n∑

j=1

m−p∑

k=2

δD
kj ·

k−1∏

r=1

yπrj

respectively.
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PC,p is characterized by equating coefficients of corresponding monomials in
BC,p(y) and BD,p(y). Equating the constant term, we have

n∑

j=1

δD
1j =

n∑

j=1

δC
1j . (24)

Equating the coefficients in similar linear and nonlinear monomials we obtain

∑

{ψ1j ,...,ψ(k−1)j }={π1j ,...,π(k−1)j }
δD
kj − δC

kj = 0 k = 2, . . . ,m − p; j = 1, . . . , n. (25)

Finally, since BD,p(y) is a Hammer-Beresnev polynomial,

δD
ij ≥ 0 for i = 1, . . . ,m; j = 1, . . . , n. (26)

Given a PMP instance with a cost matrix C, any solution �D to the set of in-
equalities (24)–(26) will be a difference matrix for a p-equivalent instance. Given a
permutation matrix � ∈ perm(C) and a difference matrix �D , it is trivial to construct
the cost matrix D of a PMP instance equivalent to a PMP instance with cost matrix
C.

Remark 2 Note that we reduce the problem of finding an equivalent matrix D with
the minimum number of columns to the given matrix C to the following well known
Dilworth’s decomposition theorem (see e.g. Theorem 14.2 in Schrijver 2003):

“The set of terms Ta with positive coefficients in a pseudo-Boolean polyno-
mial are subsets of partially ordered set T , and hence, the minimum number
of chains covering Ta (nothing else as the minimum number of aggregated
columns of C) is equal to the maximum size of an antichain (the maximum
number of non-embedded terms).”

Example 4 The maximum size of antichain found for instance in Example 1 is three,
and the corresponding Hammer-Beresnev polynomial BC,p=2(y), aggregated matrix
D and one of its permutation matrix �D are BC,p=2(y) = [33 + 7y1 + 4y1y4]+ [0 +
2y2 + 2y1y2] + [0 + 2y4 + 8y3y4], with matrices

D =
⎡

⎢⎣

33 2 10
44 0 10
44 4 2
40 4 0

⎤

⎥⎦ and �D =
⎡

⎢⎣

1 2 4
4 1 3
2 3 1
3 4 2

⎤

⎥⎦ . (27)

6 Summary and directions for future research

Conventionally, the number of entries in the cost matrix corresponding to a PMP
instance indicates the size of the representation of the instance.It is often possible
to represent the instance in a more compact manner. In Sect. 3 in this paper, we
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presented a representation of the PMP through a pseudo-Boolean polynomial called
the truncated Hammer-Beresnev polynomial which achieves this compactification.
This compactification is mainly achieved through the reduction of similar monomials
in the polynomial, and the truncation of the polynomial to degree m − p for a p

median problem with m candidate facilities. Computations presented in the section
show that the compactification is significant for some benchmark problem instances.

In Sect. 4 we presented a preprocessing procedure for p-median problems based
on its truncated Hammer-Beresnev polynomial representation. This representation
allows us to perform a p-truncation operation on the cost matrix representing the
problem instance, which in turn allows us to ignore certain plants in our search for an
optimal solution to a given PMP instance. Additionally, it allows us to explain why
certain p-median problem instances are more difficult to solve than others.

In Sect. 5 we showed how to construct PMP instances that have the same optimal
solutions as a given PMP instance. We call these instances p-equivalent. Construction
of p-equivalent instances is practically useful; given a PMP instance, we can search
for a p-equivalent PMP instance belonging to a known polynomially solvable class
of PMP instances, solve the p-equivalent instance easily, thereby coming up with
an optimal solution to the original instance. It also allows us to use data correcting
algorithms (see, e.g., Goldengorin et al. 2003b to generate good quality solutions in
reasonable time).

Most of the above-mentioned results and properties of the PMP derived from its
pseudo-Boolean polynomial based formulation are much more difficult to discover
from conventional mathematical programming formulation of the PMP (see e.g.,
Avella et al. 2007).

The paper leads to three interesting courses of future research on p-median prob-
lems. The first is to evaluate the use of the concept of p-equivalence described here
to extend the set of polynomially solvable PMP instances. The second is to undertake
a thorough computational study of the efficacy of the pseudo-Boolean formulation
of the PMP. The third is to design new exact and heuristic algorithms for solving
large-scale instances of PMP based on the truncated Hammer-Beresnev polynomial
representation and the preprocessing scheme developed in Sect. 4.
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