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Abstract 

Hydrogen attack (HA) is the development of grain-boundary porosity by cavities filled with high-pressure methane that 
originates from the reaction of carbides with hydrogen at high temperatures. The cavities grow by grain-boundary diffusion and 
by creep of the adjacent grain material till they coalesce with neighbouring cavities to form a microcrack. Earlier work on HA 
has focussed on unit cells containing a single cavity, using average cavitation properties. Here, non-uniform cavitation properties 
on the grain-size scale are assumed in a polycrystalline aggregate, and unit cell analyses are performed to investigate the influence 
of the adjacent grains on the development of the grain-boundary HA. The numerical results are explained in terms of two 
simplified models which highlight the key parameters governing the grain deformation-grain boundary cavitation interaction 
process. 

Keywords: Hydrogen attack; Cavitation; Creep 

1. Introduction 

Hydrogen attack (HA) is a well-known low-ductility 
type of failure in steels exposed to high-pressure hydro- 
gen at elevated temperatures as is relevant in, for 
example, petrochemical applications [1]. A failure due 
to HA can be recognized by intergranular fracture, 
which is initiated by porous damage of the grain- 
boundary facet. This damage develops as a result of the 
fact that at these elevated temperatures, hydrogen can 
diffuse into the steel, where a chemical reaction takes 
place with the carbides. Due to this reaction, a cavity is 
formed that is filled by methane gas, which is trapped 
in the material. Depending on the stability of the 
carbide, the equilibrium methane pressure can be of  the 
order of  the ambient hydrogen pressure, or two orders 
of magnitude higher (see [2]). Together with any ap- 
plied stresses from the loading of the component, the 
internal pressure drives growth of the cavities. Because 
of the occurrence of grain-boundary diffusion, the cavi- 
ties located at the grain-boundary facets develop faster 
then cavities inside a grain. Also dislocation creep can 

* Corresponding author. 

contribute to the growth of the cavities. The grain 
boundary cavitation proceeds until the cavities coalesce 
to form a microcrack, and linking up of  the microc- 
racks leads to intergranular macroscopic failure. 

Important  earlier investigations of HA focussed on 
the evolution of  one single cavity. Cylindrical or spher- 
ical unit cells containing one central cavity were investi- 
gated using analytical relations for the diffusive cavity 
growth, in some cases also accounting for creep defor- 
mations. In the analyses of Shih and Johnson [3] and 
Parthasarathy [4], only the internal pressure was taken 
into account. Later, Shewmon [5] included applied 
stress (perpendicular to the grain-boundary facet) in the 
model, which tends to accelerate cavity growth but, in 
this analysis, it was assumed that the cavity grows 
solely by grain-boundary diffusion. Building on earlier 
work [6,7], Van der Giessen et al. [8] presented a 
(partially) new cavity growth relation where diffusion 
and creep are coupled. The relation has been verified 
with extensive detailed numerical cell model analyses 
for all possible stress states which may be encountered 
under HA circumstances. In this way, the combined 
effect of the internal pressure and the remote applied 
stresses on cavity growth is incorporated. The relation 
has been applied in [2] to predict HA failure in 2.25Cr- 
1Mo steels. 

0921-5093/96]$15.00 © 1996 --  Elsevier Science S.A. All rights reserved 
PII 80921-5093(96) 10465-2 
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Fig. 1. Global coordinate system of the unit cell. Due to symmetries, only a quarter of the unit cell will be analyzed. 

These single-cavity studies have given first indications 
on how HA develops in time. However, they imply that 
the cavities are distributed uniformly along the grain- 
boundary facets. In reality, carbides are not uniformly 
distributed over a grain facet and, more importantly, 
the carbides can have different compositions, leading to 
vast differences in the methane pressure of the gas that 
they may form ([2,5]). It is as yet not well understood 
what the influence is on HA of non-uniform distribu- 
tions of microstructural properties, such as differences 
in reactivity of the carbide along a facet. In view of the 
possible variations in methane pressure distribution 
along a grain facet, compatibility of deformations is 
likely to lead to stress redistributions, similar to those 
associated with Dyson's [9] creep-constrained cavitation 
in creep rupture situations. As demonstrated in [9] and 
later confirmed in many other studies ([10,11]), grain- 
boundary cavitation in such cases is slowed down by 

% <!>-- 
I --I 2b 2b 

Fig. 2. Grain-boundary cavities having a diameter of 2a and which 
are spaced with a distance of 2b. The growth of the cavities is driven 
by an internal pressure of Prn; it can however be accelerated or 
constrained by stresses remote from the cavity. 

the surrounding grains, which creep deform very 
slowly. Thus, the results of full field simulations of 
cavitation in a polycrystalline aggregate [10,11] were 
found to differ dramatically from the results obtained 
from a single-cavity model under the applied state of 
stress. 

In order to investigate the effect on HA of mi- 
crostructural variations as mentioned above, we make 
the scale transition from the level of individual cavities 
to the polycrystal level. For  that purpose, the two-di- 
mensional polycrystal model of Van der Giessen and 
Tvergaard [11] is extended for HA. Some preliminary 

~'~ ~-~i ̧¸=~2 
~b 2 

Fig. 3. Due to cavity growth the adjacent grains separate. This 
separation of grains 3 can be quantified by 'smearing-out' of the 
cavity volume over its facet area. 
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Fig. 4. Finite element mesh used for the numerical simulations of the 
quarter unit cell. Each quadrilateral consists of four triangular subele- 
ments. Grain-boundary elements are not shown. 

explorations with this HA polycrystal model have been 
reported briefly in [t2] and [13]. The objective of the 
paper is to draw up a complete picture of HA on the 
polycrystal scale and to provide an understanding of 
the influence of carbide variations under different re- 
levant conditions. 

The polycrystal model itself and the route to the 
numerical solutions are described in Sections 2 and 3. 
The model is then used to study non-uniform HA 
cavitation on two different size scales. First, in Section 
4, internal cavity pressure variations are considered 
along grain-boundary facets, and next, in Section 5, 
internal cavity pressure variations over the polycrystal 
aggregate are studied. Two highly simplifying descrip- 
tions are discussed subsequently in Section 6 to try to 
better understand the results of the numerical simula- 
tions. These will be shown to capture some key aspects 
of the interactions that take place in the process of 
cavitation. 

2. Polycrystal model for HA 

At elevated temperatures in a hydrogen-rich environ- 
ment, the hydrogen molecules dissociate into hydrogen 
atoms which diffuse into the material. While diffusing 
through the material, some hydrogen atoms will react 
with carbides present in the steel. During this reaction, 
methane molecules are formed which, contrary to the 
hydrogen atoms, cannot diffuse away through the 
metal. The (equilibrium) methane gas pressure in this 
reaction varies substantially with the stability of the 
carbide, and typically a material contains stable as well 
as unstable carbides. The equilibrium pressure for sta- 
ble carbides is of the order of the applied stresses, 
whereas it can attain values that are orders of magni- 
tudes larger than the applied stress for unstable car- 
bides [2,14,15]. The ultimate internal pressure of the 
methane-hydrogen gas mixture, Pm, acting on the cav- 
ity surface consists of the partial methane pressure and 
the partial hydrogen pressure [2]: 

Pm = PCt-I4 +fill2' (1) 

Due to this internal pressure, a cavity can develop. 
The most important cavities are located on the grain- 
boundary facets, where they can develop rapidly by 
grain-boundary diffusion, assisted by dislocation creep. 
Since these grain boundary carbides cause the final 
intergranular failure, these are the only carbides taken 
into consideration. The grain boundary cavities grow 
until they coalesce and form a microcrack, and linking 
up of the microcracks leads to the macroscopic inter- 
granular crack. 

In this paper, it is assumed that hydrogen only reacts 
with the grain-boundary carbides that are present from 
the beginning. An implication of this assumption is that 
in our model no new cavities nucleate during HA. This 
appears to apply well for 2.25Cr-1Mo steels [16]. An- 
other assumption made here is that the methane pre- 
ssure is constant in time. However, Shih and Johnson 
[3] have reported that the equilibrium methane pressure 
will not always be reached in some cases at all mo- 
ments. Hence, our considerations are expected to over- 
estimate the actual cavity pressure and, hence, the 
cavity growth rate. 

The polycrystal model of Van der Giessen and Tver- 
gaard [11] is used here to simulate the HA process on 
grain-size scale. This model was initially developed to 
investigate creep rupture by grain-boundary cavitation, 
but since that process is closely related to HA the 
model can be easily adapted to study HA evolution. In 
the sequel, we shall only briefly describe the model, 
with an emphasis on those aspects that are new for the 
HA application; for details, we refer to [11]. 

The polycrystal model is based on a two-dimensional 
polycrystalline aggregate comprising hexagonal grains, 
as shown in Fig. 1. All grains are assumed here to have 
the regular hexagonal shape in the undeformed state 
with facet length 2R~. Periodicity in the microstructure 
of the polycrystal is exploited by constructing the ag- 
gregate on the basis of a unit cell. Assuming also a 
double microstructural symmetry inside the unit cell 
(see Fig. 1), only a quarter of the cell has to be 

Fig. 5. The assumed internal cavity pressure Pm distribution along the 
grain-boundary facets for the results shown in Figs. 6-11 (pro is 
plotted perpendicular to the facets), with a maximum value pmax = 
2.2ffm. 
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Fig. 6. Damage evolution for the cavity pressure distribution according to Fig. 5 for three values of bJLm: (a)-(c) the damage state in terms of 
a/b (plotted normal to, and on either side of, the grain boundaries) for the three values of br/L~ when (a/b)m~,,: = 0.3; (d)-(f) the damage state 
just prior to first cavity coalescence; (g)-(i) the damage evolution in time for two points along the grain facet ( ). The single-cavity model 
results are shown by (- - -). 

analyzed. In the x ~- and the xZ-direction of  the global 
coordinate system, the polycrystal aggregate is sub- 
jected in general to macroscopic applied stresses Z1 and 
Z 2, as shown in Fig. 1, under plane strain conditions. 

The grains deform elastically as well as by Nor ton  
power-taw creep in an isotropic manner. The constitu- 
tive equations are formulated in a finite strain formula- 
tion, using convected coordinates with metric 
coefficients go" and G o. in the undeformed and deformed 
configurations, respectively. The covariant components  
of  the Lagrangian strain tensor are denoted by r/0., and 
the conjugate stresses are the contravariant  components 
~u of the Kirchhoff  stress tensor on the current base 
vectors. The total strain rate ~,~ is taken to be the sum 
of the elastic part  ~ .  and the creep part  ~,~. Thus, with 

>'~Y ukl  e the elastic s t ress-strain relationship z - - R  ~o, in 
fzij . . .  ~k " 

terms of the Jaumann  stress-rate v = v y + (G' v~z+ 
G:kr~t)/lk t, the constitutive relations for the grain mate-  
rial can be written as 
r,o 

= R U'~'(O~ -- 0 ~l) (2) 

with 

• o . c  3 s o. (3) 
~/o= e~ ~ o. e , 

where o- e is the effective Mises stress, o-e = ~ s j ~ / 2 ,  
and the stress deviator components  are defined by 
sO'= z o -  GOo'm with the mean stress defined by o-~ = 
"c~/3. The effective creep strain rate ~_~, according to the 
Nor ton  power taw, is given by 

k0(°'e~ n. (4) 
e~= \o 'o /  

Here, o'o is a reference stress parameter,  2o is a reference 
strain-rate parameter  and n is the creep exponent. 

A spherical-caps-shaped cavity along a facet can be 
characterized by its radius a and its equilibrium tip 
angle ¢, (see Fig. 2). The separation between two neigh- 
bouring cavities is 2b. The volume of a cavity is V =  
4rca3h@), where the function h@)  is the geometrical 
cavity shape parameter  defined as h(¢,)=((1 +cos  (/)-1 
- ½ cos ~p)/sin ~p. 

At temperatures typical for HA, cavities grow by 
grain-boundary diffusion and by creep of the adjacent 
grain material. Thus, the volumetric cavity growth rate 
l 7 consists of  a par t  due to grain-boundary diffusion, 
riddle, and a part  due to creep, t2o~, i.e., t2= L r  + ~'diff" 
Growth  is driven by the gas pressure Pm ins ide ' the  
cavity, but can be accelerated or slowed down by 
stresses remote f rom the cavity, as characterized by o-i °, 
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(b) 

Fig. 7. Distributions of (a) the grain separation 5, normalized by the current maximum value 6,~× = 3.0 x 10- aRi, and (b) the normal stress Crn/:m 
just prior to first cavity coalescence for log(b~/Lm) = --0.5. The darker areas in (b) indicate that the normal stress is compressive. 
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Fig. 8. Evolution of (a) the separation rate, normalized with the initial facet half-width/~x and the creep rate parameter ~ (see Eq. (13)), and (b) 
the normal stress ~7,/:m at the triple point ( = 0 and the center fo the facet ~ = 0.5, for the case where log(bi/Lm) = - 0.5 (see Fig. 7). 

o-~° and  o-~, being the average stress no rma l  to the grain 
bounda ry  facet, the average Mises effective stress and  
the average mean  stress remote  f rom the cavity, respec- 
tively. TO determine the volumetr ic  g rowth  rate, a 
Single Cavity has been analyzed numerically,  first by 
Need leman  and Rice [6] for  remote  uniaxial  stress 
states, and by  Sham and Need leman  [7] for  stress 
triaxiatities witnessed at macroscopic  cracks or notches. 
These analyses have been extended by van  der Giessen 
et al. [8] to cover  all possible axisymmetr ic  stress states. 
This  e laborat ion was necessary because in the case of  
HA,  the cavity m a y  grow solely due to the internal 
cavity pressure,  which can be classified as cavity growth  
under  a purely hydrosta t ic  stress state. The  numerical  
results could be captured  fairly well by  approx imate  
analytical relations which have been presented in their 
mos t  complete  fo rm in [2]. Only a summary  o f  the 
relations will be given; more  details can  be found  in the 
above references. 

When  the cavity grows by creep, two different creep 
growth  modes  can be distinguished [8]: a m o d e  which 
can be associated with low stress triaxialities and /or  low 
porosities (i.e., small values o f  a /b )  and a second m o d e  
which can be associated with high stress triaxialities 
and/or  high porosities.  The  volumetr ic  growth  rate by 

creep for  the first mode ,  according to [2] and  [8] is given 
by 

.E I mll n • e "L = 2rrk~ma3h((/) s!gn( o- Vo~ c~,, + /3 .  

if lam/aol t> :; (5) 
n-- 1 

• :o~'i. = 2 z c % a  3 h @ )  s lgn(am)[gn .  -It-/3n] n -~m ae 

if lam/a l < 1, (6) 

where the shor thand  no ta t ion  ~--~O]o-m/O'Ol" is intro- 
o "r° - - 2Ts(sin (:)/a. Here, duced, and where o-m = m-t -P ro  

T~ is the surface tension and  o-~ is equal to the remote  
effective stress o-~ c. The  constants  c~. and /3 ,  are defined 
by  ~. = 3/(2n) and/3n = (n - 1)(n + 0.4319)/n 2. Finally, 
sign(o-m) denotes  the sign of  am. In  case of  the second 
creep growth  mode ,  for  high porosities or stress triax- 
ialities am/o'e, the volumetr ic  g rowth  rate is given by 

I ~  = 2ZC/ma3h((/) sign(o'm) 

E 1 ( x 1 - ( 0 . 8 7 a / b )  3~ a n +  

if lO'm/O'e] ~ 1; 

1 sign(o-rc--a~ a= '~-]" 
n sign(am) ~mm///_1 

(7) 
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(a) (b) 

Fig. 9. Distribution of (a) the separation ~/~max, where ~max = 2.7 x 10 -2R~, and (b) the normal stress O'n/ffm just prior to first cavity coalescence 
for log(b{Lm) = 0.5. The darker areas in (b) indicate that the normal stress is compressive. 
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Fig. I0. Evolution of (a) the separation rate and (b) the normal stress at the triple point ( = 0 and the center of the facet ( = 0.5 for the case where 
log(bt/Lm) = 0.5 (see Fig. 9). 
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-e n--1  
x if [O-m/GI < 1. (8) 

Cr m 

The expression for the volumetric growth rate I2ai~f 
for growth by grain-boundary diffusion is a modifica- 
tion of the Hull and Rimmer [17] result for rigid grains, 
improved for the coupling with creep in the grains [6,7]. 
With the extension for the internal cavity pressure pm 
given in [8], the diffusive growth rate is given by 

r2airr 

o'r° + P r o -  (1 --f)2y~ sin #/a --f2T~ sin #/a 
= 4rc~ 

In(l / f)  -½(3 - f ) ( 1  - f )  
(9) 

where the grain boundary diffusion parameter ~ = 
DB~SBf~/k® depends on the boundary diffusivity DBSB, 
on the atomic volume f~ and the energy per atom 
measure k®. The diffusive growth is driven by the 
average stress normal to the grain-boundary facet o-~ ° in 
addition to the internal cavity pressure Pro. The free 
surface energy 7~ and the surface tension T~ commonly 

result in a sintering effect, expressed through a sintering 
stress G = (1 - f ) 2 y s  sin ~/a +f2T~ sin ~/a. However, 
as soon as. the cavity can open and develop, the sinter- 
ing stress G has hardly any effect on the further 
evolution [2]. Therefore, both the free surface energy y~ 
and the surface tension T~ are neglected in the analysis 
by putting G - - 0 .  The parameter f in Eq. (9) is deter- 
mined by the diffusive path length Lagf and the cavity 
radius a by 

When creep in the grains is negligible, the diffusive path 
length Laift. is equal to the cavity half-spacing b. How- 
ever, when the creep deformations in the vicinity of the 
cavity become of  the same order of magnitude as the 
diffusional deformations along the facet [6], then the 
diffusive path length shortens, so that the volumetric 
growth rate 12ai~f increases. The type of interaction 
between creep deformations and the diffusional process 
depends on the creep modes (indicated with superscript 
H and L); Van der Giessen et al. [8] have shown that 

[(a)'(. )'1 °L 
Vdif~=[2dife(f), f = m a x  b ' a + l . S L  ; 
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. /  
Fig. 11. Distribution of  the grain separation 3, normalized by the 
current maximum value 3m~ ~ = 3.1 X 10 --2RI, just prior to first cavity 
coalescence for log(b~/Lm) = 1.5. 

V~iff- 17cliff(f), f =  

is a fair approximation. Here, L = (~o-e/k~) 1/3 (o-~ # 0) is 
a stress- and temperature-dependent length parameter, 
first introduced by Needleman and Rice [6]. The ulti- 
mate volumetric growth rate 17 is obtained from Eqs. 
(5)-(9) as 

"L  "H It7I--max[117~r + Vd~f,[, I17~ + gaifeI]. (10) 
The surface diffusion is assumed to be rapid enollgh 

to maintain the spherical-caps shape of the cavity. This 
shape assumption seems to be consistent with the ob- 
servations for 2.25Cr-lMo steel by Shewmon [16]. 
Then the growth rate of the cavity radius a is given by 

17 
4zca2h@) 

with 17 according to Eqs. (5)-(10). 
Due to the growth of the cavities, the adjacent grains 

separate. If all cavities have the same size and the same 
spacing, this average separation 3 is determined by 

V 

~b 2 

In a schematic way, Fig. 3 depicts a variation in the 
separation ~ along the grain-boundary facet as a result 
of differences in, e.g., cavity volume. Differentiating 
with respect to time gives the average separation 
rate 

C 
/ 

d 

a / 

Fig. 13. Internal cavity pressure distribution over the quarter unit 
cell. Only the cavities along the central facet are pressurized. On the 
other facets the internal cavity pressures are assumed to be zero. 

17 v /; 17 

Thus, the separation rate is a function of the cavity 
growth rate # and of creep deformations in the plane of 
the facet, expressed in the second term in the right-hand 
side. The average separation rate J will vary along the 
facet as a consequence of variations caused by varia- 
tions of cavity distributions and by variations in the 
volumetric growth rate. The latter are due mainly to 
variations of the internal driving pressure Pm due to 
different carbide compositions [2], to variations in cav- 
ity size, and to a non-unifoml remote stress distribution 
along the facet. 

Creep in polycrystalline metals may be accompanied 
by grain-boundary sliding [18]. However, in materials 
that have failed by HA, grain-boundary sliding has not 
been observed. This may be due to the temperature 
levels at which HA-susceptible materials are applied 
and also to the presence of a high density of carbides 
on the grain boundaries which tend to act as obstacles 
for sliding. Therefore, grain-boundary sliding is not 
incorporated into the model. 

In the model, a microcrack will form when cavities 
coalesce at a/b = 1. However in reality, grain-boundary 

(a) (b) 

Fig. 12. (a) The assumed short wavelength, internal cavity pressure distribution over the polycrystal; (b) the separation distribution 3/6m~ x, where 
3max/R I = 3.1 x 10 -2,  for log(bi/Lm) = 0.5 just prior to first cavity coalescence. 
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failure by cleavage of the ligament is expected to occur 
earlier, this in analogy with creep ruptures by cavitation 
[18]. It is assumed here that failure takes place at 
a/b = 0.7. However the precise value of a/b is not very 
important for the ultimate time to failure, as cavity 
growth accelerates strongly at such large values of a/b. 

The results obtained with the polycrystal model will 
be compared with a single cavity model as discussed in 
detail in [2]. This model boils down to directly subject- 
ing the representative cavity to the macroscopic stresses 
Zl and Z2. The cavity growth relations in the single- 
cavity model are the same as presented above, but with 
o_~c, ~ro and o-~ being replaced by Z 2, ½x/~lZ2 - Z~I and 
½(Z2 + Zx), respectively. The difference between cavita- 
tion in the single-cavity model and in the potycrystal 
model is that, in the latter, the increase in cavity 
volume has to be accommodated by deformations of 
the surrounding grains. The creep resistance of the 
grains may constrain the volume cavity growth rate 
and, therefore, the cavitation evolution. This concept of 
creep-constrained cavity growth was pointed out by 
Dyson [9] for cavitation under circumstances leading to 
intergranular creep rupture, but is expected to apply 
equally well here. In the single-cavity model, these 
kinds of interactions with adjacent grains are not 
present and, therefore, in the single-cavity model, cavity 
growth is unconstrained. 

3. Method of  analysis 

The numerical method used to solve the problem 

discussed above is largely similar to that in [11] and 
[19]. In this section, we therefore only give a brief 
summary and refer to [19] for more details. 

The grains themselves are discretized by quadrilateral 
finite elements, each one of which consists of four 
triangular constant strain elements in a 'crossed trian- 
gle' configuration. The finite element grid used is de- 
picted in Fig. 4. The HA and resulting grain-boundary 
cavitation process is incorporated through grain- 
boundary elements. In this case, the only deformation 
mode for these interface-type elements is the grain 
separation & Consistent with the finite element repre- 
sentation inside the grains, the grain-boundary elements 
use linear interpolations for ~ and for the other grain 
boundary characteristics, such as cavity size a and 
spacing b. For computational convenience, a layer of 
linear elastic springs is added to the grain-boundary 
elements with a normal stiffness kn, so that the local 
normal stress o-n at the grain boundary is determined 
through 

(rn = k~(3gb -- 3). (12) 

Here, ~gb is the actual separation and ~ is the separa- 
tion due to cavitation, as being governed by the evolu- 
tion Eq. (11). A large value of the stiffness kn ensures 
that the deviation c~gb - c~ remains small; here, we have 
used/c, = IOE/R, where E is the Young's modulus. 

The governing equations for the grains as well as for 
the grain boundaries are solved in a linear incremental 
manner. The remote normal stress o -re to be used in the 
cavity growth Eqs. (5)-(9) is taken from the grain 
boundary stress, i.e., o-k ° = o-~. The remote effective and 



208 M.W.D. van der Burg, E. van der Giessen / Materials Science and Engineering A220 (1996) 200-214 

log (bi/Lrn) = 0.0 i i log ( b i / L r n )  = -0 .5  ! 

(a) (b) (e) 

log(bI/Lm) = 0.5 

(d) (e) (f) 

Fig. 15. Distribution of (a)-(c) the separation 6/6m~× and (d)-(f) the normal stress ~n/Pm over the polycrystal for different bl/Lm (see Fig. 14). 
The maximum separations C~m~ ~ are (a) and (b) 3.1 x 10-zR~, and (c) 2.9 x 10-2R~. At the darker areas in (d)-(f), the normal stress is 
compressive. 

mean stress, o-~ ° and O'm,r° are evaluated as averages from 
the corresponding stresses in the grain elements adjacent 
to the grain boundary. To increase the numerical stabil- 
ity of the procedure, a forward gradient approach is 
used to integrate the constitutive relations, Eqs. (2) and 
(12). Finite strains are accounted for in the analyses, but 
in the present applications the strains remain below a 
few percent. 

The symmetries imposed on the quarter cell imply 
that the (quar ter )ce l l  boundaries remain straight 
throughout the process, and shear stress free. Therefore, 
uniform displacement rates are prescribed in the x 1 and 
x 2 directions so that the average true stresses Z t and Z2, 
respectively, retain specified constant values in time. 

4. Variations along grain boundaries 

In this section, the influence of non-uniformities in 
internal cavity pressure on the scale of grain boundaries 
will be investigated. All grain-boundary facets in the 
polycrystal have the same uniform carbide distribution, 
but the reactivity of the carbides and therefore their 
resulting internal cavity pressure Pm are taken to vary 
along the facet. The uniform cavity distribution along a 
facet is characterized by the initial cavity spacing rela- 
tive to the facet length as (b/R)i = 0.1. The initial cavity 
size is taken to be (a/b)~ = 0.01. In all cases, the Poisson 
ratio v = 0.33, the cavity tip angle ¢, = 75 °, and the creep 
exponent n = 5. To describe the variation of the internal 
cavity pressure over the facet, a local coordinate ( is 
introduced along the grain boundary, ranging between 
0 and 1. The first internal cavity pressure distribution we 

are considering is characterized by pm(~)/ffm = 
2.0sin 3 (zz~')+0.16 with /Sin/E= 1.0 x l0 -3, and is 
shown graphically in Fig. 5. It is assumed that there are 
no macroscopic stresses, Z~ = 2z = 0, so that HA is 
solely driven by the internal cavity pressure. Note that 
because of symmetry, cavitation damage will develop 
equally on each grain-boundary facet. 

The various parameters for creep and diffusion are 
expressed through the dimensionless group bi/Lm, where 
L m is defined by 

L m = where kp = kOo/ 

In practice [2], the value of this parameter can range 
from log(bz/Lm)= - 2 ,  where cavitation is completely 
dominated by diffusion, up to around log(bi/Lm)= 2, 
where the creep contribution to cavity growth is most 
important. Within this range, three parameter values 
are taken: (i) log(bi/Lm) = - 0.5, where cavity growth is 
diffusion dominated; (ii) log(bi/Lm)= 0.5, where diffu- 
sive cavity growth is expected to interact with creep, 
and finally (iii) log(bi/Lm)= 1.5, where cavitation is 
creep dominated. To follow the cavity evolution in 
time, a reference time scale is introduced by tr~f= b3/ 
(~fm), which is based on the diffusive cavity growth 
process. 

An obvious important parameter to look at is grain- 
boundary damage in terms of a/b. For the three cases, 
the damage evolution is shown in Fig. 6. In Fig. 
6(a)-(c) the a/b distribution is depicted when a/b 
reaches the value of 0.3 at the center of the facets (i.e., 
at about half the ultimate damage). It can be seen that 
the damage distribution tends t'0 become more non-uni- 
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form for higher bi/L m, i.e., when the creep rate (relative 
to the diffusional rate) increases. In Fig. 6(d)-(f), the 
damage distribution is depicted when first coalescence 
of cavities occurred (a/b = 0.7) and it is seen that the 
three distributions differ significantly. In Fig. 6(d), the 
cavity-size distribution is virtually uniform, whereas 
this uniformity has faded in Fig. 6(e), and is strongly 
non-uniform in Fig. 6(f). To compare these polycrystal 
results with the single-cavity model predictions, the 
damage evolution in the middle and at the triple point 
of a facet are plotted in Fig. 6(g)-(i). The single-cavity 
model prediction is shown for an internal cavity pres- 
sure of Pm= 2'2tim (which corresponds with the maxi- 
mum internal cavity pressure along a facet), as well as 
for an internal pressure which corresponds to the aver- 
age internal pressure Pm. Notice that the differences in 
damage evolution under these different internal cavity 
pressures increase strongly with increasing relative im- 
portance of the creep growth rate. In all three cases, 
unconstrained growth of the single cavity under the 
peak cavity pressure is faster than growth at the facet 
center in the polycrystal, even in Fig. 6(i), where the 
creep rate inside the grains is relatively large. The 
single-cavity model results, when the cavity is subjected 
to the average internal pressure, are always in between 
the polycrystal results at facet center and triple point. 

In order to further elucidate the origin of the phe- 
nomena observed above, it seems appropriate to also 
investigate the grain separation ~(() or the separation 
rate d(() along the facet. The reason is that it is the 

difference in separation rate between a cavity and its 
neighbouring cavities that must be accommodated by 
deformations of the adjacent grains. When the resis- 
tance of the grains to such deformations is large, stress 
redistributions inside the grains will take place, leading 
to 'reactive' stresses acting on the grain-boundary facet, 
such that compatibility is assured. Even though the 
present setting for HA is somewhat different, this phe- 
nomenon of internal stress redistributions is similar to 
that underlying Dyson's [9] concept of  creep constraints 
on creep rupture. Therefore, we also investigate the 
evolution of the facet normal stress distribution o-n(( ) 
over the facets. 

For  the first case where log(b~/Lm = - 0 . 5 ,  it can be 
seen in Fig. 7(a) that the average grain separation is 
nearly uniform at the moment of first coalescence. This 
indicates that all cavities have grown at nearly the same 
rate. This is possible only when the cavity growth rate 
due to the internal pressure is partially counteracted in 
some regions or accelerated by normal stresses in other 
regions, in such a way that the grain separation rate 
~(() becomes uniform along the facets. In the middle of 
the grain boundary, a compressive stress constrains the 
evolution, whereas close to triple points growth is accel- 
erated by tensile normal stress, as can be seen in Fig. 
7(b). In this case, where diffusion is much faster than 
creep, there is insufficient time for the grain to creep 
deform significantly to accommodate the non-uniform 
separation rates caused by the cavity pressure only. As 
a consequence, as shown in Fig. 8(a), the average 
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separation rates near the triple point and in the middle 
of the grain boundary are virtually identical, except for 
an initial transient. Fig. 8(b) shows the development in 
time of tensile stresses near the triple point and of the 
compressive stresses in the middle of the facet. After an 
elastic transient, the normal stresses stabilize in time, 
and the grains separate as virtually rigid bodies. 

In the next case, for log(b~/Lm) = 0.5, the creep rate is 
increased relative to the diffusional rate. Note that the 
separation distribution 6 in Fig. 9(a) is much more 
non-uniform than in the case for log(bi/Lm)= - 0 . 5  in 
Fig. 7(a). Now, there has been sufficient time for the 
grains to deform by creep flow, thus accommodating 
the variations in separation rate. At the same time, the 
magnitude of the normal stresses is seen to be some- 
what lower (see Fig. 9(b)). Comparing the separation 
rates throughout the process as shown in Fig. 10(a), 
with the previous results in Fig. 8(a), we see that the 
separation rates in the center and at the triple point of 
a facet now differ significantly. The evolution of the 
normal stresses shown in Fig. 10(b) indicate that stress 
redistributions take place throughout the process, but 
the stress levels remain below those in Fig. 8(b). The 
normal stress is still of importance in this case since 
cavity growth is still mainly diffusion controlled. 

When log(b~/Lm)= 1.5, this is no longer the case. 
Diffusion is hardly of importance anymore and the 
process is fully creep dominated. This leads to relatively 
large creep deformations of the grains in the neighbour- 

 XI!: 
l 

Fig. 17. Close-up of a triple point when the creep deformability of the 
grains is negligible: the separation rates J,. and c~j on adjacent facets 
are kinematically coupled. 

hood of the highest cavity pressure, as shown clearly in 
Fig. 11, demonstrating the strongly non-uniform sepa- 
ration distribution along the grain-boundary facet. In 
this creep-dominated case, facet normal stresses have 
lost their importance for cavity growth, but now the 
distributions of mean stress and effective stress near the 
grain boundary are of primary importance, as can be 
concluded from the growth relations, Eqs. (5)-(8). The 
magnitude of these stresses is much smaller than the 
stresses built up in the previous cases, but due to the 
highly non-linear creep relations, these small stresses 
still result in a significant effect on time to first coales- 
cence compared with fully unconstrained growth, as we 
have seen in Fig. 6(i). 

The previous results have shown that, depending 
primarily o n  bi/Lm, non-uniform cavity pressure distri- 
butions over grain facets can lead to substantial normal 
stresses over the grain facets, even though there is no 
externally applied stress. In these cases, the normal 
stress distribution has to be self-equilibrated, and leads 
to compressive stresses in the neighbourhood of high 
cavity pressures and tensile stresses elsewhere. This has 
been seen to lead to constrained growth of the cavities 
that have relatively high internal gas pressures, and 
accelerated growth of cavities under low internal pres- 
sure. Thus, facet regions of high gas pressure seem to 
'interact' with regions of low pressure through continu- 
ous redistributions of normal stress over the facets. An 
apparent measure of this interaction is the maximum 
value of IO'n/ffml occurring anywhere along the facet: the 
larger this ratio, the higher the interaction and the 
stronger the tendency for uniform separation along the 
facet. 

By changing the wavelength of the methane distribu- 
tion, it is investigated if the magnitude of this interac- 
tion is dependent on the length scale of the pressure 
distribution. Fig. 12(a) depicts a distribution of the 
internal cavity pressure Pm with half the period of the 
variations, as given by f l m ( ( ) / f f m  ---- 2.01sin3(z~2()l + 0.16. 
The previous calculations have been repeated for this 
distribution for the intermediate value log(bz/Lm) = 0.5. 
Comparing the separation at the time of first coales- 
cence, shown in Fig. 12(b), with Fig. 9(a), it is observed 
that the shorter wavelength distribution leads to some- 
what more uniform cavitation. This suggests that inter- 
action increases with decreasing wavelength in the 
methane distribution. 

The restriction of using grain-boundary elements in 
the polycrystal model is that only gradients in grain- 
boundary properties along a facet can be accounted for 
in the analyses. It is not possible to model a single 
aggressive carbide surrounded by relatively harmless 
carbides, which may happen in practice. However, espe- 
cially for these cases, where the grain material creeps 
severely, one can rely on the single-cavity relation ex- 
pressed in Eqs. (5) and (6). This is possible because 
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Fig. 18. (a) Schematic motivation for the two-bar model along a grain boundary facet. (b) The two-bar model: a paraliel arrangement of two 
coupled bars with different cavitation properties. 
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Fig. 19. (a) Variations in the internal cavity pressure along a grain-boundary facet due to differences in carbide reactivity, (b) leading to a 
non-uniform separation rate distribution with gradient 2 to be accommodated by the adjacent grain material, and (c) the resulting reactive normal 
stresses on the grain boundary. 

these relations govern the volumetric growth rate of  a 
cavity in an infinite creeping medium. The cavity spac- 
ing b is irrelevant in those cases. 

5. Variations over the polycrystalline aggregate 

In this section, we consider non-uniformities in the 
internal cavity pressure distribution over the polycrys- 
talline aggregate. In contrast with the previous section, 
the internal pressure is now constant along any facet, 

but can differ from facet to facet. Only a single represen- 
tative microstructure is considered, shown in Fig. 13, as 
this highlights the issues involved. More complex mi- 
crostructures have been considered in [12,13]. The cen- 
tral facet in the unit cell is taken to contain relatively 
aggressive carbides, characterized by pm/E = 1.0 x 10- 
3, whereas on the other facets the carbides are assumed 
to be harmless; the carbide density and the initial cavity 
sizes are taken to be the same as on the central facet, but 
their internal pressure Pm is taken to be negligible, i.e., 
Pm= 0 for convenience. In this section, the parameter 



212 M.W.D.  van der Burg, E. van der Giessen / Materials Science and Engineer#2g A220 (1996) 200-214 

bI/Lm is taken to vary from log(bJLm)=--0.5 to 
log(b~/Lm) = 0.5. Alt other parameter values are kept 
the same as above, including the assumption that no 
macroscopic stresses are applied, E1 = E2 = 0. 

In Fig. 14(a)-(c), the distribution of the damage 
parameter a/b over alt facets is plotted just prior to first 
cavity coalescence. In Fig. 14(a), where log(bi/L~ = - 
0.5, the a/b distribution has developed to become virtu- 
ally uniform. In Fig. t4(b), where the creep rate is 
enhanced relative to the diffusional rate, log(b~/Lm)= 
0.0, the a/b distribution has become slightly non-uni- 
form, while in Fig. t4(c), where the creep rate is even 
faster, log(b~/Lm)= 0.5, the central facet is nearly com- 
pletely cavitated, whereas on the inclined facet nearly 
no damage has developed. Note that the paralM top 
facet in the quarter unit cell, which is further away 
from the central cavitating facet than the inclined facet 
is, has cavitated more. Hence, the interaction (in the 
sense of the previous section) with the top facet has 
been stronger than with the adjacent inclined facet. In 
Fig. t4(d)-(f), the evolution of a/b at the midpoint of 
each facet is shown. These results seem to give addi- 
tional evidence for the fact that the interaction with the 
neighbouring facets decreases with increasing value of 
bz/Lm. Notice that in the case of vanishingly small 
interaction, cavitation on the facets with the non-ag- 
gressive carbides would not develop at all. 

The interactions referred to here are again most 
clearly demonstrated by the distributions of the separa- 
tion 6 and of the facet normal stress o-n. As shown in 
Fig. 15(a), the separation distribution for log(bi/Lm)= 
- 0.5 is almost perfectly uniform, indicating rigid grain 
behaviour. With increasing bi/Lm, Fig. 15(b)-(c), the 6 
distribution becomes more and more non-uniform over 
the unit cell by significant creep deformation of the 
grains. It is emphasized that since the cavity pressures 
on the inclined and the parallel top facet are zero, the 
only way these facets can cavitate is by virtue of stress 
redistributions in the grains during evolution of the 
cavitation on the central facet. In Fig. 15(d)-(f), the 
normal stress distribution along the facets are plotted, 
again just prior to coalescence. In all three cases a 
compressive normal stress is found on the central facet 
in order to constrain cavity growth there. In Fig. 15(d), 
for the diffusion dominated case, the normal stress on 
the other facets is tensile. The magnitudes of these 
internal stresses are such that the separation, rate is the 
same for all facets. In Fig. 15(f), for the larger value 
bi/Lm,.the normal stress distribution is strongly non- 
uniform in accordance with the non-uniform cavitation. 

In Fig. 16(a)-(c), the development of these normal 
stresses in time are plotted for the centre of the facets, 
and in Fig. 16(d)-(f) the corresponding evolution of the 
separation rates c~ is normalized R ~  (see Eq, (13)). The 
compressive stress counteracting the cavity growth on 
the central facet is clearly seen now to be maximal for 

the smaller value of bi/Lm. Also with increasing bI/Lm, 
the normal stresses keep evolving during the process; 
thus, the interactions evolve continually during the 
process. Near the end of the lifetime for the case in Fig. 
16(a), the separation r a t e s  (~/(A~iSp) become very large, 
so that grain deformations are negligible; this demands 
that facets separate at the same rate, as is clearly seen in 
Fig. 16(d). In the case where the relative creep rate is 
highest, log(bJLm)=0.5, it can be seen in Fig. 16(f) 
that the separation rates at the inclined and top facet 
are very small compared with that on the central facet. 

The above results indicate that if 3/(R~p) is large, the 
creep deformations of the grain are negligible, so the 
grain will behave virtually rigidly. A consequence of 
this is that the separation rates of the different facets 
are kinematically coupled, as illustrated in Fig. 17. In 
this figure, the separation rate of facet i, c~i, is coupled 
with the separation rate of the adjacent facet j, @ 
according to c~/2 = 6~. sin c~. In most cases where the 
grains behave rigidly, cavitation is dominated by diffu- 
sion and therefore controlled by the facet normal stress 
o- n. Without exploring this further here, these condi- 
tions suggest a simple method of analyzing HA cavita- 
tion in large polycrystalline aggregates. Assuming 
uniform carbide distributions and internal pressures 
along each facet, but at different magnitudes (as in this 
section), the current (uniform) normal stress over all 
facets can be determined by satisfying the kinematic 
couplings of the separation rates. In cases where the 
rigid grain behaviour is present from the beginning, the 
time to first coalescence can be readily solved for. It 
seems that the kinematic coupling in case of rigid grain 
behaviour also holds for three-dimensional polycrystal 
microstructures. 

6. Discussion 

The results presented in Sections 4 and 5 suggest an 
intricate connection between the influence of variations 
in the cavity pressure distribution (i.e., carbide distribu- 
tion) over a polycrystal and the creep resistance of the 
material relative to the diffusion rates. To further pin 
down the essential elements of this, we consider some 
simplifying descriptions. 

The first one is a one-dimensional model consisting 
of two parallel bars. The idea behind this model is 
similar to Dyson's [20] two-bar model, which he used to 
demonstrate creep-constrained cavity growth during 
creep rupture. The two bars are imagined to represent 
two different parts of the material; one containing 
aggressive carbides and the other with less aggressive, 
more stable carbides, as illustrated in Fig. 18(a). The 
length of the bars, which must be of the order of the 
grain size, is taken to be 2R~, and in the middle of each 
bar we imagine a grain-boundary facet where cavitation 
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takes place. The main difference between bars A and B 
is the methane pressure inside the cavities (but also the 
cavity spacing or the cavity radius may differ). Both 
bars deform by power-law creep and the two parallel 
bar set may be subjected to an applied uniaxial stress Z2 
(see Fig. 18(b)). 

Due to the difference in the internal cavity pressure, 
cavitation at both bars will develop with different sepa- 
ration rates dA and dB, respectively. In this parallel 
arrangement, however, both bars must elongate at the 
same rate. This compatibility condition reads 

dA + 2RI~A =dB + 2RI~B, (14) 

assuming that C~A, B <<RI. Eq. Eq. (14) can be directly 
rewritten as 

dA - d~ 
iB - ~A. 2R~ 

From this condition, it is clear that the separation rates 
must be equal if the grain material does not deform 
significantly by creep, i.e., (dA -- dB)/2R~ >> eB - CA. The 
separation rate dA and dB can only become equal by 
way of stress redistribution among the two bars, so as 
to constrain the cavity growth rate in bar A and 
accelerating cavitation in bar B. If  the grain (bar) 
material deformation becomes significant, the separa- 
tion rates dA and dB will differ and the magnitude of 
the (either accelerating or constraining) internal normal 
stress is lower. If  the grain deformations are not of any 
significance, the normal stress redistribution will be 
highest and interaction is maximal. 

It is of importance at this point to appreciate the role 
of any applied stress Z 2. Raising the stress level will 
affect both the creep in the grain as well as the grain- 
boundary cavitation. However, the creep process is 
accelerated more by the applied stress Z a than by the 
diffusional process because b f  the strong non-linearity 
in the creep relations. Hence, if cavitation is diffusion 
dominated and the grain (bar) material can creep de- 
form, applying any additional stress Z 2 will tend to 
decrease the interaction. 

If grain deformations are significant, the magnitude 
of the interaction during the lifetime is not constant. 
The reason for this is that the separation rate d in- 
creases very strongly in the course of the cavity evolu- 
tion (see Fig. 8(a)). As the interaction is changing 
continuously, there is no single simple parameter to 
characterize the magnitude of interaction for the whole 
lifetime, except in the limiting case mentioned above 
when grain deformations can be neglected altogether. 

Although the two-bar model is illuminating in rela- 
tion to the phenomena observed in Figs. 6 and 13, it 
cannot explain the influence of gradients of the cavity 
pressure distribution on the time to first coalescence, 
shown in the case of Fig. 12. To explain this phe- 
nomenon, we consider a second model. When there is a 

gradient in the separation rate d along the grain- 
boundary facet, due to variations in internal cavity 
pressure, as illustrated in Fig. 19(a), this gradient, 

ed 
= ~---~, (15) 

has to be accommodated by shearing of the adjacent 
grain material, as can be seen in Fig. 19(b). The creep 
resistance of the grain material will induce a normal 
stress distribution on the facet, as shown schematically 
in Fig. 19(c). These stresses will also tend to constrain 
rapid cavitation (i.e. large d) and accelerate slow 
growth (i.e., small d). Here, also, if the grain cannot 
deform significantly, severe stress redistributions have 
to take place to make the c~(() and d(() uniform. With 
this simple model, it can be understood how a larger 
gradient in cavity pressure distribution gives rise to a 
larger gradient in c~ which will result in higher interac- 
tion stresses that constrain cavity growth from aggres- 
sive carbides more, giving a more uniform cavitation. 

A rough indication about whether or not cavitation 
will be uniform can be obtained by comparing the 
separation rate d with the creep deformability of the 
grain expressed in kg. This leads to the dimensionless 
number (d/])/sg, where l is the distance over which 
interaction is investigated. For  example in Section 4, 
the l can be taken as the wavelength of the pressure 
distribution or as the facet width R~, while ~ can be 
identified as @ defined in Eq. (13). Then, as we have 
seen in the previous Sections (e.g., Figs. 8, 10 and 16), 
interaction is strong (cavitation is uniform) when log(d/ 
l)/~g is roughly larger than t, whereas interaction is 
negligible when l o g ( d / l ) / ~ < -  1 or so. When the 
wavelength of the pressure distributions decreaseS, (d/ 
l)/~g increases and therefore the interaction incre/tses~, as 
we have found in Section 4. When subjected to appfigd 
stresses Z I and E 2 (see Fig. 1), we take as a rough 
measure of the creep deformability of the grain 

~ = '~O(~m + &)lO-o)", 

incorporating creep due to both internal cavity pressure 
and external stress. For the separation rate d, only the 
contribution of diffusion is taken into account (in situa- 
tions where creep controls cavity growth, the creep rate 
in the grains is so high that kg dominates anyway). Then 
with Eq. (9) and neglecting the creep term in Eq. (11), 
the separation rate is found as 

/Sin + Za 
3 = 4  

b 2 d ( f ) '  

where d ( f )  = ln(1/f) - (3 - f ) ( 1  - f ) / 2 .  Only if f<< 1 is 
d ( f )  large, but during most of the lifetime, d ( f )  is of 
the order of 1. When non-uniformity on the grain-size 
scale is investigated, l should be taken as R~. Substitut- 
ing this, one obtains 
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k ~ 4 b (Lg~ 3 ~(/~m -}- •2) 
l~g ~ \ - ~ - ) ,  where L 3 -- k0((/5 = + ~)/o.o)" (16) 

The term L J b  in the right-hand side is the most impor- 
tant parameter  since it relates the creep deformability of  
the grains to the diffusion parameter  of the grain- 
boundary cavitation. When Lg/b is very large, grain 
deformation is not expected to become significant so 
that cavitation is expected to be uniform. When b/Lg is 
very large, cavitation will be non-uniform. A grain size 
effect enters through the ratio b/R> 

whether or not the current H A  conditions are a limiting 
case can be obtained through the value of the parame- 
ter defined in Eq. (16). 
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7. Conclusion 

Real materials always contain different types of  car- 
bides, which leads to different equilibrimn methane 
pressures. In general, the time to first cavity coalescence 
by H A  is affected by the volume fractions of  different 
carbides and their distributions inside the material. The 
main conclusion from the present study is that growth 
of all cavities is coupled in general by creep, by virtue 
of  mechanisms similar to those first proposed by Dyson 
[9]. This leads to internal stresses that tend to constrain 
cavity growth in areas with above-average methane 
pressures resulting from relatively unstable carbides 
present there. Evidently, the H A  resistance of a mate- 
rial is enhanced by reducing the  amount  of  unstable 
carbides; but this study shows that the lifetime does not 
simply scale with the amount  of unstable carbides. 

Unfortunately, a simple accurate estimate of  the time 
to failure does not seem to be feasible in general. 
However, there are two limiting cases: (i) creep is so 
fast that creep constraints disappear; (ii) diffusion is so 
fast that constraint enforces uniform growth of all 
cavities irrespective of  their internal pressure. In the 
first case, cavity evolution can be determined directly 
from cavity growth relations, Eqs. (5)-(10), by substi- 
tuting the applied stresses. The second case allows for 
an estimate assuming rigid grains. A rough estimate 
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