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Chapter 4

Elastic fields due to surface
roughness

4.1 Experimental observation of ex- and intrusions

A single dislocation moving out of a grain at the free surface leaves a surface step. Multiple
of these events produce intrusions and extrusions, which continue to grow with continuing
load cycles. Basinski and Basinski [5] found that extrusions and intrusions in copper single
crystals have the same size and shape, and that the rate of growth decreases after around
104 cycles. This decrease in the rate of growth is accompanied by cross slip. Later in the
fatigue life, secondary slip is observed. Therefore, many ex- and intrusions develop during
fatigue.

It has also been observed by Basinski and Basinski [5] that PSBs develop. Inside a
PSB, dislocation motion is strongly localized compared to the matrix surrounding the PSB,
which leads to a pronounced roughness at the free surface, commonly referred to as protru-
sion. This protrusion generally consists of extruded material. If more material is extruded
than intruded in a PSB, the volume increases while the density decreases, as confirmed by
volume measurements.

The increase in the volume of a PSB can be explained by the production of vacan-
cies inside the persistent slip band (cf. vacancy dipole models in chapter 1) and therefore
a swelling of the material. This is generally believed to originate from the formation of
dipoles during cyclic deformation. These dipoles may collapse into vacancies/interstitials,
if the dipole height is smaller than a critical value. Since the formation energy of vacancies
is much lower than that of interstitials more vacancy than interstitial dislocation dipoles col-
lapse. Therefore, more vacancies than interstitials are produced and this leads to swelling
of the material.
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66 Chapter 4

The difference in the formation energy of vacancies versus interstitials is an effect of
the core of the dislocations since the long-range attraction forces for interstitial and va-
cancy dipoles are identical. Since dislocation dynamics only takes the long-range fields
into account, as many vacancy as interstitial dipoles on average will be produced during
the simulation. Therefore, no protrusion is formed at the surface in the simulation. How-
ever, ex- and intrusions do develop as a consequence of discrete dislocations leaving the
grain.

Surface steps cause singular stress concentrations, which according to St. Venant’s prin-
ciple decay over distances on the order of the geometric disturbance. The region influenced
by a single surface step is therefore small, i.e. on the order of the Burgers vector of the dis-
location producing the surface step. However, as more dislocations leave the crystal the ex-
and intrusions may accumulate and therefore the area influenced by the surface roughness
increases.

Our model does not take the change in geometry of the material into account since a
small strain formulation is used. A finite strain formulation would be needed to capture
the evolving surface steps. The basics of the finite strain formulation were developed by
Deshpande et al. [49], but the numerics to deal with the continuous change of surface
shape are awaiting numerical implementation, e.g. mesh refinement. Therefore, we give
an analytical approximation to the elastic fields caused by the surface roughness in this
chapter.

4.2 Representative surface step

4.2.1 Introduction

To incorporate the effect of the surface steps, superposition is used for the stress and the
displacement fields. Therefore, the interaction of surface steps is neglected in this approach.
The total elastic stress is the sum of the stresses as described in chapters 2 or 5 (σ̃ + σ̂) and
a contributionσ̄ due to the surface roughness. The surface roughness itself can be seen as
an accumulation of surface steps of different step height, each leading to stress fieldsσ̄l,
so that

σ = σ̃ + σ̂ + σ̄

= σ̃ + σ̂ +
∑

l

σ̄l (4.1)

Since this is an elastic calculation, the stress fields caused by each step are self similar.
If one would increase the geometrical dimensions of the problem, i.e. increase the surface
step height, one would proportionally increase the size of the area affected by the surface
step. Therefore, it is not necessary to determine the elastic fields for different surface step
heights but only to compute the elastic fields for a representative surface step and scale all
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lengths by the step heighth, as shown in figure 4.1. There, the stress is applied parallel to
the free surface, which is divided in an upper and lower terrace.

Moreover, the elastic fields at each point scale linearly with the applied stress; without
the applied stress, there is no stress singularity. Hence the fieldσl caused by a step of
heighthl must be of the formσl = σappf(xp/hl) with the functionf to the determined
from elasticity theory.

σapp

lower
terrace

upper
terrace

σapp

h

step

y

x

Figure 4.1: Definitions used for the surface step.

To calculate the stress concentration caused by a surface step, three different approaches
for a representative surface step are studied in the following subsections and compared to
two solutions given in literature. After that, the model which most closely agrees to the
numerical solution is studied in more detail.

Since we search for the singular terms of the elastic fields due to the surface step, all
stress plots in this chapter show only the singular termσ̄ of equation (4.1) and call itσ, for
simplicity.

4.2.2 Reference calculation with FEM

To compare and validate the solutions of the different approximations, a plane strain finite
element calculation of a discrete surface step is executed and the results are verified with
mesh refinement for convergence. Figure 4.2 shows for the representative surface step the
distribution of the normal stresses in thex- and they-directionσxx andσyy, respectively.
This step has a heighth = 1µm and an angle of45◦ and is embedded in a200µm×200µm
block. A remote stressσyy = σapp is applied to the block. Due to the different lengths of
the upper and lower boundary the applied stresses are different at these sides. However, this
difference is small due to the huge difference between the block size and the step height.
The applied stress is subtracted from the stress distribution calculated by FEM, and the
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resulting stress is the singular term caused by the surface step. The stress distribution for
the6µm× 6µm core of the block is shown in figure 4.2.
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Figure 4.2: Stress componentsσxx (a) andσyy (b) for a representative surface step in a200 × 200µm block
subjected to a remote stressσyy = σapp calculated by FEM. This step has a heighth = 1µm and an
angle of45◦.

4.2.3 Approximation based on the wedge solution with homogeneous
boundary conditions

Figure 4.3 illustrates the first approach to solve the elastic problem of a surface step analyt-
ically. Here, the stress field caused by the surface step is approximated by the asymptotic
field of a wedge in infinite space. The definitions of the local coordinate systems and angles
for an infinitely long wedge with an opening angle of2(π − α) are shown in figure 4.4.

We try to find the elastic fields of a surface step using the Airy stress functionΦ and
use the following solution to the governing equation∆2Φ = 0:

Φ = rλ+1f(θ) (4.2)

with

f(θ) = c1 sin[(λ+ 1)θ] + c2 cos[(λ+ 1)θ]
+ c3 sin[(λ− 1)θ] + c4 cos[(λ− 1)θ] . (4.3)
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Figure 4.3: First approach to approximate the elastic fields of a surface step.
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Figure 4.4: Definitions used for the solution of an infinitely long wedge.

Then, the stress components in cylindrical coordinates (figure 4.4) are given by

σθθ =
∂2Φ
∂r2

(4.4)

= rλ−1(λ+ 1)λ
[
c1 sin[(λ+ 1)θ] + c2 cos[(λ+ 1)θ]

+c3 sin[(λ− 1)θ] + c4 cos[(λ− 1)θ]
]
;
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σrr =
1
r2
∂2Φ
∂θ2

+
1
r

∂Φ
∂r

(4.5)

= −rλ−1λ
[
c1 sin[(λ+ 1)θ](λ+ 1) + c2 cos[(λ+ 1)θ](λ+ 1) +

+c3 sin[(λ− 1)θ](λ− 3) + c4 cos[(λ− 1)θ](λ− 3)
]
;

σrθ =
1
r2
∂Φ
∂θ

− 1
r

∂2Φ
∂r∂θ

(4.6)

= rλ−1λ
[
− c1 cos[(λ+ 1)θ](λ+ 1) + c2 sin[(λ+ 1)θ](λ+ 1)

−c3 cos[(λ− 1)θ](λ− 1) + c4 sin[(λ− 1)θ](λ− 1)
]
.

For all Airy stress functions the equilibrium equations are satisfied automatically. The com-
patibility condition is satisfied if the Airy stress function fulfills the biharmonic equation,
as this approach does.

In this approach, the wedge flanks atθ = ±α are traction-free (σθθ = σrθ = 0),
leading to∂2Φ/∂r2 = 0 on the boundary. Comparison of equation (4.3) to (4.4) leads
to the observation thatΦ = 0 if ∂2Φ/∂r2 = 0. Therefore, the traction-free boundary
conditions are fulfilled if

Φ(θ = ±α) = 0
∂Φ
∂θ

(θ = ±α) = 0 .

These equations give rise to a linear system of equations,

Ac = 0 , (4.7)

wherec is the vector ofci’s and the matrixA is defined by

A =




sin[α(λ+1)] cos[α(λ+1)] sin[α(λ−1)] cos[α(λ−1)]

sin[−α(λ+1)] cos[−α(λ+1)] sin[−α(λ−1)] cos[−α(λ−1)]

cos[α(λ+1)](λ+1) − sin[α(λ+1)](λ+1) cos[α(λ−1)](λ−1) − sin[α(λ−1)](λ−1)

cos[−α(λ+1)](λ+1) − sin[−α(λ+1)](λ+1) cos[−α(λ−1)](λ−1) − sin[−α(λ−1)](λ−1)


 .

A solution to equation 4.7 other than the trivial solutionc1 = c2 = c3 = c4 = 0, requires
the determinant of the matrixA be zero, which is true for

(λ sin 2α)2 = (sin 2αλ)2. (4.8)

Now let us focus on some energy considerations for the wedge to study the physical
boundaries ofλ. The energy per unit area in an infinitesimal domain isdW ∝ σ2. Thus,
the energy in a region of radiusR around the tip isW ∝ ∫ R

0
σ2 2πr dr. Since,σ ∝ rλ−1
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(see equations (4.4) to (4.6)) and we getW ∝ R2λ. This energy cannot be singular, so that
λ has to be greater than zero.

Depending on the wedge angleα, multiple values ofλ exist according to equation (4.8),
which are shown in figure 4.5. To account for these multiple values the subscriptk is
introduced.

λ
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π/2 7π/80
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Figure 4.5: Admissible values ofλ for wedge anglesα between0 andπ.

Keeping in mind the remarks about the self similarity of elastic fields from the begin-
ning of this section, equations (4.4) to (4.6) can be rewritten, similar to the solution for an
infinitely sharp crack, as

σ =
∑

k

rλk−1Kk

∗
fk (λk, θ)

Kk = akσapph
1−λk . (4.9)

∗
fk are the unit versions offk (see equation (4.2)) andak are non-dimensional scalars,
which have to be fitted.σapp is the uniform applied stress andh is the surface step height,
as shown in figure 4.1.

λk = 1 is a solution for all wedge anglesα. The correspondingci’s of equation (4.3)
are[0, 0, 1, 0]. This leads toΦ = 0 and∂Φ/∂θ = 0 for all θ, which in turn leads to all stress
components vanishing everywhere in the domain. Therefore,λk = 1 is a trivial solution
and will not be considered any further.

Having excluded the solutionλk = 1, an even number of solutions exist for almost all
wedge anglesα, as shown in figure 4.5. Determiningck from equation (4.7), one finds
that eitherc1k andc3k are zero or thatc2k andc4k are zero. Furthermore, according to
equations (4.4) and (4.5)c1 andc3 are the pre-factors to the sine whilec2 andc4 correspond
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to the cosine forσθθ andσrr. For the shear component it is vice versa. Therefore, half of
these solutions result into symmetric stress fields with respect to theξ axis (see figure 4.4),
the other half into antisymmetric fields.

For the representative surface step, i.e.α = 7/8π, so that2(π − α) = π/4, two

values ofλk can be determined by figure 4.5, for each of which the vector
∗
ck is calculated

according to equation (4.7), (the star denotes that the vector is a unit vector). This leaves
the coefficientsak of equation (4.9) as the only fitting parameters. We fit the resulting
expressions for the stress fields to the results obtained by FEM, as shown in figure 4.2.
Figure 4.6 gives the resulting distribution ofσxx andσyy.
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Figure 4.6: First approximation of the stress distribution near a surface step using the wedge solution with traction-
free boundary conditions. Stress components in thex-direction (a) and in they-direction (b).

Comparison with figure 4.2 reveals that there are points of agreement and disagree-
ment. The stress componentσxx is matched quite well, except at points close to the upper
terrace (see figure 4.1). These points have a negativex-coordinate as shown in figure 4.1
and, therefore, lie outside the region of analysis for the small-strain formulation of the dis-
location dynamics model, where this approach is to be used. Therefore, the difference of
this first approach to the numerical solution is not significant. However, the stress compo-
nent in they-direction does not show such a good agreement and overestimates the stresses
determined by FEM.

The differences of this approach to the FEM solution arise because the upper surface
terrace (see figure 4.1) is not taken into account by this approach (cf. also dashed line in
figure 4.4). Only the lower terrace and the step are accounted for. The influence of the
upper surface terrace on the elastic fields is strong in the area shown in figure 4.6 because
the surface step height is on the same order of length as the size of the area of interest.
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Therefore, St. Venant’s principle indicates that the stresses at the wedge are influenced by
the upper surface terrace.

However, the general shape of the distributions of both stress components is in fair
agreement with the FEM solution. A second approach is given in the following subsection
which attempts to avoid the problem of this approach.

4.2.4 Approximation using the wedge solution with traction boundary
conditions

σapp σapp

xyσ    =σ    = 0xx xyσ    =σ    = 0xx xyσ    =σ    = 0xx

τ= t=0 τ= t=0.5 σapp τ= t=−0.5σapp

= +

σ    =σ    =σ    = 0xy xx yy

Figure 4.7: Second approach to approximate the elastic fields of a surface step.

In figure 4.7 the second approach is shown, where the elastic field due to a surface
step is modeled as a uniform half-space from which a wedge is removed. This leads to
one zero and one non-zero traction boundary condition on the wedge. The tractions on the
lower terrace are zero, since the uniform applied stress is parallel to this line. However,
the tractions on the step are given by Mohr’s circle as half of the uniform applied uniaxial
stress since the wedge has an angle of45◦.

Equations (4.2) to (4.6) of the previous subsection apply also for this approach. How-
ever, because there are tractions on one side of the wedge, as shown in figure 4.7, the
right-hand side of equation 4.7 is non-zero in this case. We call the right-hand side vector
b, which incorporates the boundary conditions. The solution of the equationAc = b reads
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c =
1
4
σapp

cos[(λ− 1)α](λ− 1) + sin[(λ− 1)α]
cos[(λ− 1)α] sin[(λ+ 1)α](λ− 1)− cos[(λ+ 1)α] sin[(λ− 1)α](λ+ 1)

sin[(λ− 1)α](λ− 1)− cos[(λ− 1)α]
cos[(λ− 1)α] sin[(λ+ 1)α](λ+ 1)− cos[(λ+ 1)α] sin[(λ− 1)α](λ− 1)

− cos[(λ+ 1)α](λ+ 1)− sin[(λ+ 1)α]
cos[(λ− 1)α] sin[(λ+ 1)α](λ− 1)− cos[(λ+ 1)α] sin[(λ− 1)α](λ+ 1)

− sin[(λ+ 1)α](λ− 1)− cos[(λ+ 1)α]
cos[(λ− 1)α] sin[(λ+ 1)α](λ+ 1)− cos[(λ+ 1)α] sin[(λ− 1)α](λ− 1)

Notice,c depends only on a singleλ, which in this approach is a fitting parameter. Further-
more,λ < 1 if there is a stress singularity at the surface step. However from the energetic
considerations of the previous approach,λ > 0. Therefore, one does not have much free-
dom in fitting the solution of this approach to the numerical result. Figure 4.6 shows the
stress distribution for the second approximation withλ = 0.8.
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Figure 4.8: Second approximation of the stress contours of the surface step using the wedge solution with non-
traction-free boundary conditions. Stress components in thex-direction (a) and in they-direction
(b).

Comparing the results shown in figure 4.8 to those in figure 4.2, one finds more dif-
ferences than with the first approach. For instance, the numerical solution ofσxx reveals
a butterfly-like stress distribution around the singularity at the tip; but this is not observed
in figure 4.8 (a). Notice,σxx is equal to zero at the lower terrace, as prescribed by the
boundary condition in figure 4.7. However, this is not shown by the contours in figure 4.8
due to the strong gradient inσxx and the rough mesh. Moreover comparing this approach
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to the numerical calculation,σyy has much higher values here, because the highest stress
contour extends to the bottom of figure 4.8.

Differences to the numerical result arise because the upper terrace (see figure 4.1) is
also not taken into account in this approach, while the lower is. Therefore, the traction is
non-zero along the upper terrace. For that reason the remarks given at the end of the pre-
vious subsection about the area influenced by the surface step also apply in this approach.
Differences to the previous approach originate from the fast that the latter involves homo-
geneous boundary conditions and therefore a decrease of the rank of matrixA, which leads
to two variablesa1 anda2 being fit parameters. In this approach, however, only a single
valueλ is fitted.

4.2.5 Third approximation using the crack solution

In the third approach the elastic solution for an infinitely sharp crack is used to model
the stress concentration at the surface step as shown in figure 4.9. Towards this end, the
representative surface step (see figure 4.9 (a)) is copied, rotated by180◦ (see figure 4.9 (b))
and glued to the first piece along the upper and lower surface terrace (see figure 4.9 (c)).

σapp

σapp

(c)(b)(a)

x

y
η

r

ξ

θθ0

Figure 4.9: Surface step (a), copied and rotated surface steps before glueing them together (b). Definitions used
for this approach (c).

The dashed line in figure 4.9 (c) marks the glue. Along the step, i.e. the diagonal line, no
glue is applied. The result of this sequence is a diagonal,h

√
2 long, infinitely-sharp crack

in infinite space.
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The crack as shown in figure 4.9 (c) is subjected to mixed mode I – II loading such that
the combined stress givesσ∞yy = σapp andσ∞xx = σ∞xy = 0. The stress fields near a mode I
and mode II crack are (see, for instance, [50])

σξξ =
KI√
2πr

cos
φ

2

(
1− sin

φ

2
sin 3

φ

2

)
+

KII√
2πr

sin
φ

2

(
−2− cos

φ

2
cos 3

φ

2

)

σηη =
KI√
2πr

cos
φ

2

(
1 + sin

φ

2
sin 3

φ

2

)
+

KII√
2πr

sin
φ

2

(
cos

φ

2
cos 3

φ

2

)

σξη =
KI√
2πr

cos
φ

2

(
sin

φ

2
cos 3

φ

2

)
+

KII√
2πr

cos
φ

2

(
1− sin

φ

2
sin 3

φ

2

)
.

The stress intensity factorsKI andKII are determined by the resolved normal and tangen-
tial stress (both1/2σapp for aθ0 = 45◦ wedge) according to the first order estimate:

KI = 0.5σapp

√
π
√

2h

KII = 0.5σapp

√
π
√

2h,

The interaction of the tip atx = −h, y = −h is neglected because there, i.e. at the tip of
the wedge, a singularity is unphysical. Note, there is no fitting involved in this approach.
The resulting distribution ofσxx andσyy are shown in figure 4.10.
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Figure 4.10: Combined mode I and II crack solutions are used as an approximation of the stress fields of the
surface step. Stress components in thex-directionσxx (a) and in they-directionσyy (b).
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Comparing figure 4.2 to figure 4.10 the stress component in thex-direction close to
the tip is higher than for the numerical solution. Furthermore,σxx is not zero at the lower
terrace, as one can see from the contours in figure 4.10 intersecting the lower terrace. How-
ever, this surface is traction free. The reason for the unphysical stress distribution lies in the
glueing together of the upper and lower surface terrace. The surfaces in figure 4.9 (b) are
traction free, but this is lost once the pieces are glued together to become the configuration
shown in figure 4.9 (c). Moreover, in this approach the stress component in they-direction
is substantially higher than the numerical result and also higher than the analytical result of
the first approach.

After having tested three novel approaches to approximate the results obtained by FEM
for the representative surface step, we now look at some approaches given in literature.

4.2.6 Comparison with existing solutions

When growing crystals by atom vaporization, flat surface islands, i.e. terraces, develop
(see, e.g., [51]). Based on the surface stress of the crystal Marchenko and Parshin [52]
have suggested the following scaling relation for all stress components for a surface step of
arbitrary shape:

σ ∝ 1√
r

(4.10)

wherer is the distance from the surface step. Since Marchenko and Parshin do not give
the pre-factors nor the angular dependence, the figure shows only a qualitative picture.
Therefore, the shape and the values of the stress contours are arbitrary. Nothing can be said
about the boundary conditions at the free surface, because the angular dependence could
satisfy them. However, the solution given by Marchenko and Parshin predicts a stress field
which decays with

√
r, which is the same as for an infinitely sharp crack. Our first approach

(section 4.2.3) predicts two exponents for the stress, i.e.λ1− 1 = 0.49 andλ2− 1 = 0.35.
The first exponent is very close to the Marchenko and Parshin value of0.5.

Kukta and Bhattacharya [51] have extended the model of Marchenko and Parshin [52] to
model atom vaporization on a specimen under tension. Therefore, they calculated the stress
fields for surface steps with an elastic background stress. This extension makes the solution
quite long and difficult. Nevertheless, still the surface energy dominates, which is the
dominating part for atom vaporization. However, supported by the experimental findings
by Forsyth [53] and Cottrell and Hull [54] of long and very thin sheets of extrusions, the
surface energy apparently is not dominant.

Brochard et al. [55] gave a different solution based on the point force approach of
Boussinesq (see, e.g. [56]). Here, with a stress along the surface step the finite-width speci-
men is in equilibrium, as shown in figure 4.11 (a). Afterwards, the stress at the surface step
is idealized as a point forceF = σapph, which is applied at the surface of the half-space,
as shown in figure 4.11 (b). According to the Boussinesq solution, the stress distribution is
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σapp

(a) (b)

σapp

h

σapp

σappF=      h

Figure 4.11: Surface step in equilibrium (a). Idealization to a point force (b).

given by

σrr = − 2
π
σapph

sin θ
r

σθθ = σrθ = 0

with (r, θ) a cylindrical coordinate system at the point of application of the point force.

This solution is very simple and satisfies the equilibrium, compatibility and the bound-
ary conditions on the wedge flanks except of at the upper terrace. The corresponding stress
distribution is shown in figure 4.12. The solution predicts equally high stresses in thex-
andy-direction. This is not in agreement with the numerical solution where the stress com-
ponent in they-direction is dominating (see figure 4.2). In this approach the surface step
is idealized as a point. This idealization of a step to a point does not influence the stress
fields far away from the surface step. However, for points very close to the surface step,
i.e. the area shown in figure 4.12, this idealization is not fair. The distance of these points
to the surface step is on the same order as the surface step height. Therefore, St. Venant’s
principle predicts a change in the elastic fields in the area due to a change in the shape of
the surface step.

Furthermore, the surface step is traction-free if a material with a surface step is sub-
jected to tension. This observation results in the applied stresses at the ends of the body
not being equal. Therefore, the assumption of Brochard that there are stresses along the
surface step is not physical.
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Figure 4.12: Stress contours of the elastic fields of a surface step according to Brochard et al. [55]. Stress compo-
nents inx-direction (a) and iny-direction (b).

4.2.7 Concluding remarks on step modeling

None of the analytical solutions mentioned here is in perfect agreement with the numerical
solution. No model captures the free surface boundary conditions at the upper terrace.
Some models even fail to take the free surface at the lower terrace into account. The models
given in literature are either based on surface tension or on the assumption that a stress is
applied at the surface step. Neither is relevant for fatigue. Moreover, all models predict
higher stresses than the numerical computation. Nevertheless, in order to have a workable
approximation, we choose to adopt the first approach because it shows most similarity with
the numerical solution for both stress components.

To further investigate the quality of the first approximation, figure 4.13 shows the nor-
malized stress componentσyy/σapp against the normalized coordinatex/h in a log-log
diagram for a surface step with an opening angle of45◦, i.e.α = 7/8 π. For equilibrium
both negative and positive stress componentsσyy have to be present along thex-axis, as
shown by the numerical and the analytical solution, i.e. both curves cross thex-axis at
aroundx/h = 8.

Furthermore, close to the wedge tip (x = 0) the slope of the numerical curve is very
close to−1/2, which is the analytical value for an infinitely sharp crack. For increasing
x the slope decreases fast for the FEM solution and somewhat slower in the analytical
solution. In conclusion, the analytical approximation overestimates the stress compared to
the numerical solution for points far away from the surface step, but otherwise gives a fair
correspondence, as shown in figure 4.13.
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Figure 4.13: Surface step-induced stress profileσyy into the crystal according to the numerical ’FEM’ and ana-
lytical ’wedge’ solution.h is the step height of the surface step.

Displacement fields
To account for the opening of the cohesive surface, which we will use in chapter 6, the
displacement fields are calculated. The constitutive equations for cylindrical coordinates
are similar to those for Cartesian coordinates and in plane strain (see, for instance, [57])
read

εrr =
1 + ν

E
[(1− ν)σrr − νσθθ];

εθθ =
1 + ν

E
[−νσrr + (1− ν)σθθ];

εrθ =
1 + ν

E
σrθ

In addition, the strain-displacement relationships read (see, for instance, [57])

εrr =
∂ur

∂r

εθθ =
ur

r
+
∂uθ

∂θ

εrθ =
1
2

(
1
r

∂ur

∂θ
+
∂uθ

∂r
− uθ

r

)
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Substitution of the stress field equation (4.9) and integration leads to the displacement
fields for the surface step,

ur =
1 + ν

E

∑

k

rλkKkRk(λk, θ);

uθ =
1 + ν

E

∑

k

rλkKkΘk(λk, θ) .

where the coefficientsRk andΘk are given by

Rk = c1k sin[(λk + 1)θ](λk + 1) + c2k cos[(λk + 1)θ](λk + 1) +
c3k sin[(λk − 1)θ](λk + 1− 4ν) + c4k cos[(λk − 1)θ](λk + 1− 4ν)

Θk = (λk − 1)
[
−c1k cos[(λk + 1)θ] + c2k sin[(λk + 1)θ]−

c3k cos[(λk − 1)θ]
λk + 1− 4ν
λk − 1

+ c4k sin[(λk − 1)θ]
λk + 1− 4ν
λk − 1

]

whereKk is given by equation (4.9) and was determined by fitting the expressions for the
stress fields to the numerical solution.λk andc1k to c4k are given by equations (4.8) and
(4.7), respectively. The subscriptk denotes the multiple values ofλ for a givenα from
equation (4.8).

Both displacement components increase with the radiusr from the wedge sinceλk >
0, ∀k. For a physical solution the integration constant would have to be identified such that
the additional displacement to the uniform background displacement is zero at the boundary
of the body. The value of the integration constants is irrelevant for the cohesive surface
model since we are interested in the opening, i.e. in the difference of the displacement
between both sides of the cohesive surfaces where the integration constant cancels out.

4.3 Application to dislocation model

Stress field
To account for the change in the stress field due to the surface roughness on dislocation
nucleation and movement, the stress fields of the discrete surface steps are added to the
other stress components(σ̃+ σ̂), as already introduced in equation (4.1), which is repeated
here for completeness:

σ = σ̃ + σ̂ + σ̄

= σ̃ + σ̂ +
∑

l

σ̄l
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Adoption to slip systems of our model
In the dislocation dynamics simulation described in chapter 2 three discrete slip systems

slip system 1 slip system 2 slip system 3

y

x

y

x

y

x

1 3 5
α = +/− 5/8π α = +/− 19/24π α = +/− 23/24π 

2 4 6

x

y

x

y

x

y
α = +/− 7/8π α = +/− 13/24π α = +/− 17/24π 

Figure 4.14: Six cases of surface steps for three slip systems. The top row depicts the cases for positive steps; the
bottom row for negative steps. The dashed line marks the slip plane. The magnitude of the Burgers
vector has been scaled so that the step heighth is the same in all cases.

are used, which can have either a positive or negative step at the free surface. This leads to
six unit cases shown in figure 4.14. The first slip system is favorably oriented for plastic

slip atπ/4 and is shown in the first column. The values ofλk (see, equation (4.9)) and
∗
cik,

which are the unit vectors ofcik (see, equation (4.3)) are

slip system case α λ
∗
c1

∗
c2

∗
c3

∗
c4

1 1 5/8 π 0.674 0.000 0.629 0.000 0.777
1.302 0.495 0.000 0.869 0.000

2 7/8 π 0.505 0.000 0.358 0.000 0.934
0.660 0.631 0.000 -0.776 0.000

2 3 19/24 π 0.525 0.000 0.430 0.000 0.903
0.813 0.416 0.000 -0.909 0.000

4 17/24 π 0.574 0.000 0.529 0.000 0.849
1.019 0.044 0.000 0.999 0.000

3 5 23/24 π 0.500 0.000 0.321 0.000 0.947
0.545 0.700 0.000 -0.714 0.000
1.091 0.000 0.694 0.000 -0.720
1.499 0.000 0.206 0.000 -0.979
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slip system case α λ
∗
c1

∗
c2

∗
c3

∗
c4

3 5 23/24 π 1.638 0.686 0.000 -0.728 0.000
1.997 0.337 0.000 -0.942 0.000
2.187 0.000 0.678 0.000 -0.735
2.492 0.000 0.426 0.000 -0.905
2.740 0.667 0.000 -0.745 0.000
2.984 0.491 0.000 -0.871 0.000
3.301 0.000 0.653 0.000 -0.757
3.467 0.000 0.546 0.000 -0.838

6 13/24 π 0.857 0.000 0.697 0.000 0.717
1.711 0.685 0.000 0.729 0.000
2.007 0.000 0.339 0.000 0.941
2.557 0.000 0.671 0.000 0.741
3.035 0.497 0.000 0.868 0.000
3.379 0.650 0.000 0.760 0.000

To investigate the influence of the surface step opening angle2(π − α) on the stress
field, a series of numerical calculations is executed. The additional stress to the uniform
background stress is shown in figure 4.15 for some pointP within a distance h from the
wedge tip. Over a wide range of wedge opening angles the stress is almost constant. When
α → π/2, i.e. the flat surface without any stress singularity, the additional stress to the
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Figure 4.15: Numerical calculation: Additional stress to the uniform background stressσapp at point P =
(3/5 h;−3/5 h).
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uniform background stress approaches zero. However, whenα increases these stresses
increase. This result agrees to the finding of Repetto and Ortiz [18]; the fatigue crack is
most likely to nucleate from the acute angle of the PSB with he surface. However, between
the extreme configurations, the stresses can be considered constant. Because almost all 6
cases lie inside the constant region, especially those of the primary slip systems, i.e. cases
1 and2, all surface steps shown in figure 4.14 will be treated in the sequel as case2, i.e.
with α = 7/8 π.

Comparisons of the analytical to the numerical solution for a complex surface struc-
ture
After having looked at a single surface step we now focus on a more realistic surface
roughness with hundreds of surface steps. There is no assumption on the evolution of sur-
face roughness. It is an outcome of the dislocation dynamics simulation, in which we track
the number of dislocations moving out for each slip plane individually. Based on these
numbers we calculate the step heights and the elastic fields due to the surface steps. The
calculation of the elastic fields at every time step of the simulation is very expensive. To
accelerate the calculation for complex surface structures with many surface steps, the ap-
plicability of a cut-off radius is investigated. The results for a1µm× 2µm grain after 500
stress cycles are shown in figure 4.16.
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Figure 4.16: The influence of a cut-off radius on the stress distributionσxx/σapp inside a1µm × 2µm grain
caused by the surface roughness after500 stress cycles. The surface roughness was simulated by the
2DD model and is similar to that in figure 2.10 (a).



Elastic fields due to surface roughness 85

In figure 4.16 the grain is shown after 500 stress cycles with the free surface along
y = 0 and the applied stress parallel to the free surface. According to St. Venant’s principle
the elastic fields are altered by the surface step in an area which has a size on the order of
the surface step height. We usercutoff/h = 10, rcutoff/h = 100 andrcutoff/h = 1000
to investigate the influence of a cut-off radius. For those cut-off radii, there is a significant
difference in the stress distribution compared to that without a cut-off. In conclusion, the
cut-off radii underestimates the effect of the surface steps significantly. This can be under-
stood by recalling that in figure 4.6 the analytical approach predicts that the stress decays
rapidly; the radius of the1/2σapp contour is smaller thanh. However, there are a great
number of steps along the surface after 500 cycles. This defines the width of the grain as
the characteristic length for St. Venant’s principle. Therefore, the region with an influence
in the stress field due to the surface roughness is characterized by the size of the grain.

Now we compare the analytical solution to the numerical one for a complex surface
structure. The 2DD model described in chapter 2 is used to calculate a surface roughness for
a2µm×2µm grain. For convenience of mesh generation, a sample of that surface profile is
simplified, i.e. small ex- and intrusions are deleted from the profile. Subsequently, an elastic
FEM calculation is performed that will only reveal the stress field caused by the surface
steps. Figure 4.17 shows the stress distribution for a coarse mesh, which gives only a crude
approximation to the elastic fields caused by the surface roughness. Therefore, the stress
distribution is different than the result for the single step shown in figure 4.2. Moreover,
only a few contours are shown in figure 4.17. Comparing figure 4.17 to figure 4.16 (d), the
area with a stress enhancement of1/3σapp due to the surface roughness is much smaller for
the numerical solution than for the analytical solution. Moreover, the stress enhancement
close to the free surface is smaller for the numerical than for the analytical solution.

0.5
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Figure 4.17: Stress enhancement in thex-directionσxx/σapp under tensile loading in thex-direction at a partic-
ular surface roughness, which is similar to the surface roughness used for figure 4.16.

Evolution of stress due to accumulation of surface roughness
The stress in the grain due to the surface roughness is determined, according to equa-
tion (4.9), by the height of the surface roughness and the background stress. In figure 4.18
the evolution of the surface roughness, i.e. the sum of the heights of the surface steps, is
shown for a2 × 1µm grain using the 2DD model explained in chapter 2. Like the dislo-
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Figure 4.18: The evolution of the total surface roughness
P

hi/b for a2× 1µm grain for 2000 cycles using the
2DD model described in chapter 2.hi denotes the height of the individual surface steps.

cation density, which is shown in figure 2.15, the surface roughness is increasing rapidly
at the beginning and starts to level off after600 cycles. Evidently, surface roughness and
dislocation density are connected. If a slip plane, which is bound on one side by the free
surface, has an impenetrable grain boundary on the other end, the surface roughness stops
growing once the number of dislocations on the slip plane stops increasing, which is evident
by the comparison of figures 2.15 and 4.18.

The second parameter determining the stress caused by surface roughness is the back-
ground stress, i.e. the applied stressσapp for the representative surface step in section 4.2.
In figure 4.19 the evolution of the average and the standard deviation ofσ̃xx along the
free surface is shown (recall thatσ̃xx is the stress caused by the singular fields of all dis-
locations). Because the dislocation density does not evolve monotonically but with large
oscillationsσ̃xx also oscillates. For the2000 cycles shown, the average stress along the free
surface is roughly a third of the peak applied stress. However, the standard deviation in-
creases during time. This leads to an increase in the instantaneous local background stresses
σapp, which acts on the discrete surface steps. This local increase in the stress could lead,
if other conditions are satisfied, to crack initiation which is also a local phenomena.

In conclusion, the stress due to the surface roughness increases over time since both the
surface roughness and the local stresses at the free surface increase. The elastic fields in
the entire grain are influenced by the surface roughness and the stress enhancement due to
the surface steps is on the order of the applied stress. This leads to the final conclusion that
the region of influence and the enhancement in the stress due to surface roughness are quite
substantial in initiating fracture.
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Figure 4.19: The evolution of the average and standard deviation of the stress componentσ̃xx/σmax along the
free surface for2000 cycles. This stress is due to the dislocation distribution in a2µm× 1µm grain
using the 2DD model explained in chapter 2.σmax is the maximal applied stress (cf. figure 2.1)






