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Abstract We discuss integrated chance constraints in their role of short-term risk con-
straints in a strategic ALM model for Dutch pension funds. The problem is set up as a
multistage recourse model, with special attention for modeling short-term risk prompted
by the development of new guidelines by the regulating authority for Dutch pension funds.
The paper concludes with a numerical illustration of the importance of such short-term risk
constraints.

Keywords Modeling · ALM · Integrated chance constraints · Multistage mixed-integer
recourse

1 Introduction

The strategic Asset Liability Management (ALM) problem for pension funds is a dynamic
decision problem under uncertainty. Management of assets involves decisions on the strate-
gic portfolio mix, and the liabilities—consisting of future pension payments—depend on
indexation policies (correction for inflation). Because of the long time horizon over which
the liabilities range, typically in the order of 30 years, the problem is inherently dynamic.
Moreover, uncertainty plays a major role because asset investments yield random returns;
the valuation of liabilities at market value is also a source of uncertainty.

The goal of the ALM process is to enable payment of current and future pensions. This
should be done at minimal funding costs, consisting of contributions by active participants
of the fund and the sponsor (e.g., the company backing the fund), and subject to laws and
the rules specified by the regulation authority for pension funds. In addition, the outcome
has to confirm to the long-term policy rules of the pension fund.

Thus, in general terms, the ALM problem is to select decisions on allocation of the assets,
the contributions, indexation of future payments (relative to e.g. wage inflation), etcetera,
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which are optimal in some sense, subject to a number of constraints and taking care of un-
certainty in an explicit way. All these aspects can be taken care of in a multistage recourse
model, which is a model for decision making under uncertainty belonging to the field of sto-
chastic programming. Indeed, multistage recourse models have been applied successfully to
a wide range of financial and other problems, see e.g. Ziemba and Mulvey (1998), Ruszczyn-
ski and Shapiro (2003), Wallace and Ziemba (2005), and Zenios and Ziemba (2006).

Multistage recourse models comprise additional decisions which allow to react condi-
tionally on new information, becoming available as the future unfolds. The corresponding
additional or recourse variables come at certain unit costs, so that the risk associated with a
current decision is modeled by assigning additional costs due to uncertainty. Alternatively,
one may simply disallow decisions which are too risky (in some well-defined sense). We
will use the latter approach to explicitly model short-term risk within a multistage recourse
setting.

For the pension fund problem that we study in this paper, long-term solvency goals go
together with short-term constraints on the funding ratio, defined as the ratio of assets over
liabilities. Due to the uncertainty involved, such a constraint is naturally stated in proba-
bilistic terms. For example, it could be formulated as: The probability that the funding ratio
one year from now falls below 105% should be at most 5%. In stochastic programming
terminology, such restrictions on the feasible decisions are called probabilistic or chance
constraints. They are closely related to the well-known Value-at-Risk concept used in finan-
cial applications.

The inclusion of chance constraints in multistage recourse models for pension fund ALM
problems was pioneered by Dert (1995). In this paper we focus on an alternative formula-
tion of short-term risk constraints in ALM models, known as integrated chance constraints.
Our motivation to use integrated chance constraints comes both from modeling as well as
computational considerations.

The remainder of this paper is organized as follows. First we outline the environment
in which the problem is set. In Sect. 2 we then formalize an ALM decision problem for
pension funds, arriving at a multistage recourse model. In Sect. 2.2 we motivate and describe
in some detail the role and implementation of integrated chance constraints in this model.
Relationships to other risk measures are discussed as well. In Sect. 3 we present numerical
results for a small example problem.

1.1 Dutch pension funds and regulation

Before entering upon these detailed issues, we first present some general background in-
formation on Dutch pension funds, since this is the setting of our ALM application. In The
Netherlands, as in several other countries, old-age pensions consist of a state allowance com-
plemented by payments out of pension savings. These savings are accumulated during each
worker’s active career by paying contributions (a fraction of the wages) to a pension fund,
both by the employee and the employer. A pension fund may be related to a single company,
a branch of industry, or a specific group of professionals.

In 2005, there are about 700 pension funds in The Netherlands. Their total asset value is
of the same order of magnitude as the Dutch GDP, see Table 1. While these data suggest that
Dutch pension savings are at a relatively high level, the development of the total funding
ratio for Dutch pension funds in Table 2 indicates that there is ample reason for concern:
following a period of growth, the funding ratio declined rapidly in 1999–2002, due to the
downturn of the stock markets and demographical developments on the liabilities side. The
subsequent recovery in the following years was caused by the rallying stock markets and
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Table 1 Total asset value of
pension funds as a percentage of
GDP (in 2005, source: OECD)

Total assets/GDP (in %)

France 5.8

Germany 3.9

Italy 2.8

Netherlands 124.9

Spain 9.1

UK 70.1

US 98.9

Table 2 Total asset value as a
percentage of total liabilities
value of Dutch pension funds
(source: DNB)

Year Funding ratio (in %)

1997 138

1998 145

1999 150

2000 141

2001 127

2002 109

2003 114

2004 121

2005 125

trimming down of pension rights, see Klein Haneveld et al. (2006). However, in 2005 the
presupposedly safe funding ratio of 130% is still only met by around 40% of the pension
funds.

Thus, the situation has changed dramatically since 2000. The Dutch regulating authority
for pension funds (DNB, see http://www.dnb.nl) has reacted by adapting the rules by which
pension funds have to operate. The traditional emphasis on long-term risk changes to a more
balanced supervision including short-term risk. The technical details have been in progress
for quite some time. In our model (Drijver et al. 2003), we propose implementations of the
following three conceptual criteria:

(i) Short term: With high reliability, the funding ratio in the next year should be at least at
some level specified by the regulating authority.

(ii) Mid term: Seen over a number of years, the funding ratio may fall short occasionally,
but if this happens too often or if the shortage is too large (as defined by the regulating
authority), some remedial action is required.

(iii) Long term: The solvency of the pension fund should be sufficiently high, from a going-
concern and/or liquidation perspective.

In this paper, we will focus on the representation of the short-term criterion by means of
integrated chance constraints.

2 Integrated chance constraints in multistage recourse ALM for pension funds

As explained in the introduction, our strategic ALM problem is a dynamic decision problem
under uncertainty. We are asked to come up with decisions such as the contribution rate and

http://www.dnb.nl
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the portfolio mix, and possibly a remedial action in case the funding ratio is insufficient.
These decisions need to be taken right now, in the face of uncertainty about investment
yields and other problem parameters.

We consider a large Dutch company which has its own pension fund. It will be assumed
that the pension plan is defined benefit, and that the company acts as sponsor of the fund:
if the funding ratio is too low, the company may be obliged to provide (or guarantee) addi-
tional money. Mulvey et al. (2003, 2008) describe a multi-period network model where the
financial health of a company is optimized by integrating the corporate financial and pension
planning. However, in the Netherlands, pension funds are independent institutions by law,
making it impossible to integrate both plans.

Thus, the pension fund has three sources of funding its liabilities: revenues from its asset
portfolio, regular contributions made by the company and the participants of the fund, and
remedial contributions made by the company. The pension fund has to decide periodically
how to distribute the investments over different asset classes and what the contribution rate
should be in order to meet all its obligations.

Within a pension fund, there are typically different groups of participants, who all have
their own interests. For example, active participants (workers) prefer to pay a low contri-
bution rate, whereas passive participants (retirees) are concerned about the level of current
payments (indexation). The company prefers low contribution rates, and wishes to avoid
remedial contributions. The ALM model should adequately reflect the—often conflicting—
objectives of all interest groups. This is achieved by means of constraints and/or penalty
terms in the objective function.

In addition, as already mentioned in the Introduction, there are a number of regulatory
rules which further restrict the decisions of the pension fund. The long-term solvency re-
quirements are reflected by the multi-stage character of the model. For the inclusion of the
mid-term requirements, which involves binary decision variables, we refer to the thesis of
Drijver (2005). Foremost, the introduction of binary variables in the model is justified by the
fact that they are necessary to include several realistic features in our multistage recourse
ALM model. In addition, we have a long-standing interest in (computational) properties of
recourse models with integer variables, see e.g. Louveaux and Van der Vlerk (1993), Klein
Haneveld and Van der Vlerk (1999), Van der Vlerk (2004). How to model the short-term
criterion is discussed in detail in Sect. 2.2.

In the following we will look at a multi-stage recourse model representing this problem.
We will focus on the asset side of the problem, so the indexation policies are left out of
consideration.

2.1 Setting

We split the planning horizon in T subperiods of one year each, and denote the resulting
time stages by an index t . Time t = 0 is the current time and t = T is the length of the
horizon. Year t (t = 1, . . . , T ) is the span of time [t − 1, t).

The uncertainty is modeled through a large but finite number S of scenarios. Each sce-
nario represents a possible realization of all uncertain parameters in the model. Let ωt rep-
resent the vector of random parameters whose values are revealed in year t . Then the set of
all scenarios is the set of all realizations (ωs

1, . . . ,ω
s
T ), s ∈ S := {1, . . . , S}, of (ω1, . . . ,ωT ).

Each scenario s has a probability ps , where ps > 0 and
∑S

s=1 ps = 1. Since in a dynamic
model information on the actual values of the uncertain parameters is revealed in stages, a
suitable representation of the set of scenarios is given by a scenario tree. An example of a
scenario tree is given in Fig. 1. Each path from t = 0 to t = T represents one scenario.
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Fig. 1 Example of a scenario tree, with T = 3 and S = 17

At every node (t, s) of the tree, decisions are to be made which are optimal given the
history up to then and under uncertainty about the remaining future. In the corresponding
scenario representation of the problem, explicit constraints are added to enforce nonantici-
pativity of the decisions.

2.2 Integrated chance constraints

The short-term criterion proposed in Sect. 1.1 reads that next years funding ratio should be
no lower than a given level α, say α = 105%, with high reliability. The formulation of this
criterion clearly indicates its stochastic nature, which should be reflected in the way it is
modeled. Starting from traditional chance constraints, we will arrive at our implementation
of an adapted short-term criterion by means of integrated chance constraints.

2.2.1 Conceptual motivation

In our ALM model, a direct translation of the short-term criterion would be the chance
constraint

Pr{F ∗
t+1 ≥ α|(t, s)} ≥ γt ,

where F ∗
t+1 is the funding ratio just before a possible remedial contribution by the sponsor, γt

is the required reliability at time t (e.g. γt = 0.95), and the notation indicates that probability
is measured conditional on (t, s) being the current node. Using that the funding ratio is
defined as the ratio of the assets A∗

t+1 over liabilities Lt+1, an equivalent formulation is

Pr{A∗
t+1 − αLt+1 ≥ 0|(t, s)} ≥ γt . (1)

Note that the risk measure underlying such a chance constraint is qualitative, since it
measures the probability of a shortfall of the funding ratio, but the magnitude of the shortage
is not taken into account. In other applications this may be justified or even preferable, but
in an ALM model the size of the funding shortage is obviously relevant.
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We propose to replace the current qualitative criterion by a quantitative one-year risk
measure. In our ALM model, this role is played by integrated chance constraints. To in-
troduce this concept, we return to the chance constraint, and will see that it comes up in a
natural way when we look at computational issues.

2.2.2 Computational motivation and definition

In the chance constraint (1), both A∗
t+1 and Lt+1 are random quantities because they depend

on underlying random parameters such as asset yields. Moreover, they depend linearly on
the current decisions xs

t which involve asset allocation and contributions. To stress these
relations and in order to simplify the notation, for the time being we will use the generic
representation of an (individual) chance constraint

Pr{Bx − d ≥ 0} ≥ γ,

where x is an n-vector of decision variables and the n-vector B and the scalar d are both
random parameters. Assume that (B,d) follow a finite discrete distribution with realizations
(Bs, ds) and corresponding probabilities ps , s ∈ S := {1, . . . , S}.

All other constraints in our ALM model are linear, and also the chance constraint can be
represented by linear constraints, as follows.

Bsx + δsM ≥ ds, s ∈ S,
∑

s∈S

psδs ≤ 1 − γ,

δs ∈ {0,1}, s ∈ S,

where M is a sufficiently large number. Note that this formulation necessarily uses binary
variables δs , s ∈ S , to indicate realizations (Bs, ds) which are unfavorable for x, e.g., which
would result in underfunding in the ALM model. The probability weighted average of these
binary variables then equals the risk of underfunding associated with the decision x, which
should be at most 1 − γ . Because of these binary variables, the inclusion of a chance con-
straint at every node (t, s) (except at the end nodes) of our multistage recourse model would
have severe consequences for the computational tractability of the model.

For problems involving binary (or general integer) decision variables, a natural approach
is to relax the integrality restrictions and solve the resulting relaxation. In our case, such a
relaxation transforms the mixed-integer linear representation of the chance constraint into a
system of linear constraints in continuous variables, which is equivalent to

Bsx + ys ≥ ds, s ∈ S,
∑

s∈S

psys ≤ β, (2)

ys ≥ 0, s ∈ S,

where the parameter β is non-negative. By the first set of inequalities, for each s the non-
negative variable ys is not less than the shortfall (Bsx − ds)−, where (a)− := max{−a,0}
is the negative part of a ∈ R. The next inequality therefore puts an upper bound β on the
expected shortfall. That is, the system (2) is equivalent to

∑

s∈S

ps
(
Bsx − ds

)− ≤ β,



Ann Oper Res (2010) 177: 47–62 53

or

E
[
(Bx − d)−] ≤ β (3)

with E denoting expectation with respect to the distribution of (B,d). Such constraints,
bounding an expected shortfall, were named integrated chance constraints by Klein Han-
eveld (1986), since it can be shown that

E
[
(Bx − d)−] =

∫ 0

−∞
Pr{Bx − d < u}du. (4)

The integrand in (4) is the complement of the probability Pr{Bx − d ≥ u}; it appears in an
equivalent risk version

Pr{Bx − d < u} ≤ 1 − γ (u)

of the underlying chance constraint, where the parameter 1 − γ (u) denotes the maximum
acceptable risk of not meeting the target level u.

Loosely speaking, the identity (4) shows that an integrated chance constraint corresponds
to some aggregation of the infinitely many chance constraints which—in theory—could
be defined for all possible target levels u ≤ 0. By indicating, through the corresponding
risk parameters 1 − γ (u), that larger shortages are even less acceptable than smaller ones,
this indeed results in a quantitative risk measure defined in terms of traditional, qualitative
chance constraints.

2.2.3 Discussion

From optimization and calculation point of view, chance constraints have disadvantages,
since they may give rise to nonconvexity, see Klein Haneveld (1986), leading to the need of
binary decision variables. Integrated chance constraints, based on a quantitative risk mea-
sure, do not have these disadvantages, and are tractable computationally, see Klein Haneveld
and Van der Vlerk (2006).

The use of chance constraints corresponds to Value-at-Risk (VaR)-based risk manage-
ment in finance. VaR is very popular in practice, but critical comments are relevant, too.
Basak and Shapiro (2001) use financial economic theory to show that the use of VaR ex-
hibits problematic features. Moreover, these shortcomings are remedied when the agents
in the equilibrium model are supposed to apply a quantitative risk concept, called limited-
expected-losses (LEL). This approach corresponds to the integrated chance constraint con-
cept.

A second improvement of the VaR approach is provided by the concept of Conditional
VaR (CVaR), see e.g. Uryasev (2000), Rockafellar and Uryasev (2000), and Topaloglou
et al. (2002). This risk concept is shown to be coherent (Pflug 2000 and Rockafellar and
Uryasev 2002). As a matter of fact, our integrated chance constraints are closely related
to constraints on a variant of CVaR, the Conditional Surplus-at-Risk (CSaR), see Klein
Haneveld and Van der Vlerk (2006). Both modeling concepts use a quantitative risk measure
to be controlled. But the difference is, that in an integrated chance constraint the shortage
is measured with respect to some a priori chosen threshold parameter, whereas in a CSaR
constraint the threshold is equal to the surplus-at-risk, which itself is an outcome of the
optimization process. So, both integrated chance constraints and CSaR avoid the problems
coming from qualitative risk measures. But the former are easier to implement in calcula-
tions.
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2.2.4 Implementation as short-term risk constraints

We conclude that integrated chance constraints provide a suitable way to model short-term
risk in an ALM model, both from conceptual as well as computational point of view. Re-
turning to the specific notation of our ALM model, we thus include an integrated chance
constraint

E
[(

A∗
t+1 − αLt+1

)−|(t, s)] ≤ βt (5)

in every subproblem (t, s), t < T , of our multistage recourse model. They reflect our al-
ternative short-term criterion, stating that next years funding ratio should be such that the
expected funding shortfall is at most βt , given that the current state is (t, s).

The parameters βt , t = 0, . . . , T − 1, giving the maximal acceptable expected funding
shortage, of course need to be specified numerically. In general it is harder to come up with
these values than it would be for the reliability parameters αt , as required for traditional
chance constraints. The latter parameters are scale free, and correspond to a risk notion
which is more familiar to e.g. managers of pension funds.

With Ss
t denoting the number of possible realizations from (t, s) in year t + 1, it follows

from (2) that inclusion of the integrated chance constraint (5) in subproblem (t, s) comes at
the price of Ss

t additional continuous variables and Ss
t + 1 additional linear constraints. In

many applications, e.g. in the numerical example below, Ss
t is in the order of 5 to 10, so that

this extension of the model provides no computational hardship.
In case the number of realizations is substantially larger, say 1000 or more, the linear

programming (LP) representation (2) becomes inefficient. In Klein Haneveld and Van der
Vlerk (2006) it is shown that the induced feasible set C(β), corresponding to an integrated
chance constraint (3) with an underlying finite discrete distribution on S points, is given by

C(β) =
⋂

K⊂S

{

x ∈ R
n :

∑

k∈K

pk
(
dk − Bkx

) ≤ β

}

. (6)

Since there are 2S −1 non-empty subsets of S = {1, . . . , S}, it follows that C(β) is a polyhe-
dral set defined by as many linear constraints. For any non-trivial number of realizations S,
it is obviously not sensible (if at all possible) to explicitly include all of them in the model.
However, the representation (6) underlies a very efficient cutting plane algorithm for solving
LP problems with (variants of) integrated chance constraints. For a small example problem
with 1000 realizations, an optimal solution is found after generating only 9 out of the ap-
proximately 10300 constraints defining the set C(β). Further numerical evidence shows that
the cutting plane algorithm is much faster than the straightforward LP approach on larger
problem instances.

3 Numerical illustration

In this section we present numerical results for a small instance of a multistage ALM model.
The main purpose is to illustrate the effect of including short-term risk constraints, modeled
as integrated chance constraints. In this example we include such a constraint only at t = 0,

E
[ (

A∗
1 − αL1

)− ] ≤ β,

thus requiring current decisions which are not too risky, measured by the expected shortfall
below the target funding level at t = 1.
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3.1 Model description

We define the following indices, variables, random parameters and deterministic parameters.
(To simplify the notation, we omit the scenario index s.)

Indices
t time index, t = 0,1, . . . , T

i index of asset classes, i = 1, . . . ,N

Variables
Zt remedial contribution by the sponsor at time t

Xit value of investments in asset class i, at the beginning of year t

ct+1 contribution rate for year t + 1

At total asset value at time t

A∗
t total asset value at time t just before a possible remedial contribution Zt

�+
it value of assets in class i bought at time t

�−
it value of assets in class i sold at time t

UT underfunding at time horizon with respect to the original funding ratio A0/L0

Random parameters
rit random return on asset class i in year t

Wt random total wages of active participants in year t

Pt random total benefit payments in year t

Lt random value of liabilities after year t

Deterministic parameters
ki proportional transaction cost for asset class i

wl
i lower bound on the value of asset class i as a fraction of the total asset

portfolio
wu

i upper bound on the value of asset class i as a fraction of the total asset
portfolio

cl lower bound on the contribution rate
cu upper bound on the contribution rate
α lower bound on the funding ratio
γt discount factor for a cash flow in year t

λZ penalty parameter for a remedial contribution
λU penalty parameter for underfunding at time horizon

The decisions at time t ∈ T0 := {0,1, . . . , T − 1} are denoted by the vector

xt = (Zt ,X1t , . . . ,XNt , ct+1).

At the time horizon t = T , only the decision ZT occurs. The variables At , �+
1t , . . . ,�

+
Nt ,

�−
1t , . . . ,�

−
Nt , and UT are state variables. They are determined by the parameters and the

decision variables.
The state variable A∗

t , denoting the value of the assets just before a possible remedial
payment Zt , is used to model the short-term risk criterion, and to determine the size of the
remedial contribution (if any): it must hold that Zt ≥ (A∗

t − αLt)
−.

The randomness of the asset returns and the total wages of active participants is obvious.
The randomness of the liabilities results from their valuation at market value and inflation
developments. The latter causes the randomness in the benefit payments as well. For t ∈
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T1 := {1,2, . . . , T }, we define the random vector ωt with realizations

ωs
t = (rs

1t , . . . , r
s
Nt ,W

s
t ,P s

t ,Ls
t ), s ∈ S.

The constraints in the model can be divided into two types of constraints: actuarial prin-
ciples, and policies. In each scenario s and at every time t (that is, in each node (t, s)),
the constraints must be satisfied. As before, we omit the index s in our presentation of the
constraints below.

Let us first formulate the constraints based on actuarial principles:

At = ∑N

i=1(1 + rit )Xit + ctWt − Pt + Zt, t ∈ T1

The total value of the assets at time t . Note that At = A∗
t + Zt .

Xi,t+1 = (1 + rit )Xit − �−
it + �+

it − ki(�
−
it + �+

it ), i = 1, . . . ,N, t ∈ T0

The value of the investments in asset class i, at the beginning of the year t + 1.
∑N

i=1(Xi,t+1 + ki(�
−
it + �+

it )) = At, t ∈ T0

All assets should be allocated.

The policies of the pension fund are reflected by the following constraints:

wl
i

∑N

j=1 Xjt ≤ Xit ≤ wu
i

∑N

j=1 Xjt , i = 1, . . . ,N, t ∈ T1

Lower and upper bounds on the value of asset class i as a fraction of the total asset
portfolio.

cl ≤ ct ≤ cu, t ∈ T1

Lower and upper bounds on the contribution rate.

At ≥ αLt , t ∈ T1

Lower bound on the funding ratio Ft := At/Lt . The level α is prescribed by the regu-
lator.

AT + UT ≥ F0LT

It is desired that the funding ratio at the time horizon is not below the funding ratio at
t = 0.

Finally, the integrated chance constraint E[(A∗
1 − αL1)

−] ≤ β , reflecting the short-term
risk criterion, is implemented as a system of linear constraints analogous to (2).

The pension fund aims to minimize the total expected cost of funding, i.e., the contri-
bution rates for the active participants and the company, and the remedial contributions.
Moreover, penalty costs are assigned to the undesirable events: remedial contributions, and
a low funding ratio at the planning horizon. All these components together constitute the
objective function:

E

[
T∑

t=0

γt (ctWt + λZZt) + γT λUUT

]

.

3.2 Data

In this example model we consider four asset classes (N = 4), whose deterministic proper-
ties are described in Table 3. All amounts are in millions of euros.

The values of the other deterministic parameters and parameters observed at t = 0 are
shown in Table 4.
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Table 3 Data on the asset
classes Asset class i wl

i
wu

i
ki Initial investments

Stocks 1 0.30 0.60 0.00425 7656

Bonds 2 0.30 0.60 0.00150 4048

Real estate 3 0.10 0.25 0.00425 3080

Cash 4 0 0.20 0.00050 1056

Table 4 Values of some
deterministic parameters, and
observed random parameters and
contribution rate at t = 0

cl = 0 γ0 = 1 W0 = 10520

cu = 0.21 γ1 = 0.9693 P0 = 1115

α = 1.05 γ2 = 0.9308 L0 = 15200

λU = 1.20 γ3 = 0.8873 c0 = 0.17

λZ = 1.25

Table 5 Summary statistics for
the random returns in year 1 Parameter Mean Standard Correlations

deviation r11 r12 r13 r14

r11 0.068 0.159 1.00 0.50 −0.11 0.13

r12 0.058 0.060 0.50 1.00 0.17 −0.22

r13 0.065 0.112 −0.11 0.17 1.00 −0.31

r14 0.032 0.017 0.13 −0.22 −0.31 1.00

The model has 4 stages, allowing for decisions at t = 0 (now) up to the time horizon
T = 3. For each year [t − 1, t), t = 1,2,3, the asset returns, wages, benefit payments, and
liabilities are modeled by random parameters. For future reference, some statistics on the
distribution of the asset returns for t = 1 are presented in Table 5.

For further details on the distribution and the construction of the scenario tree for this
example, we refer to the PhD thesis of Drijver (2005).

In each state of the world before the horizon, uncertainty about the future is represented
by 10 different realizations of the random parameters in each of the remaining years. Thus,
there are S = 10T = 1000 scenarios in total. In each node, the conditional probabilities are
0.1, so that each scenario s has probability ps = 0.001.

Using the data of the Tables 3 and 4, we compute that the current asset value A0 equals
16513.4 million euro. Thus, the initial funding ratio F0 = A0/L0 equals 1.09, which is above
the threshold value α = 1.05.

3.3 Results

All numerical results were obtained using the model management system SLP-IOR (see
e.g. Kall and Mayer 1996, 2004, 2005). Because of the small size of the recourse model,
the equivalent LP model could be solved by any of the LP codes available in SLP-IOR in
negligible time.

Initially, we solved the ALM model without an integrated chance constraint at t = 0. It
appears that for the optimal solution, the expected shortfall of the assets with respect to α

times the liabilities at t = 1 equals 647 million euro (3.9% of A0). Subsequently, we solved
the model including the integrated chance constraint, restricting the expected shortfall at
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Table 6 Results for different values of β

β Opt. val. Direct Future X10 X20 X30 X40 c1 Z0

∞ 4686 1318 3368 7427 4951 4126 0 0.128 0

600 4687 1418 3268 7427 4951 4126 0 0.138 0

550 4688 1540 3148 7427 4951 4126 0 0.150 0

500 4690 1661 3029 7427 4951 4126 0 0.161 0

450 4694 1782 2911 7427 4951 4126 0 0.173 0

400 4703 1945 2757 7158 5220 4126 0 0.199 0

350 4720 2107 2612 6887 5489 4125 0 0.205 0

300 4767 2268 2498 6949 6465 3183 0 0.210 92

250 4829 2469 2359 6660 7016 3080 0 0.210 252

200 4896 2674 2222 6078 7447 3080 310 0.210 416

150 4998 2937 2060 5477 6713 3080 1855 0.210 626

100 5108 3171 1936 5974 5661 2335 3342 0.210 814

50 5233 3472 1761 5264 6561 2213 3509 0.210 1055

0 5529 4147 1381 5428 5967 3080 3619 0.210 1595

Fig. 2 Optimal value (direct and expected future costs) as function of β

t = 1 by several values of the right-hand side parameter β . The resulting optimal values and
first-stage solutions are presented in Table 6.

Of course, the optimal value increases with decreasing values of β . However, as illus-
trated in Fig. 2, the increase is relatively small (less than 2%) for values of β as small as 300
(1.8% of A0). The influence on the composition of the total costs is much stronger: over this
range, direct costs increase sharply (72%), whereas expected future costs fall (26%).

Next we consider the effect of the integrated chance constraint on the first-stage deci-
sions, i.e., on the contribution rate, the asset mix, and the remedial contribution at t = 0. For
β decreasing to 450, we see that the request for higher short-term reliability is satisfied by
increasing the contribution rate. But then, as β keeps decreasing, also the asset mix changes
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Fig. 3 Asset mix and contribution rate as function of β

Fig. 4 Aggregated asset mix as function of β (dashed: relaxed bounds)

gradually: less is invested in relatively risky stocks and real estate, and more in bonds and
eventually also cash. For lower values of β this pattern is less clear when observing the
individual asset classes as depicted in Fig. 3. On the aggregate level, considering the risky
assets versus bonds and cash, the pattern is clearly shown in Fig. 4 (solid lines) except for
β = 0. The latter is caused by binding lower and upper bounds on the relative amounts of
stocks and cash, respectively, as is illustrated by the dashed graphs in Fig. 4 depicting the
aggregated asset mix which results when these bounds are relaxed.

For β lower than 350, remedial contributions Z0 are part of the optimal solution at t = 0,
see Table 6 and Fig. 5. On first sight, they appear to be larger than necessary. For example,
to accommodate a decrease of β from 300 to 250, one could reason that an increase of Z0

with 50 should be sufficient. However, due to the penalty parameter λZ = 1.25, this would
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Fig. 5 Funding costs at t = 0 as function of β

increase direct costs by 62.5. In the presented optimal solution, in which Z0 is increased
by 160 at additional direct costs of 200, this is (more than) compensated by the resulting
decrease of the expected future costs, since the additional assets allow for lower funding
costs in later stages. Obviously, other choices for the parameter λZ will result in a different
balance between direct and expected future costs.

We conclude that, at least in this example problem, the integrated chance constraint on
the expected funding shortage appears to be a suitable tool for modeling short-term risk.
In particular, for appropriately chosen values of the parameter β , it may lead to a solution
which has lower short-term risk in exchange for marginally higher expected total costs. It
should be stressed, however, that selecting a good value for β a priori can be difficult in
practice. Given the low computational costs of including integrated chance constraints, it
may be feasible to find a reasonable parameter setting by numerical experiments.

Finally, let us consider the reliability of the optimal solutions in terms of the probability
Pr{A∗

1 − αL1 ≥ 0}, i.e., the reliability concept underlying traditional chance constraints.
The solution of the model without integrated chance constraint turns out to have reliability
0.5, whereas e.g. the solution of the integrated chance constraint model with β = 450 is
reliable at the 0.7 level, and β = 200 yields reliability 0.8. In this example, it appears that
the reliability of the solutions increases (step-wise) with decreasing β . In general, however,
this need not be the case. For example, a solution which yields small shortages for every
realization is feasible with respect to the integrated chance constraint for some small β ,
whereas it has reliability 0.

In chance-constrained models, the reliability is usually required to be at least 0.9, which
is obtained in this model by setting β = 72. For the current model, higher aspiration levels
actually imply 100% reliability (corresponding to the extreme setting β = 0), due to the fact
that each realization at t = 1 has probability 0.1. Indeed, this is a general modeling weakness
of chance constraints based on a small number of possible realizations, as is often the case
for single-period risk constraints in multi-stage recourse models of realistic size.
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4 Summary and concluding remarks

We motivated and described the role played by integrated chance constraints in an ALM
model for Dutch pension funds. To set the stage, we outlined the practical setting as well as
our modeling approach for this dynamic decision problem under uncertainty.

Integrated chance constraints are appropriate for modeling single-period risk constraints,
in particular if a quantitative risk measure is preferable, as is the case here. Moreover, they
are computationally attractive in the given multistage recourse setting, since they can be
formulated in terms of a limited number of linear constraints without the need to introduce
additional binary decision variables.

These claims are supported by the numerical results on a small example problem. No
computational results on (semi-)realistic data are available at this time. However, such data
have been made available to us by a major Dutch pension fund. Initial outcomes of an ALM
model including integrated chance constraints and implementing the mid-term risk criterion
as described in the previous section, obtained with a special purpose heuristic, are reported
in the PhD thesis of Drijver (2005), and in other publications.

We expect that such multistage recourse models, including implementations of various
risk criteria, will prove to be a useful tool in strategic ALM studies for pension funds. Even
though we believe that this approach allows to model important aspects in a realistic way,
the final judgment on such models will have to come from the analysis of numerical results
for (semi-)realistic problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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