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1 Introduction

Our concern is with Hamiltonian systems that by symmetry are reducible to one
degree of freedom (or at least reducible to a large approximation). As a concrete
example and as a case study for our approach we often consider a model for
the spring–pendulum near one of its stronger resonances. For motivation and
background the reader is referred to our extensive preface.

Focusing down further, we shall formulate the main goal of the present book.
After reduction of the (approximating) Hamiltonian system by symmetry, we
apply singularity theory to obtain transparent normal forms for the dynamical
skeleton. For this we need coordinate transformations and reparametrizations,
all of which can be obtained in an algorithmic way. It is our purpose to de-
velop computer algebraic methods for this. Therefore, the emphasis lies on the
algorithmic methods, especially in later chapters.

The earlier chapters are dealing with the translation between the context of
dynamical systems on the one hand and that of the computer algebraic imple-
mentation of the singularity theory algorithms on the other hand.

Two reduction methods have been selected. These methods, dubbed the pla-
nar reduction [BCKV93] and energy–momentum map [Cus83, Dui84, Mee85]
methods, both apply Birkhoff normal form transformation to obtain an (approx-
imate) system with symmetry, and then proceed with reduction to a one degree
of freedom system, in different ways. Algorithms for computing the reparametri-
zations involved are developed in chapter 4 onwards, and find application in both
reduction methods in chapters 2 and 3. The algorithmic approach also enabled
us to compute nondegeneracy conditions. Some of these were already found in
[Dui84], also see [GMSD95], whereas certain others are rather hard to find by
paper-and-pencil calculations.

As a byproduct of developing these algorithms we gain a deeper insight in the
two reduction methods. Both methods are applied (and tested) on the concrete
example of the spring–pendulum in a few strong resonances close to equilibrium.
This enables us to make comparisons between the two methods, concerning their
applicability and the strength of their dynamical conclusions. See Sect. 1.2 for a
discussion.

Partly summarizing, we mention that the key ideas for making the planar
reduction method algorithmic, and hence constructive, with suitable changes,
are also applicable to the energy–momentum map method. In fact, this led to a
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2 1.1. A further setting of the problem

unifying approach to both methods, presented in chapters 6 and 7. The relevant
notion for this unification is the standard basis, which deepened the understand-
ing of the algorithms, and facilitated their derivation. Indeed, standard bases,
and the Gröbner bases of which they are a generalization, prove to fit several
ideas from both methods in a rather unexpected way.

1.1 A further setting of the problem

In this section, we explain the two reduction methods considered, by applying
them to a simple two degree-of-freedom system. Our goal of explicitly comput-
ing coordinate transformations and reparametrizations, boils down to solving
the so-called infinitesimal stability equation. In the context of polynomial rings,
an efficient procedure based on Gröbner bases solves this equation. The two
reduction methods motivate two different generalizations of this idea, leading
standard bases.

1.1.1 The planar reduction method

The starting point is an article by Broer, Chow, Kim and Vegter [BCKV93],
in which a two-step reduction method is used to find a polynomial model for
a certain class of Hamiltonian dynamical systems. The reduction starts with a
Birkhoff normalization. The resulting near S1 symmetry then is used to reduce
to a planar one-degree-of-freedom system. Subsequently, right-equivalences (i.e.,
planar coordinate changes that are not necessarily symplectic) are used to find
a polynomial and versal model system. Both steps are qualitative, in the sense
explained above. On the one hand, to pull quantitative information through the
Birkhoff normalization is feasible, as it was long known how to compute the
associated (symplectic) conjugacy explicitly. On the other hand, for the versal
deformation such explicit computations were, to our knowledge, not done before.

As said earlier, our aim is to see how much quantitative information about
the original dynamical system could be mustered by computing the conjugacies
along the lines of the planar reduction method. This program was presented in
[BLV98] and carried out in detail in [BHLV98].

We now illustrate the planar reduction method by a simple example; for
more details see [BCKV93, BCKV95]. Suppose we have a Hamiltonian living
on R4 with a degenerate quadratic part, whose Hessian has corank 1. Then
after Birkhoff normalization, truncation, and suitable time-reparametrizations,
generically the following normal form results:

(1.1) H(x1, y1, x2, y2) =
1
2
(
x2

1 + y2
1
)

+
1
2
y2
2 +

1
3
x3

2 + g
( 1

2 (x2
1 + y2

1), x2, y2
)
,

with g containing all terms of degree 4 and higher. This system has an S1-
symmetry (which is exact due to the truncation): rotation in the x1, y1-plane.
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The semi-simple quadratic part λ := 1
2 (x2

1 + y2
1) is the conserved quantity as-

sociated to this symmetry. We may treat λ as a parameter, and reduce to a
planar system by ignoring the dynamics in x1, y1. This step is analogous to the
reduction step in the Kepler problem. The resulting reduced system is

Hr(x2, y2, λ) =
1
2
y2
2 +

1
3
x3

2 + g(λ, x2, y2).

We now apply (non-symplectic) right transformations to normalize the system
further. Since the system has one degree of freedom now, these transformations
differ from symplectic ones by just a time reparametrization. The function that
results when putting λ = 0 is called the central singularity. It may be brought
into polynomial normal form 1

2y
2
2+ 1

3x
3
2 using the Splitting Lemma [BL75, Gib79,

Mar82] and a classification theorem for singularities [Mar82, Sie74]. Hence we
may assume that g(0, x2, y2) ≡ 0, that is, the system is now reduced to some
deformation of the polynomial normal form.

The last step in the simplification process is finding a versal unfolding. To
do this, we look at the tangent space to the orbit associated to the action of the
group of right transformations on the central singularity. Locally, this tangent
space may be identified with an ideal in the ring Ex2,y2 of (germs of) functions
depending on x2, y2. Generators of this ideal are ∂/∂x2 and ∂/∂y2 acting on the
central singularity, resulting in the ideal 〈x2

2, y2〉. As a real vector space, this is
a codimension-1 subspace of the maximal ideal of Ex2,y2 (also called the ring of
(germs of) potential functions), and is complemented by, e.g., the 1-dimensional
vector space spanned by the monomial x2. The monomials chosen to complement
the tangent space are called deformation directions. Adding the term µx2 to the
central singularity yields the versal unfolding:

Hu(x2, y2, µ) =
1
2
y2
2 +

1
3
x3

2 + µx2.

This happens to be the normal form of the fold catastrophe, one of the ele-
mentary catastrophes classified by René Thom [Tho72]. By the general theory
it is known that Hr is conjugate to Hu by a reparametrization µ = µ(λ), and a
coordinate transformation (right-equivalence) φ of the x2, y2 depending on the
parameter λ:

Hr(x2, y2, λ) = Hu(φ(x2, y2, λ), µ(λ));

we say that Hr is induced from Hu by φ and µ.
Up to this point we treated λ as an ordinary parameter, but actually it is a

distinguished parameter, in the sense that it is a function on the 4-dimensional
phase space. To reflect the special nature of λ in the normal form we restrict the
class of allowed reparametrizations, so that changes in other parameters (which
do not appear in our simple example) do not depend on λ, just as they do
not depend on the phase variables x2, y2. Moreover, reparametrizations of λ are
required to respect the zero level, which is natural since the ‘action’ λ is always
positive. Following this idea (see also [BCKV93, BCKV95] and chapter 2), the
final so-called BCKV normal form becomes
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Fig. 1.1 Bifurcation diagram for (1.2): Hamiltonian saddle–node bifurcation

(1.2) HB(x2, y2, λ, µ) =
1
2
y2
2 +

1
3
x3

2 + (µ+ λ)x2.

The bifurcation diagram is depicted in Fig. 1.1. We now return to the original
question: How to compute this reparametrization and coordinate transforma-
tion? An algorithm due to Kas and Schlessinger [KS72] details how to compute
such conjugacies and essentially reduces the problem to solving several instances
of the so-called infinitesimal stability equation, which is related to the tangent
space and the versal unfolding. For our example, this equation takes the form

(1.3) g(x2, y2) = α1(x2, y2)
∂F

∂x2
+ α2(x2, y2)

∂F

∂y2
+ β1x2.

Here F = 1
3x

3
2 + 1

2y
2
2 is the central singularity; the expressions entering the

infinitesimal stability equation are just the generators of the tangent space. The
functions g are related to the g(λ, x2, y2) above (in fact, they are the coefficients
of g(λ, x2, y2) expanded in powers of λ and the other parameters) and our task
is to solve for functions αi and real numbers βi.

If the number of deformation parameters βi is minimal, the βi are uniquely
determined, but in general the αi are not. This is related to the fact that, for
transformations inducing some deformation from a (uni)versal one, the repara-
metrizations are unique but the coordinate transformations generally are not.
Algorithmically this is no problem – underdetermined systems are no more dif-
ficult to solve than uniquely determined ones.

Since we only want a finite part of the formal power series of the reparame-
trization and/or the coordinate transformation, solving the infinitesimal stabil-
ity equation (1.3) is essentially a problem of finite-dimensional linear algebra.
Though this solves our problem, two difficulties immediately emerge, one practi-
cal and another more fundamental in nature. On the practical side, the dimension
of the matrices involved quickly becomes an issue: the number of monomials of
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degree at most k increases rapidly with k. Since all matrix entries are symbolic
expressions, solving the matrix equation soon becomes intractable – and many
of such equations have to be solved.

More profound is the problem that the codimension of f , i.e., the number
of deformation directions needed to complement the tangent space, can not be
deduced straightforwardly from generators of this space. In other words, given
generators of a formal power series ideal, it is in general not straightforward
to find the highest order terms that determine its codimension as a real vector
subspace of the ring.1

In the case of the polynomial ring, both problems are solved by Gröbner ba-
ses. Given arbitrary ideal generators, Buchberger’s algorithm ([Buc65, BW93,
CLO92], Sect. 6.4.1) yields generators of the same ideal that satisfy certain
additional properties. These properties make computation of the codimension
trivial, and can moreover be used to implement an efficient procedure for solving
the infinitesimal stability equation (1.3) in the ring of polynomials. In [BHLV98]
we developed methods suitable for formal power series rings, and applied it
to the planar reduction method. We used the term singularity Gröbner bases,
gleaned from [CW89]. Later it turned out that very similar ideas had already
been developed, e.g., in [Mor82], using ideas of Hironaka (see [Hir64]). Hironaka
coined the term standard bases for the analogue of Gröbner bases in formal
power series rings. (Actually, Hironaka and Gröbner worked independently, with
Hironaka’s work preceding that of Gröbner by one year.)

1.1.2 The energy–momentum map

Next, we turn to the energy–momentum map reduction method, using the same
example as before and also using the same terminology. The idea is to normalize
a map from phase space to R2, whose two components are the Hamiltonian, and
the conserved quantity λ associated to the S1-symmetry. (In this context, this
quantity is referred to as the momentum.) This may be contrasted to the planar
reduction method, which treats the Hamiltonian as the central object, and λ
as a distinguished parameter. Since both the Hamiltonian and λ are conserved,
fibers of the energy–momentum map are dynamically invariant.

In our example the system has two degrees of freedom. Then, after dividing
out the symmetry, the fibers are 1 dimensional, so that they correspond to orbits
of the system (though without time-parametrization). Since the set of fibers
smoothly deforms when the energy–momentum map is subjected to smooth left–
right transformations, it is natural to use these equivalences to bring the map in
normal form.

Assume the system is already in (truncated) Birkhoff normal form (1.1), so
that it has an exact S1-symmetry. We divide out this symmetry by going to
1 However, it should be noted that in our particular example, the computation of the

codimension can be easily handled by ad hoc methods. This is not true anymore for
the reduction method that uses the energy–momentum map.



6 1.1. A further setting of the problem

invariant coordinates. In this case ρ1 := 1
2 (x2

1 + y2
1), x2 and y2 together form

a Hilbert basis (minimal set of generators; see [CLO92, Gat00, Hil93]) of the
space of S1-invariant functions. In these coordinates, the energy–momentum map
E : R3 → R2 takes the form

E : (ρ1, x2, y2) �→ ( H , λ ) =
(
ρ1 +

1
2
y2
2 +

1
3
x3

2 + g(ρ1, x2, y2) , ρ1

)
.

In order to compute E’s normal form, we have to know the tangent space of
its orbit under left–right equivalences (B,A). These equivalences form a group,
with operation (B′, A′)∗ (B,A) = (B′ ◦B,A◦A′), and deform E in the following
way:

(B,A) : E �→ B ◦E ◦A,
where B deforms the range of E, and A is S1-equivariant. Generators of S1-
equivariant vector fields (on R4) are 1

2 (x1
∂
∂x1

+ y1
∂
∂y1

), y1 ∂
∂x1

− x1
∂
∂y1

, ∂
∂x2

and
∂
∂y2

; in invariant coordinates the first becomes ρ1
∂
∂ρ1

whereas the second van-
ishes. (It follows that, in invariant coordinates, S1-equivariance of A boils down
to the requirement that the subspace ρ1 = 0 be invariant.) We want to compute
the tangent space to the orbit of E under such transformations. It turns out that
this tangent space is not an ideal, as it was in the previous example. This makes
computing the codimension technically difficult; see, e.g., the remark in [Mar82,
p. 183]. These difficulties only become more profound when explicit reparame-
trizations are computed. In order to show what form the tangent space takes,
we need to go into some detail here.

Working with maps is less convenient than working with functions, so we
try to reduce to the latter case. A small computation shows that the projection
of the tangent space onto the second component is surjective; hence, we may
restrict to left–right transformations that leave E’s second component invariant,
and compute the tangent space of the orbit of E’s first component under such
transformations. (See Sect. 3.2.3 for an elaboration of this argument.) We call
this the reduced tangent space.

Let us denote coordinates on the range of E by ζ1, ζ2. Tangent vectors to
the space of left–right transformations (B,A) are pairs of vector fields, on R2 �
(ζ1, ζ2) and R3 � (ρ1, x1, x2). One class of tangent vectors leaving the second
component of E invariant is generated by the following:(

0 , h1(ρ1, x2, y2)
∂

∂x2

)
and

(
0 , h2(ρ1, x2, y2)

∂

∂y2

)
,

namely those generating right-transformations that leave ρ1 invariant altogether.
(Here the hi are arbitrary functions of ρ1, x2, y2.) Another class is formed by vec-
tors generating left-transformations that leave the second component unchanged:(

f1(ζ1, ζ2)
∂

∂ζ1
, 0
)
.
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Here f1 is an arbitrary function of two variables. The third class of vectors
generate left–right transformations, interacting in such a way that their combined
action leaves E’s second component invariant:(
−ζ1f2(ζ1, ζ2) ∂

∂ζ2
, f2(H, ρ1)α

)
and

(
−ζ2f3(ζ1, ζ2) ∂

∂ζ2
, f3(H, ρ1)ρ1

∂

∂ρ1

)
.

Again the fi are arbitrary functions, and α a vector field on R3 such that αρ1 =
H. Applying these tangent vectors to the map E and projecting to the first
component, the reduced tangent space (to the map E) becomes{

h1
∂H

∂x2
+ h2

∂H

∂y2
+ f1(H, ρ1) + f2(H, ρ1)αH + f3(H, ρ1)

∂H

∂ρ1

}
⊆ Eρ1,x2,y2 ,

where Eρ1,x2,y2 is the set of functions depending on ρ1, x2, y2. Observe that this
is not, indeed, an ideal over Eρ1,x2,y2 .

To complete the discussion of this example, we note that the first two terms
together span the tangent space related to the right-transformations only. Since
in the planar reduction example this alone was enough to get to a codimension
1 singularity, the present tangent space has at most codimension 1. In fact, it is
easy to see that x2 is not in the tangent space, so that the codimension is indeed
1. Normal form and versal unfolding are identical to the previous example; see
Fig. 1.1 for bifurcation curves.

This completes the qualitative analysis. We now have a versal model of the
system; it remains to compute coordinate transformations inducing the actual
(Birkhoff-normalized) system from the versal model. One ingredient, Kas and
Schlessinger’s algorithm, may be moulded to fit the present situation quite
straightforwardly, the only technical complication being the step from the re-
duced tangent space back to the actual tangent space of the mapping. As in the
planar reduction case, Kas and Schlessinger’s algorithm requires solutions to the
infinitesimal stability equation. To compute these efficiently is more difficult.

In contrast to the planar reduction method, which uses right-transforma-
tions as equivalences and consequently yields an ideal as tangent space, currently
the tangent space has a more complicated structure, since it is a combination
of an ideal and a module over an algebra. Our initial idea was that once a
suitable generalization of a Gröbner basis for algebras (instead of ideals) was
found, integration of the various parts would be straightforward. The required
generalization was known in the literature as canonical subalgebra basis [Stu93,
Stu96] or SAGBI basis [Vas98].

1.1.3 Standard bases

However, applying these ideas to our example of the left–right tangent space
turned out to be difficult. For some time we tried to resolve the difficulties in
an ad hoc manner, resulting in several almost-identical algorithms and construc-
tions.
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From these, we could finally pinpoint the similarities and differences between
the various constructions ranging from Gröbner bases, standard ideal bases,
canonical subalgebra bases to analogous bases for left–right tangent spaces. All of
these constructions could be put in a general framework, built around two central
objects called standard maps and standard bases. Viewing these constructions
as instances of a more abstract construction greatly clarified the situation. It
suggested transparent notation, and eliminated the near-similar proofs.

A central role is played by the standard map theorem, theorem 6.10. It was
inspired by Greuel’s proof [GP88] of the ordinary Gröbner basis theorem, which
exploits an idea by Schreyer [Sch91] for computing the module of syzygies of
ideal generators. In contrast to the usual proofs, Greuel’s proof uses the ideal
structure only superficially, which facilitated the generalization to other algebraic
structures. Another object borrowed from Greuel that, with a small modification,
proved very useful, is the normal form map. This map plays the role of a ‘lazy’
division algorithm, analogous to the normal form algorithm for Gröbner bases.
(Incidentally, this map is unrelated to Birkhoff’s normal form procedure.) The
map is required to satisfy only mild conditions, and exists under very general
assumptions on the base ring and term ordering: For the polynomial ring, it
exists whenever the term order is a well-order, whereas for the formal power
series ring, the term order should be a reversed well-order. For details also see
[Lun99b]

1.2 Sketch of the results

We briefly present our results, splitting the presentation into two parts. First we
discuss the results obtained in applying the algorithmic methods to the spring–
pendulum in chapters 2 and 3. Second we discuss the algorithmic methods them-
selves, as far as they are new.

1.2.1 Reduction methods

Both reduction methods for Hamiltonian systems around an equilibrium point
and close to resonance, elaborated in chapters 2 and 3 respectively, have the
same goal, namely describing the local dynamics of the system.

Remark 1.1. To be precise, we describe the dynamics of the Birkhoff normal-
ized S1-symmetric system, which differs from the original system by a smooth co-
ordinate transformation and a flat (generally) non-symmetric perturbation. The
perturbation problem involved here is ignored in this study, for some remarks
and references see the preface. Since we focus on an integrable approximation, we
do not find chaotic dynamics in our final model system. However, since the the
real system is a flat perturbation of the model system, the difference is extremely
small for modest energies (i.e., for modest deviations from the equilibrium) so
that our approximation is very good. This conclusion is confirmed by numerical



1. Introduction 9

experiments. In two degree of freedom systems we can say even more, see the
introduction to chapter 2.

Since both reduction methods differ considerably in their approach, but still
have the same aim, it is interesting to compare their results. We chose to apply
both methods to the spring–pendulum system in 1 : 2 resonance. This particular
resonance was chosen because both methods are able to handle it. In chapters
2 and 3 we do a part of the analysis for other resonances as well, but only the
1 : 2 case is carried out fully.

1.2.2 The planar reduction method

Our spring–pendulum model (see Fig. 2.1 in section 2.3.1) has various physical
parameters, like pendulum length and mass, spring constant etc. For simplicity
we use the coefficients ai of the Taylor expansion of the system’s Hamiltonian
as parameters, see (2.7). The Hamiltonian has two degrees of freedom, and can
be brought in the form

(1.4) H0(x1, y1, x2, y2) :=
x2

1 + y2
1

2
+ a1

x2
2 + y2

2

2
+ h.o.t.

Here the xi are configuration variables and the yi momentum variables. The
parameter a1 determines the frequency ratio of the two harmonic oscillators
of the quadratic truncation (or linear truncation of the vector field). We shall
assume we are close to the 1 : 2 resonance, i.e., a1 ≈ 1/2.

Next, we apply the Birkhoff normalization procedure, and we truncate. The
result is an S1 symmetry, and a conserved quantity λ. Regarding λ as a parameter
and dividing out the symmetry, we get a planar system in the variables x, y. The
relation between the original variables x1, y1, x2, y2 and the planar variables x, y
is as follows: On the section y2 = 0 we have x = x1 and y = y1, modulo
higher order terms. A singularity theory normalization of the planar system, as
explained in Sect. 1.1, yields the following versal family:

(1.5) Hu(x, y) = x(x2 + y2) + u1x+ u2y
2,

the Z2-symmetric hyperbolic umbilic D+
4 , see Proposition 2.13. Here u1 and u2

are deformation parameters. (The Z2 symmetry, originating from the system’s
reversibility, and acting as (x, y) �→ (x,−y), is the reason that no deformation
term u3y is needed.) The family defines a Hamiltonian system in x and y which
is equivalent (i.e., conjugate modulo time reparametrizations) to the planar re-
duction.

We here reproduce the bifurcation diagram, Fig. 2.5, in Fig. 1.2. It depicts
the phase diagrams that occur in the planar system (1.5); the shaded parts corre-
spond to inaccessible regions either in the phase or parameter plane. (They occur
because of singularities in the coordinate transformations; points in the inacces-
sible regions correspond to imaginary values of parameters or phase variables.)
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Fig. 1.2 Bifurcation diagram for the model (1.5), and numerical iso-energetic
Poincaré maps. Grey areas correspond to non-physical states or parameter settings.
Note the similarities between the bifurcation diagram and the Poincaré maps, as well
as the effect of nonintegrability in the latter.

In the family (1.5) two curves of bifurcations occur, u1 = 0 and u1 + 3u2
2 = 0

(see Sect. 2.3.3). The former lies in an inaccessible region, whereas the latter
corresponds to a line of Hamiltonian pitchfork bifurcations. With the help of
explicit expressions for the normalizing transformations, we can pull back this
curve to original parameters. The result is the following bifurcation curve:

(1.6) λ =
(1 − 2a1)2

64a2
2

+
(a2

2 − a4)(1 − 2a1)3

128a4
2

+O((1 − 2a1)4),

see Proposition 2.18. Here the ai are coefficients of the original Hamiltonian
(1.4) or (2.7), and λ is the conserved quantity. An expression for the latter in
original phase space variables can be computed using the Birkhoff normalization
procedure; see (2.8). Combining (1.6) and (2.8), the bifurcation equation can
be checked by numerical simulations of the Poincaré map. The results may be
found in table 2.2 and Fig. 2.3.
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The final step involves a versal model under a restricted equivalence class,
the so-called BCKV-restricted morphisms; see [BCKV93, BCKV95, BHLV98]
as well as Sect. 2.2.7. This class distinguished three levels of variables, namely
phase space variables, distinguished parameters and ordinary parameters. The
distinguished parameters are parameters for the final model, but originate from
phase space, as conserved quantities. These morphisms allow transformations of
distinguished parameters to depend on both kinds of parameters, but disallow
those of ordinary parameters to depend on distinguished ones. This ensures that
reparametrizations applied on the reduced family may be pulled back to the
original phase space without mixing parameters and phase space variables. This
results in a model given in Proposition 2.16. It gives rise to the same qualitative
behavior, i.e., bifurcations, but with an additional nondegeneracy condition; see
also remark 2.17 in Chapter 2.

Other resonances The planar reduction method cannot be used for resonances
p : q with q odd. The reason is that the iso-energetic 3-torus on which the system
lives has two singular points, corresponding to simple periodic motion. When
reducing this to the plane, one of these is mapped to a circle, here referred to as
the singular circle (see remark 2.5 and Sect. 2.3.3). It is then essential that the
function is smooth at this circle, which only happens for q even (see Proposition
2.4).

Having done the 1:2 case, the next case to consider is the 1:4 resonance.
Again from Proposition 2.4 one can (correctly) guess that the versal family has
a central singularity of the form

(1.7) α(x2 + y2)2 + βx(x2 + y2)2.

With respect to equivalence via Z2-equivariant planar right-transformations, this
function has infinite codimension. This seems to imply that the system in 1 : 4
resonance is highly degenerate, and that small perturbations can spawn many
qualitatively different kinds of dynamics. This is not the case: Both the odd-
resonance problem and this high-codimension phenomenon result from perturb-
ing within the class of Z2-invariant planar functions.

If a perturbation is applied to the original system, then after Birkhoff nor-
malization this perturbation is ‘projected’ inside the class of functions generated
by the S1-invariants x2 + y2, λ, and one of

(x2 − y2)(x2 + y2)A(x2 + y2 − λ/C)B and x(x2 + y2)A(x2 + y2 − λ/C)B .

(Here A, B and C are integers depending on p and q, see Proposition 2.4.)
To require (1.7) to be versal with respect to arbitrary (Z2-symmetric) planar
perturbations is to ask for more than we need. The class of equivalences, arbitrary
Z2-equivariant right transformations, is also larger; however, the net effect is still
that (1.7) has infinite codimension with respect to this class of perturbations.

In the next section we consider another reduction method, which uses equiv-
alences that respect the S1-symmetry. It turns out that this method does find
finite codimension models for higher order resonances.
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Fig. 1.3 Bifurcation curves for (1.8), with parameters a = 1
4 and b = 1

3 .

1.2.3 The energy–momentum map method

As with the planar reduction method, we use the coefficients of the Taylor ex-
pansion of the spring–pendulum system (equation 2.8) as basic parameters, and
again assume that we are close to the 1 : 2 resonance, i.e., a1 ≈ 1/2. As normal
form for the energy–momentum map we find

(1.8) (Hµ, λ) =
(

1
2
ρ1 +
(

1
4

+ µ

)
ρ2 + aψ + bρ1ρ2 ,

1
2
ρ1 +

1
4
ρ2

)
,

see (3.12). Here λ is the conserved quantity associated with the S1 symmetry,
which in this case is just the quadratic part ofH. In (1.8), a and b are coefficients,
µ the deformation parameter, also called the detuning parameter, and ρ1, ρ2, ψ
are three S1-invariants that form a Hilbert basis for the S1-symmetric functions.
They have a relation which is implicit from the following connection with the
coordinates x, y used in the planar reduction case:

ρ1 = x2 + y2, ρ2 = 4λ− 2(x2 + y2), ψ = 2x(2λ− x2 − y2).

The bifurcations of this model, i.e., the µ values for which the number of relative
equilibria changes, form a parabola and a cubic curve in the λ, µ plane; see
Fig. 3.4 which is reproduced here as Fig. 1.3. Figure 1.4 displays the bifurcation
sequence for fixed, small and positive λ, and increasing µ. (We used the Poincaré
section transversal to the long periodic orbit; for the other Poincaré section see
Fig. 3.5.) The parameter µ is related to the quantity 1 − 2a1, which measures
the deviation from the 1 : 2 resonance. Three bifurcations occur as µ increases,
hence its name of ‘detuning parameter’. Two of those are pitchfork bifurcations
corresponding to the parabola and occur for small µ. The other is a saddle–node
bifurcation and occurs for finite µ, in the limit as λ tends to 0. To pull back the
bifurcation curve to original coordinates, the λ-level at the bifurcation points
need to be computed, as in contrast to the planar reduction method, λ-levels are
not preserved by the left–right transformations. The result is

(1.9) λ =
(1 − 2a1)2

64a2
2

+
(2a2

2 + 6a3 − a4 − 2a5)(1 − 2a1)3

128a4
2

+O(|1 − 2a1|4)
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Fig. 1.4 Bifurcations of the energy–momentum map normal form around the 1 : 2
resonance for small increasing µ (left to right), crossing the solid curves of Fig. 1.3
three times, resulting in four structurally stable phase diagrams (top row). Below are
some corresponding Poincaré sections obtained by numerical integration.

for the pitchfork bifurcation; see Sect. 3.4.3. Here λ is the integral of the system,
see (2.8). The saddle–node bifurcation occurs outside the origin, and for O(1)
values of the detuning parameter 1− 2a1; see (3.19) in Sect. 3.4.1, which means
that a formal power series approximation of a coordinate transformation cannot
be used to approximate the bifurcation curve in original parameters.

Remark 1.2. The saddle–node bifurcation away from (λ, µ) = (0, 0), however
relevant it may be for the physical model and numerical simulations under study,
is outside the present theoretical consideration. A more careful analysis of the
model will be needed to study this bifurcation.

As can be seen from (1.8), the versal model has 1 parameter, so it has codi-
mension 1. It therefore seems that this model has lower codimension than the
planar model of the previous section. However, this difference is superficial and
due to accountancy only. Indeed, the planar reduction method regards λ as a
(distinguished) parameter, whereas with the present energy–momentum method
λ is part of the map. (Earlier computations on the energy–momentum map
used only right-transformations, which resulted in a codimension 2 model, see
[Dui81].)

Other resonances The methods used for the 1:2 resonance can be applied
more generally. The 1:4 resonance (see Sect. 3.3.3) results in a versal family with
2 parameters (or 3 if λ is counted as a parameter). Apart from small differences
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in the formulas for the nondegeneracy conditions, the results agree with those
in [Dui84].

The computations for the 1:3 resonance are rather involved. The complexity is
evidenced by the lengthy expressions for the nondegeneracy conditions; see Sect.
3.3.2. For sketches of the bifurcation diagrams for both of these resonances, as
well as for the cases p : q with |p| + |q| > 4, e.g., see [Dui84, GMSD95].

Other interesting resonances are the 1:1 and 1:-1 cases. In contrast to higher
order resonances, the sign (referring to the positive-definite and indefinite cases,
respectively) makes a great difference here. In [Mee85] the 1:-1 resonance is ana-
lyzed in detail. Cotter [Cot86] analyzes the semisimple 1:1 resonance. It would be
interesting to apply our methods to these cases, in order to obtain explicit bifur-
cation curves. This is relevant for systems like the restricted three-body problem
around Routh’s mass ratio, see, e.g., [DH68, Mee85, MH92, MS71, Rou75].

Remark 1.3. An interesting example to apply the present techniques to, is the
restricted three-body problem. Like the spring–pendulum, also this system has
two degrees of freedom. The main difference with the former is that it has a
hyperbolic instead of elliptic equilibrium, leading to different ‘allowed zones’ in
the bifurcation pictures.

1.2.4 Standard bases

Gröbner bases enabled the algorithmic treatment of polynomial ideals. We now
briefly sketch the ideas behind it, in order to give a heuristic introduction to
standard bases and to indicate the relationship between Gröbner and standard
bases.

Given any order on the monomials (satisfying some conditions that we ignore
for now), a Gröbner basis is a basis {h1, . . . , hn} for an ideal I = 〈h1, . . . , hn〉
such that every monomial that occurs as leading monomial of an element of I,
according to the monomial order, is a multiple of the leading monomial of some
hi. In a precise sense, a Gröbner basis is to its ideal what a matrix in row-echelon
form is to its image, when regarded as a linear operator. To be specific, for a
matrix A in row-echelon form it is easy to determine the codimension of its
range, and for a Gröbner basis it is similarly easy to determine the codimen-
sion of the corresponding ideal regarded as a real vector subspace of the ring
in which it lives. Also, for such a matrix, solving the equation Ax = b for x
is straightforward, and this corresponds to the existence of a so-called normal
form map (or algorithm) solving a similar equation for ideals; in particular, it
solves the ideal membership problem. Standard bases are a generalization of
Gröbner bases to algebraic structures other than ideals – and to a lesser extent,
also to other base rings than the polynomial ring. They are best explained using
Fig. 6.3 which is reproduced here as Fig. 1.5. For the case of Gröbner bases, R is
the polynomial ring, M = Rn and Ψ is the R-module homomorphism given by
(a1, . . . , an) �→

∑
aihi, so that the image of Ψ is the ideal I. The map Ψ̃ maps

(a1, . . . , an) to
∑
ai LThi; here LThi is the leading term of hi, so that the image
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Fig. 1.5 Diagram for the standard map theorem. Under computable conditions on
Φ and Ψ , the sequence L Φ→M

Ψ→ R is exact and Φ, Ψ are standard maps.

of Ψ̃ are all multiples of leading monomials of the ideal generators hi. Now the
question of {hi} being a Gröbner basis can be rephrased as: Is it true that

LT ImΨ = Im Ψ̃ ?

(Here LT applied to a set is the span of the LT f , where f ranges over the set.) If
equality holds, the map Ψ is called a standard map, and the basis {hi} a standard
basis. For ideal bases, the question whether the associated map Ψ is a standard
map is settled by looking at S-polynomials (for syzygy polynomials), combina-
tions of ideal generators that cancel leading terms. In other words, S-polynomials
are the images under Ψ of elements of ker Ψ̃ . The map Φ is constructed so that
its image is the kernel of Ψ ; in other words L is the (first) syzygy module of
(h1, . . . , hn). It was Schreyer’s insight that including the syzygy module L con-
siderably simplifies the proof of the main result in Gröbner basis theory. By
making the maps Ψ and Φ explicit it is easy to abstract from the ideal structure,
and apply the same idea to other algebraic structures. In essence, this is the idea
of the standard map approach.

1.3 Discussion

We present a discussion on our results and methods.

1.3.1 Discussion – reduction methods

In the previous sections the application of both the planar reduction (PR)
method and the energy–momentum (EM) method to the spring–pendulum in
1 : 2 resonance has been summarized. At this point therefore, we may try to
compare both methods.

Both methods arrive at precisely the same asymptotic expansion of the bi-
furcation curve for the Hamiltonian pitchfork bifurcation, (1.6) and (1.9), which
also agrees well with the numerical results of table 2.2, Sect. 2.3.3.

The polynomial normal forms the methods arrive at are rather different.
The PR method arrives at a homogeneous third order polynomial as planar
Hamiltonian, which was easy to analyze. In contrast, the energy–momentum
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method yielded a map with a quadratic and a quartic polynomial as components.
This model has a more complicated bifurcation structure than the planar model.
However, as stated before, the additional bifurcation (a saddle–node bifurcation)
occurs away from the origin in parameter space.

Besides yielding a simpler model, the calculations associated to the PR
method are simpler than those of the EM method, because the former em-
ploys (equivariant) right-transformations as equivalences in the second reduc-
tion stage, resulting in a tangent space with an ideal structure. The EM method
also uses left-transformations, yielding a much more complicated tangent space.
Technical complications also arise from the additional reduction step, used for
reducing from a tangent space of maps to R2, to one of functions to R. The de-
reduction step necessary when computing the reparametrization explicitly is not
needed for the PR method. Finally, the more general transformations allowed in
the EM method deform the H2-level sets and require calculation of the inverse
transformation, in order for the bifurcation curve to be found (see Sect. 3.4.3).

The EM method is able to handle any resonance. In Chap. 3 the 1 : 2
resonance is analyzed in detail, and some calculations for the 1 : 3 and 1 : 4 case
have also been done. The PR method is less suited for analyzing resonances with
odd denominator, because square roots turn up in an essential way. In addition,
the symmetry resulting from the Birkhoff normalization is not fully exploited,
leading to a higher codimension. Indeed, for the 1 : 4 resonance it is already
infinitely high. Interestingly, for the 1 : 2 case the codimensions are equal for
both reduction methods.

The PR method, and especially the final BCKV normal form, seems better
suited to de-reduction to the full phase space than the EM method. The reason
is that the latter mixes the integral of motion H2 with the Hamiltonian H in the
left-transformations on the energy–momentum map, whereas BCKV-restricted
morphisms do not. For the organization of Hamiltonian level sets on levels of H2
this makes no difference. It does necessitate an additional computation to pull
back the bifurcation curves in terms of H2. Perhaps more importantly, if one is
interested in the organization of the Hamiltonian’s level sets in the full phase
space, the extra transformations need to be taken into account when drawing
conclusions for the real system from the model.

1.3.2 Discussion – standard bases

Standard bases arose in the course of our research, as a natural way to bring
several very similar results on common denominator. The result was a unifying
proof of the basic results on Gröbner bases, based on a proof due to Schreyer
and Greuel, which lent itself immediately to the necessary generalizations.

We almost always work in the ring of truncated formal power series. Results
for the formal power series ring are also given (see Sect. 6.5), and involve only an
existence proof of the normal form map in this context. We give some remarks
on the case of the rational function ring, where Mora’s algorithm takes the place
of the normal form map. The structures we apply the standard map approach to,
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are ideals, modules and algebras, for which the results are already well-known.
For example, what we call standard bases for algebras are known as canonical
subalgebra bases or SAGBI bases in the literature. Our main application, stan-
dard bases for left–right tangent spaces, is surely new. It should be easy to adapt
the approach to other situations as well.

For example, the tangent space used by Golubitsky and Schaeffer [GS85] of
unfoldings g(x, λ), where x ∈ R and λ ∈ R, consists of all germs of the form

(1.10) a(x, λ)g + b(x, λ)
∂g

∂x
+ c(λ)

∂g

∂λ
.

Here a, b, c are arbitrary functions, and note that c does not depend on x. Because
of this, this tangent space is not an ideal in the ring of functions in x, λ. In [GS85],
the codimension of the vector space (1.10) is computed by noting that one may
restrict to the space of truncated formal power series, for a suitable truncation
degree, reducing the question to linear algebra. The standard map approach is
a systematic and efficient method for solving this linear algebra problem.

1.4 Outline

This work is split into two parts. In Part I we discuss the two reduction methods
for Hamiltonian systems considered here, and apply the algorithmic methods to
compute exact bifurcation curves in original coordinates,comparing these with
numerically obtained phase pictures. The dynamical system we consider is a
two-degree-of-freedom spring–pendulum around 1 : 2 resonance. We decided to
focus on one specific system, around a single resonance that can be analyzed by
both methods, in order to make comparisons. The methods are general, however,
and throughout generality is retained in the formulations as much as possible.

After these applications, the theory behind these computations is developed
in Part II. Much well-known material is summarized in some detail, such as
Hamiltonian mechanics, Birkhoff normal forms and singularity theory. We retain
an algorithmic focus throughout, but especially in Chap. 4 about Birkhoff normal
forms, and Chaps. 6 and 7 about Kas and Schlessinger’s algorithm and the
infinitesimal stability equation. We now give a short overview for each chapter.

Chapter 2 deals with the planar reduction method, involving first Birkhoff
normalization, then a symmetry reduction to the plane using the S1 normal form
symmetry, and subsequently planar Z2-equivariant singularity theory. A versal
model of the planar unfolding is computed, with its bifurcation curves, which are
pulled back to the original parameter space and compared to numerical results.
Basically, this follows our paper [BHLV98].

Chapter 3 deals with the energy–momentum map method. This too starts
with a Birkhoff normalization, but then it immediately applies singularity theory
to the energy–momentum map, with equivalences defined by left–right transfor-
mations. Again a versal model is computed, its bifurcation diagram pulled back,
and results compared to numerical pictures.
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Chapter 4 summarizes some Hamiltonian mechanics and the Birkhoff nor-
mal form. We quote Birkhoff’s original result, as well as more modern version
which allows normalization around resonances. In line with the algorithmic em-
phasis we make a comparison between several algorithms for calculating the
Birkhoff normal form, and propose one of our own.

Chapter 5 introduces the necessary singularity theory. As explained before,
we use both right-transformations as well as left–right transformations. To ex-
plain the ideas we first give the finite-dimensional version, with a smooth Lie
group acting on a smooth manifold. Then we quote analogous results for the case
of smooth reparametrizations acting on function spaces, where technical compli-
cations show up that necessitate the use of the Mather–Malgrange preparation
theorem. In this chapter we prove some smooth results, but this is not given
great emphasis as in the applications we always use truncated formal power se-
ries. However, the results are important in order to show these finite expansions
are indeed the ‘shadow’ or ‘projection’ or something ‘really out there’ in the
form of smooth transformations.

Chapter 6 develops the standard map approach to Gröbner bases. Motiva-
tion for this approach has been given in this introduction, and is provided by
Chap. 7 which applies the results obtained here. The chapter starts with a quick
overview of Gröbner basis, in a slightly different perspective facilitating the step
to more general situations. We proceed to give the abstract underpinnings of the
standard map approach, listing the properties and constructions involved, and
proving the standard map theorem 6.10. We proceed to prove the basic facts of
Gröbner bases using this approach, and doing the same for canonical subalgebra
bases and a few others, culminating in the standard basis theorem for left–right
tangent spaces as used in the energy–momentum reduction method.

Chapter 7 shows how to combine Kas and Schlessinger’s algorithm and the
results from the previous chapter to perform the calculations of Chaps. 2 and 3.
For the planar reduction method this is straightforward, and has been published
in [BHLV98]. The complications for the energy–momentum reduction method are
twofold. Most of the complications are related to the algebraic structure of the
left–right tangent space, and are dealt with in Chap. 6. The other complication
is technical in nature: The calculation of the tangent space involves a reduction
from maps to R2 to functions, and to complete the calculation this reduction
has to be undone. This involves reading the story of Chap. 3 backwards, and
results in a long calculation.
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