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10 Decoherence in Quantum Spin Systems
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Abstract. Computer simulations of decoherence in quantum spin systems require
the solution of the time-dependent Schrodinger equation for interacting guantum
spin systems over extended periods of time. We use exact diagonalization, the
Chebyshev polynomial technique, four Suzuki-formula algorithms, and the short-
iterative-Lanczos method to solve a simple model for decoherence of a quantum spin
system by an environment consisting of quantum spins, and compare advantages
and limitations of different algorithms.

10.1 Introduction

The description of a quantum spin system (below referred to as a central spin
systern (CSS)) interacting with its gquantum environment (bath) is among
the most fundamental problems of theoretical physics. Even if the energy ox-
change between the CSS and the bath is absent (no dissipation}, the system-
bath interaction still strongly affects the motion of the CSS due to a loss
of phase coherence between different eigenstates of the central system. This
many-body quantum phenomenon is commonly called decoherence.

Decoherence is fundamental for quantum measurement theory [1-3] and
for condensed matter physics; it can suppress the tunneling of defects in
crystals (4], spin tunneling in magnetic molecules and nanoparticles [5], or
can destroy the Kondo effect in a dissipationless manner [6]. Decoherence
is of particular relevance for quantum computation since the loss of phase
relations between different states of the quantum computer may result in an
accimmulation of errors and may prevent the computer from working correctly
[7]. A detailed theoretical understanding of decoherence would definitely help
to alleviate this fundamental problem.

Most theoretical studies of decoherence are based on a model of a single
spin interacting with a bath of bosons [4]. This model is too simple in the
context of e.e. quantum computation or tunneling in magnetic molecules.
Extensive studies of many-spin central systems interacting with other types
of environment, such as a bath of nuclear spins [3], are needed.

A many-spin system interacting with a bath ol quantum spins presenis
a fairly complex many-body quantum problem, and numerical simulation is
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an indispensable tool for investigating the long-time dynamics of a decohered
CSS. One of the most reliable approaches is to model directly the quantum
motion of the whole system (CSS plus bath) by solving the corresponding
time-dependent Schrodinger equation (TDSE). For such simulations, the nu-
merical algorithms that solve the TDSE should be (1) munerically stable (i.e.
conserve the norm of the wave function) for all integration times ol interest,
(2) sufliciently accurate and allow for controlled inecrease of the accuracy

(e.g. to rule out that the loss of phase coherence is due to poor accuracy,
rounding errors ete. ), (3) efficient in terms of memory and CPU use, in par-
ticular for large spin systems. Below we compare three different numerical
techniques that have the potential to meet these requirernents: four Suzuki-
formula algorithms [8-13], a Chebyshev polynomial techuique [14-17], and
the short-iterative-Lanczos method [15, 18 20].

10.2 Model and Algorithms

Consider the simple-looking but non-trivial model defined by the Hamiltonian

I
= -}[}(S| + 5‘2\}"2 + Z -}n.I-u.'{Sl | SZJ" I\H}ll

ri=1|

The €SS (87,.5,), where S§; = S5 = 1/2, is coupled to L bath spins {I,}
(1, = 1/2) by a Heisenberg exchange interactions {.J, }. The initial states of
the spins {1, } are assumed to be random and uncorrelated. For the initial
state of the CSS we take the state with one spin up and the other spin down.
We are interested in the time evolution of the magnetization of one of the
CSS spins, e.g. (S7(1)).

A nice feature of the model (10.1} is that if all J,, = .f then, in the large
L limit, (S7(t)) can be calculated exactly [21]:

(S:(1)) = %[1 F2(1— L% )e B2 cos 200 — It (10.2)
The result (10.2) exhibits an interesting feature: initially, the amplitude of
the magnetization rapidly decays to zero, then increases again and becomes
constant (1/6) as £ —» nc [21]. This is similar to the two-step decoherence
process discovered earlier [22] and can be understood from simple physical
arguments [21]. The model (10.1) captures some non-trivial aspects of deco-
herence, and provides a simple test to compare various algorithms for solving
the TDSE under conditions that are rather demanding from the point of view
ol alzorithmic, memory and CPU requirements. We now discuss four different
approaches to solve the TDSE for models such as (10.1).
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Ezact Diagonalization (ILD) is the most straightforward approach. Standard
library routines can be used to compute all eigenvalues and eigenvectors of
the D x D matrix H (D = 2572 denotes the dimension of the Hilbert space
spanned by the states of the L+2 spins 1/2). The initial state is represented as
a superposition of eigenvectors, and the wave function 4:(#) is obtained by two
matrix-vector multiplications of length 1 and a phase-shift operation on a
vector, In practice, the amount of memory needed to store the D> D elements
of the eigenvectors limits the application of this approach to problems with
of the order of 10000, which corresponds to systems with about 14 S = 1/2
spins. Memory and CPU time of the ED algorithm scale as D% and D?
respectively.

Suzuki Product-formula Algorvithms (SP) are based on the approximation

—ir AR : e H L2 T H i /2
e f"”%bg('?'}:(' f.TH|_,2‘““ i HJ,,2‘.,‘ i H,.__Z‘”( iT ..

where

- i 1, .

i=1

We consider two different decompositions that can be implemented efficiently:
The original pair-product split-up [8, 11] in which f7; contains all contribu-
tions of a particular pair of spins, and a XYZ decomposition in which we
break np the Hamiltonian according to the z, y and z components of the
spin operators [13]. Us(7) is the building block for the fourth-order-in-time
approximation

e (7) = Us(am)Us(ar)Us((1 — da)m)Us(aT)Us(aT)
where a — 1/(4 — 4Y3) [10]. The error on the wave function is bounded as
e~ (0) — UL O)] < cutr”

where + = m7 and ¢, is positive constant. By construction, all these algo-
rithms conserve the norm of the wave function and, as a consequence are un-
conditionally stable [9]. These time-stepping algorithms advance the state of
the quantum system by small time steps 7 (7| H | << 1) and work equally well
if the Hamiltonian contains couplings to time-dependent external fields [13].
For a fixed acenracy, memory and CPU time of the n-th order SP algorithm
scales as D and "D respectively

The Chebyshev Polynomial Algorithm (CP) [14-17] uses the identity

i
U(t) = Jim |G+ 237 (0 H YT )| #0).
. k=1

The polynomials T3, (X)) are deflined by the recursion
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Tra (X W (0) = —2i X T (X)W(0) + Th_1 (X)W(0)
for
k>1. To(X)w(0)=w(0) and T (X)#(0) = —iXW¥(0).

Using standard 14-digit arithmetic, all Bessel functions [Ji(2) arc zero to
machine precision if k > K = |z| + 100 = [¢/[|[H]| + 100 and therefore the
Chebyshev polynomial approximation to W(f) is accurate to machine preci-
sion also (up to small rounding errors). Although the CP algorithm is not
unconditionally stable, it is so accurate that it can safely be used for time
stepping (also with very large time steps). Note that once ¢ has been fixed,
the CP algorithm cannot be used to generate reliable information for shorter
times. As K is linear in f. the computation time required to reach a time f
increases lincarly with t (and D). This linear dependence on t (and the very
high accuracy) suggests that the Chebyshev polynomial algorithm may be
the method of choice if we want the solution of the TDSE for a few {very
long) times [17]. Memory and CPU time of the CP algorithm scale as D and
tD respectively (K < D for most problems of interest).

The Short lterative Lanczos Algorithm (SIL) [15,18 20] is based on the ap-
proximation
e ””E{f o f__—':..—!’;\,- H iy r i

where Py is the projector on the N-dimensional subspace spanned by the
vectors (W, H¥, ..., HY 1@}, We calculate ¢ TP IPNAp hy penerating the
orthogonal Lanczos vectors in the usnal manner [23], and nse exact diag-
onalization of the resulting N x N tri-diagonal matrix for time propaga-
tion [15,18,19]. Clearly e PN HPx g pmitary and hence the method is -
conditionally stable. The accuracy of this algorithm depends both on the
order N and the state W [15,18,19]. In exact arithmetic,

e T = lJim e

N—oo

!Jll‘i!rl.i.
vT N ,\.w‘

but in practice, the loss of orthogonality during the Lanczos procedure 23]
limits the order N and the time step 7 that can be used without introdue-
ing spurious eigenvalues [23]. Furthermore, we require N < [) because the
memory needed to store the eigenvectors (and/or all Lanczos vectors) is pro-
portional to N2. Tn practice, the low-order SIL algorithm may not work well
if ¥ contains contributions from many eigenstates of H with very different
energies, becanse it is unlikely that all these eigenvalues will be present in
Py [T Py (for small N'). Memory and CPU time of the SIL algorithm scale as
D and N?Dt/7 respectively. In general, N increases with 7 in a non-trivial,
problem dependent manner.
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Method Error CPU-time

O
ED MP 6739.1

SP-Pair (I/;) 026x10°°% 26
SP-Pair ([74) 042x107% 9.6

SP-XYZ (I72) 0.97 x 107! 1.1

SP-XYZ (Liy) 0.23 =10 * 5.6

cp MP 5.0

o s 10 15 SIL (N=5) 020x107° 683
\ SIL (N=10) MP 1378

Fig. 10.1. Left: Magnetization {S§(f)} as a function of time as obtained by numer
ical simulation of two central spins interacting with a bath of L. = 10 spins. The
parameters of model (10.1) are Jy = 8, Ji = 0.128. Except for the CP algorithm,
a time step 7 = 0.05 was used. Right: Comparison of the efficiency of various al-
gorithms to solve the TDSE, for the case of the data shown at the left. The entry
SMP” denotes “machine precision”™. CPU times as measured on a Windows 2000
Athlon XP 1900+ system

10.3 Numerical Tests

In Fig. 10.1, we show a typical simulation result for (S7(t]). as obtained by
the CP solution of the TDSE for model (10.1). The initial fast decay, and
subsequent reappearance of the oscillations is clearly present. Qualitatively
these results agree with the analytical (large L) solution (10.2). Also shown
is the error

||'1rfED[f = 2(]) — I}'."x(!, = 2(])!‘- ,

where X is one of the seven algorithms used. It is clear that SIL is not
competitive for this type of TDSE problem, as already anticipated above.
The fourth-order pair-approximation is close but still less efficient than the
CP algorithm, but the other SP algorithms are clearly not competitive. The
reason that the pair-approximation is performing fairly well in this case is
related to the form of the Hamiltonian (10.1). The present results support
our carlier finding [17] that the numerical simulation of decoherence in spin
svstems is most efliciently done in a two-step process: the CP algorithm can
be used to make a big leap in time, followed by the SP algorithm caleulation
to study the time dependence on a more detailed level. From a more general
perspective, to increase the confidence in numerical simulation results, it is
always good to have several different algorithms performing the same task.
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