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19 Solids from Time-Dependent Current DFT

P.L. de Boeij

19.1 Introduction

The description of the ground state of crystalline systems within density
functional theory, and of their response to external fields within the time-
dependent version of this theory, relies heavily on the use of periodic bound-
ary conditions. As a model for the bulk part of the system one considers a
large region containing N elementary unit cells. Then, while imposing con-
straints that ensure the single-valuedness and periodicity of the wave function
at the boundary, one considers the limit of infinite N to derive properties for
the macroscopic samples. In this treatment, one implicitly assumes that the
Hohenberg-Kohn theorem [Hohenberg 1964] and the Kohn-Sham approach
[Kohn 1965], and their time-dependent equivalents derived by Runge and
Gross [Runge 1984], apply separately to the bulk part of the system. This
implies that effects caused by density changes at the outer surface, which are
artificially removed in this periodic boundary approach, can be neglected.
However, this can not be justified as these effects are real. For example,
when a real system is perturbed by an external electric field, there will be a
macroscopic response: a current density will (momentarily) be induced in the
bulk with a nonzero average. By virtue of the continuity relation, this uniform
component corresponds to a density change at the outer surface, but not to a
density change inside the bulk. The density change at the surface gives rise to
a macroscopic screening field, which can not be described as a functional of
the bulk density alone [Gonze 1995b, Gonze 1997b]. Implicit in the periodic
boundary treatment of the density functional approach is therefore that the
system remains macroscopically unpolarized: charges at the surfaces should
be compensated and no uniform external field may be present. While these
conditions can be met for the ground-state description, similar assumptions
may become problematic in the time-dependent case, where charge may be
exchanged between surface and bulk regions, and where the bulk may become
polarized. For isotropic systems some of these difficulties can be circumvented
within the density functional approach by making use of the relation between
the density-density response function and the trace of the current-current
response function [Onida 2002, Kim 2002b, Kim 2002a, Nozières 1999]. How-
ever, for anisotropic materials this relation does not provide enough informa-
tion to extract all components of the screening field. The induced polarization
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can of course be described as functional of the current density in the bulk.
This is the first reason to consider the use of the periodic boundary approach
within the framework of time-dependent current density functional theory
(TDCDFT). In this approach, the particle density is replaced by the particle
current density as the fundamental quantity [Vignale 1996, Gross 1996] (see
Chap. 5), which is allowed based on the observation by Ghosh and Dhara
[Dhara 1987, Ghosh 1988] that the Runge-Gross theorems can be extended
to systems subjected to general time-dependent electromagnetic fields. An
additional bonus is that, within this more general treatment, we can look at
the response to transverse fields. In the traditional density formulation, only
the response to longitudinal fields can be considered, since only purely longi-
tudinal fields can be described by the scalar potentials entering this theory.

There is a second important reason to consider using the current for-
mulation for extended systems. While TDDFT is mostly used within the
adiabatic local density approximation (ALDA), it has become clear that in
extended systems nonlocal exchange-correlation effects can be very impor-
tant [Kim 2002b, Kim 2002a, Sottile 2003, Adragna 2003]. In TDCDFT an
approach to go beyond the ALDA is possible if one includes such long range
exchange-correlation effects in the effective vector potential Axc(r, t). Vignale
and Kohn [Vignale 1996, Vignale 1998] derived such a form by studying the
dynamic response of a weakly inhomogeneous electron gas. They showed that
in first order a dynamical exchange-correlation functional can be formulated
in terms of the current density that is nonlocal in time but still local in space.
Van Faassen et al. [van Faassen 2002, van Faassen 2003a] indeed showed that
the inclusion of the Vignale-Kohn functional in TDCDFT calculations gives
greatly improved polarizabilities for π-conjugated polymers in which similar
surface effects occur [van Gisbergen 1999b].

In this chapter we show how intrinsic, i.e., material properties, can be
obtained and how extrinsic, i.e., size and shape dependent effects, can effec-
tively be removed from the computational scheme. The result of this analysis
is that a macroscopic component of the current-density appears as an extra
degree of freedom, which is not uniquely fixed by the lattice periodic density.
A natural way to treat the periodic systems is now obtained by changing
the basic dynamical variable from the time-dependent density to the induced
current-density. Observable quantities, like for instance the induced macro-
scopic polarization, can then be given in closed form as current functionals.
The response to both longitudinal and transverse fields is treated in this
unified approach. We will give the linear response formulation for the result-
ing time-dependent Kohn-Sham system, and show how (non)-adiabatic den-
sity and current-density dependent exchange-correlation functionals can be
included.
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19.2 Surface and Macroscopic Bulk Effects

First we examine the time-dependent Hartree potential, defined for a finite
system as

vH(r, t) =
∫

d3r′
n(r′, t)
|r − r′| . (19.1)

For extended crystalline systems we want to separate the surface and sample-
shape dependent contributions to this potential from the bulk intrinsic parts.
This separation is however not so trivial. We start by writing the contri-
butions from the surface (S) and the bulk regions (B = ∪iVi) separately,

vH(r, t) =
∫

S

dσ′ n(r′, t)
|r − r′| +

∑

i

∫

Vi

d3r′
n(r′, t)
|r − r′| . (19.2)

Ideally we would like to consider only the bulk part for an infinite periodic
lattice, by extending the sum over unit cells (Vi) to infinity, while effec-
tively removing the surface part. However, the result of this procedure is not
uniquely defined. This is easily understood by using a multipole expansion
for the contribution of each cell. While the potential of an order-n multipole
decays asymptotically at a distance R as 1/Rn+1, the number of such con-
tributions in the lattice sum grows as R2. As result, the lattice sum diverges
for the monopole moment, and a sample-shape dependence arises due to the
truncation at the boundary between bulk and surface of the conditionally
convergent lattice sums for the dipole and quadrupole moments. Only for
higher order moments the lattice sums do converge uniquely. Fortunately,
the shape dependent terms can be isolated and removed if we proceed in
the following way. First we write the density in the bulk region as a Fourier
integral,

n(r, t) =
∫

d3q nq(r, t)eiq·r , (19.3)

where the functions nq(r, t) are lattice periodic, and the vector q is restricted
to the first Brillouin zone. We will now treat each q-component of the density
individually, and introduce the following excess quantity,

∆v(r, t) =
∑

i

∫
d3q ∆vq,i(r, t)eiq·r , (19.4)

which represents the potential of a background formed by plain monopole,
dipole, and quadrupole density waves,

∆vq,i(r, t) =
∫

Vi

d3r′ eiq·(r′−r) ×


µq(t) +
∑

α

µq,α(t)
∂

∂r′α
+

1
2

∑

αβ

µq,αβ(t)
∂2

∂r′α∂r
′
β



 1
|r − r′| . (19.5)
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Here we worked out the full contraction of the rank-n tensors µq,(n)(t) and
the order-n derivative ∂n/∂r′n. The uniform densities µq,(n)(t) have now to
give for each cell the same three lowest order terms in the multipole expan-
sion as the corresponding q-component of the real density. This ensures that
the shape dependence of the potential of the excess densities is identical to
that of the real density. Combining the contributions of all bulk cells and in-
tegrating by parts using Green’s integral theorem, the resulting contribution
to the excess potential (19.4) can also be represented using a plain monopole
density wave in the bulk in combination with a charge and dipole layer at the
boundary between bulk and surface. We can now remove the shape depen-
dence and get a model-independent bulk potential by subtracting the excess
potential from the bulk contribution,

vH, mic(r, t) =
∫

B

d3r′
n(r′, t)
|r − r′| −∆v(r, t) . (19.6)

This potential gives the microscopic variation in the bulk and is completely
determined by the bulk density. It is well-defined and model independent:
the value obtained does not depend on the particular choice for the unit cell
of the periodic system or for the origin. The remaining contribution of the
bulk is combined with the surface part of the potential and hence contains
all shape-dependent parts,

vH, mac(r, t) =
∫

S

dσ′ n(r′, t)
|r − r′| + ∆v(r, t) , (19.7)

This macroscopic part of the Hartree potential has to be added to the true
external potential, and acts as an “externally” determined perturbing poten-
tial for the bulk system. The bulk part of the system may now be treated
using the periodic boundary approach if only the microscopic part of the
Hartree term, as given in (19.6) is retained. In addition, it will be convenient,
and for q = 0 even necessary, to represent the macroscopic potential in the
bulk using a macroscopic longitudinal electric field,

Emac(r, t) = ∇vext(r, t) + ∇vH, mac(r, t) . (19.8)

This field can be chosen to satisfy the same periodic boundary conditions,
even though the corresponding macroscopic potential will then violate these.
The construction of the microscopic and macroscopic contributions is de-
picted in Fig. 19.1.

One of the properties of interest is the induced macroscopic polarization,
which is defined as the time-integral of the induced macroscopic current den-
sity jmac(r, t),

Pmac(r, t) = −
∫ t

t0

dt′ jmac(r, t′) . (19.9)

For an isotropic system in a longitudinal external field the induced current
will be longitudinal as well. For a finite system, the longitudinal part of the
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µuniform   
sample

Eext convergent sum

Emac

surface

bulk
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Vmic

Fig. 19.1. The construction of the microscopic and macroscopic contributions to
the Hartree potential

current density can be obtained by integrating the continuity equation,

∇ · jL(r, t) +
∂

∂t
n(r, t) = 0, with jL(∞, t) = 0 . (19.10)

This gives the following density functional for the finite systems,

jL(r, t) =
1
4π

∇ ∂

∂t

∫
d3r′

n(r′, t)
|r − r′| . (19.11)

If we want to identify surface and shape-dependent contributions we will
encounter the same problems as with the Hartree potential. We again need
to introduce an excess contribution,

∆jL(r, t) =
1
4π

∇ ∂

∂t
∆v(r, t) , (19.12)

with ∆v(r, t) given by (19.4), which allows us to unambiguously define a
microscopic longitudinal current density in the bulk,

jL, mic(r, t) =
1
4π

∇ ∂

∂t

{∫

B

d3r′
n(r′, t)
|r − r′| −∆v(r, t)

}
. (19.13)

This part contains exactly the same information as the microscopic part of
the time-dependent density. The remaining macroscopic part of the current
density contains all shape dependent and surface contributions to the longi-
tudinal current in the bulk,

jL, mac(r, t) =
1
4π

∇ ∂

∂t

{∫

S

d3r′
n(r′, t)
|r − r′| + ∆v(r, t)

}
. (19.14)
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The macroscopic longitudinal current density is therefore a measure for the
combination of the macroscopic density changes in the bulk with the den-
sity changes in the surface region, and it is therefore complementary to the
microscopic bulk density. Inserting the above expression in (19.9) gives in
combination with (19.7) and (19.8) the well known relation

Eext(r, t) = Emac(r, t) + 4πPmac(r, t) . (19.15)

In the linear response regime, the macroscopic polarization of the bulk is
related to the macroscopic electric field rather than to the externally applied
field, via what is called the constitutive equation,

Pmac(r, t) =
∫ t

t0

dt′
∫

d3r′ χ(r − r′, t− t′) · Emac(r′, t′) . (19.16)

This equation defines the material property called the electric susceptibility
χ(r − r′, t− t′). As the constitutive equation takes the form of a convolution
it is more convenient to work with the Fourier transform χ(q, ω) from which
also the macroscopic dielectric function can be derived,

ε(q, ω) = 1 + 4πχ(q, ω) . (19.17)

In general χ(q, ω) and ε(q, ω) are tensors, which transform as scalars in
isotropic systems. One of the aims of the application of TDCDFT to the
solids is to calculate these response properties.

19.3 The Time-Dependent Current Density
Functional Approach

For finite systems, and for a given initial state, the Runge-Gross theorem
[Runge 1984] ensures a one-to-one mapping between the time-dependent den-
sity and the time-dependent external potential. As first step in the original
proof of this theorem, invertibility is established for the mapping from exter-
nal potentials to v-representable currents. This is done by using the equation
of motion for the current density, without having to refer explicitly to the
boundary of the system. To arrive at a one-to-one relation with the time-
dependent density, however, one needs to invoke explicitly the finiteness of
the system. This second step becomes problematic for the periodic boundary
approach [Maitra 2003a].

We have to conclude that, in the periodic-boundary formulation, the mi-
croscopic bulk density and microscopic bulk potential are not sufficient, and
that the complementary information about the surface region that is con-
tained in jL, mac(r, t) and EL, mac(r, t) has to be included in the descrip-
tion. The justification of the application of the Runge-Gross theorem in the
periodic-boundary approach will depend on the existence of a similar exact
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mapping between on one hand the accessible densities in the bulk region, in
this case the microscopic density in combination with the macroscopic lon-
gitudinal current density, and on the other hand the external potentials for
this region, i.e., the combination of the microscopic external potential with
the macroscopic longitudinal electric field,

{nmic(r, t), jL, mac(r, t)}bulk ↔ {vext, mic(r, t),EL, mac(r, t)}bulk . (19.18)

Equivalently, one could work with the full longitudinal current density jL(r, t)
and the total external longitudinal field EL(r, t). An alternative route is
formed by obtaining the current density within the current density func-
tional framework [Dhara 1987, Ghosh 1988, Vignale 1996, Gross 1996]. In this
framework, one allows for both longitudinal and transverse external fields,
and as basic variable one uses the total current density rather than just the
density. We will allow for the more general case of anisotropic systems and/or
transverse fields, for which we will assume the existence of an exact mapping
between the current density and the total external electric field for the bulk
region, similar to the Ghosh-Dhara theorem for finite systems. For the static
limit [Gonze 1995b, Gonze 1997b, Martin 1997a], and for a one-dimensional
circular geometry, this can indeed be established [Maitra 2003a], but no proof
exists for the validity of these theorems in the general periodic boundary case.
We will assume these theorems to hold true in the remainder.

In the corresponding time-dependent Kohn-Sham scheme, the true den-
sity and current density of the interacting system are reproduced in a non-
interacting system with effective scalar and vector potentials, via

n(r, t) =
N∑

j=1

|ϕj(r, t)|2 , (19.19)

and,

j(r, t) =
N∑

j=1

�{−iϕ∗
j (r, t)∇ϕj(r, t)} +

1
c
n(r, t)AKS(r, t) . (19.20)

The first and second term on the right-hand side are the paramagnetic and
diamagnetic currents respectively. Here we merely need to assume that the
density and current density are non-interacting A-representable, which is a
much weaker condition than the non-interacting v-representability, which is
indeed problematic for the current density [D’Agosta 2005a]. The orbitals are
solutions of the time-dependent Kohn-Sham equations,

i
∂ϕj(r, t)

∂t
=

{
1
2

∣∣∣∣−i∇ +
1
c
AKS(r, t)

∣∣∣∣
2

+ vKS, mic(r, t)

}
ϕj(r, t) , (19.21)

where periodic boundary constraints are imposed on the orbitals and on
the effective potentials, i.e., the gauge is chosen to be compatible with the
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periodic boundary assumption [Kootstra 2000a, Kootstra 2000b]. At t0 we
assume that j(r, t0) = 0 and AKS(r, t0) = 0, and that vKS, mic(r, t0) is the
effective scalar potential giving the initial density n(r, t0), which we choose
to be the lattice periodic ground state density nGS(r). The initial potential is
then uniquely determined by virtue of the Hohenberg-Kohn. This potential
will be lattice periodic, and we can choose the orbitals to be initially of Bloch
form. For t > t0 the effective time-dependent potentials are uniquely deter-
mined, apart from an arbitrary gauge transform, by the exact time-dependent
density and current density as result of the Ghosh-Dhara theorem. To com-
ply with the periodic boundary constraints, the gauge is chosen such that
only microscopic Hartree and exhange-correlation contributions are included
in the time-dependent scalar potential,

vKS, mic(r, t) = vext, mic(r, t) + vHxc,mic[n, j](r, t) , (19.22)

while all macroscopic terms are included in the effective vector potential,

AKS(r, t) = −c

∫ t

t0

dt′Emac(r, t′) + Axc[n, j](r, t) . (19.23)

The effective vector potential will in general contain exchange-correlation
contributions to ensure that, apart from the true time-dependent density,
also the true current density is reproduced in the Kohn-Sham system.

In order to obtain the dielectric function of the crystal, we will consider
the linear response to a given macroscopic electric field Emac(r, t), which is
q- and ω-dependent [Romaniello 2005],

Emac(r, t) = E(q, ω) ei(q·r−ωt) + c.c. (19.24)

The induced density, and similarly the induced current density, can now be
given in the following form,

δn(r, t) = δnq(r, ω)ei(q·r−ωt) + c.c. , (19.25)

and
δj(r, t) = δjq(r, ω)ei(q·r−ωt) + c.c. , (19.26)

in which δnq(r, ω) and δjq(r, ω) are lattice periodic. By using first order
perturbation theory, the induced density is readily expressed in terms of
the unperturbed Bloch orbitals ϕik(r), orbital energies εik, and occupation
numbers nik. One arrives at,

δnq(r, ω) =
1
Nk

∑

k

∑

i,j

ϕ∗
ik(r)n̂qϕjk+q(r)Pijk(q, ω) , (19.27)

where n̂q = e−iq·r, and

Pijk(q, ω) =
nik − njk+q

εik − εjk+q + ω + iη
〈ϕjk+q|δĥ(q, ω)|ϕik〉 . (19.28)
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Here the positive infinitesimal η ensures causality. We have introduced the
following short-hand notation for the first-order self-consistent perturbation,

δĥ(q, ω) =
−i
2c

[
δAKS(r, ω) · ∇ −∇† · δAKS(r, ω)

]
+δvKS, mic(r, ω) , (19.29)

where the perturbing effective scalar and vector potentials, δvKS, mic(r, ω)
and δAKS(r, ω), are linear in the macroscopic field Emac(q, ω).

For the induced current-density we can derive expressions along the same
lines as used for the induced density. We get two contributions to the in-
duced current density, δjq(r, ω) = δjp

q (r, ω) + δjd
q (r, ω). The paramagnetic

component can be obtained from,

δjp
q (r, ω) =

1
Nk

∑

k

∑

ij

ϕ∗
ik(r)ĵqϕjk+q(r)Pijk(q, ω) , (19.30)

where ĵq = −i (e−iq·r∇−∇†e−iq·r)/2. The diamagnetic contribution to the
induced current-density is much simpler and is given by,

δjd
q (r, ω) =

1
c
n(r)e−iq·rδAKS(r, ω) . (19.31)

In practical calculations it is important to consider the relation between the
diamagnetic and paramagnetic contributions, as they tend to cancel one
another at small frequency due to the longitudinal conductivity sum rule
[Nozières 1999].

Like in the ordinary linear response scheme of TDDFT, we need to ob-
tain the perturbing potentials self-consistently. The contribution of the in-
duced density to the microscopic Hartree potential is evaluated using (19.6),
while the macroscopic contribution is by construction already contained in
the macroscopic electric field. We can choose to retain only terms linear in
the induced density in the microscopic exchange-correlation parts of the first-
order scalar potential and gauge transform all other terms to the exchange-
correlation vector potential. In this way we keep contact with the traditional
TDDFT description. For the first-order exchange-correlation scalar potential
we write,

δvxc, mic(r, ω) =
∫

d3r′ fxc(r, r′, ω) δn(r′, ω) , (19.32)

in which we explicitly assume that the integration over space is converging,
i.e., that the kernel is short-range. Here we use the adiabatic local density
approximation for this exchange-correlation kernel,

fxc(r, r′, ω) = δ(r − r′)
dvLDA

xc (n)
dn

∣∣∣∣
n=n(r)

. (19.33)

All other exchange-correlation effects are included in the exchange-correlation
vector potential. As the induced density is a (local) functional of the induced
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current-density through the continuity equation, we can formally write this
vector potential as a pure functional of the induced current-density,

δAxc, α(r, ω) =
∫

d3r′
∑

β

fxc, αβ(r, r′, ω) · δjβ(r′, ω) . (19.34)

It remains to find good approximations for this exchange-correlation contri-
bution. If it is neglected altogether, we retrieve the adiabatic local density
approximation. Here we consider a functional proposed by Vignale and Kohn,
which takes the form of a viscoelastic field [Vignale 1997] (see Chap. 5),

iω
c
δAxc, α(r, ω) = − 1

nGS(r)

∑

β

∂

∂rβ
σxc, αβ(r, ω) , (19.35)

where σxc(r, ω) is a tensor field which has the structure of a symmetric vis-
coelastic stress tensor,

σxc, αβ = η̃xc

(
∂uα

∂rβ
+

∂uβ

∂rα
− 2

3
δαβ∇ · u

)
+ ζ̃δαβ∇ · u . (19.36)

Here the velocity field u(r, ω) is given by

u(r, ω) =
δj(r, ω)
nGS(r)

. (19.37)

The coefficients η̃xc(r, ω) and ζ̃xc(r, ω) are directly related to the transverse
and longitudinal response coefficients fxc, T(n, ω) and fxc, L(n, ω) of the ho-
mogeneous electron gas, which are evaluated at the local density n(r).

19.4 Application to Solids

The lattice-periodicity of δjq(r, ω) allows to calculate the macroscopic in-
duced polarization as,

Pmac(q, ω) = χ(q, ω) · Emac(q, ω) =
−i
Vω

∫

V
d3r′ δjq(r′, ω) , (19.38)

where the average is taken over the unit cell. This result immediately gives
the electric susceptibility χ(q, ω), and hence the dielectric function ε(q, ω).

We have studied the static dielectric constant in the ALDA approximation
for several binary compounds [Kootstra 2000a, Kootstra 2000b]. In Figs. 19.2
and 19.3 we have compiled the results for the static dielectric constants ε∞
for this large set of compounds. The materials have been grouped according
to the chemical groups of the constituent elements as well as to their lattice
type. For the whole range of materials we see a fairly good agreement of
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Fig. 19.4. The imaginary part of the calculated dielectric function for silicon using
the ALDA and Vignale-Kohn (see text) functionals. The experimental data have
been obtained from [Lautenschlager 1987]

the TDCDFT-ALDA calculations and experiments, with deviations in the
order of about 5–10%. Even though the LDA yields Kohn-Sham gaps that
are smaller than the experimental (fundamental) gap by about 40–50% we
do not systematically overestimate the dielectric constant.

We have also obtained the dielectric function ε(ω) within the ALDA. For
the most studied elemental material, silicon, the imaginary part is depicted in
Fig. 19.4. Usually two distinct deficiencies are visible in the calculated absorp-
tion spectrum. First the spectrum appears to be shifted to lower frequency
over about 0.5 eV, and second the first peak appears merely as a shoulder in
the calculation, whereas the second peak is too high. The first shortcoming
can be understood since the ALDA response calculation is performed starting
from the LDA ground state. As most spectral features can be attributed to
the van Hove-type singularities in the joint-density of states, this is in keep-
ing with the general trend found in LDA calculations: orbital energies lead
to gaps between occupied and virtual states smaller than the observed exci-
tation gaps. The calculated position of the absorption onset coincides with
the vertical Kohn-Sham energy gap of 2.6 eV. We thus get a more-or-less
uniformly shifted absorption spectrum. This is observed for other materials
too. When a uniform shift is applied to the calculated spectra by using a
so-called scissors shift, one usually gets a good correspondence between the
measured and calculated spectral features [Levine 1989]. By starting from
an improved ground state description using an exact-exchange calculation,
Kim and Görling [Kim 2002b, Kim 2002a] could indeed correctly describe the
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absorption edge for silicon. To get the results in Fig. 19.4 we used a scissors
shift.

The incorrect description of the first peak within the ALDA, which
arises from excitonic effects [Reining 2002, Rohlfing 1998a, Benedict 1998a,
Benedict 1998b], is caused by the local nature of the time-dependent den-
sity functional, which cannot describe nonlocal effects like the electron-hole
attraction. Improved approximate expressions for the exchange-correlation
kernel, for instance using the time-dependent exact exchange kernel [Kim
2002b, Kim 2002a], lead to a considerably improved intensity for the exci-
ton peak in silicon. Similar results can be obtained by using a form based
on the Kohn-Sham Green’s function obtained from a perturbation expan-
sion to first order in the screened interaction, in combination with Kohn-
Sham orbital energy corrections [Sottile 2003, Adragna 2003]. Guided by the
form of the Vignale-Kohn functional, and by retaining only macroscopic con-
tributions, a simple polarization dependent exchange-correlation functional
[Gonze 1995b, Gonze 1997b, Martin 1997a] could be derived. Using an addi-
tional empirical prefactor, the spectra could be improved using such a polar-
ization functional [de Boeij 2001]. However, inclusion of the full Vignale-Kohn
functional leads to much worse results unless a much reduced transverse ker-
nel fxc, T(n, ω) is used to calculate the viscoelastic coefficients [Berger 2006].
In particular, this is true for the static limit of the transverse kernel, which
was found to determine to a large extent the strength of the screening field,
and hence the absorption spectrum of π-conjugated polyacetylene polymers
[Berger 2005]. There a better correspondence with experiment and other cal-
culations were found with reduced values for the static transverse kernel.
Figure 19.4 shows the slightly improved result for the case in which the fre-
quency dependence of this kernel is treated [Qian 2002, Qian 2003] but with
a vanishing static limit. The static response reduces then again to the ALDA
results. We do not observe a correct description of the exciton peak, but the
second peak is reduced in strength considerably.

19.5 Conclusion

The description of extended systems using periodic boundary conditions
within a density-functional framework is most naturally done using the time-
dependent current-density functional approach. In this scheme information
about changes of the density in the surface region that may lead to macro-
scopic screening effects, but that may not show up in the periodic density in
the bulk region, is contained in the (macroscopic) current-density in the bulk.
Even if the periodic boundary assumption is used within the current func-
tional approach, the exchange-correlation contributions to the potentials may
still depend on these surface effects as the potentials are now functionals of
the current density. Other than the traditional density formulation, the cur-
rent functional approach is able to describe the response of not only isotropic
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but also anisotropic systems to both transverse and longitudinal fields. At the
same time, the nonlocal density dependence that is inherent to the nonadi-
abatic exchange-correlation functionals in the traditional density functional
approach can be formulated using a local current-density dependent con-
tribution to the Kohn-Sham vector potential. The common adiabatic local
density approximation yields on average reasonable static dielectric constants
for nonmetallic compounds, but the frequency dependent dielectric functions
exhibit several deficiencies which can be attributed to the incorrect descrip-
tion of the exchange-correlation effects by the presently available density and
current functionals.


