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13 Solution of the Linear-Response Equations
in a Basis Set

P.L. de Boeij

13.1 Introduction

The induced density can be obtained within a linear response calculation
by solving a coupled set of equations, in which the first order change in
the density δn(r, ω) follows from the first order change in the self-consistent
potential δvKS(r, ω) and vice versa. Here the induced density can be given
as,

δn(r, ω) =
∫

d3r′ χKS(r, r′, ω)δvKS(r′, ω) , (13.1)

in which the Kohn-Sham response kernel can be expressed in terms of the
unperturbed orbital functions ϕi(r), orbital energies εi, and occupation num-
bers ni, using the Lehmann representation,

χKS(r, r′, ω) =
∑

i,j

(nj − ni)
ϕ∗

j (r)ϕi(r)ϕ∗
i (r

′)ϕj(r′)
εj − εi + ω + iη

. (13.2)

Here each term is a product of factors that depend only on either r or r′. The
positive infinitesimal η ensures causality of the response function. The first-
order change in the self-consistent potential is given in terms of the induced
density by,

δvKS(r, ω) = δvext(r, ω) +
∫

d3r′
{

1
|r − r′| + fxc(r, r′, ω)

}
δn(r′, ω) ,

(13.3)
in which we recognize the usual external, Hartree, and exchange-correlation
terms. Together with (13.1) and (13.2) this relation completes the self-
consistent field scheme for the linear response.

13.2 An Expansion in Orbital Products

By inserting the Lehmann expansion in (13.1), it becomes clear that the
factorization of the terms allows to directly integrate the product of the
response function and the first order change in the potential. The induced
density can then be written as an expansion in terms of orbital products,
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δn(r, ω) =
∑

i,j

δPij(ω)ϕ∗
j (r)ϕi(r) , (13.4)

in which the expansion coefficients follow from

δPij(ω) =
nj − ni

εj − εi + ω + iη

∫
d3r ϕ∗

i (r)δvKS(r, ω)ϕj(r) . (13.5)

These coefficients need to be evaluated only for combinations of occupied and
virtual orbitals, i.e., for nj �= ni, and only for those combinations for which
the integrals do not vanish on the basis of symmetry alone. Moreover, we
only need to consider positive ω by using the relation δPij(ω) = δP ∗

ji(−ω).
The self-consistent field equations can now in principle be solved directly

in terms of these expansion coefficients δPij(ω). Inserting expansion (13.4)
for the induced density in the expression for the induced potential (13.3),
and using the result to evaluate the integrals in (13.5), this yields a closed
expression, given by

∑

k,l

{
(εj − εi + ω)δikδjl − (nj − ni)KHxc

ij,kl(ω)
}
δPkl(ω)

= (nj − ni)
∫

d3r ϕ∗
i (r)δvext(r, ω)ϕj(r) . (13.6)

In this linear set of equations a coupling matrix KHxc
ij,kl(ω) enters. It has two

contributions being the Hartree term, which is defined as

KH
ij,kl(ω) =

∫
d3r

∫
d3r′ ϕ∗

i (r)ϕj(r)
1

|r − r′|ϕ
∗
k(r′)ϕl(r′) , (13.7)

and the exchange-correlation contribution, which is defined as

Kxc
ij,kl(ω) =

∫
d3r

∫
d3r′ ϕ∗

i (r)ϕj(r)fxc(r, r′, ω)ϕ∗
k(r′)ϕl(r′) . (13.8)

13.3 An Efficient Solution Scheme

A first (näıve) estimate for the work needed to solve (13.6) is the amount
of elementary operations needed to evaluate all coupling matrix elements,
which amounts to a number of floating point operations in the order of
N6

atomn̄2
occn̄

2
unoccn̄

2
grid. Here Natom is the number of atoms in the system,

and n̄occ respectively n̄unocc are the average number of occupied and unoc-
cupied states per atom. n̄grid is the average number of grid points per atom
needed to do the integrations. This N6

atom-scaling becomes prohibitive for
larger systems.

Rather then solving the set of linear equations (13.6) directly, a more effi-
cient scheme is possible by using an iterative algorithm [Olsen 1988] like the
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conjugate gradient method or the direct inversion of the iterative subspace
[Pulay 1980, Pulay 1982] technique. Such methods involve only repeated cal-
culations of the matrix-vector products, which can be performed rather effi-
ciently due to the factorized form of the coupling matrix elements. As initial
vector one often chooses to use the uncoupled solution obtained by setting
KHxc(ω) = 0, i.e.,

δP
(0)
ij (ω) =

nj − ni

εj − εi + ω + iη

∫
d3r ϕ∗

i (r)δvext(r, ω)ϕj(r) . (13.9)

In the iteration procedure more accurate vectors are constructed in each
cycle, until a converged result is obtained. Usually the number of iterations
needed is much smaller than the dimension of the linear set of equations that
we want to solve.

The matrix-vector multiplications are best performed in three consecutive
steps. As first step the induced density is constructed on a grid of points using
the expansion in (13.4). Since the molecular orbitals are often expressed as a
linear combination of atom-centered basis functions φµ(r),

ϕi(r) =
∑

µ

cµiφµ(r − Rµ) , (13.10)

one can use a similar expansion in terms of the atom-centered functions,

δn(r, ω) =
∑

ν,µ

φ∗
ν(r − Rν)φµ(r − Rµ)δP̄µν(ω) . (13.11)

The new coefficients follow from δP̄µν(ω) =
∑

ij c
∗
µicνjδPij(ω). One can

choose to work with the total density, or to break it up into atom-pair den-
sities, and treat each of them in the following steps separately. These atom-
pair densities are obtained by grouping the terms in (13.11) per atom pair.
These densities are well-localized in space and their expansions contain only
few numbers of µ, ν-combinations with non-vanishing overlap, as the atomic
functions have exponential tails. This will facilitate the use of distance ef-
fects needed to get a linear scaling of the computational cost with increasing
system size.

The next step is to evaluate the Coulomb potential for this density. This
can be done most efficiently [Baerends 1973] by introducing an auxiliary set
of (atom-centered) functions, fλ(r), for which the Coulomb integrals can be
evaluated analytically,

fC
λ (r) =

∫
d3r′

fλ(r′)
|r − r′| . (13.12)

By fitting the density using these functions, i.e., by expressing the density
as δn(r, ω) ≈

∑
λ c̄λfλ(r − Rλ) where the coefficients can be obtained by

minimizing the total fit error, one gets
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δvH(r, ω) =
∑

λ

c̄λf
C
λ (r − Rλ) . (13.13)

In order not to introduce spurious long-range terms, it is important to use a
constrained fit, in which the charge of the fitted density is exactly reproduced
in the fit. If the orbital functions are expressed on a basis of Gaussian-type
functions, additional fit functions are not needed, as the atom-pair density can
be expressed exactly in terms of Gaussian functions, for which the potentials
are known analytically.

The exchange correlation contribution to the potential can now also be
evaluated. For the simplest adiabatic local density approximation, for in-
stance, we get,

δvxc(r, ω) =
∫

d3r′ fALDA
xc (r, r′, ω) δn(r′, ω)

=
d2(nexc(n))

dn2

∣∣∣∣
nGS(r)

δn(r, ω) , (13.14)

in which exc(n) is the exchange-correlation energy density of the homogeneous
electron gas.

The third and final step is the evaluation of the matrix elements of the
induced potential,

∑

k,l

KHxc
ij,kl(ω)δPkl(ω) =

∫
d3r ϕ∗

i (r)δvHxc(r, ω)ϕj(r)

=
∑

µ,ν

c∗µicνj

∫
d3r φ∗

µ(r − Rµ)δvHxc(r, ω)φν(r − Rν) . (13.15)

Here too, distance effects can be used by introducing the expansion of the
orbitals in terms of atom-centered basis functions.

Each of the steps above involves at maximum in the order of N3
atomn̄occ

n̄unoccn̄grid floating point operations in case one chooses to work with the
total induced density. If instead one uses the atom-pair approach, this fac-
tor can be modified to Natomn̄pairsn̄

2
basn̄grid for the evaluation of the density

and the matrix elements, and to N2
atomn̄fitn̄grid for the potential. Here the

construction of the potential is one order in Natom more expensive as the po-
tential functions fC

λ (r) decay only slowly, and need to be evaluated at all grid
points in the system. By expressing the long tails in a multipole expansion
this unfavorable scaling can be cured [Greengard 1987, White 1994]. Here
n̄pairs is the average number of pairs that have overlapping basis functions,
n̄bas and n̄fit are the average number of basis and fit functions per atom, and
n̄grid is the average number of grid points needed per atom(-pair). Although
the atom-pair approach will become more favorable for larger systems, the
total density approach can fully utilize the symmetry. Not only can whole
blocks of matrix elements be known in advance to vanish due to symmetry,
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the grid needed to integrate the remaining terms can also be reduced to cover
the irreducible wedge only. In the atom-pair approach symmetry can in gen-
eral only be used to identify equivalent integrals. A careful analysis of the
prefactors involved is needed to determine which approach is more favorable.
This will depend on many technical details of the implementation and on the
size and symmetry of the system under study.




