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Chapter 7 Application of the Theory in
Car License Plate Recognition

In this chapter the morphological DT−CNNdesign method is demonstrated in
a practical application: a system for the automatic recognition of car license
plates. An overview of the recognition system is given and themodules that are
most suitable for a fast parallel implemention by DT−CNNsare identified. For
these modules morphological solutions are defined and transformed into DT−
CNN templates. No extensive simulations are required, since the designedDT−
CNNsystems are correct by construction. Themodules that are less suitable for
implementation with DT−CNNsare presented superficially, just for the sake of
completeness. The aimof this chapter is not to show that thesemodules perform
better or worse than similar systems found in literature and the examples given
in this chapter are merely illustrative.

This chapter is based on [14][15][16][19][81][82][83][84].

7.1 Introduction

The automatic identification of vehicles by the content of their license plate is an important issue
in private transport applications such as travel−timemeasurement [56], parking lot traffic man-
agement [37], toll collection [30], speed−limitenforcement [93], and identification of stolen cars
[55]. The use of a Car License Plate Recognition (CLPR) system in a real−time/lifeenvironment
frequently puts high demands on the contents of the image and the throughput of the system. For
example, the use as a law enforcement system requires that the car and a reasonable amount of
environment is visible in the image. This implies that the license plate occupies only a small part
of the overall image (see Fig. 7.1). In low−endmarkets like the parking market where low−cost
cameras are the only option, low resolution images and difficult lighting conditions will make
the task of automatic license plate recognition a real challenge.

The limited resolution of the recorded characters together with dirt (dust, flies), screws and bolts
(used to attach the plate to the car), overhanging car parts (tow bar mounted too high), etc. make
the development of a reliable optical character recognizer (OCR) very complicated. Many of the
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approaches common in conventional OCR systems [77] turn out to be useless for CLPR. It is
therefore necessary to build a system that is capable of exploiting both rules defined by the license
plate registration regulation like syntactical, geometrical and font descriptions (explicit knowl-
edge) [101] and features present in the measurement of the OCR task at hand (implicit knowl-
edge) [1].

Besides obtaining high recognition rates for the complex situations described above, system
throughput is also a decisive factor in the successfulness of a commercial CLPR system. Many
applications demand response times well below 0.3 seconds per image. This time requirement
applies not only to the standardCCTV image streams, but also to the larger 3000× 2000 law−en-
forcement type images. Meeting these timing requirements poses a real challenge to the design
of a CLPR system.

Figure 7.1: Some input examples for the CLPR system. The images are recorded by
a police−operated monitoring system. Each image contains 768x567 pixels with

8−bit gray scale information per pixel.

TheCLPRsystemdescribed in this chapter has come a longway since the initial attempts in 1994.
In the first release of the systemwe have focused on the exploitation of fuzzy logic to reason from
the registration regulations [83]. In [84] the character recognition is pushed onwards. In [19] we
identify themost time−criticalparts of the system and use the theory developed in [17] to replace
them by formally derived DT−CNNrealizations. In [15][16] the system is extended with mixed
expert systems and the recognition performance obtained through extensive testing is compared
to the recognition performances of alternative systems found in literature. This chapter presents
an overview of the above work and some of the work that has been done by DACOLIAN B.V.
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(of which the author of this dissertation is one of the founders). The company has invested over
20man−yearsto developoneof theworld’s best libraries for the high−yieldrecognition of vehicle
license plates.

Fig. 7.2 gives a schematic overview of the CLPR system. It consists of four main units: a plate
segmenter, a character isolator, a character recognizer and a syntactical/geometrical analyzer.
The segmenter determines the location of the license plate based on structural features and some
weak size constraints. The large amount of data that has to be inspected (the whole image) and
the space invariant character of the problem makes this unit a primary candidate for realization
by DT−CNNs.The extracted plate is passed to the character isolator, which determines the loca-
tion of the characters on the plate. The character isolator is largely realized by DT−CNNs. The
isolated characters are passed to the character recognizer,whichuses amixture of differentmulti−
layer perceptrons (MLPs) and a template matcher to read the character. Finally, the syntactical/
geometrical analyzer checks whether the candidate characters returned by the recognizer satisfy
the syntactic and geometrical rules that exist in a certain country or state. If these rules are not
satisfied, or one of the characters is unrecognizable, the image is rejected.

Plate
Segmenter

Character
Isolator

Character
Recognizer

Syntactical/
Geometrical
Analyzer

Input Image Registration Number

Figure 7.2: Outline of the Car License Plate Recognition System.
The gray shaded modules use DT−CNNs.

The organization of this chapter is as follows. Section 7.2 discusses license plate segmentation.
Section 7.3 describes the character isolator. Thenwe focus our attention on feature−basedclassi-
fiers in Section 7.4, followed by Section 7.5, in which the syntactical/geometrical analyzer is de-
scribed.

7.2 Segmentation

One may conclude from the images in Fig. 7.1 that a fixed location for the license plate within
the overall image cannot be assumed.Virtually each pixelmay belong to a license plate and needs
therefore to be processed. In order to reduce processing time it makes sense to reduce the area
of interest as soon as possible.Only those parts of the input image that fulfill a set of “license plate
properties” need to be considered for further inspection.

Several authors have proposed solutions for the license plate segmentation problem
[4][55][84][90]. All of these methods incorporate a number of features of the license plate like
for example: “a license plate is a rectangular area on the car, which contains a number of dark
characters”. Inspired by this kind of explicit knowledge, two features (grayness and texture),
have been appointed to each pixel in the image. In [84] we use fuzzymembership values between
0 and 1 for both features. The large amount of pixels that has to be processed in this segmentation
phase make it very beneficial to use algorithms and techniques that are potential suitable for a
parallel implementation. This observation is for example subscribed by [2] in which two−dimen-



120

sional cellular automata are used to calculate horizontal gradients and to cluster “plate” pixels.
Other researches also use spatial invariant operations, but do not focus on their parallel imple-
mentation possibilities. For example in [9] and [40] morphological operations are used to elimi-
nate noise from the input images.More sophisticateduseofmorphological techniques that extend
beyond noise elimination are described in [53] and [105].

To obtain a real increase in throughput we have to parallelize the complete segmentation phase
and not only a part of it. The research described in this thesis has shown thatmorphological speci-
fications can be realized by fast parallel DT−CNNs.With this in mind and timing requirements
as a driving quality attribute,wehave designed a segmentation algorithm that is almost complete-
ly based on morphological operations.

The first step of the segmentation unit is based on the work we describe in [84]. The use of DT−
CNNs forces us to represent grayness and texture by crisp values−1 and 1 (see [19]). Agrayness
of 1 indicates that the pixel has a gray−value that corresponds to the color of a license plate. A
grayness of −1 indicates that the color of the pixel is outside the range of gray−values that is
common for license plates.

The appropriate ranges for grayness and texture are derived statistically. For the grayness feature,
the gray−values of pixels taken from a large number of exemplary license plates are used to
construct a frequency table (the number of occurrences of each gray−value in each license plate).
Based on this table, the value range is derived. For our particular system set−up, the gray−value
of most license plate pixels turned out to be in the range [0.10, 0.57]. For the texture feature the
histogram is constructed by applying a 3× 3 Sobel operator to each license plate pixel. Most
license plate pixels turned out to have an absolute Sobel−value larger than 0.73.

The range for grayness has an upper bound and a lower bound. This requires a two step evalua-
tion. In the first step all pixels of the input image (Fig. 7.3a) with a grayness value larger than
0.1 are extracted (Fig. 7.3b). In the second step all pixels with a grayness value larger than 0.57
are deleted from the output (Fig. 7.3c). The template for grayness evaluation is given by:

T1=<


0
0
0

0
0
0

0
0
0

,
0
0
0

0
1
0

0
0
0

,− 0.1> T2=<



0
0
0

0
1
0

0
0
0

,
0
0
0

0
−1
0

0
0
0

,− 0.43>

Note that not all pixels on the plate are black in Fig. 7.3c. Particularly, this is the case for pixels
that are part of a character. Such pixels are not selected since their grayness value is too low. One
way to solve this problem is lowering the lower boundof the grayness range.However, thismakes
the grayness feature less specific or evenworthless. Another way to solve the problem is tomake
all white pixels black that are close to one or more black pixels. Morphologically, such an opera-
tion is described by a dilation. We have chosen a 7× 7 block structuring element to dilate the
grayness image (Fig. 7.3d). The choice of the SE is based on the assumption that each character
consists of a set of narrow lines that have a width of less than 7 pixels. According to Section 3.6
this dilation is implemented by a DT−CNNwith a 7× 7 template. To avoid the use of templates
larger than 3× 3, the 7× 7 SE is decomposed into three successive dilationswith a 3× 3 block
SE before a mapping onto DT−CNNs is constructed (see Chapter 5). After decomposition in the
morphological domain, the following additional DT−CNNssteps are obtained for the evaluation
of the grayness feature:



121

T3..5=<


1
1
1

1
1
1

1
1
1

,
0
0
0

0
0
0

0
0
0

, 8>

For texture evaluation the Sobel operator ismapped ontoDT−CNNs.Section 3.6 shows thatmor-
phological operators can be mapped onto DT−CNNs. For traditional filter operations (possibly
combinedwith traditional set operations) a similarmapping can be constructed. For example, the
combination of a filter operation with a mask M and a threshold operation with threshold T is
implemented by a DT−CNNwith a control template that is equivalent to the transpose of M, a
zero feedback, and a bias that is equivalent to−T. The proof is left as an exercise for the reader.
This rule is used to derive the template for the first step, in which all pixels with a Sobel−value
larger than 0.73 (dark/light transitions) are extracted. In the second step all pixels with a Sobel−
value smaller than−0.73 (light/dark transitions) are added (Fig. 7.3e), resulting in the following
DT−CNN for extracting texture pixels.

T1=<


0
0
0

0
0
0

0
0
0

,
1
2
1

0
0
0

−1
−2
−1

,− 0.73> T2=<



0
0
0

0
9
0

0
0
0

,
−1
−2
−1

0
0
0

1
2
1

,− 0.73>

Notice that for edge/texture detection we have constructed a two−layer Sobel DT−CNN instead
of using the traditional single−layerLaplaceDT−CNN.In practice Sobel is often preferred to La-
place since Laplace is a second−derivative operator, which makes it more sensitive to noise.

Similar to the initial grayness image, the texture image also needs to be dilated. To this purpose
we dilate with a 15× 9 block SE, which can be decomposed into a sequential dilation with four
3× 3 block SEs and three 3× 1 block SEs. A DT−CNN implementation of this operator se-
quence (except for the last dilation) is given by:

T3..5=<


1
1
1

1
1
1

1
1
1

,
0
0
0

0
0
0

0
0
0

, 8> T6..8=<



0
1
0

0
1
0

0
1
0

,
0
0
0

0
0
0

0
0
0

, 2>

The reason for not mapping the last dilation is that it can be combined with the following opera-
tion. Remember that a part of the image is very likely to be a license plate if it has the appropriate
grayness and the appropriate texture. The combined feature is obtained by computing the inter-
section of the grayness and the texture image (Fig. 7.3g). To this purpose the grayness image is
stored on the input of the secondDT−CNN.The next step thisDT−CNNhas to perform is dilating
the output (the postponed dilation) and computing its intersectionwith the input image. Substitut-
ing the 3× 1 block SE into the generic template definition of U  (V A) (see Section 4.7)
gives:

T9=<


0
1
0

0
1
0

0
1
0

,
0
0
0

0
3
0

0
0
0

,−1>
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7.3: Extraction of potential license plates: (a) input image, (b) pixels that are
bright enough, (c) grayness feature, (d) dilated grayness feature, (e) texture feature,
(f) dilated texture feature, (g) combination of texture and grayness, (h) plates after

deletion of undersized and oversized components.

Notice that Fig. 7.3g still contains a number of objects, that are not license plates. Apparently,
objects like trees and parts of the crash barrier have the same characteristics as license plates. To
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further reduce the number of non−plate components, we use a number of weak size constraints
as described below. After applying these constraints the image in Fig. 7.3h is obtained.

The fourweak size constraints thatwe use to reduce the set of potential license plates are themini-
mum/maximum height and the minimum/maximum width. In our case, the width of a plate is at
least 91 pixels while the height is at least 13 pixels. The rejection of smaller plates at this stage
turns out to have no effect on the overall performance of the system, since these plates are unread-
able anyway due to the limited character resolution. The maximumwidth of a plate is 171 pixels
and the maximum height is 61. The size constraints can be computed in parallel by four DT−
CNNs. First a selector image is computed for each size constraint (Fig. 7.4a−d). Such an image
contains pixels at positionswhere a horizontal/vertical bar of a certain length fits in the black parts
of the image given in Fig. 7.3g. For example, theminimumheight selector contains a pixel every-
where a vertical bar of height 13 fits in the image. Morphologically, a size selector is found by
means of the erosion operator with the appropriate SE. The minimum height selector is found
by an erosion with a 1× 13 block SE. Similar to dilation, erosion with a 1× 13 block SE is
decomposed into six erosions with a 1× 3 block SE. Using the generic template for erosion the
following six−step DT−CNN is found:

T1=<


0
0
0

0
0
0

0
0
0

,
0
0
0

1
1
1

0
0
0

,−2> T2..6=<



0
0
0

1
1
1

0
0
0

,
0
0
0

0
0
0

0
0
0

,−2>

The first step dilates the image that is stored on the input (Fig. 7.3g), while the following five
steps perform the additional dilations on the output. After computing the selection, all objects
need to be restored (Fig. 7.4e). To this purpose each object in the output is enlarged (dilated with
a 3× 3 cross SE) step by step. In order to avoid adding pixels that are not part of the object in
the original image (that is still on the input), an intersection with the input is required after each
step. Substituting the 3× 3 cross SE into the generic template that evaluates (V A) U (U is
the input image, V is the current output image output, A is the SE), the following restoration tem-
plate sequence is obtained:

T7..k=<


0
1
0

1
1
1

0
1
0

,
0
0
0

0
5
0

0
0
0

,−1>

where k is the time step atwhich the network has converged. The three other selectors are restored
in an identical way (Fig. 7.4f−h). Finally restoration results need to be combined. The set of ob-
jects that are large enough to be a license plate is found by computing the intersection of Fig. 7.4e
and Fig. 7.4g. Then, all too large objects are deleted by subtracting image Fig. 7.4f and Fig. 7.4h
from this result. The set subtraction (F(U,V)= V \U) to obtain the objects that have the ap-
propriate width and the one needed to extract objects with the appropriate height are merged
through the union (V U) in a three−layer DT−CNN.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: Processing size constraints: (a) selector for objects that satisfy the mini-
mum height condition, (b) selector for objects that do not satisfy the maximum
height condition, (c) minimum width selector, (d) maximum width selector, (e)−(h)

corresponding selections.

7.3 Character Isolation

The second module of the CLPR system is responsible for the isolation of the individual charac-
ters on the license plate. This module is implemented by a single DT−CNNwith a time varying
template, and a very small part of traditional programming. A morphological parallelizable ap-
proach to solve this task is given in [109]. The authors propose the use of grayscale morphology
to isolate the characters on the plate. Inspired by these ideas, we transformed the grayscale algo-
rithms to a similar binary version. As a consequence, we need an explicit binarization step to
transform the input image to an initial binary image. To this purpose two classes of adaptive bina-
rization methods are apparent from literature [104]. Global adaptive binarization calculates a
single threshold value for the entire image. Pixels having a gray level darker than the threshold
value are labeled black, otherwise white. In contrast, local adaptive binarizationmethods com-
pute a threshold for each pixel in the image on the basis of information contained in a small neigh-
borhood of the pixel. Especially for images with heavy luminance variations, local adaptive
methods perform better than global methods. In [15] we have confirmed this observation by giv-
ing some comparative examples. Here we use global adaptive thresholding since its spatial in-
variant character makes it more suitable for implementation by DT−CNNs.

Thresholding is performed by a single−layer DT−CNN,whose input is the gray−scale image of
the cut−out plate (Fig. 7.5a) and whose bias is the threshold value t as computed by the global
adaptive binarization method:

T1=<


0
0
0

0
0
0

0
0
0

,
0
0
0

0
1
0

0
0
0

,−t>
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The result after this first step is shown in Fig. 7.5b. Before performing a connected component
search, the black area around the plate is removed. To this purpose we first determine what this
area is (Fig 7.5e). Since characters are thin objects, characters can be deleted from the image by
a so−called morphological opening. This is an erosion with a certain SE followed by a dilation
with the same SE. Again, the choice of the SE, a 7× 7 block SE, depends on the thickness of
the characters. After decomposition and DT−CNN transformation the following six additional
DT−CNN steps are obtained:

T2..4=<


1
1
1

1
1
1

1
1
1

,
0
0
0

0
0
0

0
0
0

,−8> T5..7=<



1
1
1

1
1
1

1
1
1

,
0
0
0

0
0
0

0
0
0

, 8>

The network output after time step 2 and time step 4 are shown in Fig. 7.5c and Fig. 7.5d respec-
tively. In time step 8, the binarized input image is stored on the network input and the components
on the plate are extracted (Fig. 7.5f) by subtracting the current output (F(U,V)= U \V ). The

template for this operation is given by T8=<


0
0
0

0
−1
0

0
0
0

,
0
0
0

0
1
0

0
0
0

,−1>.

After that, a rectangular hull extraction is performed (Fig. 7.5g). During this iterated process,
white pixels that have at least two black 4−neighbors are painted black each step, until the net-

work converges. According to [44], this template is given by T9..k=<


0
1
0

1
2
1

0
1
0

,
0
0
0

0
0
0

0
0
0

, 3>.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.5: Isolation of characters: (a) the input image, (b) the binarized image, (c)
the slightly eroded plate, (d) the plate after three erosions, (e) the result after three
dilations, (f) the intersection of (b) and the complement of (e), (g) the convex hull of
the components, (h) the selector of components that are large enough, (i) the set of

components that are large enough, (j) the extracted characters.

Finally a minimum height criterion is applied similar to one of the criteria used for license plate
segmentation. Since the minimum character height is 11 pixels, a height selector image is evalu-
ated by five successive erosions with a 1× 3 block structuring element (Fig. 7.5h). Restoration
of the objects is much easier than the restoration operation that is described in the previous sec-
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tion. Since all objects are rectangles, restoration is done by five dilations with a 1× 3 block
structuring element (Fig. 7.5i). Removal of boxes with a height less than 11 pixels is therefore
performed by the following ten time steps:

Tk+1..k+5=<


0
0
0

1
1
1

0
0
0

,
0
0
0

0
0
0

0
0
0

,−2> Tk+6..k+10=<



0
0
0

1
1
1

0
0
0

,
0
0
0

0
0
0

0
0
0

, 2>

The last step before characters are cut out and passed to the recognizer is a selection of the objects
that are centered around a (possibly slightly rotated) linewith almost equal height. Since it is very
hard (and probably impossible) to do this bymeans ofDT−CNNs,this last step is performedusing
traditional programming. Finally, the remaining set of objects is used to cut out the characters
from the original plate (Fig.7.5j).

7.4 Character Recognition

To recognize the characters, the isolated character images are transformed into a representation
such that a recognizer can see the differencemore easily. Presenting the image directly to a classi-
fier makes it hard to handle distorted images (as resulting from rotation, sizing and/or transla-
tion). Therefore, it is necessary to derive a set of features that is less sensitive to such irrelevant
variances. For character recognition awealth of feature extractionmethods can be found in litera-
ture. We have tested some of them on our particular data sets and found that the following three
methods gave satisfactory results:

S moments

S principal components analysis

S sideway projection

Given a feature vector produced by one of the above methods, the actual classification is done
by Multi−Layer Perceptrons (MLPs). The last classifier that we use is template matching. The
four classification techniques will be described in more detail in the next subsections. Finally,
we use a classifier combining scheme to combine the answers of the four individual classifiers
(see Fig. 7.6).

The reason that we use a model with multiple classifiers is that none of the above classification
strategies will achieve a 0% error at an acceptable recognition rate. This is for one reason caused
by the imperfection of the limited feature sets. The other reason is the balance between false ac-
ceptance and correct acceptance. When a classifier is not permitted to make false accepts, the
amount of rejects increases considerably. The motivation for using a combination of classifiers
is the observation that different classifiers potentially offer complementary recognition informa-
tion. Though the type of classifier models (MLPs) that are used in the first three classifiers are
identical, the potential differences in classifier behavior are implied by the differences in theway
the feature sets are constructed. Obviously, templatematching potentially has a different classifi-
cation behavior due to its different underlying evaluation model.
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derivation of
moments

derivation of
principal
components

derivation of
projection
features

moment−
based
neural net

PCA−based
neural net

projection−
based
neural net

binary image cut−out

classifier
combination
scheme

recognized character
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Figure 7.6: Schematic overview of the recognition module. Multiple neural network
classifiers (each operating on a different set of input features) and a template match-
er, are used in parallel. The sum−based classifier combination rule [60] produces

the final classification result.

There are numerous possible strategies of combining the results of the individual classifiers. For
a thorough overview the reader is referred to [60]. Based on experimental comparative tests the
authors of this article conclude that the sum rule outperforms all other combination schemes.
Since classifier combining is not the main issue here, we base our particular choice of the com-
bination rule on their findings. As an example, for the recognition of Swedish characters, the per-
formance curves for the (combination of) individual classifiers is shown in Fig. 7.7. In this graph
the percentage of correctly classified patterns is plotted against the percentage of incorrectly clas-
sified patterns. It is clear that the combination of classifiers is significantly better than the individ-
ual classifier. Finally, the performance curve of the combined classifier allows us tomake a trade−
off between false acceptance and correct acceptance. The actual recognition rate and error rate
are found by picking a point on this curve.
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Figure 7.7: Performance curves of the four individual classifiers and the
combined classifier. The combined classifier performs better than each of the

individual classifiers.

Moments

Moments are numeric characteristics of a distributed set of objects, measured relative to a point
of reference. They appear in various areas of research, such as in stochastics and mechanics. In
a grayscale image, moments are based on n pixels pi with a gray level mi and a distance ri be-
tween pi and a certain point of reference:

M=i=n
i=1
(mi× ri) (7−1)

In other words, a moment gives a measure of the internal structure. If the point of reference is
chosen at the heart of the image, the measure is called the central moment. The central moment
is invariant to the rotation and sizing of the segmented part. The impact of the different character
parts on the moment can be differentiated by raising the mass and distance contributions within
the formula to the powers p and q respectively, giving the definition of the (p,q)−ordermoment:

Mp,q=
i=n

i=1
(mi
p× riq) (7−2)

A large range (p,q)−ordermoments can be generated and therefore it is of interest to find which
combination will actually provide compoundmoments that support the recognition of the differ-
ent characters [54]. Thorough analysis of different combinations lead us to an optimal set of 16
(p,q)−ordermoments [15]. This particular set is a selection of the (p,q)−ordervariants proposed
in [91] and [103].
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Principal Component Analysis

Principal Component Analysis (PCA) [57][67] is a statistical method that determines an optimal
linear transformation y=Wx for a given input−vector x of a stationary stochastic process and
a specified dimension m of the output−vector y where W is the desired transformation matrix.
In pattern recognition and communication theory, the PCA is known as the Karhunen−Loéve or
Hotelling transform. The intention is to compress the information contained in the input data (i.e.
m< n) by exploiting statistical regularities. In fact, PCA transforms correlated input data into
a set of m statistically decorrelated features (or components), usually ordered according in de-
creasing information content.

The first principal component y1 is the normalized linear combination of the components of the
input data vector. It has on average the largest output variance. Similarly, the second principal
component y2 has on an average the largest variance among the directions orthogonal to the direc-
tion of y1. Then, the third principal component y3 is taken in the maximum variance direction
in the subspace perpendicular to the first two eigenvectors, and so on. Though seemingly com-
putationally elegant, the standard approach that uses a precomputed autocorrelationmatrix is im-
practical for large m. We use an adaptive learning algorithm to derive the 30 first principal com-
ponents from the input data.

Sideway Projection

A third way to quantify character images is by sideway projection [41]. A straightforward way
to accomplish this is by one−dimensionalcounting of black pixels. This can be viewed as related
to texture analysis, where next to this simple pixel−based information one soon takes recourse
to runs of similar pixels. An alternative can therefore be the distribution of runs of a specific
length in the character image. Most popular is the Connected Component Count, where one
counts the number of white/black traversion during the single line scan over the image. We use
four different features: horizontal projection, vertical projection, horizontal connected compo-
nent counts and vertical connected component counts. The features are based on the normalized
version of the binary character image. The characters are proportionally scaled to a height of 20
pixels using the nearest neighbor resampling method. Each feature is resampled to a vector of
8 values giving a 32 dimensional feature vector.

Template Matching

Templatematching is a technique that evaluates the similarity between an image and a set of refer-
ence images called templates. To this purpose, the normalized correlation is often used as the sim-
ilarity measure. For binary template matching, this measure is identical to the relative number
of pixel locations in which the image and the template are identical. The actual classification is
mostly done by the k−nearest neighbor method [29].

Template matching has two major problems to tackle. First, template matching is sensitive to
image distortions. Though license plates contain printed characters of a well−defined font, such
distortions are always present for example due to variations in the viewing angle, diffused light,
bent plates, screws and bolts that distort the view, and a limited image resolution. In other words,
the actual characters are not only translated, scaled and rotated in the view, but also distorted and
of low precision. One way to deal with such variations is not to use only the ideal templates, but
also a large number of distorted versions. Such templates are either obtained by generating the
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distorted images from the ideal ones by means of distortion models or extracting the templates
from real−life data. We have chosen for the latter option, using approximately 100 samples of
each character (some of them are shown in Fig 7.8). The samples are generated by subsequently
applying the plate segmenter and character isolator to a set of example input images and storing
the extracted binary character images.

Figure 7.8: Some examples of templates taken from real−life data.

This evidently implies a second problem. To recognize an image, it needs to be correlated with
all templates in the reference set. The computational costs are high, since each of such correla-
tions requires a number of bit comparisons that is equivalent to the number of pixels in the image/
template. We solve this problem by an incremental evaluation strategy. The strategy is based on
the observation that strongly correlated templateswill produce almost identicalmatch scores. For
a pair of templates and an image to bematched, the difference inmatch score is determined com-
pletely by the image pixels in which both templates differ. By an off−lineanalysis of the template
set (which is static), an optimal incremental derivation scheme can be determined. This scheme
is used at run−timeto determinewhether thematch score for a certain template should be evaluat-
ed from scratch (traditional correlation evaluation) or incrementally (use the match score of an
already evaluated template and update this score by investigating the image positions in which
both templates differ). After evaluating all match scores, the actual classification is done by se-
lecting the character with the highest occurrence in the 9 best matching templates (k−NN,with
k=9).

7.5 Syntactical and Geometrical Analysis

In the last step of the CLPR system the results of the character recognition module are checked
versus some syntactical and geometrical rules. The syntactical rules detect illegal combinations
of numerical and alpha−numerical characters. For some countries the syntactical rules are very
simple. For example, Brazilian license plates start with three letters followed by three or four dig-
its. The letter group anddigit group is separated by ahorizontal bar.Other countries like for exam-
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ple Germany have very complicated syntactical rules. This is the reasonwhy syntactical analysis
is performed by a generic syntactical engine that operates on a so−calledsyntax specification file.
For Canada, an example of such a file is shown Fig. 7.9.

CDN_PLATES > [ROOT][COUNTRY=CDN]{provinces};
provinces > {Ontario};

Ontario > {O_passenger} | {O_commercial} | {O_trailer};
O_passenger > {O_p_1997_cur} | {O_p_1986_1997} | {O_pre_1986};
O_p_1997_cur > A {L}{L}{L}{crown}{D}{D}{D} |

B {L}{L}{L}{crown}{D}{D}{D};
O_p_1986_1997 > {D}{D}{D}{crown}{L}{L}{L};
O_pre_1986 > {L}{L}{L}{crown}{D}{D}{D};

O_commercial > {L}{L}{D}{crown}{D}{D}{D} |
{D}{D}{D}{crown}{D}{L}{L};

O_trailer > {L}{D}{D}{crown}{D}{D}{D} |
{D}{D}{D}{crown}{D}{D}{L};

L > A|B|C|D|E|F|G|H|J|K|L|M|N|O|P|Q|R|S|T|V|W|X|Y|Z;
D > 0|1|2|3|4|5|6|7|8|9;
crown > [SEPARATOR];

Figure 7.9: Syntax specification file for Canada.

Besides the syntactical rules, each candidate license number should also satisfy a set of geometri-
cal rules in order to be marked as recognized. The geometrical rules take into account the spatial
requirements of the characters as defined by the official guidelines. For example, for Dutch li-
cense plates a specific left and right margin is defined for each character and the separating bar.
The space between a pair of consecutive characters on the plate is identical to the sum of the right
margin of the first character and left margin of the second character. Other countries like for ex-
ample France have less strict rules and allow variable spacing between characters.

7.6 Conclusions

In this chapter the theory introduced in the previous chapters has been applied to the development
of a Car License Plate Recognition (CLPR) system. We have shown that DT−CNNscan be suc-
cessfully used within the CLPR. Their parallel processing capabilities present the means for a
very fast image data reduction so that more time can be spent on the close inspection of image
regions that actually contain useful information. The system parts that are implemented by DT−
CNNsare the parts in the beginningof the recognition chain (segmenter an isolator). The spatially
invariant character and the large amount of information that has to be analyzed make these parts
the obvious candidates for the introduction of parallelism. The system contains several DT−
CNNs whose templates are partly constructed by combining the appropriate morphological op-
erations and traditional filter techniques. This approach of designing DT−CNNtemplates by al-
gebraic construction rather than by solving large sets of linear equations, allows high−levelimage
recognition tasks like ’finding a license plate’ to be easily expressed in terms of DT−CNNs.

Thematerial presented in this chapter is a summary of the research that has been previously pub-
lished by the author of this dissertation supplemented by the work that has been done by DACO-
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LIANB.V. (of which the author is one of the founders). The company has invested over 20man−
years of research to develop the IntradaALPR library. Currently, this library is capable of reading
license plates frommore than 30 countries under extreme external imaging conditions. Indepen-
dent tests have identified Intrada ALPR as one of the best available license plate recognition en-
gines in the world (see for example [10]). Typical recognition rates are 95% with an error rate
of less than 1%. Nowadays, instances of the library are usedworld−wide in application areas like
law enforcement, free−flow tolling and parking applications.




