

 University of Groningen

Software architecture analysis of usability
Folmer, Eelke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Folmer, E. (2005). Software architecture analysis of usability. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 02-06-2022

https://research.rug.nl/en/publications/251d3cd9-3a09-4514-86a2-3929264ffed8

Chapter 9

Experiences with SALUTA

Published as: Architecting for Usability; a Survey, Eelke Folmer, Jan Bosch, Submitted to the Journal

of Systems and Software, January 2005. A summary of this journal paper has been
accepted as a conference paper entitled "Cost Effective Development of Usable
Systems; Gaps between HCI and Software Architecture Design" at Fourteenth
International Conference on Information Systems Development - ISD´2005 Karlstad,
Sweden, 14-17 August, 2005

Abstract: Studies of software engineering projects show that a significant large part of the
maintenance costs of software systems is spent on dealing with usability issues. Fixing
usability problems during the later stages of development often proves to be costly as
some changes are not easily accommodated by the software architecture. These high
costs often prevent developers from meeting all the usability requirements. Explicit
evaluation of a software architecture for its support of usability is a tool to cost
effectively develop usable systems. Previously few techniques for architecture analysis
of usability existed. Based on our investigations into the relationship between usability
and software architecture and experiences with architecture analysis of usability, a
Scenario based Architecture Level UsabiliTy Analysis technique (SALUTA) was
developed. The contribution of this paper is that it provides experiences and problems
we encountered when conducting architecture analysis of usability at three industrial
case studies performed in the domain of web based enterprise systems. For each
experience, a problem description, examples, causes, solutions and research issues are
identified.

9.1 Introduction

One of the key problems with most of today’s software is that it does not meet its
quality requirements very well. In addition, it often proves hard to make the necessary
changes to a system to improve its quality. A reason for this is that many of the
necessary changes require changes to the system that cannot be easily accommodated
by its software architecture (Bosch, 2000), i.e. the fundamental organization of a
system embodied in its components, their relationships to each other and to the
environment and the principles guiding its design and evolution (IEEE, 1998).

The work in this paper is motivated by that this shortcoming also applies to usability.
Usability is increasingly recognized as an important consideration during software
development; however, many well-known software products suffer from usability
problems that cannot be repaired without major changes to the software architecture of
these products. Studies (Pressman, 1992, Landauer, 1995) confirm that a significant
large part of the maintenance costs of software systems is spent on dealing with
usability issues. A reason for these high costs is that most usability issues are only
detected during testing and deployment rather than during design and
implementation.

188 Experiences with SALUTA

This is caused by the following:

• (Usability) requirements are often weakly specified.

• Usability requirements engineering techniques often fail to capture all
requirements.

• (Usability) requirements frequently change during development and product
evolution.

As a result, a large number of change requests to improve usability are made after these
phases. Discovering requirements late is a problem inherent to all software
development which cannot be fully avoided. The real problem is that it often proves to
be hard and expensive to implement certain changes. Some usability improving
solutions such as adding undo, user profiles and visual consistency have for particular
application domains proven (Bass et al, 2001, Folmer et al, 2003) to be extremely hard
to retrofit during late stage development.

The level of usability is, to a certain extent, restricted by software architecture design.
However few software engineers and human computer interaction engineers are aware
of this constraint; as a result avoidable costly rework is frequently necessary. During
design different tradeoffs need to be made, for example between cost and quality. At a
certain point it becomes too expensive to fix certain usability problems.

The software architecture is the first product of the initial design activities that allows
analysis and discussion about different concerns. The goal of an architecture analysis
method is to understand and reason about the effect of design decisions on the quality
of the final system, at a time when it is still cheap to change these decisions. Software
architecture analysis of usability is a technique to come up with a software architecture
that allows for more “usability tuning” on the detailed design level, hence, preventing
part of the high costs incurred by adaptive (Swanson, 1976) maintenance activities once
the system has been implemented.

In (Folmer and Bosch, 2004) we provide an overview of usability evaluation
techniques. Unfortunately, no assessment techniques exist that explicitly focus on
analyzing an architecture's support for usability. Based upon successful experiences
(Lassing et al, 2002a) with scenario based assessment of maintainability, we developed
a Scenario based Architecture Level UsabiliTy Assessment technique (SALUTA)
(Folmer et al, 2004).

A method provides a structure for understanding and reasoning about how a design
decision may affect usability but it still requires an experienced engineer to determine
how an architecture can support usability. E.g. to assess for usability an analyst should
know whether usability improving mechanisms should be implemented during
architecture design. In order to make architecture design accessible to inexperienced
designers the relevant design knowledge concerning usability and software architecture
needs to be captured and described (Folmer and Bosch, 2004). In (Folmer et al, 2003)
we investigated the relationship between usability and software architecture. The result
of that research is captured in the software-architecture-usability (SAU) framework,
which consists of an integrated set of design solutions that in most cases have a positive
effect on usability but are difficult to retrofit into applications because they have
architectural impact.

Experiences with SALUTA 189

In (Folmer et al, 2004) we defined SALUTA which uses the SAU framework to analyze
a software architecture for its support of usability. We applied SALUTA at three
different case studies in the domain of web based enterprise systems (e.g. e-commerce-
, content management- and enterprise resource planning systems). During these case
studies several experiences were collected. The contribution of this paper is as follows:
it provides experiences and problems that we encountered when conducting
architecture analysis of usability. Suggestions are provided for solving or avoiding these
problems so organizations that want to conduct architecture analysis facing similar
problems may learn from our experiences.

The remainder of this paper is organized as follows. In the next section, the SAU
framework that we use for the analysis is presented. The steps of SALUTA are
described in section 9.3. Section 9.4 introduces the three cases and the assessment
results. Our experiences are described in section 9.5. Finally, related work is discussed
in section 9.6 and the paper is concluded in section 9.7.

9.2 The SAU Framework

A software architecture allows for early assessment of quality attributes (Kazman et al,
1998, Bosch, 2000). Specific relationships between software architecture entities (such
as - styles, -patterns, -fragments etc) and software quality (maintainability, reliability
and efficiency) have been described by several authors (Gamma et al 1995, Buschmann
et al, 1996, Bosch, 2000). Until recently (Bass et al, 2001, Folmer et al, 2003) such
relationships between usability and software architecture had not been described nor
investigated.

In (Folmer et al, 2003) we defined the SAU framework that expresses relationships
between Software Architecture and Usability. The SAU framework consists of an
integrated set of design solutions that have been identified in various cases in industry,
modern day software, and literature surveys (Folmer and Bosch, 2004). These
solutions are typically considered to improve usability but are difficult to retro-fit into
applications because these solutions require architectural support. The requirement of
architectural support has two aspects:

• Retrofit problem: Adding a certain solution has a structural impact. Such
solutions are often implemented as new architectural entities (such as
components, layers, objects etc) and relations between these entities or an
extension of old architectural entities. If a software architecture is already
implemented then changing or adding new entities to this structure during late
stage design is likely to affect many parts of the existing source code.

• Architectural support: Certain solutions such as providing visual consistency do
not necessarily require an extension or restructuring of the architecture. It is
possible to implement these otherwise for example by imposing a design rule on
the system that requires all screens to be visually consistent (which is a solution
that works if you only have a few screens). However this is not the most optimal
solution; visual consistency, for example, may be easily facilitated by the use of
a separation-of-data-from-presentation mechanism such as XML and XSLT (a
style sheet language for transforming XML documents). A template can be
defined that is used by all screens when the layout of a screen needs to be
modified only the template should be changed. In this case the best solution is

190 Experiences with SALUTA

also driven by other qualities such as the need to be able to modify screens
(modifiability).

For each of these design solutions we analyzed the effect on usability and the potential
architectural implications. The SAU framework consists of the following concepts:

9.2.1 Usability attributes

We needed to be able to measure usability; therefore the first step in investigating the
relationship was to decompose usability into usability attributes. A number attributes
have been selected from literature that appear to form the most common denominator
of existing notions of usability (Shackel, 1991, Hix and Hartson, 1993, Nielsen, 1993,
Preece et al, 1994, Wixon and Wilson, 1997, Shneiderman, 1998, Constantine and
Lockwood, 1999):

• Learnability - how quickly and easily users can begin to do productive work with
a system that is new to them, combined with the ease of remembering the way a
system must be operated.

• Efficiency of use - the number of tasks per unit time that the user can perform
using the system.

• Reliability in use - the error rate in using the system and the time it takes to
recover from errors.

• Satisfaction - the subjective opinions that users form when using the system.

9.2.2 Usability properties

As we needed some way to design for usability, for example by following certain
heuristics and design principles that researchers in the usability field have found to
have a direct positive influence on usability, a set of usability properties have been
identified from literature (Rubinstein and Hersh, 1984, Norman, 1988, Ravden and
Johnson, 1989, Polson and Lewis, 1990, Holcomb and Tharp, 1991, Hix and Hartson,
1993, Nielsen, 1993, ISO 9241-11, Shneiderman, 1998, Constantine and Lockwood,
1999). Properties are high-level design primitives that have a known effect on usability
and typically have some architectural implications. The usability property consistency
is presented in Table 52:

Table 52: Consistency
Intent: Users should not have to wonder whether different words, situations, or actions

mean the same thing. An essential design principle is that consistency should be
used within applications. Consistency might be provided in different ways:

• Visual consistency: user interface elements should be consistent in aspect and
structure.

• Functional consistency: the way to perform different tasks across the system
should be consistent, also with other similar systems, and even between
different kinds of applications in the same system.

• Evolutionary consistency: in the case of a software product family, consistency
over the products in the family is an important aspect.

Experiences with SALUTA 191

Usability
attributes
affected:

+ Learnability: consistency makes learning easier because concepts and actions
have to be learned only once, because next time the same concept or action is faced
in another part of the application, it is familiar.

+ Reliability: visual consistency increases perceived stability, which increases user
confidence in different new environments.

Example: Most applications for MS Windows conform to standards and conventions with
respect to e.g. menu layout (file, edit, view, …, help) and key-bindings.

9.2.3 Architecture sensitive usability patterns:

In order to be able to design an architecture that supports usability, a number of
architecture sensitive usability patterns have been identified that should be applied
during the design of a system’s software architecture, rather than during the detailed
design stage. Patterns and pattern languages for describing patterns are ways to
describe best practices, good designs, and capture experience in a way that it is possible
for others to reuse this experience. Our set of patterns has been identified from various
cases in industry, modern software, literature surveys (Shackel, 1991, Hix and Hartson,
1993, Nielsen, 1993, Preece et al, 1994, Wixon and Wilson, 1997, Shneiderman, 1998,
Constantine and Lockwood, 1999) as well as from existing usability pattern collections
(Brighton, 1998, Tidwell 1998, Welie and Trætteberg, 2000, PoInter, 2003).
We defined architecturally sensitive usability patterns with the purpose of capturing
design experience in a form that allows us to inform architectural design so we are able
to avoid retrofit problems. With our set of patterns, we have concentrated on capturing
the architectural considerations that must be taken into account when deciding to
implement the pattern. For some patterns however we do provide generic
implementation details in terms objects or classes or small application frameworks that
are needed for implementing the pattern. An excerpt of the multilevel undo pattern is
shown in Table 53:

Table 53: Multi-Level Undo
Problem Users do actions they later want reverse because they realized they made a mistake

or because they changed their mind.

Use when You are designing a desktop or web-based application where users can manage
information or create new artifacts. Typically, such systems include editors,
financial systems, graphical drawing packages, or development environments.
Such systems deal mostly with their own data and produce only few non-reversible
side-effects, like sending of an email within an email application. Undo is not
suitable for systems where the majority of actions is not reversible, for example,
workflow management systems or transaction systems in general.

Solution Maintain a list of user actions and allow users to reverse selected
actions.

Each 'action' the user does is recorded and added to a list. This list then becomes
the 'history of user actions' and users can reverse actions from the last done action
to the first one recorded.

Why Offering the possibility to always undo actions gives users a comforting feeling. It
helps the users feel that they are in control of the interaction rather than the other
way around. They can explore, make mistakes and easily go some steps back,
which facilitates learning the application's functionality. It also often eliminates
the need for annoying warning messages since most actions will not be permanent

Architectural
Considerations

There are basically two possible approaches to implementing Undo. The first is to
capture the entire state of the system after each user action. The second is to
capture only relative changes to the system's state. The first option is obviously
needlessly expensive in terms of memory usage and the second option is therefore
the one that is commonly used.

192 Experiences with SALUTA

Since changes are the result of an action, the implementation is based on using
Command objects that are then put on a stack. Each specific command is a
specialized instance of an abstract class Command. Consequently, the entire user-
accessible functionality of the application must be written using Command
objects. When introducing Undo in an application that does not already use
Command objects, it can mean that several hundred Command objects must be
written. Therefore, introducing Undo is considered to have a high impact on the
software architecture.

Implementation Most implementations of multi-level undo are based on the Command (Gamma et
al 1995) pattern. When using the Command pattern, most functionality is
encapsulated in Command objects rather than in other controlling classes. The
idea is to have a base class that defines a method to "do" a command, and another
method to "undo" a command. Then, for each command, you derive from the
command base class and fill in the code for the do and undo methods. The "do"
method is expected to store any information needed to "undo" the command. For
example, the command to delete an item would remember the content of the item
being deleted. The following class diagram shows the basic Command pattern
structure:

Figure 66: Multi Level Undo UML Model

In order to create a multi-level undo, a Command Stack is introduced. When a new
command is created, its 'Do' function is called and the object is added to the top of
the stack if the command was successful. When undoing commands, the 'Undo'
function of the command object at the top of the stack is called and the pointer to
the current command is set back.

Experiences with SALUTA 193

Figure 67: Relationships between Attributes, Properties and Patterns.

9.2.4 Relationships in the SAU framework

Relationships, typically positive, have been defined between the elements of the
framework that link architecturally sensitive usability patterns to usability properties
and attributes. These relationships have been derived from our literature survey
(Folmer et al, 2003), and industrial experiences. Defining relationships between the
elements serves two purposes:

• Inform design: The usability properties in the framework may be used as
requirements during design. For example, if a requirement specifies, "the
system must provide feedback”, we use the framework to identify which
usability patterns should be considered during architecture design by following
the arrows in Figure 67. The choice for which patterns and properties to apply
depends on several factors:

194 Experiences with SALUTA

• Not all patterns & properties may improve usability or a are relevant for a
particular system. It is up to a usability expert or engineer to decide whether
a particular pattern or property may be applied to architecture of the system
under analysis.

• Cost and trade-off between different usability attributes or between
usability and other quality attributes such as security or performance.

• Software architecture analysis: Our framework tries to capture essential design
solutions so these can be taken into account during architectural design and
evaluation. The relationships are then used to identify how particular patterns
and properties, that have been implemented in the architecture, support
usability. For example, if undo has been implemented we can analyze that undo
improves efficiency and reliability.

SALUTA uses the SAU framework for analyzing the architecture’s support for usability.
A complete overview and description of all patterns and properties and the
relationships between them can be found in (Folmer et al, 2003).

9.3 Overview of SALUTA

In (Folmer et al, 2004) the SALUTA method is presented. A method ensures that some
form of reasoning and discussion between different stakeholders about the architecture
is taking place. SALUTA is scenario based i.e. in order to assess a particular
architecture, a set of scenarios is developed that concretizes the actual meaning of that
quality requirement (Bosch, 2000). Although there are other types of architecture
assessment techniques such as metrics, simulations and mathematical models (Bosch,
2000) in our industrial and academic experience with scenario based analysis we have
come to understanding that the use of scenarios allows us to make a very concrete and
detailed analysis and statements about their impact or support they require, even for
quality attributes that are hard to predict and assess from a forward engineering
perspective such as maintainability, security and modifiability.

SALUTA has been derived from scenario based assessment techniques such as ALMA
(Bengtsson, 2002), SAAM (Kazman et al, 1994), ATAM (Kazman et al, 1998) and
QASAR(Bosch, 2000). Although it's possible to use a generic scenario based
assessment technique such as ATAM or QASAR a specialized technique (such as
ALMA) is more tailored to a specific quality and will lead to more accurate assessment
results. For example guidelines and criteria are given for creating specific scenarios. To
assess the architecture a set of usage scenarios are defined. By analyzing the
architecture for its support of each of these usage scenarios we determine the
architecture’s support for usability. SALUTA consists of the following four steps:

1. Create usage profile; describe required usability.

2. Analyze the software architecture: describe provided usability.

3. Scenario evaluation: determine the architecture's support for the usage scenarios.

4. Interpret the results: draw conclusions from the analysis results.

Experiences with SALUTA 195

A brief overview of the steps is given in the next subsections, a more detailed
elaboration of and motivation for these steps can be found in (Folmer et al, 2004).

9.3.1 Usage profile creation

One of the most important steps in SALUTA is the creation of a usage profile. Existing
usability specification techniques (Hix and Hartson, 1993, Nielsen, 1993, Preece et al,
1994) are poorly suited for architectural assessment, therefore a scenario profile
(Lassing et al, 2002a, Bengtsson, 2002) based approach was chosen. The aim of this
step is to come up with a set of usage scenarios that accurately expresses the required
usability of the system. Usability is not an intrinsic quality of the system. According to
the ISO definition (ISO 9241-11), usability depends on:

• The users (e.g. system administrators, novice users)

• The tasks (e.g. insert order, search for item X)

• The contexts of use (e.g. helpdesk, training environment)

Usability may also depend on other variables, such as goals of use, etc. However in a
usage scenario only the variables stated above are included. A usage scenario describes
a particular interaction (task) of a user with the system in a particular context. A usage
scenario specified in such a way does not yet specify anything about the required
usability of the system. In order to do that, the usage scenario is related to the four
usability attributes defined in the SAU-framework. For each usage scenario, numeric
values are determined for each of these usability attributes. The numeric values are
used to determine a prioritization between the usability attributes. For some usability
attributes, such as efficiency and learnability, tradeoffs have to be made during design.
It is often impossible to design a system that has high scores on all attributes. A
purpose of usability requirements is therefore to specify a necessary level for each
attribute (Lauesen and Younessi, 1998). For example, if for a particular usage scenario
learnability is considered to be of more importance than other attributes (for example,
because of a requirement), then the usage scenario must reflect this difference in the
priorities for the usability attributes. The analyst interprets the priority values during
the analysis phase to determine the level of support in the software architecture for that
particular usage scenario. An example usage scenario is displayed in Figure 68.

Figure 68: Example Usage Scenario

Usage profile creation does not replace existing requirements engineering techniques.
Rather it is intended to transform (existing) usability requirements into something that

196 Experiences with SALUTA

can be used for architecture assessment. Existing techniques such as interviews, group
discussions or observations (Hix and Hartson, 1993, Nielsen, 1993, Hackos and Redish,
1998, Shneiderman, 1998) typically already provide information such as representative
tasks, users and contexts of use that are needed to create a usage profile. The steps that
need to be taken for usage profile creation are the following:

1. Identify the users: rather than listing individual users, users that are representative
for the use of the system should be categorized in types or groups (for example
system administrators, end-users etc).

2. Identify the tasks: Instead of converting the complete functionality of the system
into tasks, representative tasks are selected that highlight the important features of
the system. An accurate description of what is understood for a particular task and
of which subtasks this task is composed, is an essential part of this step. For
example, a task may be “search for specific compressor model” consisting of
subtasks “go to performance part” and “select specific compressor model”.

3. Identify the contexts of use: In this step, representative contexts of use are
identified. (For example, helpdesk context or disability context.)

4. Determine attribute values: For each valid combination of user, task and context of
use, usability attributes are quantified to express the required usability of the
system, based on the usability requirements specification. Defining specific
indicators for attributes may assist the analyst in interpreting usability
requirements. To reflect the difference in priority, numeric values between one and
four have been assigned to the attributes for each scenario.

5. Scenario selection and weighing: Evaluating all identified scenarios may be a costly
and time-consuming process. Therefore, the goal of performing an assessment is
not to evaluate all scenarios but only a representative subset. Different profiles may
be defined depending on the goal of the analysis. For example, if the goal is to
compare two different architectures, scenarios may be selected that highlight the
differences between those architectures. To express differences between scenarios
in the profile, properties may be assigned to the scenarios, for example: priority or
probability of use within a certain time. The result of the assessment may be
influenced by weighing scenarios, if some scenarios are more important than
others, weighing these scenarios reflect these differences.

This step results in a set of usage scenarios that accurately express the required
usability of the system.

9.3.2 Analyze the software architecture

In the second step of SALUTA, the information about the software architecture is
collected. Usability analysis requires architectural information that allows the analyst
to determine the support for the usage scenarios. The process of identifying the support
is similar to scenario impact analysis for maintainability assessment (Lassing et al,
2002a) but is different, because it focuses on identifying architectural elements that
may support the scenario. For architecture analysis, the SAU framework in section 9.2
is used. Two types of analysis are performed:

Experiences with SALUTA 197

• Analyze the support for patterns: Using the list of architecturally sensitive
usability patterns we identify whether these are implemented in the
architecture.

• Analyze the support for properties: The software architecture is the result of a
series of design decisions (Gurp and Bosch, 2002). Reconstructing this process
and assessing the effect of individual design decisions with regard to usability
provides additional information about the intended quality of the system. Using
the list of usability properties, the architecture and the design decisions that
lead to this architecture are analyzed for these properties.

The quality of the assessment very much depends on the amount of evidence for
patterns and property support that can be extracted from the architecture. SALUTA
does not dictate the use of any specific way of documenting a software architecture.
Initially the analysis is based on the information that is available, such as architecture
designs and documentation used with in the development team for example Figure 69
lists a conceptual view (Hofmeister et al, 1999) that was used to identify the presence of
patterns in the Compressor case (see section 9.4.2 for a description of Compressor).

Web Client Tier

Back-End

BOM

Web Server (Netscape, Apache,IIS…)

WebServer Driver

IIO
P

Se
rv

le
t

AP
I

SGBD

JD
BC

Thin Client (IE,NS)
JVM JS

H
TT

P/
H

TT
PS

IIO
P

SGBD

JD
BC

Message Services

Messaging Client

SM
TP

/P
O

P/
IM

AP

Publication

WAP

MOBILE
 PHONE

Persistence

Database Connection Pool

Session control and management

Print-Manager

FTP-Manager

Services

Cron service

log service

awt service

Message-Mgr.
Email...

Authentification

Shopping
Basket

Search Engine Content
management

Content
Exchange

Web-Mail

Java-Mail

Directory and
 user Profile

LDAP

Authorization

Http Sess.Mgr

Template
directory

XSLEngine
Driver

XSLEngine XMLParser SmartScript

Scripting lang.
Driver

Templates
Engine

Multi-language

Multi-display

ACL

Components

Components

Components

Components

Workflow

XML-Loaderr

Forum
Management

Taxonomy

Channels: Fax,
Latex, etc.

Supplier

Operators

Figure 69: Compressor Architecture

9.3.3 Scenario evaluation

The next step is to evaluate the architecture's support for each of the scenarios in the
usage profile. For each scenario, we identify by which usability patterns and properties
that are implemented, it is affected. In the next step we identify using the SAU
framework how a particular pattern or property improves or impairs certain usability

Multi channeling

Multiple views

Workflow
Modeling

System feedback

198 Experiences with SALUTA

attributes for that scenario. For example, if it has been identified that undo affects a
certain scenario, the relationship between undo and usability are analyzed to
determine the support for that particular scenario. Undo improves error management
and error management may improve reliability and efficiency. This step is repeated for
each pattern and property affecting that scenario. The number and type of patterns and
properties that support a particular attribute of a scenario are then compared to the
required attribute values to determine the support for this scenario.

Users Tasks Context of
use

Satisfaction Learnability Efficiency Reliability

Account
manager

Insert new
customer in
database

training User should
feel that
he/she is in
control

How easy this
task is to
understand

The time it takes
to perform this
task.

No errors should
occur performing
this task

USAGE PROFILE 1 4 2 3

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework
Software architecture

Figure 70: Snapshot Assessment Example

For each scenario, the results of the support analysis are expressed qualitatively using
quantitative measures. For example, the support may be expressed on a five level scale
(++, +, +/-,-,--). The outcome of the overall analysis may be a simple binary answer
(supported/unsupported) or a more elaborate answer (70% supported) depending on
how much information is available and how much effort is being put in creating the
usage profile.

9.3.4 Interpretation of the results

After scenario evaluation, the results need to be interpreted to draw conclusions
concerning the software architecture. If the analysis is sufficiently accurate the results
may be quantified. However, even without quantification the assessment can produce
useful results. If the goal is to iteratively design an architecture, then if the architecture
proves to have sufficient support for usability, the design process may be finalized.
Otherwise, architecture transformations need to be applied to improve the support for
usability. For example in the eSuite case (see section 9.4.3) the architecture's support
for usability was improved by adding three patterns to it. Qualitative information such
as which scenarios are poorly supported and which usability properties or patterns
have not been considered may guide the architect in applying certain design solutions.
An architect should always discuss with a usability engineer which solutions need to be
applied. The SAU framework is then used as an informative source for design and
improvement of the architecture’s support for usability.

Experiences with SALUTA 199

9.4 Case Descriptions

In this section we introduce the three systems used in the case studies. The goal of the
case studies was to conduct a software architecture analysis of usability on each of the
three systems.

As a research strategy action research (Argyris et al, 1985), was used. Action research is
an applied research strategy which involves cycles of data collection, evaluation and
reflection with the aim of improving the quality or performance of an organization.
Close cooperation and participation which are important aspects of this type of
research allowed us to get a more complete understanding of the research issues. The
first case study (Folmer et al, 2004) was performed at a software organization which is
part of our university. This provided us with valuable insights and made us revise some
of the SALUTA steps. The other two case studies were performed at our industrial
partners in the STATUS project. Between those cases again our method was revised
and refined. The last two case studies been published as part of the STATUS
deliverables (STATUS).

All case studies have been performed in the domain of web based enterprise systems,
e.g. content management- (CMS), e-commerce- and enterprise resource planning
(ERP) – systems. Web based systems have become an increasingly popular application
format in recent years. Web based systems have two main advantages: Centralization:
the applications run on a (central / distributed) web server, there is no need to install
or maintain the application locally. Accessibility: The connectivity of the web allows
anyone to access the application from any internet connection on the world and from
any device that supports a web browser. From a usability point of view this is a very
interesting domain: anyone with an internet connection is a potential user. A lot of
different types of users and different kinds of usages must therefore be supported. An
overview of the differences between the applications (See Table 54) illustrates the scope
of applicability of our method.

Table 54: Comparison of System Characteristics
Aspect Webplatform Compressor eSuite

Type of system CMS E-commerce ERP

Number of users > 20.000 > 100 > 1000

Goal of the
analysis

Analyze architecture’s
support for usability /
Risk assessment:
analyze SA related
usability issues.

Selection: Compare old versus
new version of Compressor.

Design: iteratively
design & improve
an architecture.

types of users 3 3 2

Characterization
of interaction

Information browsing
and manipulation of
data objects (e.g. create
portals, course
descriptions)

Information browsing (e.g.)
Comparing and analyzing data
of different types of
compressors and compressor
parts.

Typical ERP
functionality. (e.g.
insert order, get
client balance
sheet)

Usage contexts Mobile / desktop/
Helpdesk

Mobile/Desktop/Standalone Mobile/Desktop

The remainder of this section introduces the three systems that have been analyzed and
presents the assessment results.

200 Experiences with SALUTA

9.4.1 Webplatform

The Webplatform is a web based content management system for the university of
Groningen (RuG) developed by ECCOO (Expertise Centrum Computer Ondersteunend
Onderwijs). The Webplatform enables a variety of (centralized) technical and (de-
centralized) non technical staff to create, edit, manage and publish a variety of content
(such as text, graphics, video etc), whilst being constrained by a centralized set of rules,
process and workflows that ensure a coherent, validated website appearance.

The Webplatform data structure is object based; all data from the definitions of the
CMS itself to the data of the faculty portals or the personal details of a user are objects.
The CMS makes use of the internet file system (IFS) to provide an interface which
realises the use of objects and relations as defined in XML. The IFS uses an Oracle 9i
database server implementation with a java based front end as search and storage
medium. The java based front-end allows for the translation of an object oriented data
structure into HTML. The oracle 9i database is a relational based database. On top of
the IFS interface, the Webplatform application has been build. Thus, the CMS consists
of the functionality provided by the IFS and the java based front-end. Integrated into
the Webplatform is a customised tool called Xopus, which enables a content-
administrator to create, edit and delete XML objects through a web browser.

As an input to the analysis of the Webplatform, we interviewed the software architect,
the usability engineer and several other individuals involved in the development of the
system. In addition we examined the design documentation and experimented with the
newly deployed RuG site.

9.4.2 Compressor

The Compressor catalogue application is a product developed by the Imperial Highway
Group (IHG) for a client in the refrigeration industry. It is an e-commerce application,
which makes it possible for potential customers to search for detailed technical
information about a range of compressors; for example, comparing two compressors.

There was an existing implementation as a Visual Basic application, but the application
has been redeveloped in the form of a web application. The system employs a 3-tiered
architecture and is built upon an in-house developed application framework. The
application is being designed to be able to work with several different web servers or
without any. The independence of the database is developed through Java Database
Connectivity (JDBC). The data sources (either input or output) can also be XML files.
The application server has a modular structure, it is composed by a messaging system
and the rest of the system is based on several connectable modules (services) that
communicate between them. This potential structure offers a pool of connections for
those applications that are running, providing more efficiency on the access to
databases.

As an input to the analysis of Compressor, we interviewed the software architect. We
analyzed the results from usability tests with the old system and with an interface
prototype of the new system and examined the design documentation such as
architectural designs and requirements specifications.

Experiences with SALUTA 201

9.4.3 ESuite

The eSuite product developed by LogicDIS is a system that allows access to various
ERP (Enterprise Resource Planning) systems, through a web interface. ERP systems
generally run on large mainframe computers and only provide users with a terminal
interface. eSuite is built as an web interface on top of different ERP systems. Users can
access the system from a desktop computer but also from a mobile phone. The system
employs a tiered architecture commonly found in web applications. The user interfaces
with the system through a web browser. A web server runs a Java servlet and some
business logic components, which communicate with the ERP.

As an input to the analysis of ESuite, we interviewed the software architect and several
other individuals involved in the development of the system. We analyzed the results
from usability tests with the old system and with an interface prototype of the new
system and examined the design documentation such as architectural designs and,
usability requirements specifications.

9.4.4 Assessment results

Table 55: Assessment Results
 No of

scenarios
Strong
reject

Weak
reject

Accept/reject Weak
accept

Strong
accept

Webplatform 11 - - - 8 3

Old
Compressor

14 2 2 8 - -

New
Compressor

14 - - 5 6 3

eSuite 12 - - 3 4 3

Table 55 lists the results of the assessment. The table lists the number of scenario
defined and lists whether these scenarios are strongly rejected, weakly rejected,
accepted/rejected, weakly accepted or strongly accepted. Our impression was that
overall the assessment was well received by the architects that assisted the analysis.
Based on the assessment results the Esuite architecture was improved1 by applying
patterns from the SAU framework. In the other cases we were not involved during
architecture design but the assessments provided the architects with valuable insights
till which extent certain usability improving design solutions could still be
implemented during late stage without incurring great costs. This emphasized and
increased the understanding of the important relationship between software
architecture and usability and the results of the assessments were documented and
taken into account for future releases and redevelopment of the products.

9.5 Experiences

This section gives a detailed description of the experiences we acquired during the
definition and use of SALUTA. We consider SALUTA to be a prototypical example of an

1 The decision to apply certain patterns was not solely based on the result of the assessment but also as result
of user tests with prototypes were these patterns were present.

202 Experiences with SALUTA

architecture assessment technique therefore our experiences are relevant in a wider
context. These experiences will be presented using the four steps of the method. For
each experience, a problem description, examples, possible causes, available solutions
and research issues are provided. The experiences are illustrated using examples from
the three case studies introduced before.

9.5.1 Usage profile creation

In addition to experiences that are well recognized in the domain of SE and HCI such
as:
• Poorly specified usability requirements e.g. In all cases, apart from the web

platform case (some general usability guidelines based on Nielsen’s heuristics
(Nielsen, 1993) had been stated in the functional requirements) no clearly defined
and verifiable usability requirements had been collected or specified.

• Changing requirements e.g. in all case studies we noticed that during
development the usability requirements had changed. For example, in the
Webplatform case it had initially been specified that the Webplatform should always
provide context sensitive help texts, however for more experienced users this turned
out to be annoying and led to a usability problem. A system where help texts could
be turned off for more experienced users would be much better.

The following experiences were collected:

Difficult to transform requirements

Problem: To be able to assess a software architecture for its support of usability we
need to transform requirements into a suitable format. For SALUTA we have chosen to
use usage scenarios. For each scenario, usability attributes are quantified to express the
required usability of the system, based on the requirements specification. A problem
that we encountered is that sometimes it is difficult to determine attribute values for a
scenario because usability requirements and attributes can be interpreted in different
ways.

Example: What do efficiency or learnability attributes mean for a particular task, user
or user context? Efficiency can be interpreted in different ways: does it mean the time
that it takes to perform a task or does it mean the number of errors that a user makes?
It can also mean both. Usability requirements are sometimes also difficult to interpret
for example in the Webplatform case: “UR1: every page should feature a quick search
which searches the whole portal and comes up with accurate search results”. How can
we translate such a requirement to attribute values for a scenario?

Causes: Translating requirements to a format that is suitable for architecture
assessment is an activity that takes place on the boundary of both SE and HCI
disciplines. Expertise is required; it is difficult to do for a software architect since he or
she may have no experience with usability requirements.

Solution: In all of our cases we have let a usability engineer translate usability
requirements to attribute values for scenarios. To formalize this step we have let the
usability engineer specify for each scenario how to interpret a particular attribute. For
example, for the web platform case the following usage scenario has been defined: “end
user performing quick search”. The usability engineer formally specified what should
be understood for each attribute of this task. Reliability has been associated with the

Experiences with SALUTA 203

accuracy of search results; efficiency has been associated with response time of the
quick search, learnability with the time it takes to understand and use this function.
Then the usability requirements (UR1) were consulted. From this requirement we
understand that reliability (e.g. accuracy of search results is important). In the
requirements however it has not been specified that quick search should be performed
quickly or that this function should be easy to understand. Because most usability
requirements are not formally specified we discussed these issues with the usability
engineer that assisted the analysis and the engineer found that this is the most
important aspect of usability for this task. Consequently, high values have been given to
efficiency and reliability and low values to the other attributes (see Figure 71) Defining
and discussing specific indicators for attributes (such as number or errors for
reliability) may assist the interpretation of usability requirements and may lead to a
more accurate prioritization of usability attributes.

Research issues: The weakness in this process is that is inevitably some guesswork
involved on the part of the experts and that one must be careful not to add too much
value to the numerical scores. E.g. if learnability has value 4 and efficiency value 2 it
does not necessarily mean that learnability is twice as important as efficiency. The only
reason for using numerical scores is to reflect the difference in priority which is used
for analyzing the architecture support for that scenario. To improve the
representativeness of a usage scenario possibly a more fine grained definition of a
scenario needs to be developed.

Usability requirements
UR1- every page should feature a quick search which searches the whole portal and comes up with
accurate search results

Users Task E L R S
1 End user Quick search 4 2 3 1

Figure 71: Transforming Requirements to a Usage Profile

Specification of certain quality attributes is difficult during initial design

Problem: A purpose of quality requirements is to specify a necessary level (Lauesen
and Younessi, 1998). In section 9.2 four different usability attributes have been
presented which we use for expressing the required usability for a system in a usage
scenario. Specifying a necessary level for satisfaction and specifying how satisfaction
should be interpreted has proven to be difficult during initial design. In addition we
could not identify specific usability requirements that specify a necessary level for this
attribute during initial design.

Example: In the compressor case we defined the following usage scenario: “Suppliers
get the performance data for a specific model”. What does satisfaction mean for this
scenario? What is the necessary level of the satisfaction for this scenario? Attributes
such as learnability, efficiency and reliability are much easier interpreted and it is
therefore much easier to specify a necessary level for them.

Cause: Satisfaction to a great extent depends on, or is influenced by the other three
usability attributes (efficiency, reliability and learnability) it expresses the subjective
opinions users have in using the system, therefore satisfaction can often only be
measured when the system is deployed (for example, by interviewing users).

? ? ? ?

204 Experiences with SALUTA

Solution: The importance of satisfaction in this context should be reevaluated.

Research issues: Satisfaction has been included in our usability decomposition
because it expresses the subjective view a user has on the system. We are uncertain if
this subjective view is not already reflected by the definition of usability. Which
software systems are not usable but have high values for their satisfaction attributes?

Cost benefit tradeoffs

Problem: The number of usage scenarios in the usage profile easily becomes a large
number. Evaluating and quantifying all scenarios may be a costly and time-consuming
process. How do we keep the assessment at a reasonable size?

Example: For example for the web platform case we initially had identified 68
scenarios. For the Compressor case we identified 58 different usage scenarios.

Cause: The number of scenarios that are identified during the usage profile creation
stage can become quite large since many variables are included; users, user contexts
and tasks.

Solutions: Inevitably tradeoffs have to be made during usage scenario selection, an
important consideration is that the more scenarios are evaluated the more accurate the
outcome of the assessment is, but the more expensive and time consuming it is to
determine attribute values for these scenarios. We propose three solutions:

• Explicit goal setting: allows the analyst to filter out those scenarios that do not
contribute to the goal of the analysis. Goal setting is important since it can
influence which scenarios to include in the profile. For example for the Web
platform case we decided, based on the goal of the analysis (analyze
architecture’s support for usability), to only to select those scenarios that were
important to a particular user group; a group of content administrators that
only constituted 5% of the users population but the success of Webplatform was
largely dependent on their acceptance of the system. This reduced the number
of scenarios down to a reasonable size of 11 usage scenarios.

• Pair wise comparison: For most usage scenarios, concerning expressing the
required usability there is an obvious conflict between attributes such as
efficiency and learnability or reliability and efficiency. To minimize the number
of attributes that need to be quantified techniques such as pair wise comparison
should be considered to only determine attribute values for the attributes that
conflict.

• Tool support: It is possible to specify attribute values over a particular task or
context of use or for a user group. For example for the user type “expert users” it
may be specified that efficiency is the most important attribute for all scenarios
that involve expert users. For a particular complex task it may be specified that
learnability should be the most important attribute for all scenarios that have
included that task. We consider developing tool support in the future which
should assist the analyst in specifying attribute values over contexts, users and
tasks and that will automatically determine a final prioritization of attribute
values for a usage profile.

Experiences with SALUTA 205

9.5.2 Architecture analysis

Non-explicit nature of architecture design

Problem: In order to analyze the architecture support for usability, some
representation of the software architecture is needed. However, the software
architecture has several aspects (such as design decisions and their rationale) that are
not easily captured or expressed in a single model or view.

Example: Initially the analysis is based on the information that is available. In the
Compressor case a conceptual architecture description had been created (see Figure 69
in section 9.3). However to determine the architectural support for usability we needed
more information, such as which design decisions were taken.

Cause: Because of the non-explicit nature of architecture design, the analysis strongly
depends on having access to both design documentation and software architects; as
design decisions are often not documented the architect may fill in the missing
information on the architecture and design decisions that were taken.

Solution: Interviewing the architect provided us with a list if particular patterns and
properties had been implemented. We then got into more detail by analyzing the
architecture designs and documentation for evidence of how these patterns and
properties had been implemented. Different views on the system (Kruchten, 1995,
Hofmeister et al, 1999) may be needed to access such information. A conceptual view
(Hofmeister et al, 1999) on the system of the Compressor (see Figure 69) was sufficient
for us to provide detailed information on how the patterns (Folmer et al, 2003) system
feedback, multi channeling, multiple views and workflow modeling had been
implemented. For the other systems that lacked architecture descriptions we let the
software architects create conceptual views.

Validation of the SAU framework

Problem: Empirical validation is important when offering new techniques. The
analysis technique for determining the provided usability of the system relies on the
framework we developed. Initially the SAU framework was based on discussions with
our partners in the STATUS project and did not focus on any particular application
domain. The list of patterns and properties that we had identified then was substantial
but incomplete. Even the relation of some of the patterns and properties with software
architecture was open to dispute. For particular application domains the framework
may not be accurate.

Example: Our case studies have been performed in the domain of web based systems.
Initially our SAU framework contained usability patterns such as multitasking and
shortcuts. For these patterns we could not find evidence that they were architecturally
sensitive in this domain. Other patterns such as undo and cancel have different
meanings in web based interaction. Pressing the stop button in a browser does not
really cancel anything. Undo is generally associated with the back button. Web based
systems are different from other types of applications.

Causes: the architecture sensitivity of some of our usability patterns depends on its
implementation which depends on the application domain.

206 Experiences with SALUTA

Solution: The applicability of our analysis method is not excluded to other application
domains but the framework that we use for the analysis may need to be specialized for
different application domains in the future. As discussed in section 9.2 the "best
implementation" of a particular pattern may depend on several other factors such as
which application framework is used or on other qualities such as maintainability and
flexiblity. Some patterns do not exist or are not relevant for a particular domain. Some
patterns may share similar implementations across different domains these patterns
can be described in a generic fashion.

Research issue: Our framework is a first step in illustrating the relationship between
usability and software architecture. The list of architecturally sensitive usability
patterns and properties we identified are substantial but incomplete, it does not yet
provide a complete comprehensive coverage of all potential architecturally sensitive
usability issues for all domains. The case studies have allowed us to refine and extend
the framework for the domain of web based enterprise systems, and allowed us to
provide detailed architectural solutions for implementing these patterns and properties
(based on "best" practices).

Qualitative nature of SAU framework

Problem: Relationships have been defined between the elements of the framework.
However these relationships only indicate positive relationships. Effectively an
architect is interested in how much a particular pattern or property will improve a
particular aspect of usability in order to determine whether requirements have been
met. Being able to quantify these relationships and being able to express negative
relationships would greatly enhance the use of our framework.

Example: The pattern wizard generally improves learnability but it negatively affects
efficiency. Until now it is not known how much a particular pattern or property
improves or impairs a particular attribute of usability e.g. we only get a qualitative
indication.

Causes: Our framework is a first step in illustrating a relationship between usability
and software architecture. Literature does not provide us with quantitative data on
how these patterns may improve usability.

Solution: In order to get quantitative data we need to substantiate these relationships
and to provide models and assessment procedures for the precise way that the
relationships operate. However we doubt whether identifying this kind of (generic)
quantitative information is possible. Eventually we consider putting this framework in
a tool and allow architects and engineers to put weights on the patterns and properties
that they consider to be important.

9.5.3 Scenario evaluation

Evaluation is guided by tacit knowledge

Problem: The activity of scenario evaluation is concerned with determining the
support the architecture provides for that particular usage scenario. The number of
patterns and properties that support a particular usability attribute required by a
scenario, for example learnability, provide an indication of the architecture’s support
for that scenario however the evaluation is often guided by tacit knowledge.

Experiences with SALUTA 207

Example: For example in the eSuite case the following scenario was affected by four
usability patterns and six usability properties. The scenario requires high values for
learnability (4) and reliability (3). Several patterns and properties positively contribute
to the support of this scenario. For example, the property consistency and the pattern
context sensitive help increases learnability as can be analyzed from Figure 67. By
analyzing for each pattern and property, the effect on usability, the support for this
scenario was determined. However sometimes this has proven to be difficult. How
much learnability improving patterns and properties should the architecture provide
for deciding whether this scenario is supported?

Table 56: ESuite Usage Scenario
User User context Task S E L R
Novice Mobile Insert Order 1 2 4 3

Cause: Although SALUTA provides the steps for identifying the support determining
whether a scenario is accepted or rejected is still is very much guided by tacit
knowledge i.e. the undocumented knowledge of experienced software architects.

Solution: Our framework has captured some of that knowledge (e.g. the relationships
between usability properties and patterns and usability attributes) but it is up to the
analyst to interpret these relationships and determine the support for the scenarios.

Research issues: Since evaluating all the scenarios by hand is time consuming, we
consider developing a tool that allows one to automatically determine for a set of
identified patterns and properties which attributes they support and to come up with
some quantitative indication for the support. Although it may not be possible to give an
absolute indication of an architectures support for usability, when iteratively designing
and evaluating an architecture we are able to express relative improvements.

9.5.4 Interpretation

Lacked a frame of reference

Problem: After scenario evaluation we have to associate conclusions with these
results. However initially we lacked a frame of reference to interpret the results.

Example: In our first case study (Webplatform) the result of the evaluation was that
three scenarios were weakly accepted, and eight were strongly accepted. How should
this be interpreted and which actions need to be taken?

Cause: Interpretation is concerned with deciding whether the outcome of the
assessment is acceptable or not. The experiences that we have, is at initially we lacked a
frame of reference for interpreting the results of the evaluation of Webplatform. Were
these numbers acceptable? Could we design an architecture that has a better support
for usability? The results of the assessment were relative, but we had no means or
techniques to relate it to other numbers or results yet. Another issue was that we
doubted the representativeness of the usage profile. Did this profile cover all possible
usages by all types of users?

Solution: The three case studies have provided us with a small frame of reference. We
have seen architectures with significant better and significantly weaker support for
usability. This provided us with enough information to judge whether a particular

208 Experiences with SALUTA

architecture could still be improved. In order to refine our frame of reference more case
studies need to be done within the domain of web based application. Certain patterns
such as multiple views were present in all architectures we examined, whereas other
patterns such as user modes were only present in one system. We need more info on
which patterns are already integrated in application frameworks such as STRUTS
(Mercay and Gilbert, 2002) and which patterns have not.

In addition to the architecture assessment related experiences the following general
experiences were collected.

9.5.5 General experiences

Some general experiences that are well recognized in the SE and HCI domains which
are of cultural and psychological nature have been identified such as:

• Lack of integration of SE and HCI processes e.g. Processes for software
engineering and HCI are not fully integrated. There is no integration of SE and
HCI techniques during architectural design. Because interface design is often
postponed to the later stages of development we run the risk that many
assumptions may be built into the design of the architecture that unknowingly
may affect interface design and vice versa. The software architecture is seen as
an intermediate product in the development process but its potential with
respect to quality assessment is not fully exploited.

• Technology driven design: Software architects fail to associate usability with
software architecture design e.g. the software architects we interviewed in the
case studies were not aware of the important role the software architecture
plays in fulfilling and restricting usability requirements. When designing their
systems the software architects had already selected technologies (read
features) and had already developed a first version of the system before they
decided to include the user in the loop. A software product is often seen as a set
of features rather then a set of “user experiences”.

In addition to these experiences the following experiences were collected:

Impact of software architecture design on usability

Problem: One of the reasons to develop SALUTA was that usability may unknowingly
impact software architecture design e.g. the retrofit problem discussed in section 9.2.
However, we also identified that it worked the other way around; architecture design
sometimes leads to usability problems in the interface and the interaction.

Example: In the ECCOO case study we identified that the layout of a page (users had
to fill in a form) was determined by the XML definition of a specific object. When users
had to insert data, the order in which particular fields had to be filled in turned out to
be very confusing.

Causes: Because interface design is often postponed until the later stages of design we
run the risk that many assumptions are built into the design of the architecture that
unknowingly affect interface/interaction design and vice versa.

Experiences with SALUTA 209

Solution: Interfaces/interaction should not be designed as last but as early as possible
to identify what should be supported by the software architecture and how the
architecture may affect interface/interaction design. We should not only analyze
whether the architecture design supports certain usability solutions but also identify
how the architecture design may lead to usability problems.

Research issues: Usability is determined by many factors, issues such as:

• Information architecture: how is information presented to the user?

• Interaction architecture: how is functionality presented to the user?

• System quality attributes: such as efficiency and reliability.

Architecture design does affect all these issues. Considerable more research needs to be
performed to analyze how a particular architecture design may lead to such kind of
usability problems.

Accuracy of the analysis is unclear

Problem: Our cases studies show that it is possible to use SALUTA to assess software
architectures for their support of usability, whether we have accurately predicted the
architecture’s support for usability can only be answered after the results of this
analysis are compared to the results of final user testing results when the system has
been finished. Several user tests have been performed. The results of these tests fit the
results of our analysis: the software architecture supports the right level of usability.
Some usability issues came up that where not predicted during our architectural
assessment. However, these do not appear to be caused by problems in the software
architecture.

We are not sure that our assessment gives an accurate indication of the architecture’s
support for usability. On the other hand it is doubtful whether this kind of accuracy is
at all achievable.

Causes: The validity of our approach has several threats:

• Usability is often not an explicit design objective; SALUTA focuses on the
assessment of usability during architecture design. Any improvement in
usability of the final system should not be solely accounted to our method. More
focus on usability during development in general is in our opinion the main
cause for an increase in observed usability.

• Accuracy of usage profile: Deciding what users, tasks and contexts of use to
include in the usage profile requires making tradeoffs between all sorts of
factors. The representativeness of the usage profile for describing the required
usability of the system is open to dispute. Questions whether we have accurately
described the systems usage can only be answered by observing users when the
system has been deployed. An additional complicating factor is the often weakly
specified requirements, which makes it hard to create a representative usage
profile.

Solution: To validate SALUTA we should not only focus on measuring an increase in
the usability of the resulting product but we should also measure the decrease in costs

210 Experiences with SALUTA

spent on usability during maintenance. If any usability issues come up which require
architectural modifications then we should have predicted these during the
assessment.

Research issues: architectural assessment saves maintenance costs spent on dealing
with usability issues. However at the moment we lack figures that acknowledge this
claim. In the organization that participated in the case studies these figures have not
been recorded nor did they have any historical data. To raise awareness and change
attitudes (especially those of the decision makers) we should clearly define and
measure the business advantages of architectural assessment of usability.

Design rather than evaluate

Problem: The usage profile and usage scenarios are used to evaluate a software
architecture, once it is there.

Solution: A much better approach would be to design the architecture based on the
usage profile e.g. an attribute/property-based architectural design, where the SAU
framework is used to suggest patterns that should be used rather than identify their
absence post-hoc.

9.6 Related Work

Many authors (Shackel, 1991, Hix and Hartson, 1993, Nielsen, 1993, Preece et al, 1994,
Wixon and Wilson, 1997, Shneiderman, 1998, Constantine and Lockwood, 1999, ISO
9126-1) have studied usability. Most of these authors focus on finding and defining the
optimal set of attributes that compose usability and on developing guidelines and
heuristics for improving and testing usability. Several techniques such as usability
testing (Nielsen, 1993), usability inspection (Nielsen, 1994) and usability inquiry
(Nielsen, 1993) may be used to evaluate the usability of systems. However, none of
these techniques focuses on the essential relation with software architecture.

(Nigay and Coutaz, 1997) discusses a relationship between usability and software
architecture by presenting an architectural model that can help a designer satisfy
ergonomic properties. (Bass et al, 2001) gives several examples of architectural
patterns that may aid usability. Previous work has been done in the area of usability
patterns, by (Tidwell 1998, Perzel and Kane 1999, Welie and Trætteberg, 2000). For
defining the SAU framework we used as much as possible usability patterns and design
principles that where already defined and accepted in HCI literature and verified the
architectural-sensitivity with the industrial case studies we conducted. The framework
based approach for usability is similar to the work done on quality attribute
characterizations (Bass et al, 2003) in (Folmer et al, 2003) the most important
differences between their approach and ours are outlined.

The Software Architecture Analysis Method (SAAM) (Kazman et al, 1994) was among
the first to address the assessment of software architectures. SAAM is stakeholder
centric and does not focus on a specific quality attribute. From SAAM, ATAM (Kazman
et al, 2000) has evolved. ATAM also uses scenarios for identifying important quality
attribute requirements for the system. Like SAAM, ATAM does not focus on a single
quality attribute but rather on identifying tradeoffs between quality attributes. Some
specific quality-attribute assessment techniques have been developed. In (Alonso et al,
1998) an approach to assess the timing properties of software architectures is discussed

Experiences with SALUTA 211

using a global rate-monotonic analysis model. The Software Architecture Analysis
Method for Evolution and Reusability (SAAMER) (Lung et al, 1997) is an extension to
SAAM and addresses quality attributes such as maintainability, modifiability and
reusability. In (Bengtsson and Bosch, 1999) a scenario based Architecture-Level
Modifiability Analysis (ALMA) method is proposed.

We use scenarios for specification of quality requirements. There are different ways to
interpret the concept of a scenario. In object oriented modeling techniques, a scenario
generally refers to use case scenarios: scenarios that describe system behavior. The 4+1
view (Kruchten, 1995) uses scenarios for binding the four views together. In Human
Computer Interaction, use cases are a recognized form of task descriptions focusing on
user-system interactions. We define scenarios with a similar purpose namely to user-
system interaction that reflect the usage of the system but we annotate it in such a way
that it describes the required usability of the system.

9.7 Conclusions

Software engineers and human computer interaction engineers have come to the
understanding that usability is not something that can be easily "added" to a software
product during late stage, since to a certain extent it is determined and restricted by
architecture design.

Because software engineers in industry lacked support for the early evaluation of
usability we defined a generalized four-step method for Software Architecture Level
UsabiliTy Analysis called SALUTA. This paper reports on 11 experiences we acquired
developing and using SALUTA. These experiences are illustrated using three case
studies we performed in the domain of web based enterprise systems: Webplatform, a
content management system developed by ECCOO, Compressor, an e-commerce
application developed by IHG and eSuite, an Enterprise resource planning system
developed by LogicDIS.

With respect to the first step of SALUTA, creating a usage profile we found that
transforming requirements to a format that can be used for architectural assessment is
difficult because requirements and quality attributes can be interpreted in different
ways. In addition specifying a necessary level for certain quality attributes is difficult
during initial design since they can often only be measured when the system is
deployed. To keep the assessment at a reasonable size we need set an explicit goal for
the analysis to filter out those scenarios that do not contribute to this goal, tool support
is considered for automating this step.

With respect to the second step of SALUTA, architecture analysis we found that some
representation of the software architecture is needed for the analysis however some
aspects such as design decisions can only be retrieved by interviewing the software
architect. The applicability of SALUTA is not excluded to other application domains but
the SAU framework that we use for the architectural analysis may need to be
specialized and the relationships quantified for different application domains in order
to produce more accurate results.

Concerning the third step, scenario evaluation is often guided by tacit knowledge.
Concerning the fourth step, interpretation of results we experienced that initially the
lack of a frame of reference made the interpretation less certain. In addition we made
some general experiences; not only does usability impact software architecture design

212 Experiences with SALUTA

but software architecture design may lead to usability problems. The accuracy of the
analysis and the representativeness of a usage scenario can only be determined with
results from final usability tests and by analyzing whether costs that are spent on
usability during maintenance have decreased. Rather than identify the absence or
presence of patterns post-hoc we should use the SAU framework to suggest patterns
that should be used. In our view the case studies that have been conducted have
provided valuable experiences that have contributed to a better understanding of
architecture analysis and scenario based assessment of usability.

9.8 Acknowledgements

This work is sponsored by the STATUS project under contract no IST-2001-32298. We
would like to thank the companies that enabled us to perform the case studies, i.e.
ECCOO, IHG and LogicDIS. We especially like to thank Lisette Bakalis, Roel
Vandewall of ECCOO, Fernando Vaquerizo of IHG and Dimitris Tsirikos of LogicDIS
for their valuable time and input.

