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Abstract

Detailed information about the weight distribution of a convolutional code is given by the
adjacency matrix of the state diagram associated with a minimal realization of the code. We
will show that this matrix is an invariant of the code. Moreover, it will be proven that codes
with the same adjacency matrix have the same dimension and the same Forney indices and
finally that for one-dimensional binary convolutional codes the adjacency matrix determines
the code uniquely up to monomial equivalence.
© 2005 Elsevier Inc. All rights reserved.

AMS classification: 94B05; 94B10; 93B15
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1. Introduction

The weight distribution of a code forms an important parameter containing a lot
of information about the code for practical as well as theoretical purposes. A lot of
research in block code theory has been devoted to the investigation of the weight
distribution and to weight preserving maps. The most famous results in this area
are certainly the Duality Theorem of MacWilliams which presents a transformation
between the weight distributions of a given code and its dual [12, Theorem 3.5.3]

E-mail address: gluesing@math.rug.nl

0024-3795/$ - see front matter ( 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2005.06.023

www.elsevier.com/locate/laa
mailto:gluesing@math.rug.nl


H. Gluesing-Luerssen / Linear Algebra and its Applications 408 (2005) 298–326 299

as well as MacWilliams’ Equivalence Theorem stating that two isometric codes are
monomially equivalent [8, Theorem 7.9.4].

In this paper we will address the issue of MacWilliams duality for convolutional
codes. It is worth mentioning that even though convolutional codes can be regarded as
block codes over the ring F[z] endowed with a certain weight function, it is not possible
to apply any results about block codes over rings since they always need that the ring
be finite. In [23] it has been shown that there cannot exist a duality theorem for the
weight distribution of convolutional codes and their duals, if the weight distribution
is defined as the enumerator of the atomic codewords. The authors present two binary
one-dimensional codes having the same weight distribution while their duals have
different ones. We will present this example at the end of Section 5. It indicates
that the thus defined weight distribution contains too little information about the code
when it comes to duality. In this paper we will concentrate on a different type of weight
distribution containing considerably more information. This is the adjacency matrix
of the state diagram associated with a minimal realization of a minimal encoder. For
block codes this matrix reduces to the usual weight distribution. The adjacency matrix
depends on the choice of encoder and realization. As we will show in Section 4 this
dependence can easily be described by an equivalence relation, and by factoring it out
we obtain an invariant of the code, the generalized adjacency matrix. In Section 5 we
will investigate as to how much information about the code this matrix contains. We
will present two results. Firstly, codes with the same generalized adjacency matrix
have the same dimension and the same Forney indices. Secondly, one-dimensional
binary codes with the same generalized adjacency matrix are monomially equivalent.
One should bear in mind that this result cannot be expected for general codes, since
it is not even true for higher-dimensional binary block codes (notice that the assump-
tion of having identical weight distribution is much weaker than the assumption of
being isometric in MacWilliams’ Equivalence Theorem). However, as a consequence
we obtain that if two binary one-dimensional convolutional codes share the same
generalized adjacency matrix then so do their dual codes. This shows in particular
that the example in [23] mentioned above does not apply if we consider the generalized
adjacency matrix rather than the classical weight distribution. This in turn tempts us
to conjecture that there might exist a MacWilliams Duality for convolutional codes
based on the generalized adjacency matrix. This is indeed true for codes with overall
constraint length one. We will present a transformation for the generalized adjacency
matrices of such a code and its dual at the end of Section 5. It has been derived in
[1] in a totally different form and can be written in closed form as given in (5.3).
Proving or disproving the existence of a MacWilliams transformation for general
codes, however, appears to be quite a difficult problem and has to remain open for
future research.

In the next two sections we will introduce the material as necessary for deriving
our results. We will discuss the controller canonical form as well as other minimal
realizations of an encoder matrix and will introduce the associated state diagram
along with its adjacency matrix. Since the results as we will need them later on
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are somewhat spread over the literature and proofs are not always easily accessible, we
think it is worthwhile presenting the material of the next two sections as self-contained
as possible, even though most of the results are not new. Furthermore, as opposed to the
existing literature we will give a purely matrix theoretic approach. Following McEliece
[16] we will introduce the notions of atomic and molecular codewords and show how
the corresponding weight distribution can be derived, theoretically, from the adjacency
matrix of the state diagram. Sections 4 and 5 contain the new results as described in the
previous paragraph. We will close the paper with some open problems in Section 6.

We end the introduction with presenting the basic notions of convolutional coding
theory. Throughout the paper the symbol F stands for any finite field while Fq always
denotes a field with q elements. We will define convolutional codes purely in the
polynomial context. Thus, all messages and codewords are finite sequences of data
blocks. This differs in parts from the literature where mostly also infinite sequences
(Laurent series) are considered. For our purposes this does not make a difference
since generator matrices of convolutional codes are polynomial in any setting, see
also [3,15]. In [20] the issue of finite versus infinite sequences has been discussed in
detail. For the coding theoretic relevance of the notions defined below we refer to [9,
Chapter 2].

Definition 1.1. A k-dimensional convolutional code is a submodule C of F[z]n of the
form C = imG := {uG|u ∈ F[z]k} where G is a basic matrix in F[z]k×n, i.e. there
exists some matrix G̃ ∈ F[z]n×k such that GG̃ = Ik . We call G a generator matrix
or encoder and the number γ := max{deg g|g is a k-minor of G} is said to be the
overall constraint length of the code C.

For various characterizations of basicness we refer to [15, Theorem A.1]. It is
well-known [3, Theorem 5] or [5, p. 495] that each code has a minimal generator
matrix in the sense defined next. For a polynomial vector v ∈ F[z]n we define deg v
to be the maximum degree of its entries and, as usual, we put deg 0 = −∞.

Definition 1.2. Let G ∈ F[z]k×n be a basic matrix with overall constraint length γ
and let ν1, . . . , νk be the row degrees ofG. We say thatG is minimal if γ = ∑k

i=1 νi .
In this case, the row degrees of G are uniquely determined by the code C := imG.
They are called the Forney indices of C. The maximal Forney index is called the
memory of the code.

The notion minimality stems from the fact that for an arbitrary matrix G one has
γ �

∑k
i=1 νi . For characterizations of minimality see, e.g., [5, Main Theorem], [15,

Theorem A.2], or [9, Theorem 2.22]. From the above it follows that a convolutional
code has a constant generator matrix if and only if the overall constraint length is
zero. In that case the code can be regarded as a block code.

The definition of weight and distance in convolutional coding theory is straight-
forward. For a polynomial vector v = ∑N

j=0 vj z
j ∈ F[z]n we define the weight of v
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to be wt(v) = ∑N
j=0 wt(vj ) where, as usual, wt(vj ) denotes the Hamming weight of

vj ∈ Fn. The (free) distance of a codeC ⊆ F[z]n is given as dist(C) := min{wt(v)|v ∈
C, v /= 0}.

2. Controller canonical form and state diagram

In this section we introduce the matrix representation of the controller canonical
form for a given encoder matrixG. The interpretation of this form has been discussed
in detail in [4, Section II, 3, 9, Section 2.1]. The relation to the encoding process
will be made clear below. The results of this section are in essence well-known from
the references above and other coding literature. However, since we were not able
to find detailed references including proofs for all results we think it is worthwhile
to summarize them with strict matrix theoretical proofs. We will make heavy use of
these results in later sections.

Proposition 2.1. Let G = (gij ) ∈ F[z]k×n be a generator matrix with row degrees

γ1, . . . , γk and let gij = ∑γi
ν=0 g

(ν)
ij z

ν. Put γ = ∑k
i=1 γi and assume γ > 0. For

i = 1, . . . , k define

Ai =


0 1

. . .
1
0

 ∈ Fγi×γi , Bi = (
1 0 · · · 0

) ∈ Fγi ,

Ci =
g

(1)
i1 · · · g

(1)
in

...
...

g
(γi )

i1 · · · g
(γi )

in

 ∈ Fγi×n

and put

A =
A1

. . .
Ak

 ∈ Fγ×γ , B =
B1

. . .
Bk

 ∈ Fk×γ ,

C =
C1
...

Ck

 ∈ Fγ×n

as well as D = (g
(0)
ij ) ∈ Fk×n. In case γi = 0 for some i, the corresponding block is

missing and in B a zero row occurs. Then

G = B(z−1I − A)−1C +D = zB(I − zA)−1C +D. (2.1)
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Moreover,

rank


B

BA
...

BAγ−1

 = γ and

[rank(C,AC,A2C, . . . , Aγ−1C) = γ ⇐⇒ G minimal]. (2.2)

We call (A,B,C,D) the controller canonical form of the code C = imG.

Proof. It is easy to see that

B(z−1I − A)−1

=


z z2 · · · zγ1

z z2 · · · zγ2

. . .
z z2 · · · zγk

 ,
(2.3)

where a zero row occurs if γi = 0. From this and the definition of all matrices involved
we obtain B(z−1I − A)−1C = (

∑γi
ν=1 g

(ν)
ij z

ν) = G−D. This shows the first iden-
tity of (2.1). If γi = 0, then the assertion is correct, too. The second equality of (2.1)
follows easily from the first one. The first of the rank statements (2.2) is directly
seen from the matrices. As for the second one one may argue as follows. That rank
condition is equivalent to rank(λI − A,C) = γ for all λ ∈ F, an algebraic closure
of F, see [24, Lemma 3.3.7]. Due to the nilpotent Jordan form of A the latter is true
if and only if it is true for λ = 0 and this in turn is easily seen to be equivalent to
rank(g(νi )ij ) = k. But this is exactly the minimality of G, see [5, p. 495]. �

Identities of the form (2.1) have been well studied in system theory. In gen-
eral there exist many matrix quadruples (A,B,C,D) satisfying (2.1). By slight
abuse of system theoretic notions, we call any matrix quadruple (A′, B ′, C′,D′) ∈
Fγ

′×γ ′+k×γ ′+γ ′×n+k×n a realization ofG ifG = B ′(z−1I − A′)−1C′ +D′. The con-
ditions (2.2) are known as controllability and observability criteria. Moreover, the
following is known.

Proposition 2.2 [24, Section 5.5, Theorem 20]. Let G ∈ F[z]k×n be a minimal
generator matrix with overall constraint length γ > 0 and let (A′, B ′, C′,D′) ∈
Fγ

′×γ ′+k×γ ′+γ ′×n+k×n be a realization of G. Then γ ′ � γ. If γ ′ = γ, we call
(A′, B ′, C′,D′) a minimal realization. In this case there exists a matrix T ∈ Glγ (F)
such that (A′, B ′, C′,D′) = (T AT −1, BT −1, T C,D), where (A,B,C,D) is the
controller canonical form.Conversely, for each T ∈ Glγ (F) the quadruple (T AT −1,

BT −1, T C,D) is a realization of G.
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Since G(z−1) = B(zI − A)−1C +D for any realization the above implies that γ is
the McMillan degree of the proper rational function G(z−1) in the system theoretic
sense, see [24, p. 228].

It is well-known that the encoding process of the convolutional code generated by
G can be described by a linear shift register. The matrix version of this is exactly the
controller canonical form along with the corresponding dynamical system as given
in part (2) of the next theorem. We will give the interpretation right after the proof.

Theorem 2.3. LetG ∈ F[z]k×n be a minimal generator matrix and (A,B,C,D) be
any minimal realization ofG.Letu ∈ F[z]k and v ∈ F[z]n and define x = uB(z−1I −
A)−1. Then

(1) x ∈ zF[z]γ (that is, x is polynomial and has zero constant term). Furthermore,
writing u = (u(1), . . . , u(k)) one has deg x = max{γi + deg u(i)|i = 1, . . . , k,
γi /= 0} and deg(uG) = max{γi + deg u(i)|i = 1, . . . , k}.

(2) Write u = ∑
t�0 utz

t , v = ∑
t�0 vtz

t , and x = ∑
t�0 xtz

t where x0 = 0. Then

v = uG ⇐⇒
{
z−1x = xA+ uB
v = xC + uD

}
⇐⇒

{
xt+1 = xtA+ utB
vt = xtC + utD for all t � 0

}
.

We call xt ∈ Fγ as in (2) the state of the realization (A,B,C,D) at time t given that
the input is u. The space Fγ is called the state space of the encoder G.

The state-space realization xt+1 = xtA+ utB, vt = xtC + utD with (A,B,C,D)
being the controller canonical form has been introduced in [14] and has also been
discussed in [4,15]. It is different, however, from the state-space system used in
[20,22,21,19]. In those papers the codeword is made up by the combined input and
output, while in our case the codeword coincides with the output of the system.

Proof. (1) Suppose first that (A,B,C,D) is the controller canonical form. Then from
(2.3) we have x = (u(1)z, . . . , u(1)zγ1 , . . . , u(k)z, . . . , u(k)zγk ) where for γi = 0 the
corresponding block is missing. From this the assertions about x follow. With the data
as in Proposition 2.2 one obtainsuB ′(zI − A′)−1 = uB(zI − A)−1T −1 and therefore
the statements are also true for any minimal realization. The second statement in (1) is
one of the well-known characterizations of minimal matrices, see [5, p. 495].

(2) We have v = uG ⇐⇒ v = u(B(z−1I − A)−1C +D) and using the definition
for x the first equivalence follows. The other one follows by equating like powers
of z. �

Notice that if all row indices γi are non-zero, then the matrix B of the control-
ler canonical form has full row rank and deg x > deg u. If γi = 0 for some i, then
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kerB /= 0 and the inequality deg x � deg umight occur. Via Proposition 2.2 the same
is true for any minimal realization. In any case one has deg x � deg(uG).

Let us now consider the controller canonical form (A,B,C,D) of G. Obviously
the dynamical equations xt+1 = xtA+ utB, vt = xtC + utD describe the input-
state–output behavior of the canonical shift register realization of the encoder G.
The inputs at time t are given by the sequence ut , the state vectors xt ∈ Fγ represent
the contents of the memory elements of the register at time t and vt is the output at
that time. Part (1) above tells us in particular x0 = 0, which is the usual assumption
that the shift register is empty at the beginning of the encoding process.

Example 2.4. Let

G =
[
α + αz+ z2 α6 + αz+ α10z2 α11 + αz+ α5z2

1 + z α10 + α5z α5 + α10z

]
∈ F16[z]2×3

where α4 + α + 1 = 0. Then the multiplication

uG=
∑
t�0

utz
tG =

∑
t�0

(u
(1)
t , u

(2)
t )︸ ︷︷ ︸

ut

zt ·G

=
∑
t�0

(v
(1)
t , v

(2)
t , v

(3)
t )︸ ︷︷ ︸

vt

zt =
∑
t�0

vtz
t = v

is realized by the following linear shift register, shown at time t
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The controller canonical form is given by

A =
0 1 0

0 0 0
0 0 0

 , B =
(

1 0 0
0 0 1

)
,

C =
α α α

1 α10 α5

1 α5 α10

 , D =
(
α α6 α11

1 α10 α5

)
.

The dynamical equations xt+1 = xtA+ utB, vt = xtC + utD with the state at time
t being xt := (u

(1)
t−1, u

(1)
t−2, u

(2)
t−1) describe exactly the input-state–output behavior of

the shift register.

General Assumption 2.5. From now on we will always assume F = Fq and that the
generator matrixG ∈ F[z]k×n of the code C ⊆ F[z]n is minimal with Forney indices
γ1, . . . , γk and overall constraint lengthγ > 0. Moreover, we fix a minimal realization
(A,B,C,D) of G.

Lemma 2.6. Let u ∈ F[z]k and v := uG ∈ C. Assume v0 /= 0 and let deg v = N >

0. Put x = uB(z−1I − A)−1 ∈ F[z]γ . Choose L ∈ {1, . . . , N}. Then the following
are equivalent.

(i) xL = 0,
(ii) v = ṽ + v̂ where ṽ, v̂ ∈ C\{0} and deg ṽ < L, v̂ ∈ zLF[z]n.

In the case where (A,B,C,D) is the controller canonical form the lemma simply
reflects that if the shift register is back to the zero state (at time t = L), then one may
regard the information before and after that time instance as two separate information
messages and the associated codewords as two separate codewords.

Proof. Recall that deg x � deg v = N .
“(i) ⇒ (ii)”: Put x̃ = ∑L−1

t=0 xtz
t and x̂ = ∑N

t=L+1 xtz
t . If L = N , put x̂ = 0.

Then x = x̃ + x̂ and uB = x̃(z−1I − A)+ x̂(z−1I − A). Writing u = ũ+ û where
deg ũ < L and û ∈ zLF[z]k , we obtain deg(ũB) < L and ûB ∈ zLF[z]γ . There-
fore, ũB = x̃(z−1I − A) and ûB = x̂(z−1I − A). Now put ṽ := ũG = ũ(B(z−1I −
A)−1C +D) = x̃C + ũD and v̂ := ûG = x̂C + ûD. Then it is easy to see that (ii)
is satisfied.

“(ii) ⇒ (i)”: Let ṽ = ũG and v̂ = ûG, hence v = (ũ+ û)G. Then basicness ofG
implies û ∈ zLF[z]k . Moreover, sinceG is minimal, we have deg ṽ = max{deg ũ(i) +
γi |i = 1, . . . , k}, where ũ = (ũ(1), . . . , ũ(k)), see Theorem 2.3(1). Thus the assump-
tion deg ṽ < L implies deg ũ(i) < L− γi for all i = 1, . . . , k. Now, x = ũB(z−1I −
A)−1 + ûB(z−1I − A)−1 and from (2.3) we obtain that deg(ũB(z−1I − A)−1) < L

and ûB(z−1I − A)−1 ∈ zL+1F[z]γ . Thus xL = 0. �
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The above gives rise to the distinction of codewords into those which are the sum
of two non-overlapping codewords and those which are not. For counting weights it
will be advantageous to make an even finer distinction.

Definition 2.7. Let v ∈ C such that v0 /= 0. Let L ∈ N. The codeword v is called
concatenated at time t = L if

v = ṽ + v̂ where ṽ, v̂ ∈ C\{0}, deg ṽ = L− 1, v̂ ∈ zLF[z]n.
If additionally, vL /= 0, we call v tightly concatenated at time t = L. We call a

codeword concatenated if it is concatenated at some time instance t = L. We call it
tightly concatenated if each of its concatenations is tight. If v is not concatenated,
then v is called atomic. If v is tightly concatenated or atomic, then v is also called
molecular.

Parts of this definition can also be found in [16]. Notice that we consider only code-
words that start at time t = 0, i.e., v0 /= 0. This is certainly no restriction when it comes
to computing the weight. It is obvious that each such codeword is the concatenation of
atomic codewords. Moreover, from Lemma 2.6 we know that if v is concatenated at
time t = L then the state xL at time t = L is zero. In this case, the dynamical equations
in Theorem 2.3(2) show that v is tightly concatenated at time t = L if and only if
uL /= 0 (since the matrix D has full row rank). Thus for a non-tightly concatenated
codeword the shift register is zero and the input is zero for at least one time instance
before non-zero input is entering again. For a tightly concatenated codeword the
shift register is zero, and there is immediately non-zero input being fed into the
system. If v is concatenated at time t = L, but not tightly concatenated, then we have
xL = xL+1 = 0. The converse is not true: it might happen that xL = xL+1 = 0 even
if v is tightly concatenated at time t = L simply because the matrix B might have a
non-trivial kernel. All this is best visualised by using the state diagram.

Definition 2.8
(a) Consider the state space Fγ of the encoder G. We define the state diagram of
(A,B,C,D) as the labeled directed graph given by the vertex set Fγ and the
set of edges{
X
(uv )→ Y |X, Y ∈ Fγ , u ∈ Fk, v ∈ Fn : Y = XA+ uB, v = XC + uD

}
.

(b) A path of length l is a sequence of edges of the form

Xi0

(
u0
v0

)
→ Xi1

(
u1
v1

)
→ Xi2

(
u2
v2

)
→ . . . . . .

(
ul−2
vl−2

)
→ Xil−1

(
ul−1
vl−1

)
→ Xil . (2.4)
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The path is called a cycle aroundXi0 ifXi0 = Xil . The weight of the path (2.4)
is defined as

∑l−1
i=0 wt(vi).

(c) Let u, x, v := uG be as in Theorem 2.3 and let deg v = N . Then xN+1 = 0
(since deg x � deg v) and we call the path

0 = x0

(
u0
v0

)
→ x1

(
u1
v1

)
→ x2

(
u2
v2

)
→ x3 · · · · · · xN

(
uN
vN

)
→ xN+1 = 0

the cycle around zero associated with the codeword v = uG.

Note that the edges of the state diagram correspond to the transitions in the canon-

ical shift register:X
(uv )→ Y is an edge if for some time instance t the memory vector is

given by X, the input is u, and this leads to the next memory vector Y and the output
v. Hence there emerge qk edges at each vertex.

As a consequence, the state diagram contains all information about the encoding
process. The cycles around X0 = 0 are in one-one correspondence with the code-
words in imG. The message sequence determines the path through the graph and the
corresponding v-labels yield the associated codeword. A codeword is atomic if and
only if the associated cycle does not pass through the zero state except for starting
and end point, see Lemma 2.6. A codeword is molecular if and only if the associated

cycle does not contain the edge 0

(
0
0

)
→ 0, see the discussion right after Definition 2.7.

Note also that it is possible to have two different edges between the same vertices,

i.e. edges of the form X
(uv )→ Y and X

(
u′
v′
)

→ Y where u /= u′. This happens if and only
if γl = 0 for at least one l which is equivalent to B having a non-trivial kernel. In this

and only this case there are also edges of the form 0
( uv )→ 0 in the state diagram such

that u ∈ kerB is not zero.

Example 2.9. Consider the basic and minimal matrix G = (1 + z+ z2 + z3, 1 +
z2 + z3) ∈ F2[z]1×2. Since γ = 3 the state diagram has 23 = 8 vertices. The control-
ler canonical form is given by

A =
0 1 0

0 0 1
0 0 0

 , B = (
1 0 0

)
, C =

1 0
1 1
1 1

 , D = (
1 1

)
.

Going through all options for the equations xt+1 = xtA+ utB, vt = xtC + utD
yields the associated state diagram
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010 001100

101 011110

000

111

1
11( ) 0

11( )

1
00( )

0
10( ) 0

11( )

1
01( ) 0

01( ) 1
00( ) 0

00( )

1
10( ) 1

11( )

0
01( )

1
10( ) 0

10( )

1
01( )

0
00( )

Notice that the state diagram is not an invariant of the code. It depends on the
choice of the minimal generator matrix as well as on the minimal realization. We will
discuss this issue in detail in Remark 3.6 and Section 4.

3. The adjacency matrix and the weight distribution

In this section we will illustrate how to compute the weight distribution of a
convolutional code in terms of the state diagram. A main tool will be the adjacency
matrix associated with the state diagram as it has been defined in [16]. In slightly
different forms this matrix appears also in other papers on convolutional codes, see
for instance [9, Section 3.10]. Theorem 3.8 has been derived in [16]. First of all we
need a reasonable definition for the weight distribution. Of course, it is sufficient to
count only the weights of atomic codewords. In order to do so, we need to show that
we are dealing with finite numbers if counted appropriately. This will be dealt with
in the first lemma. As before General Assumption 2.5 is in force.

Lemma 3.1. Assume the memory of G, i.e., the maximal Forney index, is given
by m.

(a) Let v = uG ∈ C where u = ∑L
i=0 uiz

i ∈ F[z]k with u0 /= 0 /= uL. If ul+1 =
ul+2 = · · · = ul+m = 0 for some l ∈ {0, . . . , L−m− 1}, then v is concate-
nated.

(b) For all α ∈ N0 we have #{v ∈ C|v atomic,wt(v) � α} < ∞.

Proof. (a) Write u = ∑l
i=0 uiz

i +∑L
i=l+m+1 uiz

i =: ũ+ û. Then deg(ũG) � l +
m and ûG ∈ zl+m+1F[z]n, thus v = ũG+ ûG is concatenated at some time t � l +
m+ 1.



H. Gluesing-Luerssen / Linear Algebra and its Applications 408 (2005) 298–326 309

(b) Let Ĝ ∈ F[z]n×k be a right inverse ofG and let Ĝ have maximal row degree m̂.
Suppose v = uG ∈ C is a codeword with at leastm+ m̂ consecutive zero coefficients.
Thus, v = ṽ + v̂ where ṽ, v̂ ∈ F[z]n\{0} satisfy deg ṽ � L and v̂ ∈ zL+m+m̂+1F[z]n
for someL ∈ N0. Thenu = uGĜ = ṽĜ+ v̂Ĝ and part (a) shows that v is not atomic.
All this proves that atomic codewords do not have more thanm+ m̂− 1 consecutive
zero coefficients. As a consequence, all atomic codewords of weight at most α have
a degree bounded by someMα ∈ N proving the assertion. �

Remark 3.2. It is not hard to prove that if all Forney indices of G are equal to m
then part (a) above becomes an if-and-only-if statement. Indeed, let v = uG ∈ C be
concatenated as v = ṽ + v̂ where ṽ, v̂ ∈ C\{0} and deg ṽ � T and v̂ ∈ zT+1F[z]n for
some T � deg u− 1. We have to show that uT = uT−1 = · · · = uT−m+1 = 0. From
Lemma 2.6 we know that xT+1 = 0, thus the dynamical equations in Theorem 2.3(2)
yield 0 = xT A+ uT B = xT−1A

2 + uT−1BA+ uT B and finally

0 = xT−m+1A
m + (uT−m+1, . . . , uT )


BAm−1

...

BA

B

 . (3.1)

Using the controller canonical form it follows directly that if all Forney indices arem,
then Am = 0 and the matrix on the very right of (3.1) is a non-singular γ × γ -matrix
(via Proposition 2.2 the same is true then for any minimal realization of G). Hence
(3.1) yields the desired result.

The above makes the computation of the distance of a given code to a finite problem,
at least theoretically.

Definition 3.3. For all α, l ∈ N define ωl,α := #{v ∈ C|v atomic, deg v = l − 1,
wt(v) = α}. The power series � = �(W,L) := ∑∞

l=1
∑∞
α=1 ωl,αW

αLl ∈ Q[[W,L]]
is called the weight distribution of the code C.

Observe that the weight distribution � is an invariant of the code and does not
depend on a chosen generator matrix. For simplicity we omit the constant term 1
representing the zero codeword. Notice that for block codes we simply have � =∑n
α=1 ω1,αW

αL. This is, up to the factor L, the ordinary weight distribution for
block codes where the constant term 1, representing the zero codeword, has been
omitted. It is clear that the numbers ωl,α are indeed finite. Moreover, since each
codeword of degree l − 1 has at most l non-zero coefficients in Fn, we have � =∑∞
l=1

∑nl
α=1 ωl,αW

αLl ∈ Q[W ][[L]]. We also have for each α ∈ N that
∑∞
l=0 ωl,αL

l

is a finite sum, due to Lemma 3.1(b). Hence� =∑∞
α=1

∑∞
l=1 ωl,αL

lWα ∈ Q[L][[W ]].
Finally observe that dist(C) = min{α ∈ N|∃l ∈ N : ωl,α /= 0} is the degree of the
smallest term ocurring in the series expansion with respect toW .
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In the sequel we will discuss how one can compute, at least theoretically, the weight
distribution of a code using the state diagram. All necessary information is contained
in the following matrix �. Define

F := Fγ × Fγ and s := qγ . (3.2)

Definition 3.4. For all (X, Y ) ∈ F and all α ∈ {0, . . . , n} put

λ
(α)
X,Y := #{u ∈ Fk | Y = XA+ uB,wt(XC + uD) = α}.

The matrix

� :=
(

n∑
α=0

λ
(α)
X,YW

α

)
(X,Y )∈F

∈ Q[W ]s×s

is called the adjacency matrix of the realization (A,B,C,D).

Notice that λ(α)X,Y is the number of all edges in the state diagram of the form X
(uv )→ Y

where wt(v) = α. Obviously the weight α is bounded by n. One can regard the
adjacency matrix as a generalization of the weight distribution for block codes. Indeed,
in that case G = D and γ = 0. Therefore � = ∑n

α=0 λ
(α)
0,0W

α where λ(α)0,0 = #{u ∈
Fk|wt(uD) = α}.

Remark 3.5. If we want to display � explicitly as a matrix, we need to fix an ordering
of the states. If we do so, we will always choose the same ordering for the row index
X and for the column index Y and we will pick the zero state as the first index.
In this sense, the adjacency matrix of a realization is well-defined up to similarity
transformation via a permutation matrix P ∈ Qs×s where P0,0 = 1.

Just like the state diagram the adjacency matrix depends on the minimal encoder
as well as on the minimal realization. We have the following result, which also fits
with the previous remark.

Remark 3.6. Suppose (A,B,C,D) and (A,B,C,D) are two minimal realizations
of the minimal generator matrix G. According to Proposition 2.2 there exists T ∈
Glγ (F) such that (A,B,C,D) = (T AT −1, BT −1, T C,D). Let λ(α)X,Y and λ

(α)

X,Y be

the respective enumerators as defined in 3.4 and �,� be the adjacency matrices. Then

λ
(α)

X,Y = #{u ∈ Fk|Y = XA+ uB,wt(XC + uD) = α}
= #{u ∈ Fk|YT = (XT )A+ uB,wt((XT )C + uD) = α} = λ

(α)
XT ,YT

for all (X, Y ) ∈ F and all α = 0, . . . , n. Thus, �X,Y = �XT,YT for all (X, Y ) ∈ F.
Fixing an ordering of the states as described in the previous remark, we obtain � =
V�V −1 where V ∈ Qs×s is a permutation matrix such that V0,0 = 1. Notice that the
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permutation on the s indices in Fγ is even a linear mapping. This discussion also shows
that the state diagram of the two realizations differ only by a relabeling of the vertices.

Example 3.7

(1) Let G =
(

1 1 0
0 z+ 1 z

)
∈ F[z]2×3. Thus s = 2γ = 2 and the controller

canonical form is A = (0), B =
(

0
1

)
, C = (

0 1 1
)
, D =

(
1 1 0
0 1 0

)
.

With these data one obtains straightforwardly � =
(

1 +W 2 2W
2W 2 W +W 3

)
.

(2) In Example 2.9 we have s = 23 = 8 and obtain, with an appropriate ordering
of the states, directly from the state diagram the matrix

� =



1 0 0 0 W 2 0 0 0
W 2 0 0 0 1 0 0 0
0 W 2 0 0 0 1 0 0
0 1 0 0 0 W 2 0 0
0 0 W 0 0 0 W 0
0 0 W 0 0 0 W 0
0 0 0 W 0 0 0 W

0 0 0 W 0 0 0 W


.

Now we can present the result of McEliece about how to compute the weight
distribution of a code. We use the notation from (3.2).

Theorem 3.8 (McEliece [16, Theorem 3.1]). Let � be the adjacency matrix of the
minimal realiztion (A,B,C,D) and define �̂ ∈ Q[W ]s×s by �̂0,0 = �0,0 − 1 and
�̂X,Y = �X,Y for all (X, Y ) ∈ F\{(0, 0)}. Then

� = 1 − �−1, where � = [(I − L�̂)−1]0,0 ∈ Q(W,L).

The result is also compliant with the block code case where � = ∑
v∈CWwt(v) ∈

Q[W ] and � = (� − 1)L. The matrix �̂ can be regarded as the adjacency matrix

of the state diagram where the edge 0

(
0
0

)
→ 0 has been removed. This is necessary for

the proof, where one first shows that � is the weight distribution of the molecular
codewords. As has been discussed after Definition 2.8, the latter can be identified with

the cycles around zero in the state diagram without the edge 0

(
0
0

)
→ 0. Notice that due

to Remarks 3.5 and 3.6 the definition of � does not depend on the chosen minimal
realization. We will present a sketch of the poof. For the details we refer to [16].

Sketch of proof: We call the state diagram where the edge 0

(
0
0

)
→ 0 has been removed

the reduced state diagram. Then one can show straightforwardly that the lth power
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of �̂ satisfies (�̂
l
)X,Y = ∑nl

α=0 λ̂
(l,α)
X,Y W

α where λ̂(l,α)X,Y is the number of paths from X

to Y of length l and weight α in the reduced state diagram (this is actually proven in
the same way as an analogous case in the first paragraph of the proof of Lemma 5.2
later on). In particular, λ̂(l,α)0,0 is the number of molecular codewords of length l and
weight α. Now

� =
[
(I − L�̂)−1

]
0,0

=
[ ∞∑
l=0

(L�̂)l
]

0,0

= 1 +
∞∑
l=1

(�̂
l
)0,0L

l = 1 +
∞∑
l=1

∞∑
α=0

λ̂
(l,α)
0,0 W

αLl.

Hence � is the weight distribution of the molecular codewords. On the other hand, one
can show by induction on r ∈ N that �r = 1 +∑∞

l=1
∑∞
α=1 ω

(r)
l,αW

αLl where ω(r)l,α is
the number of all codewords of weight α and length l that consist of exactly r tightly
concatenated atomic codewords. Thus, by definition of the molecular codewords,
� = 1 + � + �2 + �3 + · · · = 1

1−� . �

If one follows the arguments above one has to perform the following steps in order
to compute the weight distribution of a given code:

1. Compute �.
2. Solve the equation x(I − L�̂) = (1, 0, . . . , 0) for x ∈ Q(W,L)s where we apply

Remark 3.5 for writing �̂ as a matrix.
3. Then � = x1 and � = 1 − �−1.

While (1) and (3) are easily done for reasonably sized parameters, step (2) quickly
becomes unpractical with growing overall constraint length γ and/or field size q
since the size of the adjacency matrix is qγ × qγ . Better algorithms for computing
the weight distribution while avoiding the big adjacency matrix are Viterbi’s method,
see [25] or [9, Section 3.10], or Mason’s gain formula as described in [11, Section
10.2]. Further methods can be found in [2,17,18].

Example 3.9. Let G be as in Example 2.9. In this case the adjacency matrix is only
8 × 8 and we can perform the computation of the weight distribution along the steps
(1)–(3) above by using, for instance, Maple. We computed the adjacency matrix �
already in Example 3.7(2). From that one obtains the weight distribution

� = L4W 6(L+W − LW 2)/(1 − LW − L2W + L3W 2 − L3W 3

−L4W 2 − L3W 4 + L4W 4)

= L5W 6 + (L4 + L6 + L7)W 7 + (L6 + L7 + L8 + 2L9)W 8

+ (4L8 + L9 + 3L10 + 3L11)W 9 + O(W 10).
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Thus, the distance is 6 and the code contains exactly one atomic codeword of weight 6,
it has length 5. It contains three atomic codewords (of length 4, 6, and 7, respectively)
of weight 7 and 5 atomic codewords of weight 8, two of which have length 9 the other
three have length 6, 7, 8, respectively, etc.

At the end of this section we want to briefly mention two distance parameters
appearing in a totally different context in the literature that are closely related to our
notions. As to our knowledge this relationship, even though quite simple, has not
yet been exhibited. In [10, p. 541] the extended row distances d̂rl are defined. The
sequence of these parameters is closely related to the error-correcting performance
of the code. In particular, it is desirable that they have a large growth rate, see [10]
for further details. The definition shows immediately that

d̂rl = min{wt(v)|v atomic, deg(v) = l} = min{α ∈ N0|ωl+1,α /= 0},
where ωj,α are given in Definition 3.3. Thus these distance parameters can be recov-
ered, at least theoretically, from the weight distribution �. There are also other defini-
tions of the extended row distances in the literature. They are slightly different and in
general not that closely related to atomic or molecular codewords and some of them
even depend on the choice of the (minimal) encoder.

In [7] the active burst distances have been introduced. They form a generalization of
the extended row distances and, again, reveal information about the error-correcting
capability of the code. They are of particular importance for the investigation of
concatenated codes. The lth order active burst distance of the code C = imG is
defined as [7, p. 155]

abl := min{wt((uG)[0,l])|xl+1 = 0 and (xi, xi+1, ui) /= 0 for all 0 � i � l},
where, as usual, x is the associated state sequence, see also [9, Section 3.2]. Moreover,
(uG)[0,l] denotes the codeword truncated after the lth power of z. As we will show
now, if G is minimal then

abl = min{wt(v)|v molecular, deg v = l} = min{α ∈ N|λ̂(l+1,α)
0,0 /= 0}, (3.3)

where λ̂(l,α)0,0 are given in the proof of Theorem 3.8. The second identity follows directly
from that proof. As for the first identity, note first that Lemma 2.6 along with xl+1 = 0
implies that v := (uG)[0,l] is a codeword. Due to (xi, xi+1, ui) /= 0 this codeword
is molecular. Finally we have deg v = l, which can be seen as follows. Suppose
deg v < l. Since G is minimal we have deg u � deg v, see Theorem 2.3(1). Hence
ul = 0 = vl . Using the controller canonical form (A,B,C,D) we obtain xl+1 =
0 = xlA and vl = 0 = xlC, and (2.2) implies xl = 0. Hence (xl, xl+1, ul) = 0 which
contradicts the choice of v. All this together shows that v is a molecular codeword of
degree l. Conversely one can easily see that each such codeword has a state sequence
x such that (xi, xi+1, ui) �= 0 for all 0 � i � l. This proves the first identity of (3.3).
Hence the active burst distances occur in the series � as used in Theorem 3.8 for
enumerating the molecular codewords. In particular we have that minl�0 a

b
l equals

the free distance of the code, see also [9, Theorem 3.8].
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4. The adjacency matrix as an invariant of the code

In this section we will prove that the adjacency matrix is an invariant of the code,
i.e., does not depend on the choice of the minimal generator matrix, provided that
one factors out isomorphisms on the state space. As to our knowledge the result of
this and the next section are new.

Throughout this section we will use the notation from (3.2). As shown in Remark
3.6 the adjacency matrix depends on the chosen minimal realization. It gives rise to
the following notation. On Q[W ]s×s we define the equivalence relation

M ∼ M ′ ⇐⇒ ∃T ∈ Glγ (F) such thatM ′
X,Y = MXT,YT for all (X, Y ) ∈ F.

(4.1)

Moreover, we defineM to be the equivalence class ofM ∈ Q[W ]s×s .
Now Remark 3.6 tells us that we have a well-defined mappingG �−→ �G from the

set of all minimal generator matrices with overall constraint length γ into Q[W ]s×s/∼
by simply choosing �G as the adjacency matrix ofGwith respect to any minimal real-
ization. We will show now that �G is even an invariant of the code. Indeed, we have

Theorem 4.1. Let G,G′ ∈ F[z]k×n be two minimal generator matrices such that
C := imG = imG′. Then

�G = �G′ . (4.2)

We will write �(C) := �G for this invariant and call it the generalized adjacency
matrix of the code.

The theorem tells us that the generalized adjacency matrix is a well-defined map-
ping

� : {C ⊆ Fq [z]n|C code with overall constraint length γ } −→ Q[W ]qγ×qγ/∼
C �−→ �(C).

(4.3)

Proof. Let ν1, . . . , νk and µ1, . . . , µk be the row degrees of G and G′, respectively.
By assumption we have [3, Theorem 4]

G′ = UG for some matrix U ∈ Glk(F[z]), (4.4)

where Glk(F[z]) denotes the group of unimodular k × k-matrices over F[z]. More-
over, by uniqueness of the Forney indices, {ν1, . . . , νk} = {µ1, . . . , µk}. Let γ :=∑k
i=1 νi = ∑k

i=1 µi be the overall constraint length of the code.
Since every unimodular matrix U ∈ Glk(F[z]) is the product of elementary matri-

ces, we may show the result for each type of elementary transformation separately.
By virtue of Remark 3.6 we may choose without loss of generality the controller
canonical forms (A,B,C,D) and (A′, B ′, C′,D′) of G and G′, respectively. Let �
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and �′ be the adjacency matrices of these realizations, respectively. We will show
that each type of elementary transformation U results in �′ ∼ �.

(1) We show that a permutation of the rows of G results in a transformation of �
just like in (4.1). Thus let us assume G′ = UG where U permutes the ith and j th
row of G. Then A′ is obtained from A by permuting the ith and j th block row and
column, B ′ is obtained from B by permuting the ith and j th row and the ith and j th
block column, C′ is obtained from C by permuting the ith and j th block row and
finally D′ is obtained from D by permuting the ith and j th row. Thus, there exists a
permutation matrix P ∈ Glγ (F) such that

A′ = PAP−1, B ′ = UBP−1, C′ = PC, D′ = UD

(this is also correct ifνi orνj is zero). Now letX
(uv )→ Y be an edge in the state diagram of

(A,B,C,D). ThenY = XA+ uB and v = XC + uD. From this we obtainYP−1 =

(XP−1)A′ + (uU−1)B ′ andv = (XP−1)C′ + (uU−1)D′, henceXP−1

(
uU−1
v

)
→ YP−1

is an edge in the state diagram of (A′, B ′, C′,D′). The very definition of the adjacency
matrices shows that�X,Y = �′

XP−1,YP−1 for all (X, Y ) ∈ F. This in turn implies (4.2).
(2) Next we consider the case where the matrix U in (4.4) multiplies the rows of

G with some non-zero constants, say U = diag (u1, . . . , uk) ∈ Glk(F). Then
A′ = A, B ′ = B, C′ = ÛC, D′ = UD,

where

Û =


u1Iν1

u2Iν2

. . .
ukIνk

 .
Here Ij denotes the j × j -identity matrix. It is easy to see that ÛA = AÛ andUB =
BÛ , thus A′ = A = ÛAÛ−1 and B ′ = B = UBÛ−1. Using the same arguments as
in case (1) we arrive at (4.2).

(3) Now we consider the case where U adds a constant multiple of one row to
another. Because of part (1) of this proof we may assume ν1 = µ1 � · · · � νk = µk .
Since we did already part (2) of this proof and sinceG andG′ = UG are both minimal
we only have to consider the case where the j th row is added to the ith row and j < i.
Hence U = Ik + E where E ∈ Fk×k has a 1 at position (i, j) and 0 elsewhere. Let
us first assume νj > 0. Put

Û =



Iν1
. . .

Iνj
. . .

M Iνi
. . .

Iνk


∈ Glγ (F), (4.5)
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where

M =
(
Iνj
0

)
∈ Fνi×νj .

Then we have

A′ = A, B ′ = B, C′ = ÛC, D′ = UD.

Furthermore, it is easy to see thatMAj = AiM and BiM = Bj where Ai , Bi are the
diagonal blocks of the matrices A,B as given in Definition 2.1. From this we obtain
ÛA = AÛ and UB = BÛ . Now we can use the same arguments as in case (2) to
finish the proof. If νj = 0 we have A′ = A,B ′ = B,C′ = C, and D′ = UD. Using
Û := Iγ and the fact that the j th row of B is zero, we have again UB = BÛ and we
can argue as before.

(4) Finally we have to consider the case where the matrix U adds a non-constant
multiple of one row ofG to another. Without restriction we may assume that zl times
the j th row is added to the ith row. Since G′ is supposed to be minimal again, we
have l � νi − νj . Hence U = Ik + E where E ∈ Fk×k has the entry zl at position
(i, j) and 0 elsewhere. Let again first νj > 0. Consider Û as in (4.5) but where M
now is of the form

M =
0l×νj
Iνj
0

 ∈ Fνi×νj .

Then we obtain

A′ = A, B ′ = B, C′ = ÛC + ÊD, D′ = D,

where Ê ∈ Fγ×k has a 1 at position (r, j) with r = ∑i−1
τ=1 ντ + l and 0 elsewhere.

Furthermore, AiM = MAj +N where N ∈ Fνi×νj has a 1 at position (l, 1) and 0
elsewhere. ThusAÛ = ÛA+ N̂ where N̂ ∈ Fγ×γ satisfies N̂r,t = 1 with r as above
and t = ∑j−1

τ=1 ντ + 1 and all other entries are zero. Moreover, one has ÊB = N̂ ,

since νj > 0, as well as BÛ = B since l > 0. Suppose now that X
(uv )→ Y is an edge

in the state diagram of (A,B,C,D). Then Y = XA+ uB and v = XC + uD. One
computes

Y Û−1 = (XÛ−1)A′ + (u−XÛ−1Ê)B ′

and

v = (XÛ−1)C′ + (u−XÛ−1Ê)D′.

Thus, putting ũ = u−XÛ−1Ê, we obtain that XÛ−1

(
ũ
v

)
→ Y Û−1 is an edge of the

state diagram of (A′, B ′, C′,D′). Again this implies (4.2). In the case νj = 0 we have
A′ = A,B ′ = B,C′ = C + ÊD, andD′ = Dwhere Ê is as before. Since the j th row
of B is zero, one has ÊB = 0 and thus the equations Y = XA+ uB, v = XC + uD
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are equivalent to the equations Y = XA′ + (u−XÊ)B ′, v = XC′ + (u−XÊ)D′
and we can argue as above. This completes the proof. �

Notice that the proof also shows how the controller canonical form changes under
unimodular transformations of the minimal generator matrix. However, we will not
need that result explicitly.

Remark 4.2. It is worth noting that for codes with overall constraint length γ = 1 all
associated adjacency matrices are identical. Indeed, assume we have two adjacency
matrices �,�′ ∈ Q[W ]q×q associated with the code C. By Theorem 4.1 there exists
an element a ∈ F\{0} such that �′

X,Y = �aX,aY for all X, Y ∈ F. If (A,B,C,D)
is any minimal realization of a minimal encoder of C, then obviously [Y = XA+
uB ⇐⇒ aY = aXA+ auB] and wt(XC + uD) = wt(aXC + auD) for allX, Y ∈
F. Therefore, Definition 3.4 shows immediately that �aX,aY = �X,Y and thus �′ = �.

Next we will briefly turn to monomially equivalent codes. Defining monomial
equivalence just like for block codes it is straightforward to show that it preserves
the generalized adjacency matrices, see Theorem 4.4 below. In the next section
we will see that for certain classes of codes even the converse of that theorem
is true.

Definition 4.3. Two matrices G,G′ ∈ F[z]k×n are called monomially equivalent if
G′ = GPR for some permutation matrix P ∈ Gln(F) and a non-singular diagonal
matrixR ∈ Gln(F). Thus,G andG′ are monomially equivalent if and only if they dif-
fer by a permutation and a rescaling of the columns. We call two codes C,C′ ⊆ F[z]n
monomially equivalent and write C ∼ C′ if C = imG and C′ = imG′ for some
monomially equivalent generator matrices.

It is clear that monomially equivalent codes have the same distance and the same
weight distribution. As we show next they even have the same generalized adjacency
matrix.

Theorem 4.4. Let C,C′ ⊆ F[z]n be two convolutional codes. Then

C ∼ C′ �⇒ �(C) = �(C′).

Proof. Let G,G′ ∈ F[z]k×n be generator matrices of C and C′, respectively, such
that G′ = GPR for some permutation matrix P and a non-singular constant dia-
gonal matrix R. Then the controller canonical forms satisfy A′ = A,B ′ = B,C′ =
CPR,D′ = DPR. Thus, if X

(uv )→ Y is an edge in the state diagram associated with

(A,B,C,D) thenX
( u
vPR )→ Y is an edge in the state diagram of (A′, B ′, C′,D′). Since

wt(v) = wt(vPR) we obtain the desired result. �
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5. The adjacency matrix as a complete invariant for one-dimensional
binary codes

In this section we will derive some results about the generalized adjacency matrix.
The guiding question is as to what properties do codes share if they have the same
generalized adjacency matrix. We will first show that such codes always have the
same Forney indices. Secondly, we will show that binary one-dimensional codes
with the same generalized adjacency matrix are monomially equivalent. It is not
known to us whether this is also true for one-dimensional codes over arbitrary fields.
However, it is certainly not true for general higher-dimensional codes as we know from
(binary) block code theory, see [8, Example 1.6.1]. As a consequence, we obtain that
if two binary one-dimensional codes share the same generalized adjacency matrix,
then so do their duals. This indicates the existence of a MacWilliams duality the-
orem for the adjacency matrices of convolutional codes, and, indeed, such a theo-
rem has been proven for codes with overall constraint length one in the paper [1],
see (5.3) at the end of this section. The general case has to remain open for future
research.

We begin with showing that two codes sharing the same generalized adjacency
matrix have the same Forney indices. Observe that two such codes certainly have the
same overall constraint length since that determines the size of the adjacency matrix.

Theorem 5.1. Let C,C′ ⊆ F[z]n be two convolutional codes with the same over-
all constraint length and such that �(C) = �(C′). Then C and C′ have the same
dimension and, up to ordering, the same Forney indices.

For the proof we will need the following lemma.

Lemma 5.2. Let the data be as in General Assumption 2.5 and � be the associated
adjacency matrix. Define

ρr = rank


B

BA
...

BAr


for r ∈ N0. Then for any r � 1 we have #{Y ∈ Fγ |(�r )0,Y /= 0} = qρr−1 .

Notice that by virtue of Proposition 2.2 the rank ρr is independent from the choice
of the minimal realization.

Proof. For r ∈ N let (�r )X,Y = ∑rn
α=0 λ

(r,α)
X,Y W

α . We first show by induction on r

that λ(r,α)X,Y is the number of the paths from X to Y of length exactly r and weight α.
The case r = 1 is clear. Moreover,
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(�r+1)X,Y =
∑
Z∈Fγ

�X,Z(�
r )Z,Y =

∑
Z∈Fγ

n∑
α=0

λ
(1,α)
X,Z W

α
rn∑
α=0

λ
(r,α)
Z,Y W

α

=
(r+1)n∑
α=0

∑
Z∈Fγ

α∑
β=0

λ
(1,β)
X,Z λ

(r,α−β)
Z,Y Wα.

By induction hypothesis λ(r,α−β)
Z,Y is the number of paths from Z to Y of length r

and weight α − β and likewise λ(1,β)X,Z is the number of edges fromX to Z and weight
β. Since all paths fromX to Y go through exactly one stateZ after one step, we obtain
the desired result about λ(r,α)X,Y .

Now our assertion is equivalent to saying that there are exactly qρr−1 states that
can be reached from the zero state by a path of length exactly r . This is obviously

true for r = 1 since the existence of an edge 0
( uv )→ Y is equivalent to the existence of

u such that Y = uB and there are qrkB = qρ0 different states Y possible. In general,
the existence of a path

0

(
u1
v1

)
→ Xj1

(
u2
v2

)
→ · · ·

(
ur
vr

)
→ Xjr

is equivalent to the existence of u1, . . . , ur such that

Xjr = (ur , ur−1, . . . , u1)


B

BA
...

BAr−1


showing that this allows for qρr−1 different states Xjr .

Now it is not hard to prove the theorem above.

Proof of Theorem 5.1. Let G ∈ F[z]k×n and G′ ∈ F[z]k′×n be minimal generator
matrices of C and C′ and (A,B,C,D) and (A′, B ′, C′,D′) the controller canonical
forms, respectively. By assumption there exists a matrix T ∈ Glγ (F) such that

�′
X,Y = �XT,YT for all (X, Y ) ∈ F. (5.1)

From this we deduce that k = k′. Indeed, since there are qk edges emerging from the
zero state we have

∑
Y∈Fγ �0,Y = ∑n

α=0 aαW
α where

∑n
α=0 aα = qk . On the other

hand, the above yields
∑
Y∈Fγ �0,Y = ∑

Y∈Fγ �′
0,Y and using the same argument this

yields k = k′. As for the Forney indices we proceed as follows. By induction on r
one easily derives from (5.1) that ((�′)r )X,Y = (�r )XT ,YT for all (X, Y ) ∈ F. Thus,
Lemma 5.2 implies ρr = ρ′

r for all r ∈ N0 where
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ρr = rank


B

BA
...

BAr

 , ρ′
r = rank


B ′
B ′A′
...

B ′A′r

 .
Now let γ1, . . . , γk and γ ′

1, . . . , γ
′
k be the Forney indices of G and G′, respectively.

By definition of A and B we have

ρ0 = rankB = #{i|γi > 0} and rankBAr = #{i|γi > r} for all r ∈ N.

Moreover, due to the specific form of the matrices,

ρr = rank


B

BA
...

BAr−1

+ rankBAr.

Therefore,

ρr − ρr−1 = #{i|γi > r} for r ∈ N.

Analogous identities hold true for the other code. Using now ρr = ρ′
r for all r ∈ N0

it follows

#{i|γi > r} = #{i|γ ′
i > r} for all r ∈ N0.

This shows that the Forney indices coincide up to ordering. �

Now we come to the main result of this section. The proof will make use of the
Equivalence Theorem of MacWilliams about weight preserving transformations for
block codes. Moreover, a technical lemma for isomorphisms on F

γ

2 will be proven in
the Appendix 6. It is open whether the result below can be generalized to arbitrary
fields. One should, however, bear in mind that the theorem is not true for higher-
dimensional codes since it even fails for binary block codes, see [8, Example 1.6.1].

Theorem 5.3. Let C,C′ ⊆ F2[z]n be two binary one-dimensional codes such that
�(C) = �(C′). Then C and C′ are monomially equivalent.

Proof. Let F = F2 andG,G′ ∈ F[z]1×n be minimal generator matrices of C and C′,
respectively. By assumption C and C′ have the same overall constraint length, say
γ . Without loss of generality we may assume γ � 1. Let � and �′ be the adjacency
matrices of the controller canonical forms of G and G′, respectively. By assumption
there exists T ∈ Glγ (F) such that (5.1) holds true. We will first show that T = Iγ . It
is quite interesting to show that this is even true if we give up the additivity of the
mapping T . More precisely, we will simply assume that there exists a bijection π on
Fγ such that π(0) = 0 and

�′
X,Y = �π(X),π(Y ) for all (X, Y ) ∈ F
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and will show that π is the identity. This is certainly true if γ = 1 (recall F = F2),
thus we may assume γ � 2. The controller canonical forms of G and G′ are given
by (A,B,C,D) and (A,B,C′,D′) where

A =


1

1
. . .

1

 ∈ Fγ×γ , B = (1, 0, . . . , 0) ∈ Fγ

and C,D,C′,D′ are defined as in Definition 2.1. In the rest of the proof we will use
for X = (x1, . . . , xγ ) ∈ Fγ and 1 � a � b � γ the notation X[a,b] := (xa, . . . , xb).
For any pair (X, Y ) ∈ F we have

�X,Y �= 0 ⇐⇒ ∃ u ∈ F : Y = XA+ uB
⇐⇒ Y = (u,X[1,γ−1]) for some u ∈ F.

In particular, u is uniquely determined by Y . On the other hand all this is equiv-
alent to �′

π(X),π(Y ) /= 0, hence to the existence of some u′ ∈ F such that π(Y ) =
(u′, π(X)[1,γ−1]). All this gives us

Y[2,γ ] = X[1,γ−1] �⇒ π(Y )[2,γ ] = π(X)[1,γ−1] for all (X, Y ) ∈ F.

In Lemma A.1 in Appendix we show that this implies that π is the identity. As a
consequence we have �′ = � for all γ � 1. As for the rest of the proof notice that

since kerB = {0}, there is at most one edge X
(uv )→ Y for any given pair (X, Y ) ∈ F.

Thus the entries of � and �′ are monomials in W . As a consequence, we have for
any (X, Y ) ∈ F

�X,Y = Wα ⇐⇒ wt(XC + Y1D) = α.

With the corresponding equivalence for �′
X,Y = Wα we finally arrive at

wt

(
(X, u)

(
C

D

))
= wt

(
(X, u)

(
C′
D′
))

for all X ∈ Fγ , u ∈ F.

But then Lemma 5.4 below yields

(
C′
D′
)

=
(
C

D

)
P for some permutation matrix

P ∈ Gln(F). Hence G′ = GP meaning that the two matrices are monomially equiv-
alent. �

It remains to prove the following.

Lemma 5.4. Let F be any finite field and letM,M ′ ∈ Fk×n be such that

wt(uM) = wt(uM ′) for all u ∈ Fk. (5.2)

ThenM andM ′ are monomially equivalent.
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Proof.1 Let us first assume thatM has rank k. Then the assumption (5.2) implies that
M ′ has rank k, too. Defining the block codes B = imM and B′ = imM ′ we obtain
a well-defined weight-preserving bijective linear transformation

B −→ B′, uM �−→ uM ′.
By virtue of the Equivalence Theorem of MacWilliams, see for instance [8, Theorem
7.9.4] the two block codes are monomially equivalent. Thus there exist a permutation
matrix P and a non-singular diagonal matrix R in Gln(F) such thatM ′ = MPR.

Let now rankM = r < k and assume without loss of generality thatM =
(
M1
0

)
where M1 ∈ Fr×n has full row rank. Then (0, u2)M = 0 for all u2 ∈ Fk−r and (5.2)

implies that M ′ =
(
M ′

1
0

)
for some M ′

1 ∈ Fr×n with full row rank. Now we have

wt(u1M1) = wt(u1M
′
1) for all u1 ∈ Fr and by the first part of this proofM1 andM ′

1
are monomially equivalent. But then the same is true forM andM ′. �

We close the section with briefly discussing the question whether there might exist
a MacWilliams duality theorem for convolutional codes. For block codes this famous
theorem states that the weight distribution of the dual code is fully determined by the
weight distribution of the original code and a transformation formula is given, see,
e.g., [12, Theorem 3.5.3]. For convolutional codes one might think of two possible
generalizations of this result, either to the weight distribution � or to the adjacency
matrix �. As we will describe next, both cases have already been touched upon in the
literature. In [23] it has been shown that there does not exist a MacWilliams duality
theorem for the weight distribution � of convolutional codes. Precisely, the following
example has been presented. ConsiderG1 = [1, z, 1 + z],G2 = [z, z, 1 + z] ∈ F1×3

2 .
Then one shows that the weight distributions of the two codes C1 := imG1 and

C2 = imG2 coincide. Indeed, they are both given by � = L2W 4

1−LW 2 . The dual codes
are given by

C⊥
1 = im

(
1 1 1
z 1 0

)
, C⊥

2 = im

(
1 1 0

1 + z 0 z

)
,

and it turns out that they have different weight distributions

�C⊥
1

= L2W 2 + LW 3 + 2L2W 3 − L2W 5

1 − LW − LW 2
,

�C⊥
2

= LW 2 + 3L2W 3 − L2W 5

1 − LW − LW 3
.

As a consequence there cannot exist a MacWilliams transformation mapping the
weight distribution of a given code onto the weight distribution of the dual without

1 One can prove this result straightforwardly for the field F2. However, I wish to thank Gert Schneider
for pointing out the connection to MacWilliams’ Equivalence Theorem to me.



H. Gluesing-Luerssen / Linear Algebra and its Applications 408 (2005) 298–326 323

using any further information. The example even shows more. Since multiplication
by z is weight-preserving, the mapping uG �−→ uG′ yields an isometry between the
codesC andC′. But obviously, the codes are not monomially equivalent, showing that
there is no MacWilliams Equivalence Theorem for convolutional codes in this form
(one would have to allow at least rescaling by powers of z in monomial equivalence).
Let us now discuss the adjacency matrices of these codes. Since the two codes are not
monomially equivalent we know from Theorem 5.3 that the generalized adjacency
matrices of the two codes are not identical. Indeed, one computes

�1 =
(

1 W 2

W 2 W 2

)
, �2 =

(
1 W

W 3 W 2

)
.

Of course, the generalized adjacency matrices of the dual codes are different since
the weight distributions are. They are given by

�⊥
1 =

(
1 +W 3 W +W 2

W +W 2 W +W 2

)
, �⊥

2 =
(

1 +W 2 2W
2W 2 W +W 3

)
.

At this point the question arises whether there exists a MacWilliams duality the-
orem for the adjacency matrices of convolutional codes. In the paper [1, Theorem 4]
such a transformation has been established for codes with overall constraint length
one. It is derived in a notation totally different from ours and results in essence in a
separate formula for each entry of the adjacency matrix. Recall also from Remark 4.2
that for codes with overall constraint length one the adjacency matrix is even uniquely
determined by the code. In a forthcoming paper [6] we will show that the formulas
from [1] can be rewritten in compact form as

�⊥ = q−k(1 + (q − 1)W)n(H−1�TH)| 1−W
1+(q−1)W

, (5.3)

whereM|a denotes substitution of a forW in every entry of the matrixM and where
the transformation matrixH ∈ Cq×q is defined asHX,Y = χ(XY) for all X, Y ∈ Fq
with a non-trivial character χ on Fq . This matrix also appears in the duality theorem
for the complete weight enumerator for block codes, see [13, p. 144]. For q = 2 we

have H =
(

1 1
1 −1

)
and the formula can straightforwardly be verified for the two

codes and their duals given above.
We strongly believe that this transformation can be generalized to codes with bigger

overall constraint length. At least in the one-dimensional binary case with arbitrary
overall constraint length we can establish the following support for this conjecture.

Corollary 5.5. Let C,C′ ⊆ F2[z]n be two binary one-dimensional codes. Then

�(C) = �(C′) �⇒ �(C⊥) = �(C′⊥).
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Proof. By virtue of Theorem 5.3 the assumption implies thatC andC′ are monomially
equivalent. It is trivial to see that then also C⊥ and C′⊥ are monomially equivalent
and thus Theorem 4.4 yields �(C⊥) = �(C′⊥). �

Unfortunately, the corollary does not reveal a formula transforming �(C) into
�(C⊥).

We close the section with the following.

Conjecture 5.6. LetC,C′ ⊆ F[z]n be codes such that �(C)= �(C′). Then �(C⊥)=
�(C′⊥).

6. Open problems

With this paper we want to initiate an investigation of the weight distribution and
weight preserving maps for convolutional codes. The central object of our approach
is the adjacency matrix of the associated state diagram. In Theorem 5.3 we showed
that for one-dimensional binary codes this matrix uniquely determines the code up
to monomial equivalence. One immediately wonders whether this is true for one-
dimensional codes over arbitrary fields as well. From block code theory it is known,
however, that such a result cannot be expected for higher-dimensional codes. It would
be helpful to see some examples with positive overall constraint length. Another
open problem is the issue of MacWilliams Equivalence for convolutional codes.
This expression refers to the study of isometries (weight-preserving isomorphisms)
between codes. As far as we know it is an open question whether isometries between
convolutional codes can be described explicitly. Finally, of course there remains
Conjecture 5.6. While for codes with overall constraint length one a transformation
between the adjacency matrices of a code and its dual has been derived in [1], and
can be written as in (5.3), the general case has to remain open for future research.

Appendix A

In the following lemma we use again the notation X[a,b] := (Xa,Xa+1, . . . , Xb)

for X = (X1, . . . , Xγ ) ∈ Fγ and all 1 � a � b � γ . For X[a,a] we write, of course,
simply Xa .

Lemma A.1. Let F = F2 and γ � 2. Furthermore, let π : Fγ −→ Fγ be a bijective
map with π(0) = 0 and satisfying

π(u,X[1,γ−1])[2,γ ] = π(X)[1,γ−1] for all X ∈ Fγ and all u ∈ F. (A.1)

Then π is the identity map.
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Proof. Denote by e1, . . . , eγ the standard basis vectors on Fγ .

(1) UsingX = 0 and u = 1 we obtain π(e1)[2,γ ] = π(0)[1,γ−1] = (0, . . . , 0), thus
π(e1) = (a, 0, . . . , 0). Bijectivity of π implies a = 1, thus π(e1) = e1.

(2) Using X = eγ and u = 0 we obtain

π(u,X[1,γ−1])[2,γ ] = π(0)[2,γ ] = 0 = π(eγ )[1,γ−1],

thus π(eγ ) = (0, . . . , 0, a) and again bijectivity of π implies π(eγ ) = eγ .
(3) Now we proceed by induction. Assume that there is some r � 1 such that
π(X) = X for allX ∈ Fγ satisfying wt(X) � r andX1 = 1. By (1) this is true
for r = 1. Then we have to show
(i) π(X̃) = X̃ for all X̃ such that wt(X̃) � r ,

(ii) π(X̃) = X̃ for all X̃ such that wt(X̃) � r + 1 and X̃1 = 1.

Ad (i): Pick X ∈ Fγ such that wt(X) � r and X1 = 1. Put X(1) = (0, X[1,γ−1]).
Then π(X(1))[2,γ ] = π(X)[1,γ−1] = X[1,γ−1], thus π(X(1)) = (a1, X[1,γ−1]). Put
nowX(i) = (0, . . . , 0, X[1,γ−i]) ∈ Fγ . We proceed by induction on i. Thus by hypo-
thesis we may assume

π(X(i)) = (ai, . . . , a1, X[1,γ−i]). (A.2)

Then X(i+1) = (0, X(i)[1,γ−1]) and thus

π(X(i+1))[2,γ ] = π(X(i))[1,γ−1] = (ai, . . . , a1, X[1,γ−i−1]).

Therefore π(X(i+1)) = (ai+1, . . . , a1, X[1,γ−i−1]). Hence (A.2) holds true for all
i = 1, . . . , γ − 1. Now X(γ−1) = eγ . Hence by (2) of this proof eγ = π(X(γ−1)) =
(aγ−1, . . . , a1, X1). This implies a1 = · · · = aγ−1 = 0 and henceπ(X(i)) = X(i) for
all i = 1, . . . , γ − 1. Since each X̃ ∈ Fγ such that wt(X̃) � r is of the form X(i) for
a suitable X satisfying wt(X) � r and X1 = 1, this proves (i).

Ad (ii): Let X̃ ∈ Fγ such that X̃1 = 1 and wt(X̃) � r + 1. Then X̃ = (1, X[1,γ−1])
for some X ∈ Fγ such that wt(X) = wt(X[1,γ−1]) � r . By part (i) we know that
π(X) = X as well as

π(0, X[1,γ−1]) = (0, X[1,γ−1]). (A.3)

Now (A.1) yields π(X̃)[2,γ ] = π(X)[1,γ−1] = X[1,γ−1]. Hence π(X̃) =
(a,X[1,γ−1]) and bijectivity ofπ along with (A.3) yields a = 1. Thusπ(X̃) = X̃. �
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