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7

Computational Topology:

An Introduction

Günter Rote and Gert Vegter⋆

7.1 Introduction

Topology studies point sets and their invariants under continuous deforma-
tions, invariants such as the number of connected components, holes, tunnels,
or cavities. Metric properties such as the position of a point, the distance
between points, or the curvature of a surface, are irrelevant to topology. Com-
putational topology deals with the complexity of topological problems, and
with the design of efficient algorithms for their solution, in case these prob-
lems are tractable. These algorithms can deal only with spaces and maps that
have a finite representation. To this end we restrict ourselves to simplicial
complexes and maps. In particular we study algebraic invariants of topologi-
cal spaces like Euler characteristics and Betti numbers, which are in general
easier to compute than topological invariants.

Many computational problems in topology are algorithmically undecid-
able. The mathematical literature of the 20th century contains many (beauti-
ful) topological algorithms, usually reducing to decision procedures, in many
cases with exponential-time complexity. The quest for efficient algorithms for
topological problems has started rather recently. The overviews by Dey, Edels-
brunner and Guha [116], Edelsbrunner [129], Vegter [325], and the book by
Zomorodian [346] provide further background on this fascinating area.

This chapter provides a tutorial introduction to computational aspects of
algebraic topology. It introduces the language of combinatorial topology, rele-
vant for a rigorous mathematical description of geometric objects like meshes,
arrangements and subdivisions appearing in other chapters of this book, and
in the computational geometry literature in general.

Computational methods are emphasized, so the main topological objects
are simplicial complexes, combinatorial surfaces and submanifolds of some
Euclidean space. These objects are introduced in Sect. 7.2. Here we also in-
troduce the notions of homotopy and isotopy, which also feature in other

⋆ Chapter coordinator
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parts of this book, like Chapter 5. Most of the computational techniques are
introduced in Sect. 7.3. Topological invariants, like Betti numbers and Euler
characteristic, are introduced and methods for computing such invariants are
presented. Morse theory plays an important role in many recent advances in
computational geometry and topology. See, e.g., Sect. 5.5.2. This theory is
introduced in Sect. 7.4.

Given our focus on computational aspects, topological invariants like Betti
numbers are defined using simplicial homology, even though a more advanced
study of deeper mathematical aspects of algebraic topology could better be
based on singular homology, introduced in most modern textbooks on alge-
braic topology. Other topological invariants, like homotopy groups, are harder
to compute in general; These are not discussed in this chapter.

The chapter is far from a complete overview of computational algebraic
topology, and it does not discuss recent advances in this field. However, reading
this chapter paves the way for studying recent books and papers on compu-
tational topology. Topological algorithms are currently being used in applied
fields, like image processing and scattered data interpolation. Most of these
applications use some of the tools presented in this chapter.

7.2 Simplicial complexes

Topological spaces.

In this chapter a topological space X (or space, for short) is a subset of some
Euclidean space Rd, endowed with the induced topology of Rd. In particular,
an ε-neighborhood (ε > 0) of a point x in X is the set of all points in X
within Euclidean distance ε from x. A subset O of X is open if every point
of O contains an ε-neighborhood contained in O, for some ε > 0. A subset of
X is closed if its complement in X is open. The interior of a set X is the set
of all points having an ε-neighborhood contained in X , for some ε > 0. The
closure of a subset X of Rd is the set of points x in Rd every ε-neigborhood
of which has non-empty intersection with X . The boundary of a subset X
is the set of points in the closure of X that are not interior points of X . In
particular, every ε-neighborhood of a point in the boundary of X has non-
empty intersection with both X and the complement of X . See [26, Sect. 2.1]
for a more complete introduction of the basic concepts and properties of point
set topology.

The space Rd is called the ambient space of X . Examples of topological
spaces are:

1. The interval [0, 1] in R;
2. The open unit d-ball: Bd = {(x1, . . . , xd) ∈ Rd | x2

1 + · · · + x2
d < 1};

3. The closed unit d-ball: B
d

= {(x1, . . . , xd) ∈ Rd | x2
1 + · · · + x2

d ≤ 1} (the
closure of Bd);
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4. The unit d-sphere Sd = {(x1, . . . , xd+1) ∈ Rd+1 | x2
1 + · · ·+x2

d+1 = 1} (the
boundary of the (d+1)-ball);

5. A d-simplex, i.e., the convex hull of d + 1 affinely independent points in
some Euclidean space (obviously, the dimension of the Euclidean space
cannot be smaller than d). The number d is called the dimension of the
simplex. Fig. 7.1 shows simplices of dimensions up to and including three.

Fig. 7.1. Simplices of dimension zero, one, two and three.

Homeomorphisms.

A homeomorphism is a 1–1 map h : X → Y from a space X to a space Y
with a continuous inverse. (In this chapter a map is always continuous by
definition.) In this case we say that X is homeomorphic to Y , or, simply, that
X and Y are homeomorphic.

1. The unit d-sphere is homeomorphic to the subset Σ of Rm defined by
Σ = {(x1, . . . , xd+1, 0, . . . , 0) ∈ Rm | x2

1+ · · ·+x2
d+1 = 1} (m > d). Indeed,

the map h : Sd → Σ, defined by h(x1, . . . , xd+1) = (x1, . . . , xd+1, 0, . . . , 0),
is a homeomorphism. Loosely speaking, the ambient space does not matter
from a topological point of view.

2. The map h : Rk → Rm, m > k, defined by

h(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0),

is not a homeomorphism.
3. Any invertible affine map between two Euclidean spaces (of necessarily

equal dimension) is a homeomorphism.
4. Any two d-simplices are homeomorphic. (If the simplices lie in the same

ambient space of dimension d− 1, there is a unique invertible affine map
sending the vertices of the first simplex to the vertices of the second sim-
plex. For other, possibly unequal dimensions of the ambient space one
can construct an invertible affine map between the affine hulls of the sim-
plices.)

5. The boundary of a d-simplex is homeomorphic to the unit d-sphere. (Con-
sider a d-simplex in Rd+1. The projection of its boundary from a fixed
point in its interior onto its circumscribed d-sphere is a homeomorphism.
See Fig. 7.2. The circumscribed d-sphere is homeomorphic to the unit
d-sphere.)
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p

p′

Fig. 7.2. The point p on the boundary of a 3-simplex is mapped onto the point
p′ on the 2-sphere. This mapping defines a homeomorphism between the 2-simplex
and the 2-sphere.

Simplices.

Consider a k-simplex σ, which is the convex hull of a set A of k+1 independent
points a0, . . . , ak in some Euclidean space Rd (so d ≥ k). A is said to span the
simplex σ. A simplex spanned by a subset A′ of A is called a face of σ. If τ is
a face of σ we write τ � σ. The face is proper if ∅ 6= A′ 6= A. The dimension of
the face is |A′|−1. A 0-dimensional face is called a vertex, a 1-dimensional face
is called an edge. An orientation of σ is induced by an ordering of its vertices,
denoted by 〈a0 · · · ak〉, as follows: For any permutation π of 0, . . . , k, the ori-
entation 〈aπ(0) · · · aπ(k)〉 is equal to (−1)sign(π)〈a0 · · ·ak〉, where sign(π) is the
number of transpositions of π (so each simplex has two distinct orientations).
A simplex together with a specific choice of orientation is called an oriented

simplex. If τ is a (k−1)-dimensional face of σ, obtained by omitting the vertex
ai, then the induced orientation on τ is (−1)i〈a0 · · · âi · · ·ak〉, where the hat
indicates omission of ai.

Simplicial complexes.

A simplicial complex K is a finite set of simplices in some Euclidean space
Rm, such that (i) if σ is a simplex of K and τ is a face of σ, then τ is a
simplex of K, and (ii) if σ and τ are simplices of K, then σ ∩ τ is either
empty or a common face of σ and τ . The dimension of K is the maximum of
the dimensions of its simplices. The underlying space of K, denoted by |K|,
is the union of all simplices of K, endowed with the subspace topology of
Rm. The i-skeleton of K, denoted by Ki, is the union of all simplices of K of
dimension at most i. A subcomplex L of K is a subset of K that is a simplicial
complex. A triangulation of a topological space X is a pair (K,h), where K
is a simplicial complex and h is a homeomorphism from the underlying space
|K| to X . The Euler characteristic of a simplicial d-complex K, denoted by
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χ(K), is the number
∑d

i=0(−1)iαi, where αi is the number of i-simplices of
K. Examples of simplicial complexes are:

1. A graph is a 1-dimensional simplicial complex (think of a graph as being
embedded in R3). The complete graph with n vertices is the 1-skeleton of
an (n−1)-simplex.

2. The Delaunay triangulation of a set of points in general position in Rd is
a simplicial complex.

Combinatorial surfaces.

A Combinatorial closed surface is a finite two-dimensional simplicial complex
in which each edge (1-simplex) is incident with two triangles (2-simplices), and
the set of triangles incident to a vertex can be cyclically ordered t0, t1, . . . , tk−1

so that ti has exactly one edge in common with ti+1 modk, and these are the
only common edges. Stillwell [319, page 69 ff] contains historical background
and the basic theorem on the classification combinatorial surfaces.

Homotopy and Isotopy: Continuous Deformations.

Homotopy is a fundamental topological concept that describes equivalence
between curves, surfaces, or more general topological subspaces within a given
topological space, up to “continuous deformations”.

Technically, homotopy is defined between two maps g, h : X → Y from
a space X into a space Y . The maps g and h are homotopic if there is a
continuous map

f : X × [0, 1] → Y

such that f(x, 0) = g(x) and f(x, 1) = h(x) for all x ∈ X . The map f is then
called a homotopy between g and h. It is easy to see that homotopy is an
equivalence relation, since a homotopy can be “inverted” and two homotopies
can be “concatenated”.

When g and h are two curves in Y = Rn defined over the same inter-
val X = [a, b], the homotopy f defines, for each “time” t, 0 ≤ t ≤ 1, a
curve f(·, t) : [a, b] → Rn that interpolates smoothly between f(·, 0) = g and
f(·, 1) = h.1

To define homotopy for two surfaces or more general spaces S and T , we
start with the identity map on S and deform it into a homeomorphism from
S to T . Two topological subspaces S, T ⊆ X are called homotopic if there is
a continuous mapping

γ : S × [0, 1] → X

such that γ(·, 0) is the identity map on S and γ(·, 1) is a homeomorphism
from S to T .

1In the case of curves with the same endpoints g(a) = h(a) and g(b) = h(b),
one usually requires also that these endpoints remain fixed during the deformation:
f(a, t) = g(a) and f(b, t) = g(b) for all t.
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By the requirement that we have a homeomorphism at time t = 1, one can
see that this definition is symmetric in S and T . Note that we do not require
γ(·, t) to be a homeomorphism at all times t. Thus, a clockwise cycle and a
counterclockwise cycle in the plane are homotopic. In fact, all closed curves
in the plane are homotopic: every cycle can be contracted into a point (which
is a special case of a closed curve). A connected topological space with this
property is called simply connected.

Examples of spaces which are not simply connected are a plane with a
point removed, or a (solid or hollow) torus. For example, on the hollow torus
in Fig. 7.3, the closed curve in the figure is not homotopic to its inverse.

If we require that γ(·, t) is a homeomorphism at all times during the de-
formation we arrive the stronger concept of isotopy. For example, the smooth
closed curves without self-intersections in the plane fall into two isotopy
classes, according to their orientation (clockwise or counterclockwise). Iso-
topy is usually what is meant when speaking about a “topologically correct”
approximation of a given surface, as discussed in Sect. 5.1, where the stronger
concept of ambient isotopy is also defined (Definition 1, p. 181).

A map f : X → Y is a homotopy equivalence if there is a map g : Y → X
such that the composed maps gf and fg are homotopy equivalent to the
identity map (on X and Y , respectively). The map g is a homotopy inverse of
f . The spaces X and Y are called homotopy equivalent. A space is contractible

if it is homotopy equivalent to a point.

1. The unit ball in a Euclidean space is contractible. Let f : {0} → Bd be the
inclusion map. The constant map g : Bd → {0} is a homotopy inverse of f .
To see this, observe that the map fg is the identity, and gf is homotopic to
the identity map on Bd, the homotopy being the map F : Bd × [0, 1] → Bd

defined by F (x, t) = tx.
2. The solid torus is homotopy equivalent to the circle. More generally, the

cartesian product of a topological space X and a contractible space is
homotopy equivalent to X .

3. A punctured d-dimensional Euclidean space R
d \ {0} is homotopy equiv-

alent to a (d− 1)-sphere.

Note that homotopy equivalent spaces need not be homeomorphic. However,
such spaces share important topological properties, like having the same Betti
numbers (to be introduced in the next section). Section 6.2.3 (p. 248) describes
how this concept is applied in surface reconstruction.

7.3 Simplicial homology

A calculus of closed loops.

Intuitively, it is clear that the sphere and the torus have different shapes in
the sense that these surfaces are not homeomorphic. A formal proof of this
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observation could be based on the Jordan curve theorem: take a simple closed
curve on the torus that does not disconnect the torus. Such curves, the com-
plement of which is connected, do exist, as can be seen from Fig. 7.3. If there
exists a homeomorphism from the torus to the sphere, the image of the curve
on the torus would be a simple closed curve on the sphere. By the Jordan
curve theorem, the complement of this curve is disconnected. Since connect-
edness is preserved by homeomorphisms, the complements of the curves on
the torus and the sphere are not homeomorphic. This contradiction proves
that the torus and the sphere are not homeomorphic.

Fig. 7.3. Every simple closed curve on the sphere disconnects. Not every closed
curve on the torus disconnects.

This proof seems rather ad hoc: it only proves that the sphere is not
homeomorphic to a closed surface with holes, but it cannot be used to show
that a surface with more than one hole is not homeomorphic to the torus.
Homology theory provides a systematic way to generalize the argument above
to more general spaces.

In this chapter we present basic concepts and properties of simplicial ho-

mology theory, closely related to simplicial complexes and suitable for compu-
tational purposes. An alternative, more abstract approach is followed in the
context of singular homology theory. This theory is more powerful when prov-
ing general results like topological invariance of homology spaces. Since we fo-
cus on basic computational techniques we will not discuss this theory here, but
refer the reader to standard textbooks on algebraic topology, like [200]. The
equivalence of Simplicial and Singular Homology is proven in [200, Sect. 2.1].

Chain spaces and simplicial homology.

Let K be a finite simplicial complex. In this chapter, an simplicial k-chain
is a formal sum of the form

∑

j ajσj over the oriented k-simplices σj in K,
with coefficients aj in the field Q of rational numbers. In other words, it can
be regarded as a rational vector whose entries are indexed by the oriented
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k-simplices of K. Furthermore, by definition, −σ = (−1)σ is the simplex
obtained from σ by reversing its orientation. With the obvious definition for
addition and multiplication by scalars (i.e., rational numbers), the set of all
simplicial k-chains forms a vector space Ck(K,Q), called the vector space

of simplicial k-chains of K. The dimension of this vector space is equal to
the number of k-simplices of K. Therefore, the Euler characteristic of a d-
dimensional simplicial complex K can be expressed as an alternating sum of
dimensions of the spaces of k-chains:

χ(K) =
d

∑

i=0

(−1)i dimCk(K,Q). (7.1)

The boundary operator ∂k : Ck(K,Q) → Ck−1(K,Q) is defined as follows.
For a single k-simplex σ = 〈vi0 · · · vik

〉, k > 0, let

∂kσ =

k
∑

h=0

(−1)h〈vi0 · · · v̂ih
· · · vik

〉,

and then let ∂k be extended linearly, viz., ∂k(
∑

j ajσj) =
∑

j aj∂kσj . For con-
sistency we define C−1(K,Q) = 0, and we let ∂0 : C0(K,Q) → C−1(K,Q) be
the zero-map. The boundary operator is a linear map between vector spaces.
It is easy to check that it verifies the relation ∂k∂k+1 = 0.

Example: One-homologous chains.

In the simplicial complex of Fig. 7.4 we consider the 2-chain γ = 〈v1v4v2〉 +
〈v2v4v5〉+ 〈v2v5v3〉+ 〈v3v5v6〉+ 〈v1v3v6〉+ 〈v1v6v4〉. Then ∂2γ = α−β, where
α = 〈v4v5〉 + 〈v5v6〉 − 〈v4v6〉 and β = 〈v1v2〉 + 〈v2v3〉 − 〈v1v3〉. Since ∂1α = 0
and ∂1β = 0, it follows that ∂1∂2γ = 0.

v1 v2

v3

v4
v5

v6

Fig. 7.4. One- and two-chains in an annulus.

The vector space Zk(K,Q) = ker ∂k is called the vector space of simplicial

k-cycles. The vector space Bk(K,Q) = im ∂k+1 is called vector space of sim-
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plicial k-boundaries. Since the boundary of a boundary is 0, Bk(K,Q) is a sub-
space of Zk(K,Q). The quotient vector spaceHk(K,Q) = Zk(K,Q)/Bk(K,Q)
is the k-th homology vector space of K. In particular, two k-cycles α and β are
k-homologous if their difference is a k-boundary, i.e., if there is a k+1-chain γ
such that α− β = ∂k+1γ. The homology class of α ∈ Zk(K,Q) is denoted by
[α]. The k-th Betti number of the simplicial complex K, denoted by βk(K,Q),
is the dimension of Hk(K,Q). In particular:

βk(K,Q) = dimZk(K,Q) − dimBk(K,Q). (7.2)

Remark. In this chapter, the coefficients of simplicial chains are rational
numbers. One usually takes these coefficients in a ring, like the set of integers.
In that case one obtains homology groups in stead of homology vector spaces.
Then, the Betti numbers are the ranks of these groups.

Example: Zero-homology of a connected simplicial complex.

Consider the connected simplicial complex K of Fig. 7.5. The 0-chains α =
〈v6〉 and β = 〈v2〉 are 0-homologous since their difference is the boundary of
the 1-chain γ = −〈v1v2〉+ 〈v1v4〉+ 〈v4v6〉, since ∂1γ = −(〈v2〉−〈v1〉)+(〈v4〉−
〈v1〉)+ (〈v6〉− 〈v4〉) = α−β. In the same way one shows that every 0-chain of

v1

v2

v3

v4

v5

v6

Fig. 7.5. Zero-homology of a graph.

the form 〈vi〉, 1 ≤ i ≤ 6, is homologous to α. This implies that every 0-chain
of K is of the form c〈α〉, for some c ∈ Q. Hence: H0(K,Q) = Q. It is not
hard to generalize this property to all connected simplicial complexes: if K is
a finite connected simplicial complex, then H0(K,Q) = Q.

Example: One-homologous chains.

The boundary chains of the annulus in Fig. 7.4 are one-homologous. Indeed,
the difference of the boundary chains α = 〈v4v5〉 + 〈v5v6〉 − 〈v4v6〉 and β =
〈v1v2〉+〈v2v3〉−〈v1v3〉 is the boundary of the 2-chain γ = 〈v1v4v2〉+〈v2v4v5〉+
〈v2v5v3〉 + 〈v3v5v6〉 + 〈v1v3v6〉 + 〈v1v6v4〉.
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Betti numbers.

We present a few examples, demonstrating the computation of Betti numbers
directly from the definition.

1. Connected simplicial complex. If K is a connected simplicial complex, then
β0(K,Q) = 1. In fact, we already did the example on 0-homologous chains of
a connected simplicial complex K, proving that H0(K,Q) = Q.

2. Betti numbers of a tree. The tree of Fig. 7.6 is a simplicial complex K with
edges oriented according to the direction of the arrows, i.e., e1 = 〈v1v2〉 and
so on. Since it is connected, we have β0(K,Q) = 1. Furthermore, the matrix

v0

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

Fig. 7.6. A tree.

of the boundary operator ∂1 : C1(K,Q) → C0(K,Q) with respect to the basis
e1, e2, e3, e4, e5 of C1(K,Q) and 〈v0〉, 〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉, 〈v5〉 of C0(K,Q) is

∂1 e1 e2 e3 e4 e5
〈v0〉 1 0 0 0 0
〈v1〉 −1 1 1 0 0
〈v2〉 0 −1 0 0 0
〈v3〉 0 0 −1 1 1
〈v4〉 0 0 0 −1 0
〈v5〉 0 0 0 0 −1

(E.g., ∂1(e1) = 〈v0〉−〈v1〉 = 1·〈v0〉+(−1)·〈v1〉+0·〈v2〉+0·〈v3〉+0·〈v4〉+0·〈v5〉.)
Since the columns of this matrix are independent (why?), the image of ∂1 has
dimension 5. Therefore, β1(K,Q) = dimker ∂1 = dimC1(K,Q)− dim im ∂1 =
0.

3. Betti numbers of the 2-sphere. The simplicial complex K of Fig. 7.7 is the
boundary of a 3-simplex, consisting of four 2-simplices, six 1-simplices and four
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0-simplices. For convenience it is shown flattened on the plane, after cutting
the edges incident to 0-simplex v4. The underlying space |K| is homeomorphic
to the 2-sphere. Vertices with the same label have to be identified, like edges
between vertices with the same label. The matrix of the boundary operator

v1 v2

v3v4 v4

v4

Fig. 7.7. A 2-sphere.

∂1 with respect to the canonical bases of C1(K,Q) and C0(K,Q) is

∂1 〈v1v2〉 〈v1v3〉 〈v1v4〉 〈v2v3〉 〈v2v4〉 〈v3v4〉
〈v1〉 −1 −1 −1 0 0 0
〈v2〉 1 0 0 −1 −1 0
〈v3〉 0 1 0 1 0 −1
〈v4〉 0 0 1 0 1 1

It follows that dimC0(K,Q) = 4, dim im ∂1 = 3, and dim ker∂1 = 3. The
matrix of the boundary operator ∂2 with respect to the canonical bases of
C2(K,Q) and C1(K,Q) is

∂2 〈v1v2v3〉 〈v1v3v4〉 〈v1v4v2〉 〈v2v4v3〉
〈v1v2〉 1 0 −1 0
〈v1v3〉 −1 1 0 0
〈v1v4〉 0 −1 1 0
〈v2v3〉 1 0 0 −1
〈v2v4〉 0 0 −1 1
〈v3v4〉 0 1 0 −1

Therefore, dim im ∂2 = 3 and dim ker∂2 = 1. Combining the previous results,
we conclude that β0(K,Q) = 1, β1(K,Q) = 0 and β2(K,Q) = 1.

4. Betti numbers of the torus. Consider the simplicial complex of Fig. 7.8,
which is a triangulation of the torus. It has 7 vertices, 21 oriented edges, and
14 oriented faces. The matrix of ∂2 with respect to the canonical bases of
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11

11

22

33

4

4

5

5

6 7

Fig. 7.8. A triangulation of the torus.

C1(K,Q) and C2(K,Q) is

∂2 142 245 253 356 165 126 276 237 173 157 475 467 134 364

12 1 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 −1 0 0 0 1 0
14 1 0 0 0 0 0 0 0 0 0 0 0 −1 0
15 0 0 0 0 −1 0 0 0 0 1 0 0 0 0
16 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
23 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
24 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
25 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
27 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
35 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
36 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
37 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
45 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
47 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
56 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
67 0 0 0 0 0 0 −1 0 0 0 0 1 0 0

The matrix of ∂1 with respect to the canonical bases of C0(K,Q) and C1(K,Q)
is obtained similarly (preferably using a computer algebra system). Computing
the dimensions of the kernel and image of these operators we finally get

β0(K,Q) = 1, β1(K,Q) = 2, β2(K,Q) = 1
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Euler characteristic and Betti numbers.

One of the fundamental results of simplicial homology theory states that Betti
numbers of the underlying space of finite simplicial complex does not depend
on the triangulation.

Theorem 1. Betti numbers are homotopy invariants: if K and L are sim-

plicial complexes with homotopy equivalent underlying spaces, then the i-th
homology vector spaces of K and L are isomorphic. In particular,

βi(K,Q) = βi(L,Q), for all i.

The proof of this theorem is beyond the scope of these introductory notes.
One usually introduces the more general singular homology groups for a topo-
logical space X , which are independent of any triangulation. Then one proves
that these groups are isomorphic to the simplicial homology groups, obtained
by taking simplicial chains with integer coefficients in stead of rational coef-
ficients. In particular, the corresponding Betti numbers, being the ranks of
these groups, are equal.

Theorem 2. Let K be a d-dimensional simplicial complex. Then

χ(K) =

d
∑

i=0

(−1)iβi(K,Q).

Proof. Recall from (7.1) that χ(K) =
∑d

i=0 (−1)i dimCk(K,Q). Since

Hi(K,Q) =
ker ∂i

/

im ∂i+1
.

we see that

βi(K,Q) = dimHi(K,Q)

= dimker ∂i − dim im ∂i+1

= dimCi(K,Q) − dim im ∂i − dim im ∂i+1.

Now:
d

∑

i=0

(−1)i (dim im ∂i + dim im ∂i+1) = 0.

Hence:
d

∑

i=0

(−1)iβi(K,Q) = χ(K,Q).

The claimed identities follow from the preceding derivation.

If X is a topological space with a simplicial complex K triangulating it, then
we define χ(X) = χ(K,Q). It follows from Theorem 1 and Theorem 2 that the
Euler characteristic does not depend on the specific choice of the triangulation
K.
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Incremental algorithm for computation of Betti numbers.

As can be seen in the case of a simple space like the torus, the matrices of
the boundary map become rather large, even for simple examples. Therefore
alternative approaches have been developed for special cases. We start with
an incremental approach, in which the simplical complex is constructed by
adding simplices one at a time, making sure that during the process all partial
constructs are indeed simplicial complexes. The key idea is to maintain the
Betti numbers of the partial complexes. The following result indicates how to
do this.

Proposition 1. Let K be a simplicial complex, and let K ′ be a simplicial

complex such that K ′ = K ∪ σ for some k-simplex σ. Let ∂i and ∂′i be the

boundary operators of the chain complexes associated with K and K ′, respec-

tively. Furthermore, let γ = ∂′kσ. If γ also bounds in K, i.e., ∂′kσ ∈ im ∂k,

then

βi(K
′,Q) =

{

βi(K,Q) if i 6= k

βk(K,Q) + 1 if i = k

If γ does not bound in K, i.e., ∂′kσ 6∈ im ∂k, then

βi(K
′,Q) =

{

βi(K,Q) if i 6= k − 1

βk−1(K,Q) − 1 if i = k − 1

Proof.

· · · ∂′

k+1−−−−→ Ck(K ′,Q)
∂′

k−−−−→ Ck−1(K
′,Q)

∂′

k−1−−−−→ · · ·
∥

∥

∥

∥

∥

∥

Ck(K,Q) ⊕ Q[σ] Ck−1(K,Q)

Case 1: ∂′kσ ∈ im ∂k. Then im ∂′i = im ∂i, for all i, so dim im ∂′i = dim im ∂i,
for all i. Therefore:

dimker ∂′k = dimCk(K ′,Q) − dim im ∂′k

= 1 + dimCk(K,Q) − dim im ∂k

= 1 + dimker ∂k

Furthermore, for i 6= k we have dimker ∂′i = dim ker∂i. Hence (recall
dimHi(K

′,Q) = dim ker∂′i − dim im ∂′i+1):

βi(K
′,Q) = dimHi(K

′,Q) =

{

dimHi(K,Q) if i 6= k

1 + dimHk(K,Q) if i = k

Case 2: ∂′kσ 6∈ im ∂k. Then
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dim im ∂′i =

{

dim im ∂i if i 6= k

dim im ∂k + 1 if i = k.

Hence:

dimker ∂′i = dimCi(K
′,Q) − dim im ∂′i

=

{

dimCi(K,Q) − dim im ∂i if i 6= k

1 + dimCk(K,Q) − (1 + dim im ∂k) if i = k

= dim ker∂i

This result yields an incremental algorithm for the computation of Betti num-
bers. Whether this algorithm is efficient depends on the implementation of the
test ‘∂′kσ 6∈ im ∂k’. The paper [110] presents an efficient implementation of this
algorithm for subcomplexes of the three-sphere. This incremental method can
be used to compute the Betti numbers of some familiar spaces. Before show-
ing how to do this, we introduce some additional tools that are helpful in the
computation of Betti numbers.

Chain maps and chain homotopy.

Just like maps between spaces provide information about the topology of
these spaces, maps between homology spaces provide information about the
homology of these spaces. The key stepping stone towards these maps are
chain maps.

Let K and L be finite simplicial complexes. A chain map from K to L is
a sequence of linear maps fk : Ck(K,Q) → Ck(L,Q) such that ∂k+1 ◦ fk+1 =
fk ◦ ∂k+1. In other words, the sequence {fk} is a chain map if the following
diagram is commutative:

. . .
∂k+2−−−−→ Ck+1(K,Q)

∂k+1−−−−→ Ck(K,Q)
∂k−−−−→ . . .





y

fk+1





y
fk

. . .
∂k+2−−−−→ Ck+1(L,Q)

∂k+1−−−−→ Ck(L,Q)
∂k−−−−→ . . .

This chain map is denoted by f : C(K,Q) → C(L,Q). In fact, a chain map is
a family of maps, containing one linear map for each dimension.

Proposition 2. Let K, L and M be finite simplicial complexes.

1. The sequence of identity maps idk : Ck(K,Q) → Ck(K,Q) is a chain map.

2. The composition of a chain map from K to L and a chain map from L to

M is a chain map from K to M .

The proof of this result is straightforward and left as an exercise (Exercise 4).
Let f : C(K,Q) → C(L,Q) be a chain map. The linear map f∗ : H(K,Q) →
H(L,Q) is defined by
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f∗k([α]) = [fk(α)],

for α ∈ Zk(K,Q). We say that f∗ is the map induced by f at the level
of homology. Using commutativity of the diagram above, it is easy to see
that this map is well-defined, i.e., that [fk(α)] is independent of the choice of
the representative α of the homology class [α]. This map has some natural
properties, following in a straightforward way from the definition.

Proposition 3. Let K, L and M be finite simplicial complexes.

1. The identity chain map generates the identity map at the level of homology.

2. The map induced by a composition of chain maps is the composition

of the maps induced by each chain map. In other words, for chain maps

f : C(K,Q) → C(L,Q) and g : C(L,Q) → C(M,Q):

(g ◦ f)∗ = g∗ ◦ f∗.

A chain homotopy between two chain maps f, g : C(K,Q) → C(L,Q) is a
sequence {Tk} of linear maps Tk : Ck(K,Q) → Ck+1(L,Q) such that

Tk−1 ◦ ∂k + ∂k+1 ◦ Tk = fk − gk.

If such a chain homotopy exists, then f and g are called chain-homotopic. We
shall frequently use the following result, the proof of which is a simple exercise
in Linear Algebra (see Exercise 4).

Proposition 4. Chain homotopic chain maps induce the same linear map at

the level of homology.

Simplical collapse.

We now consider simplicial collapse, a very simple transformation of simpli-
cial complexes which does not alter homology in positive dimensions. This
operation allows us to compute the Betti numbers of a simplicial complex K
by simplifying K until we obtain another simplical complex L for which the
Betti numbers are known or easy to compute.

Let K be a finite simplicial complex, and let α and β be two simplices of
K such that α is a face of β, and α is not a face of any other simplex of K. Let
L be the subcomplex of K obtained by deleting the simplices α and β. The
transformation from K to L is called an elementary collapse. See Fig. 7.9.

More generally, we say that K collapses onto a subcomplex L, denoted by
K ց L, if there is a finite sequence of elementary collapses transforming K
into L.

Proposition 5. Let K and L be finite simplicial complexes such that K col-

lapses onto L. Then Hk(K,Q) and Hk(L,Q) are isomorphic.
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v0v0

v1v1

v2v2

v3v3

Fig. 7.9. An elementary collapse removes the simplices v0v1v2v3 and v1v2v3 from
the leftmost simplex.

Proof. We give the proof for positive k, the case k = 0 being trivial. Our
strategy consists of finding a chain homotopy inverse to the inclusion chain
map ι : C(L,Q) → C(K,Q). To this end let α be a k-simplex, positively
oriented in the boundary ∂β of the k + 1-simplex β. Introduce the map
f : C(K,Q) → C(L,Q) by putting fk(α) = α − ∂β, fk+1(β) = 0, fi(σ) = σ
for every i-simplex different from α and β, and extending linearly. It is not
hard to prove that f is a chain map. Furthermore, f ◦ ι is the identity chain
map on C(L,Q).

Let the sequence of linear maps Pi : Ci(K,Q) → Ci+1(K,Q) be defined by
Pk(α) = β, and Pi(σ) = 0 for each i-simplex σ different from α. A straightfor-
ward computation shows that the sequence {Pi} is a chain homotopy between
the identity map on C(K,Q) and the chain map ι ◦ f . From this we conclude
that ιi : Hi(L,Q) → Hi(K,Q) is an isomorphism, for i > 0. In particular, K
and L have the same Betti numbers in positive dimension.

Example: Betti numbers of the projective plane.

The incremental algorithm, combined with the method of simplicial collapse,
allows for rather painless computation of Betti numbers of familiar spaces.
In this example we compute the Betti numbers of the projective plane RP2.
The simplicial complex K of Fig. 7.10 is the unique triangulation of the pro-
jective plane with a minimal number of vertices. The vertices and edges on
the boundary of the six-gon are identified in pairs, as indicated by the double
occurrence of the vertex-labels v1, v2 and v3. The arrows indicate the orien-
tation of the simplices forming the basis of the chain space C2(K). We orient
the edges of the simplex from the vertex with lower index to the vertex with
higher index.

Let L be the simplicial complex obtained from K by deleting the oriented
simplex τ = 〈v4v5v6〉. The Betti numbers of L are easy to compute, since
a sequence of simplicial collapses transforms L into the subcomplex L0 with
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v1 v1

v2

v2

v3

v3

v4

v5

v6

Fig. 7.10. A triangulation of the projective plane.

vertices v1, v2 and v3, and oriented edges 〈v1v2〉, 〈v2v3〉 and 〈v1v3〉. The sim-
plicial complex L0 is a 1-sphere, so β0(L) = β0(L0) = 1, β1(L) = β1(L0) = 1,
and βi(L) = βi(L0) = 0 for i > 1.

To relate the Betti numbers of K with those of L, we have to determine
whether τ ′ = ∂2τ is a boundary in L. Consider the special 2-chain α, which
is the formal sum of all oriented 2-simplices in L. Taking the boundary of
α, we see that all oriented 1-simplices not in ∂2τ occur twice, those in the
interior of the six-gon in Fig. 7.10 with opposite coefficients and those in the
boundary with the same coefficient. In other words, ∂2α = 2γ − ∂2τ , where γ
is the 1-cycle 〈v1v2〉 + 〈v2v3〉 − 〈v1v3〉 of L. Therefore, [τ ′] = 2[γ] in H1(L).
Since [γ] forms a basis for H1(L), we conclude that [τ ′] 6= 0 in H1(L). Hence
τ ′ is not a boundary in L. Applying the incremental algorithm we see that
β0(K) = β0(L) = 1, β1(K) = β1(L) − 1 = 0, and β2(K) = β2(L) = 0.

Example: Betti numbers depend on field of scalars.

Homology theory can be set up with coefficients in a general field. A pri-
ory, this leads to different Betti numbers. This is illustrated by revisiting
the simplicial complex K of Fig. 7.10, and applying the same procedure to
compute the Betti numbers over Z2. Using the same notation as in the pre-
ceding example, we see that [τ ′] = 2[γ] = 0 in H1(L,Z2), so τ ′ is a bound-
ary in C2(L,Z2). Applying the incremental algorithm again we conclude that
βi(K,Z) = βi(L,Z) = 1, for i = 0, 1, and β2(K,Z) = β2(L,Z) + 1 = 1. Note
that the Euler characteristic is independent of the coefficient field.
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7.4 Morse Theory

Finite dimensional Morse theory deals with the relation between the topology
of a smooth manifold and the critical points of smooth real-valued functions
on the manifold. It is the basic tool for the solution of fundamental prob-
lems in differential topology. Recently, basic notions from Morse theory have
been used in the study of the geometry and topology of large molecules. We
review some basic concepts from Morse theory, like in [325]. More elaborate
treatments are [250] and [245].

7.4.1 Smooth functions and manifolds

Differential of a smooth map.

A function f : Rn → R is called smooth if all derivatives of any order exist. A
map ϕ : Rn → Rm is called smooth if its component functions are smooth. The
differential of ϕ at a point q ∈ Rn is the linear map dϕq : Rn → Rm defined
as follows. For v ∈ Rn, let α : I → Rn, with I = (−ε, ε) for some positive
ε, be defined by α(t) = ϕ(q + tv), then dϕq(v) = α′(0). Let ϕ(x1, . . . , xn) =
(ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)). The differential dϕq is represented by
the Jacobian matrix













∂ϕ1

∂x1
(q) . . .

∂ϕ1

∂xn

(q)

...
...

∂ϕm

∂x1
(q) . . .

∂ϕm

∂xn

(q)













.

Regular surfaces in R3.

A subset S in R3 is a smooth surface if we can cover the surface with open
coordinate neighborhoods. More precisely, a coordinate neighborhood of a
point p on the surface is a subset of the form V ∩ S, where V is an open
subset of R3, for which there exists a smooth map ϕ : U → R3 defined on an
open subset U of R2, such that where V is an open subset of R3 containing
p, for which there exists a smooth map ϕ : U → R3 defined on an open subset
U of R2, such that

(i) The map ϕ is a homeomorphism from U onto V ∩ S;
(ii) If ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), then the two tangent vectors















∂x

∂u
∂y

∂u
∂z

∂u















,















∂x

∂v
∂y

∂v
∂z

∂v















are non-zero and not parallel.
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The map ϕ is called a parametrization or a system of local coordinates in p.
The set S is a smooth surface if each point of S has a coordinate neighborhood.
Note that condition (ii) is equivalent to the fact that the differential of ϕ at
(u, v) is an injective map.

Example: spherical coordinates. Let S be a 2-sphere in R3 with radius R and
center (0, 0, 0) ∈ R3. Consider the set U = { (u, v) | 0 < u < 2π,−π/2 < v <
π/2 }. The map ϕ : U → S, given by

ϕ(u, v) = (R cosu cos v,R sinu cos v,R sin v).

corresponds to the well-known spherical coordinates. Note that ϕ(U) is the 2-
sphere minus a meridian. Each point of ϕ(U) has a system of local coordinates
given by ϕ.

Example: coordinates on the upper and lower hemisphere. Again, let S be the
sphere with radius R and center at the origin of R3, and let U = { (x, y) |
x2 + y2 < R2 }. The (open) upper and lower hemispheres of the torus are the
graph of a smooth function. More precisely, each point of the upper hemisphere
has local coordinates given by the map

ϕ(x, y) = (x, y,
√

R2 − x2 − y2).

A similar expression defines local coordinates at each point of the lower hemi-
sphere. Covering the sphere by six hemispheres yields a system (at least one)
of local coordinate system for each point of the sphere. Therefore, the sphere
is a regular surface.

Example: coordinates on the torus of revolution. Let S be the torus obtained
by rotating the circle in x, y-plane with center (0, R, 0) and radius r around
the x-axis, where R > r. We show that S is a smooth surface by introducing
a system of local coordinates for all points of the torus. To this end, let
U = {(u, v) | 0 < u, v < 2π} and let ϕ : U → R3 be the map defined by

ϕ(u, v) = (r sinu, (R− r cosu) sin v, (R− r cosu) cos v).

It is not hard to check that ϕ(U) ⊂ S. In fact, the map ϕ covers the torus
except for one meridian and one parallel circle. It is easy to find local coordi-
nates in points of these two circles by translating the parameter domain U a
little bit. Therefore, the torus is a regular surface.

Example: Local form of torus of revolution near (0, 0,±(R − r)). As in the
example of hemispheres, parts of the torus are graphs of a smooth function.
In particular, the points (0, 0,±(R − r)) have local coordinates of the form
ϕ(x, y) = (x, y, f±(x, y)), where

f±(x, y) = ±
√

R2 + r2 − x2 − y2 − 2R
√

r2 − x2.
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Submanifolds of Rn.

More generally, a subset M of Rn is an m-dimensional smooth submanifold of
Rn, m ≤ n, if for each p ∈M , there is an open set V in Rn, containing p, and
a map ϕ : U →M ∩V from an open subset U in Rm onto V ∩M such that (i)
ϕ is a smooth homeomorphism, (ii) the differential dϕq : Rm → Rn is injective
for each q ∈ U . Again, the map ϕ is called a parametrization or a system of
local coordinates on M in p. In particular, the space Rn is a submanifold of
Rn. A subset N of a submanifold M of Rn is a submanifold of M if it is a
submanifold of Rn. The difference of the dimensions of M and N is called the
codimension of N (in M).

Example: linear subspaces are submanifolds. The Euclidean space Rm is a
smooth submanifold of Rn, for m ≤ n. For m < n, we identify Rm with the
subset {(x1, . . . , xn) ∈ Rn | xm+1 = · · · = xn = 0} of Rn.

Example: Sn−1 is a smooth submanifold of Rn. A smooth parametrization of
Sn−1 at (0, . . . , 0, 1) ∈ Sn−1 is given by ϕ : U → Rn, with

U = {(x1, . . . , xn−1) ∈ Rn−1 | x2
1 + · · · + x2

n−1 < 1},
and

ϕ(x1, . . . , xn−1) = (x1, . . . , xn−1,
√

1 − x2
1 − · · · − x2

n−1).

In fact, ϕ is a parametrization in every point of the upper hemisphere, i.e.,
the intersection of Sn−1 and the upper half space {(y1, . . . , yn) | yn > 0}.
Example: codimension one submanifolds. The equator S1 = {(x1, x2, 0) | x2

1 +
x2

2 = 1} is a codimension one submanifold of S2 = {(x1, x2, x3) | x2
1+x2

2+x2
3 =

1}. More generally, every intersection of the 2-sphere with a plane at distance
less than one from the origin is a codimension one submanifold.

Tangent space of a manifold.

The tangent vectors at a point p of a manifold form a vector space, called
the tangent space of the manifold at p. More formally, a tangent vector of M
at p is the tangent vector α′(0) of some smooth curve α : I → M through p.
Here a smooth curve through a point p on a smooth submanifold M of Rn

is a smooth map α : I → Rn, with I = (−ε, ε) for some positive ε, satisfying
α(t) ∈ M , for t ∈ I, and α(0) = p. The set TpM of all tangent vectors of M
at p is the tangent space of M at p.

If ϕ : U → M is a smooth parametrization of M at p, with 0 ∈ U and
ϕ(0) = p, then TpM is the m-dimensional subspace dϕ0(R

m) of Rn, which
passes through ϕ(0) = p. Let {e1, . . . , em} be the standard basis of Rm; define
the tangent vector ei ∈ TpM by ei = dϕ0(ei). Then {e1, . . . , em} is a basis of
TpM .

Example: tangent space of the sphere. The tangent space of the unit sphere
Sn−1 = {(x1, . . . , xn) | x2

1 + · · · + x2
n = 1} at a point p is the hyperplane

through p, perpendicular to the normal vector of the sphere at p.
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Smooth function on a submanifold.

A function f : M → R on an m-dimensional smooth submanifold M of Rn is
smooth at p ∈ M if there is a smooth parametrization ϕ : U → M ∩ V , with
U an open set in Rm and V an open set in Rn containing p, such that the
function f ◦ ϕ : U → R is smooth. A function on a manifold is called smooth
if it is smooth at every point of the manifold.

Example: height function on a surface. The height function h : S → R on a
surface S in R3 is defined by h(x, y, z) = z, for (x, y, z) ∈ S. Let ϕ(u, v) =
(x(u, v), y(u, v), z(u, v)) be a system of local coordinates in a point of the
surface, then h ◦ϕ(u, v) = z(u, v) is smooth. Therefore, the height function is
a smooth function on S.

Regular and critical points.

A point p ∈ M is a critical point of a smooth function f : M → R if there
is a local parametrization ϕ : U → Rn of M at p, with ϕ(0) = p, such that
0 is a critical point of f ◦ ϕ : U → R (i.e., the differential of f ◦ ϕ at q is
the zero function on Rn). This condition does not depend on the particular
parametrization.
A real number c ∈ R is a regular value of f if f(p) 6= c for all critical points p
of f , and a critical value otherwise.

Example: critical points of height function on the sphere. Consider the height
function on the unit sphere in R3. Spherical coordinates define a parametriza-
tion ϕ(u, v) in every point, except for the poles (0, 0,±1). With respect
to this parametrization the height function h has the expression h̃(u, v) =
h(ϕ(u, v)) = sin v, so none of these points is singular (since −π/2 < v < π/2
away from the poles). Near the poles (0, 0,±1) we consider the sphere as
the graph of a function, corresponding to the parametrization ψ(x, y) =

(x, y,
√

1 − x2 − y2). The height function is expressed in these local coordi-

nates as h̃(x, y) = h(ψ(x, y)) = ±
√

1 − x2 − y2, so the singular points of h
are (0, 0,−1) (minimum), and (0, 0, 1) (maximum).

Example: critical points of height function on the torus. The torus M in R3,
obtained by rotating a circle in the x, y-plane with center (0, R, 0) and radius
r around the x-axis, is a smooth 2-manifold. Let U = {(u, v) | −π/2 < u, v <
3π/2} ⊂ R2, and let the map ϕ : U → R3 be defined by

ϕ(u, v) = (r sinu, (R− r cosu) sin v, (R− r cosu) cos v).

Then ϕ is a parametrization at all points of M , except for points on one lati-
tudinal and one longitudinal circle. The height function on M is the function
h : M → R defined by h̃(u, v) = h(ϕ(u, v)) = (R−r cosu) cos v, so the singular
points of h are:
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(u, v) ϕ(u, v) type of singularity
(0, 0) (0, 0, R− r) saddle point
(0, π) (0, 0,−R+ r) saddle point
(π, 0) (0, 0, R+ r) maximum
(π, π) (0, 0,−R− r) minimum

The type of a singular point will be introduced in Sect. 7.4.2.

Implicit surfaces and manifolds.

In many cases a set is given as the zero set of a smooth function (or a system
of functions). If this zero set contains no singular point of the function, then
it is a manifold:

Proposition 6. (Implicit Function Theorem). Let f : M → R be a

smooth function on the smooth submanifold M of Rn. If c is a regular value

of f , then the level set f−1(c) is a smooth submanifold of M of codimension

one.

A proof can be found in any book on analysis on manifolds, like [317].

Example: implicit surfaces in three-space. The unit sphere in three space is a
regular surface, since 0 is a regular value of the function f(x, y, z) = x2 +y2 +
z2 − 1. The torus of revolution is a regular surface, since 0 is a regular value
of the function g(x, y, z) = (x2 + y2 + z2 −R2 − r2)2 − 4R2(r2 − x2).

Hessian at a critical point.

Let M be a smooth submanifold of Rn, and let f : M → R be a smooth
function. The Hessian of f at a critical point p is the quadratic form Hpf on
TpM defined as follows. For v ∈ TpM , let α : (−ε, ε) → M be a curve with
α(0) = p, and α′(0) = v. Then

Hpf(v) =
d2

dt2

∣

∣

∣

∣

t=0

f(α(t)).

The right hand side does not depend on the choice of α. To see this, let
ϕ : U →M be a smooth parametrization of M at p, with 0 ∈ U and ϕ(0) = p,
and let v = v1e1 + · · · + vmem ∈ TpM , where ei = dϕ0(ei). Then

Hpf(v) =

m
∑

i,j=1

∂2(f ◦ ϕ)

∂xi∂xj

(0)vivj .

In particular, the matrix of Hf (p) with respect to this basis is














∂2(f ◦ ϕ)

∂x2
1

(0) . . .
∂2(f ◦ ϕ)

∂x1∂xm

(0)

...
...

∂2(f ◦ ϕ)

∂x1∂xm

(0) . . .
∂2(f ◦ ϕ)

∂x2
m

(0)















. (7.3)
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It is not hard to check that the numbers of positive and negative eigenvalues
of the Hessian do not depend on the choice of ϕ, since p is a critical point
of f .

Non-degenerate critical point.

The critical point p of f : M → R is non-degenerate if the Hessian Hpf is non-
degenerate. The index of the non-degenerate critical point p is the number of
negative eigenvalues of the Hessian at p. If M is 2-dimensional, then a critical
point of index 0, 1, or 2, is called a minimum, saddle point, or maximum,
respectively.

7.4.2 Basic Results from Morse Theory

Morse function.

A smooth function on a manifold is a Morse function if all critical points
are non-degerate. The k-th Morse number of a Morse function f , denoted by
µk(f), is the number of critical points of f of index k.

Example: quadratic function on Rm. The function f : Rm → R, defined by
f(x1, . . . , xm) = −x2

1 − . . .− x2
k + x2

k+1 + . . .+ x2
m, is a Morse function, with

a single critical point (0, . . . , 0). This point is a non-degenerate critical point,
since the Hessian matrix at this point is diag(−2, . . . ,−2, 2, . . . , 2), with k
entries on the diagonal equal to −2. In particular, the index of the critical
point is k.

Example: singularities of the height function on Sm−1. The height function
on the standard unit sphere Sm−1 in Rm is a Morse function. This function is
defined by h(x1, . . . , xm) = xm for (x1, . . . , xm) ∈ Sm−1, With respect to the

parametrization ϕ(x1, . . . , xm−1) = (x1, . . . , xm−1,
√

1 − x2
1 − · · · − x2

m−1),

the expression of the height function is

h ◦ ϕ(x1, . . . , xm−1) =
√

1 − x2
1 − · · · − x2

m−1.

Therefore, the only critical point of h on the upper hemisphere is (0, . . . , 0, 1).
The Hessian matrix (7.3) is the diagonal matrix diag(−1,−1, . . . ,−1), so this
critical point has index m−1. Similarly, (0, . . . , 0,−1) is the only critical point
on the lower hemisphere. It is a critical point of index 0.

Example: singularities of the height function on the torus. The singular points
of the height function on the torus of revolution with radii R and r are
(0, 0,−R−r), (0, 0,−R+r), (0, 0, R−r), and (0, 0, R+r). See also Sect. 7.4.1.
A parametrization of this torus near the singular points ±(R− r) is ϕ(x, y) =

(x, y, f±(x, y)), where f±(x, y) = ±
√

R2 + r2 − x2 − y2 − 2R
√
r2 − x2. The

expression h(x, y) = f±(x, y) of the height function with respect to these
local coordinates at (x, y) = (0, 0) is
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h(x, y) = ±
(

R− r − 1

2r
x2 +

1

2(R− r)
y2

)

+ Higher Order Terms.

Hence the singular points corresponding to (x, y) = (0, 0), i.e., (0, 0,±(R−r)),
are saddle points, i.e., singular points of index one. Similarly, the singular point
(0, 0, R+ r) is a maximum (index two), and the singular point (0, 0,−R− r)
is a minimum (index zero), and the

Regular level sets.

Let M be an m-dimensional submanifold of Rn, and let f : M → R be a
smooth function. The set f−1(h) := {q ∈M |f(q) = h} of points where f has
a fixed value h is called a level set (at level h). If h ∈ R is a regular value of
f , then f−1(h) is a smooth (m− 1)-dimensional submanifold of Rn.
Similarly, we define the lower level set (also called excursion set) at some
level h ∈ R as Mh = { q ∈ M | f(q) ≤ h }. If f has no critical values in [a, b],
for a < b, then the subsets Ma and Mb of M are homeomorphic (and even
isotopic).

The Morse Lemma.

Let f : M → R be a smooth function on a smooth m-dimensional submanifold
M of Rn, and let p be a non-degenerate critical point of index k. Then there is
a smooth parametrization ϕ : U →M ofM at p, with U an open neighborhood
of 0 ∈ Rm and ϕ(0) = p, such that

f ◦ ϕ(x1, . . . , xm) = f(p) − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

m.

In particular, a critical point of index 0 is a local minimum of f , whereas a
critical point of index m is a local maximum of f . See Fig. 7.11.

Fig. 7.11. Passing a critical level set of a Morse function in three-space. The
critical point has index 1. A local model of the function near the critical point is
f(x1, x2, x3) = −x2

1 + x2

2 + x2

3, with the x1-axis running vertically.
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Abundance of Morse functions.

(i) Morse functions are generic. Every smooth compact submanifold of Rn has
a Morse function. (In fact, if we endow the set C∞(M) of smooth functions
on M with the so-called Whitney topology, then the set of Morse functions
on M is an open and dense subset of C∞(M). In particular, there are Morse
functions arbitrarily close to any smooth function on M .)
(ii) Generic height functions are Morse functions. Let M be an m-dimensional
submanifold of Rm+1 (e.g., a smooth surface in R3). For v ∈ Sm, the height-
function hv : M → R with respect to the direction v is defined by hv(p) =
〈v, p〉. The set of v for which hv is not a Morse function has measure zero in
Sm.

Passing critical levels.

One can build complicated spaces from simple ones by attaching a number of
cells. Let X and Y be topological spaces, such that X ⊂ Y . We say that Y
is obtained by attaching a k-cell to X if Y \X is homeomorphic to an open

k-ball. More precisely, there is a map f : B
k → Y \X , such that f(Sk−1) ⊂ X

and the restriction f | Bk is a homeomorphism Bk → Y \X . Let f : M → R

be a smooth Morse function with exactly one critical level in (a, b), and a and
b are regular values of f . Then Mb is homotopy equivalent to Ma with a cell of
dimension k attached, where k is the index of the critical point in f−1([a, b]).
See Fig. 7.12.

Fig. 7.12. Passing a critical level of index 1 corresponds to attaching a 1-cell. Here
M is the 2-torus embedded in R3, in standard vertical position, and f is the height
function with respect to the vertical direction. Left: Ma, for a below the critical level
of the lower saddle point of f . Middle: Ma with a 1-cell attached to it. Right: Mb,
for b above the critical level of the lower saddle point of f . This set is homotopy
equivalent to the set in the middle part of the figure.

Morse inequalities.

Let f be a Morse function on a compact m-dimensional smooth submanifold
of Rn. For each k, 0 ≤ k ≤ m, the k-th Morse number of f dominates the
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k-th Betti number of M :

µk(f) ≥ βk(M,Q).

An intuitive explanation is based on the observation that passing a critical
level of a critical point of index k is equivalent corresponds to the attachment
of a k-cell at the level of homotopy equivalence. Therefore, either the k-th
Betti number increases by one, or the k−1-st Betti number decreases by one,
cf the incremental algorithm for computing Betti numbers in Sect. 7.3, while
none of the other Betti numbers changes. Since only the k-th Morse number
changes, more precisely, increases by one, the Morse inequalities are invariant
upon passage of a critical level.

In the same spirit one can show that the Morse numbers of f are related to
the Betti numbers and the Euler characteristic of M by the following identity:

m
∑

k=1

(−1)kµk(f) =

m
∑

k=1

(−1)kβk(M,Q) = χ(M).

Gradient vector fields.

Consider a smooth function f : M → R, where M is a smooth m-dimensional
submanifold of Rn. The gradient of f is a smooth map gradf : M → Rn,
which assigns to each point p ∈M a vector grad f(p) ∈ TpM ⊂ Rn, such that

〈grad f(p), v〉 = dfp(v), for all v ∈ TpM .

Since dfp(v) is a linear form in v, the vector grad f(p) is well defined by the
preceding identity. This definition has a few straightforward implications. The
gradient of f vanishes at a point p if and only if p is a singular point of f . If p
is not a singular point of f , then dfp(v) is maximal for a unit vector v ∈ TpM
iff v = gradf(p)/‖ gradf(p)‖. In other words, grad f(p) is the direction of
steepest ascent of f at p. Furthermore, if c ∈ R is a regular value of the
function f , then gradf is perpendicular to the level set f−1(c) at every point.

To express grad f in local coordinates, let ϕ : U → M be a system of local
coordinates at p ∈M . Let e1, . . . , em be the basis of TpM corresponding to the
standard basis e1, . . . , em of Rm. In other words: ei = dϕq(ei), where q ∈ U
is the pre-image of p under ϕ. We denote the standard coordinates on Rm by
x1, . . . , xm. Then

grad f(p) =

m
∑

i=1

ai(q)ei,

where ai : U → R is the smooth function defined by the set of linear equations

m
∑

j=1

gij(q)aj(q) =
∂(f ◦ ϕ)

∂xi

(q), (1 ≤ i ≤ m),
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with gij(q) = 〈ei, ej〉. Since the coefficients are the entries 〈ei, ej〉 of a Gram

matrix, the system is non-singular. Note that ai =
∂(f ◦ ϕ)

∂xi

if the system of

coordinates is orthonormal at p, that is gij(q) = 1, if i = j and gij(q) = 0, if
i 6= j. This holds in particular if U = M = Rn and ϕ is the identity map on
U , so the definition agrees with the usual definition in a Euclidean space.

Integral lines, and their local structure near singular points.

In the sequel M is a compact submanifold of Rn. The gradient of a smooth
function f on M is a smooth vector field on M . For every point p of M , there
is a unique curve x : R →M , such that x(0) = p and x′(t) = gradf(x(t)), for
all t ∈ R. The image x(R) is called the integral curve of the gradient vector
field through p.

Lemma 1. Let f : M → R be a smooth function on a submanifold M of Rn.

1. The integral curves of a gradient vector field of f form a partition of M .

2. The integral curve x(t) through a singular point p of f is the constant

curve x(t) = p.
3. The integral curve x(t) through a regular point p of f is injective, and both

limt→∞ x(t) and limt→−∞ x(t) exist. These limits are singular points of

f .
4. The function f is strictly increasing along the integral curve of a regular

point of f .
5. Integral curves are perpendicular to regular level sets of f .

The proof is a bit technical, so we skip it. See [191] for details. The first
property implies that the integral curves through two points of M are disjoint
or coincide. The third property implies that a gradient vector field does not
have closed integral curves. The limit limt→∞ x(t) is called the ω-limit of p,
and is denoted by ω(p). Similarly, limt→−∞ x(t) is the α-limit of p, denoted by
α(p). Note that all points on an integral curve have the same α-limit and the
same ω-limit. Therefore, it makes sense to refer to these points as the α-limit
and ω-limit of the integral curve. It follows from Lemma 1.2 that ω(p) = p
and α(p) = p for a singular point p.

Stable and unstable manifolds.

The structure of integral lines of a gradient vector field grad f near a singular
point can be quite complicated. However, for Morse functions, the situation
is simple. To gain some intuition, let us consider the simple example of the
function f(x1, x2) = x2

1−x2
2 on a neighborhood of the non-degenerate singular

point 0 ∈ R2. The gradient vector field is 2x1e1 − 2x2e2, where e1, e2 is the
standard basis of R2. The integral line (x1(t), x2(t)) through a point p =
(p1, p2) is determined by x1(0) = p1, x2(0) = p2, and
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{

x′1(t) = 2x1(t)

x′2(t) = −2x2(t)

Therefore, the integral curve through p is (x1(t), x2(t)) = (p1e
2t, p2e

−2t),
which is of the form x1x2 = c. See Fig. 7.13 (Left). The singular point

o

Fig. 7.13. Left: Integral curves of the gradient of f(x1, x2) = x2

1−x2

2 on a neighbor-
hood of the singular point (0, 0) ∈ R2. Right: Integral curves of the gradient vector
field near a general saddle point of a function on R2.

o = (0, 0) is the α-limit of all points on the horizontal axis, and the ω-limit of
all points on the vertical axis. The general structure of integral curves near a
saddle point is similar, as indicated by Fig. 7.13 (Right). The stable curve of
p consists of all points with ω-limit equal to p. The unstable curve is defined
similarly. These curves intersect each other at p, and are perpendicular there.

More generally, the stable manifold of a singular point p is the set
W s(p) = {q ∈ M | ω(q) = p}. Similarly, the unstable manifold of p is the
set Wu(p) = {q ∈ M | α(q) = p}. Note that both W s(p) and Wu(p) con-
tain the singular point p itself. Furthermore, the intersection of the stable
and unstable manifolds of a singular point consists just of the singular point:
W s(p)∩Wu(p) = {p}. Stable and unstable manifolds of gradient systems are
submanifolds [211, Chapter 6]. The dimension of W s(p) is equal to the num-
ber of negative eigenvalues of the Hessian of f at p, whereas the dimension of
Wu(p) is equal to the number of positive eigenvalues of this Hessian. Stable
and unstable manifolds of gradient systems are submanifolds [211, Chapter
6].

The Morse-Smale complex.

A Morse function on M is called a Morse-Smale function if its stable and
unstable manifolds intersect transversally, i.e., at a point of intersection the
tangent spaces of the stable and unstable manifolds together span the tangent
space of M . If p and q are distinct singular points, the intersection W s(p) ∩
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Wu(q) consists of all regular integral curves with ω-limit equal to p and α-
limit equal to q. In particular, a Morse-Smale function on a two-dimensional
manifold has no integral curves connecting two saddle points, since the stable
manifold of one of the saddle points and the unstable manifold of the second
saddle point would intersect non-transversally along this connecting integral
curve.

Morse-Smale functions form an open and dense subset of the space of
functions on a compact manifold [314].

The Morse-Smale complex associated with a Morse-Smale function f on
M is the subdivision of M formed by the connected components of the inter-
sections W s(p) ∩Wu(q), where p and q range over all singular points of f ,
see Fig. 7.14. The Morse-Smale complex is a CW-complex. In geographical
literature, the Morse-Smale complex is known as the surface network.

maximumminimum saddle

Fig. 7.14. The Morse-Smale complex of a function on the plane. The stable one-
manifolds are solid, the unstable one-manifolds are dashed. (Courtesy Herbert Edels-
brunner.)

The Morse-Smale complex on a two-manifold consists of cells of dimension
0, 1 and 2, called vertices, edges and regions. According to the Quadrangle

Lemma [131], each region of the Morse-Smale complex is a quadrangle with
vertices of index 0, 1, 2, 1, in this order around the region. Hence the complex is
not necessarily a regular CW-complex, since the boundary of a cell is possibly
glued to itself along vertices and arcs.

Using a paradigm called simulation of differentiability, in [131] the concept
of Morse-Smale complex is also defined for piecewise linear functions, and an
algorithm for its construction is applied to geographic terrain data. In [130]
this work is extend to piecewise linear 3-manifolds.



7 Computational Topology: An Introduction 307

Reeb graphs and contour trees.

The level sets f−1(h) of a Morse function f on a two-dimensional domain
change as h varies. At certain values of h, components of the level set may
disappear, new components may appear, or a component may split into two
components, or two components may merge. A component of a level set is
called a contour. The Reeb graph (after the American journalist John Reeb,
1887–1920 [288]) encodes the changes of contours. It is obtained by contract-
ing every contour to a single point. When f is defined on a simply connected
domain (for example, a box), the Reeb graph is a tree, and it is also referred
to as the contour tree. Fig. 7.15b shows an example of a contour tree of a
bivariate function h = f(x, y) defined on a square domain. The vertical axis
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Fig. 7.15. (a) a contour map of level sets (isolines), (b) the corresponding contour
tree, (c) the join tree, and (d) the split tree. As in Fig. 7.14, minima and maxima
are indicated by empty and full circles, and crosses denote saddle points. The points
where a contour touches the boundary play also a role in the contour tree (for
example, they may be local minima or maxima) but they are not critical points in
the sense of having derivative 0. The level sets in (a) are labeled with the height
values, and these values are indicated in the trees of (b), (c), and (d). The critical
point F changes only the topology of a contour and not the number of contours;
when the contour tree is viewed as a discrete structure, F is not a vertex of the tree.

of the contour tree represents the value h of the function. The intersection of
a horizontal line at a given value h with the contour tree yields all contours
at that level, and the merging or splitting, appearance or disappearance of
contours is reflected in vertices of degree 3 and 1 in the contour tree, respec-
tively. Saddle points become vertices of degree 3, and minima and maxima
become vertices of degree 1. A contour tree is therefore a good tool to visu-
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alize the behavior of a function on a global scale, in particular when it is a
function of more than two variables, see [221, 220]. In these applications, f
is usually a continuous piecewise linear function interpolating data at given
sample points. These functions are not smooth and therefore not Morse func-
tions, but the notion of level sets and Reeb graphs extends without difficulty
to this class of functions. It is not uncommon to have multiple saddle points,
where more than two contours meet at the same time. The Reeb graph has
then vertices of degree higher than three. More examples of contour trees are
shown in Fig. 5.23 of Sect. 5.5.2.

Note that the Reeb graph only regards the number of components (the
0-homology) of the level sets, it does not reflect every change of topology.
For example, in three dimensions, a contour might start as a ball, and as h
increases, it might extrude two arms that meet each other, forming a torus,
without changing the connectivity between contours. (At this point, we have
a saddle of index 1.) In two dimensions, this phenomenon happens only for
points on the boundary of the domain, such as the point F in Fig. 7.15.

Figure 7.15c displays the join tree, which is defined analogously to the
contour tree, except that it describes the evolution of the lower level sets
Mh = f−1([−∞, h]) instead of the “ordinary” level sets f−1(h). For example,
at h = 300 we have three components in the lower level set, as indicated in
Fig. 7.16. Since the lower level sets can only get bigger as h increases, they can

200 200

300

300

400

300

400

500 500

600

600

200

300

400

500

600

x

y

A

B

C

D

E

F

G

H

I

J

L

K

MN

O

(a) (b)

300

400400400400

400

h
A

B

C

D

E

F G

H

I

J

L KM

NO

Fig. 7.16. (a) the lower level set at level 300 and (b) the corresponding part in the
join tree.
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only join and never split (hence the name join tree): the tree is a directed tree
with the root at the highest vertex. The split tree (Fig. 7.15d) can be defined
analogously for upper level sets. The join and the split tree are important
because it is easier to construct these trees first instead of constructing the
contour tree directly. As shown by Carr, Snoeyink, and Axen [74] the contour
tree can then be built from the join tree and the split tree in linear time.

The simplest and fastest way to construct the join (and split) tree of
a piecewise linear function is the method of monotone paths, as described
in [88]. We sketch the main idea. This method requires an initial identification
of all “critical” vertices: vertices where the topology of the level set changes
locally as the level set passes through them. This condition can be checked by
scanning the neighboring faces of each vertex independently. These vertices are
candidates for becoming vertices of the join tree. They are sorted by function
values and processed in increasing order. At each critical vertex v which is not
a minimum, we start a monotone decreasing path into each different “local
component” of the lower level set in the neighborhood of v. For example,
if we increase h in Fig. 7.16, the next critical point that is processed is J ,
see Fig. 7.17. Into each of the two shaded regions, we start a descending
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Fig. 7.17. Identifying the components that are to be merged by growing descending
paths.

path. Each path is continued until it reaches a local minimum (such as the
point L) or a previously constructed path (such as the descending path from
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M that ends in O). If we have stored the appropriate information with each
path, we can identify the components of the lower level sets that need to be
merged (namely, the component L and the component MNO; the component
K remains separate). Since each path can only descend, it is guaranteed that
it cannot leave the lower level set into which it belongs, and therefore it
identifies the correct component. It can happen that two descending paths
reach the same component. In this case we only have a change of topology of
the contour, without changing the number of contours.

This algorithm works in any dimension. If the piecewise linear function f
is defined on a triangulated mesh with t cells and there are nc critical points,
the algorithm O(t + nc lognc) time and O(t) space.

Note that the descending paths do not have to follow the steepest direction;
thus, unlike the integral curves of the gradient vector field, they can cross the
boundaries of the Morse-Smale complex.

With few exeptions [95], the efficient computation of Reeb graphs has been
studied mostly for functions on simply connected domains, and hence under
the heading of contour trees.

7.5 Exercises

Exercise 1 (Triangulations of surfaces). Prove that the number of ver-
tices in a finite triangulation of a boundaryless surface with Euler character-
istic χ is at least

⌈

7 +
√

49 − 24χ

2

⌉

.

(You should be able to do this exercise without any knowledge of homology
theory.)

Exercise 2 (Non-homeomorphic spaces with equal Betti numbers).
Give an example of two simplicial complexes with equal Betti numbers, but
with non-homeomorphic underlying spaces.

Exercise 3 (Homology of connected graphs). Let G be a tree. Prove
that β0(G,Q) = 1 and β1(G,Q) = 0 using the matrix of the boundary map.
(Hint: Consider an enumeration of the vertices and oriented edges such that
edge ei is directed from vertex vj to vertex vi, with j > i.)

Exercise 4 (Chain maps and chain homotopy). Prove Propositions 2, 3
and 4.

Exercise 5 (Cone construction and Betti numbers of spheres). Let L
be a finite simplicial complex in Rn, and regard Rn as the subspace of Rn+1

with final coordinate zero. Let v be a point in Rn+1 \Rn. If σ is a k-simplex of
L with vertices v0, . . . , vk, then the (k+1)-simplex with vertices v, v0, . . . , vk is
called the join of σ and v. The cone of L with apex v is the simplicial complex
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consisting of the simplices of L, the join of each of these simplices and v, and
the 0-simplex 〈v〉 itself. (One can check that these simplices form a simplicial
complex.) Let K be the cone of L.

1. Let the map Tk : Ck(K,Q) → Ck+1(K,Q) be defined as follows: Let σ =
〈v0, . . . , vk〉 be a k-simplex of K. If σ is also a k-simplex of L, then Tk(σ) =
〈v, v0, . . . , vk〉, otherwise Tk(σ) = 0. Prove that the sequence {Tk} is a
chain homotopy between the identity map and the zero map on the chain
complex C(K,Q).

2. Conclude that Hk(K,Q) = 0, for k > 0. What is H0(K,Q)?
3. Determine the Betti numbers of the d-dimensional disk, i.e., the space

Bd = {(x1, . . . , xd) ∈ Rd | x2
1 + · · · + x2

d ≤ 1}. (Hint: Note that a disk is
homeomorphic to a d-simplex.)

4. Use the previous result, and the incremental homology algorithm to de-
termine the Betti numbers of the d-sphere.

Exercise 6 (Homology of orientable surfaces).

1. Prove that β0(K) = 1 for every triangulation K of an orientable surface
of genus g (a sphere with g handles).

2. Let K be a simplicial complex whose underlying space is the torus, and
let all simplices of K be oriented compatibly. Let α =

∑

σ σ, where the
sum ranges over all (oriented) simplices of K. Prove that Z2(K,Q) = Qα,
and that β2(K,Q) = 1.

3. Use the same technique as in part 2 of this exercise to prove that
β2(K,Q) = 1 for every triangulation K of an orientable surface of genus g.

4. Let L be the subcomplex ofK obtained by deleting an arbitrary 2-simplex.
Use the incremental algorithm to prove that β2(L,Q) = β2(K,Q)−1, and
βi(L,Q) = βi(K,Q), for i = 0, 1.

5. Now let K be the simplicial complex of Fig. 7.8. Prove that L simplicially
collapses onto the subcomplex M , the subgraph of L consisting of the
vertices v1, . . . , v5 and the edges v1v2, v2v3, v3v1, v1v4, v4v5, and v5v1.
Conclude that β1(K,Q) = 2, and β0(K,Q) = 1.

6. Try to generalize this exercise to an orientable surface of genus g.

Exercise 7 (Morse Theory yields Betti numbers).

1. Use Morse theory to compute the Betti numbers of the d-sphere Sd.
2. Compute the Euler characteristic of a surface M with g handles by defin-

ing a suitable Morse function on it. Then compute the Betti numbers
of this surface. (Hint: You may want to use the first and third result of
Exercise 6).

3. For a Morse function f , let s be a critical point with Morse index i.
Consider the intersection L−(s) of the lower level set f−1((−∞, f(s)])
with a small sphere around s. Prove that the Euler characteristic of L−(s)
equals 1 − (−1)i.
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Exercise 8 (The mountaineer’s equation). For a smooth Morse function
on the 2-sphere S2, the number of peaks and pits (maxima and minima)
exceeds the number of passes (saddles) by 2.

Exercise 9 (Contour trees for bivariate Morse functions). Show that,
for a smooth Morse function on the 2-sphere S2, a saddle point will always
generate a vertex of degree three in the Reeb graph. Use this observation and
the previous exercise to prove that the Reeb graph is in fact a tree in this
case.


