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Abstract

We propose a new matrix learning scheme to extend Generalized Relevance Learn-
ing Vector Quantization (GRLVQ), an efficient prototype-based classification algo-
rithm. By introducing a full matrix of relevance factors in the distance measure,
correlations between different features and their importance for the classification
scheme can be taken into account and automated, general metric adaptation takes
place during training. In comparison to the weighted euclidean metric used for GR-
LVQ, a full matrix is more powerful to represent the internalstructure of the data
appropriately. Interestingly, large margin generalization bounds can be transfered
to the case of a full matrix such that bounds which are independent of the input
dimensionality and the number of parameters arise. This also holds for local met-
rics attached to each prototype. The algorithm is tested andcompared to GLVQ
without metric adaptation [16] and GRLVQ with diagonal relevance factors using
an artificial dataset and the image segmentation data from the UCI repository [15].

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen constitutes a particu-
larly intuitive and simple though powerful classification scheme [14] which is very
appealing for several reasons: the method is easy to implement; the complexity of the
resulting classifier can be controlled by the user; the classifier can naturally deal with
multiclass problems; and, unlike many alternative neural classification schemes such
as feedforward networks and support vector machines, the resulting classifier is human
understandable because of the intuitive classification of data points to the class of their
closest prototypes. For these reasons, LVQ has been used in avariety of academic and
commercial applications such as image analysis, telecommunication, robotics, etc. [4].

Original LVQ, however, suffers from several drawbacks suchas slow convergence
and instable behavior because of which a variety of alternatives have been proposed, as
explained e.g. in [14]. Still, there are two major drawbacksof these methods, which
have only recently been tackled. On the one hand, LVQ relies on heuristics and a full
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mathematical investigation of the algorithm is lacking. This problem often leads to un-
expected behavior and instabilities of training. Recently, it has rigorously been shown
that already slight variations of the basic LVQ learning scheme yield quite different re-
sults [2, 3]. For this reason, variants of LVQ which can be derived from an explicit cost
function are particularly interesting, since they obey a well-defined dynamics. Several
proposals for cost functions can be found in the literature,the first one being generalized
LVQ which forms the basis for the method we will consider in this article [16]. Two
alternatives which implement soft relaxations of the original learning rule are [17, 18].
These two approaches, however, have the drawback that the original crisp limit case
does not exist (for [17]) resp. it shows poor results also in simple settings [8] (for [18]).
The cost function as proposed in [16] has the benefit that it shows stable behavior and
it aims at a good generalization ability already during training as pointed out in [11].

On the other hand, LVQ and variants severely rely on the standard euclidean met-
ric and they are not appropriate for situations where the euclidean metric does not fit
the underlying semantic. This is the case e.g. for high dimensional data where noise
accumulates and likely disrupts the classification, for heterogeneous data where the
importance of the dimensions differs, and for data which involves correlations of the
dimensions. In these cases, which are quite common in practice, simple LVQ fails.
Recently, a generalization of LVQ has been proposed based onthe formulation as cost
optimization in [16] which allows the incorporating of every differentiable similarity
measure [12]. The specific choice of the similarity measure as a simple weighted di-
agonal metric with adaptive relevance terms turned out as particularly suitable in many
practical applications since it can easily account for irrelevant or inadequately scaled
dimensions. At the same time, it allows easy interpretationof the result because the
relevance profile can directly be interpreted as the contribution of the dimensions to the
classification [13]. For an adaptive diagonal metric, dimensionality independent large
margin generalization bounds can be derived [11]. This factis remarkable since it ac-
companies the good experimental classification results forhigh dimensional data by a
theoretical counterpart. The same bounds also hold for kernelized versions, but not for
an arbitrary choice of the metric.

Often, the dimensions are correlated in classification tasks. In unsupervised cluster-
ing, correlations of data are accounted for e.g. by the classical Mahalanobis distance
[6] or fuzzy-covariance matrices as derived e.g. in the fuzzy-classifiers [7, 9]. For su-
pervised classification tasks, however, an explicit metricwhich takes correlations into
account has not yet been proposed. Based on the general framework as presented in
[12], we develop an extension of LVQ to an adaptive full matrix which describes a
general euclidean metric and which can account for correlations of any two data di-
mensions in this article. This algorithm allows for an appropriate scaling and also an
appropriate rotation of the data to learn a coordinate system which is optimum for the
given classification task. Thereby, the matrix can be chosenas one global matrix, or
as individual matrices attached to the prototypes, the latter accounting for local ellip-
soidal shapes of the classes. Interestingly, one can derivegeneralization bounds which
are similar to the case of a simple diagonal metric for this more complex case. Apart
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from this theoretical guarantee, we demonstrate the benefitof this extended method for
several concrete classification tasks.

2 Generalized metric LVQ

LVQ aims at approximating a clustering by prototypes. Assume training data(~ξi, yi) ∈
R

N × {1, . . . , C} are given,N denoting the data dimensionality andC the number
of different classes. A LVQ network consists of a number of prototypes which are
characterized by their location in the weight space~wi ∈ R

N and their class label
c(~wi) ∈ {1, . . . , C}. Classification takes place by a winner takes all scheme. For
this purpose, a (possibly parameterized) similarity measure dλ is fixed forRN . Often,
the standard euclidean metric is chosen. A data point~ξ ∈ R

N is mapped to the class
labelc(~ξ) = c(~wi) of the prototypei for whichdλ(~wi, ~ξ) ≤ dλ(~wj , ~ξ) holds for every
j 6= i (breaking ties arbitrarily), i.e. it is mapped to the class of the closest prototype,
the winner.

Learning aims at determining weight locations for the prototypes such that the given
training data are mapped to their corresponding class labels. This is usually achieved by
a modification of Hebbian learning, which moves prototypes closer to the data points
of their respective class. A very flexible learning approachhas been introduced in [12]:
Training is derived as a minimization of the cost function

∑

i

Φ

(

dλ
J − dλ

K

dλ
J + dλ

K

)

whereΦ is a monotonic function, e.g. the identity or the logistic function, dλ
J =

dλ(~wJ , ~ξi) is the distance of data point~ξi from the closest prototype~wJ with the same
class labelyi, anddλ

K = dλ(~wK , ~ξi) is the distance from the closest prototype~wK with
a different class label thanyi. Note that the nominator is smaller than0 iff the classi-
fication of the data point is correct. The smaller the nominator, the greater the security
of classification, i.e. the difference of the distance from acorrect and wrong prototype.
The denominator scales this term such that it lies in between(−1, 1). A further possi-
bly nonlinear scaling byΦ might be beneficial for applications. This formulation can
be seen as a kernelized version of so-called generalized LVQas introduced in [16].

The learning rule can be derived from this cost function taking the derivative. We
assume that the similarity measuredλ(~w, ~ξ) must be differentiable with respect to the
parameters~w andλ. As shown in [12], for a given pattern~ξ the derivatives yield

∆~wJ = −ǫ · Φ′(µ(~ξ)) · µ+(~ξ) · ~∇~wJ
dλ

J

whereǫ > 0 is the learning rate, the derivative ofΦ is taken at positionµ(~ξ) = (dλ
J −

dλ
K)/(dλ

J + dλ
K), andµ+(~ξ) = 2 · dλ

K/(dλ
J + dλ

K)2. Further,

∆~wK = ǫ · Φ′(µ(~ξ)) · µ−(~ξ) · ~∇~wK
dλ

K
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whereµ−(~ξ) = 2 · dλ
J/(dλ

J + dλ
K)2. The derivative with respect to the parametersλ

yields the update

∆λ = ǫ · Φ′(µ(~ξ)) ·
(

µ+(~ξ) · ~∇λdλ
J − µ−(~ξ) · ~∇λdλ

K

)

.

The adaptation ofλ is often followed by normalization during training, e.g. enforcing
∑

i λi = 1 to prevent degeneration of the metric. It has been shown in [12] that these
update rules are valid if the metric is differentiable. Thereby, this argument also holds
for the borders of receptive fields, i.e. an underlying continuous input distribution, as
can be shown using delta-functions [12].

It has been demonstrated in [12], the squared weighted euclidean metricdλ(~w, ~ξ) =
∑

i λi(wi−ξi)
2 whereλi ≥ 0 and

∑

i λi = 1 constitutes a simple and powerful choice
which allows to use prototype based learning also in the presence of high dimensional
data with a different (but priorly not known) relevance of the input dimensions. This
choice has the benefit that the relevance termsλi which are automatically adapted dur-
ing training allow an interpretation of the classification:the dimensions with large pa-
rametersλi contribute most to the classification. We refer to this method as generalized
relevance learning vector quantization (GRLVQ). Alternative choices have been intro-
duced in [12], including, for example, metrics which take local windows into account
e.g. for time series processing.

Note that the relevance factors, i.e. the choice of the metric need not be global, but
it can be attached to a single prototype. In this case, individual updates take place
for the relevance factorsλj for each prototypej, and the distance of a data point~ξi

from prototype~wj , dλj (~wj , ~ξi) is computed based onλj . This allows a local relevance
adaptation taking into account that the relevance might change within the data space.
This method has been investigated e.g. in [10]. We refer to this version as localized
GRLVQ (LGRLVQ).

3 Generalized matrix LVQ

Here, we introduce another specific relevant choice of the similarity measure, a full ma-
trix, which can account for arbitrary correlations of the dimensions. We are interested
in a similarity measure of the form

dΛ(~w, ~ξ) = (~ξ − ~w)T Λ (~ξ − ~w)

whereΛ is a full matrix. Note that, this way, arbitrary euclidean metrics can be achieved
by an appropriate choice of the parameters. In particular, correlations of dimensions and
rotation of the axes can be accounted for. Such choices have already successfully been
introduced in unsupervised clustering methods such as fuzzy clustering [7, 9], however,
accompanied by the drawback of increased computational costs, since these methods
require a matrix inversion at each adaptation step. For the metric as introduced above,
a variant which has costsO(N2) can be derived.

DEPARTMENT OF INFORMATICS 4
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Note that the above similarity measure only leads to a squared euclidean distance in
an appropriately transformed space ifΛ is positive (semi-) definite. We can achieve this
by substituting

Λ = Ω ΩT

which yields~uT Λ~u = ~uT Ω ΩT ~u =
(

ΩT u
)2 ≥ 0 for all ~u, whereΩ is an arbitrary

matrix. As Λ is symmetric, it has onlyN(N + 1)/2 independent entries. We can
therefore assume without loss of generality thatΩ itself is a symmetric(N ×N) matrix
with ΩT = Ω, i.e. Λ = ΩΩ in the following. This reduces the computational costs by
2. Hence

dΛ(~w, ~ξ) =
∑

i,j,k

(ξi − wi)ΩikΩkj (ξj − wj).

To obtain the adaptation formulas we need to compute the derivatives with respect
to ~w andΛ. The derivative ofdΛ with respect to~w yields

~∇w dΛ = −2Λ (~ξ − ~w) = −2ΩΩ(~ξ − ~w).

Derivatives with respect to a single elementΩlm give

∂dΛ

∂Ωlm
=

∑

j

(ξl − wl)Ωmj(ξj − wj) +
∑

i

(ξi − wi)Ωil(ξm − wm)

= (ξl − wl)
[

Ω(~ξ − ~w)
]

m
+ (ξm − wm)

[

Ω(~ξ − ~w)
]

l

where subscriptl denotes componentl of the vector. Thus, we get the update formulas

∆~wJ = ǫ · φ′(µ(~ξ)) · µ+(~ξ) · ΩΩ · (~ξ − ~wJ )

∆~wK = − ǫ · φ′(µ(~ξ)) · µ−(~ξ) · ΩΩ · (~ξ − ~wK)

For the update of the matrix elementsΩlm we get

∆Ωlm = − ǫ · φ′(µ(~ξ)) ·
(

µ+(~ξ) ·
(

[Ω(~ξ − ~wJ )]m(ξl − wJ,l) + [Ω(~ξ − ~wJ )]l(ξm − wJ,m)
)

−µ−(~ξ) ·
(

[Ω(~ξ − ~wK)]m(ξl − wK,l) + [Ω(~ξ − ~wK)]l(ξm − wK,m)
)

)

Thereby, the learning rate for the metric can be chosen independently of the learning
rate of the prototypes. Usually, it is an order of magnitude smaller to account for a
slower time-scale of metric learning compared to the weightupdates. We assumeΩ to
be symmetric. Note that this is automatically fulfilled because the above updates are
symmetric w.r.t.l andm.
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After each updateΛ should be normalized to prevent the algorithm from degenera-
tion. One possibility is to enforce

∑

i

Λii = 1

by dividing all elements ofΛ by therawvalue of
∑

i Λii after each step.
In this way we fix the sum of diagonal elements which coincideswith the sum of

eigenvalues, here. This generalizes the normalization of relevances
∑

i λi = 1 for a
simple diagonal metric. One can interpret the eigendirections ofΛ as the temporary
coordinate system with relevancesΛii.

Note that
Λii =

∑

k

ΩikΩki =
∑

k

(Ωik)2 .

So normalization takes place by dividing all elements ofΩ by (
∑

ik(Ωik)2)1/2 =

(
∑

i[ΩΩ]ii)
1/2 after every update step.

We term this learning rule generalized matrix LVQ (GMLVQ). The complexity of
one adaptation step is determined by the computation of the closest correct and incor-
rect prototypes (O(N2 · P ), P being the number of prototypes), and the adaptation
(O(N2)). Usually, this procedure is repeated a number of time stepswhich is linear
in the number of patterns to achieve convergence. Thus, thisprocedure is faster than
unsupervised fuzzy-clustering variants which use a similar form of the metric but which
require a matrix inversion in each step. Apart from this improved efficiency, the met-
ric is determined in a supervised way in this approach, such that the parameters are
optimized with respect to the given classification task.

Note that we can work with one full matrix which accounts for atransformation of
the whole input space, or, alternatively, with local matrices attached to the individual
prototypes. In the latter case, the squared distance of datapoint~ξ from a prototype~wj is
computed asdΛ

j

(~ξ− ~wj) = (~ξ− ~wj)
T Λj(~ξ− ~wj). Each matrix is adapted individually

in the following way: given~ξ with closest correct prototype~wJ and closest incorrect
prototype~wK , we get the update formula

∆ΩJ
lm = − ǫ · φ′(µ(~ξ)) ·

µ+(~ξ) ·
(

[ΩJ(~ξ − ~wJ )]m(ξl − wJ,l) + [ΩJ (~ξ − ~wJ )]l(ξm − wJ,m)
)

∆ΩK
lm = + ǫ · φ′(µ(~ξ)) ·

µ−(~ξ) ·
(

[ΩK(~ξ − ~wK)]m(ξl − wK,l) + [ΩK(~ξ − ~wK)]l(ξm − wK,m)
)

Localized matrices have the benefit that general ellipsoidal clusters can be learned by
the method whereby ellipsoidal clusters need not be alignedto the axes (this restriction
holds for GRLVQ). And the main axes of the ellipsoid can be chosen independently for
every prototype. Thus, general mixtures of Gaussians can beapproximated in a very
elegant way. We refer to this general version as localized GMLVQ (LGMLVQ).

DEPARTMENT OF INFORMATICS 6
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4 Generalization ability

One of the benefits of prototype-based learning algorithms consists in the fact that they
show very good generalization ability also for high dimensional data. This observa-
tion can be accompanied by theoretical guarantees. It has been shown in [5] that basic
LVQ-networks equipped with the euclidean metric possess dimensionality independent
large-margin generalization bounds, whereby the margin refers to the security of the
classification, i.e. the minimum difference of the distances computed for classification.
A similar result has been derived in [11] for LVQ-networks asconsidered above which
possess an adaptive diagonal metric. Remarkably, the margin is thereby directly cor-
related to the nominator of the cost function as introduced above, i.e. these learning
algorithms inherently aim at margin optimization during training. As pointed out in
[12], these results transfer immediately to kernelized versions of this algorithm where
the similarity measure can be interpreted as the composition of the standard scaled eu-
clidean metric and a fixed kernel map. In the case of an adaptive full matrix, however,
these results are not applicable, because the matrix is changed during training, i.e. the
kernel is optimized according to the given classification task in this setting.

Here, we directly derive a large margin generalization bound for (localized) GMLVQ
networks with a full adaptive matrix attached to every prototype, whereby we use the
ideas of [11]. We consider a LGMLVQ network given byP prototypes~wi with inputs
|~ξ| ≤ B for someB > 0 and the case of a binary classification. That means, prototypes
c(~wi) are labeled by1 or−1. Classification takes place by a winner takes all rule, i.e.

~ξ 7→ c(~wi) where(~ξ − ~wi)
T Λi(~ξ − ~wi) ≤ (~ξ − ~wj)

T Λj(~ξ − ~wj)∀j 6= i (1)

with positive semidefinite matrixΛi with normalization
∑

l Λ
i
ll = 1. The network

corresponds to a function in the class

F := {f : R
N → {−1, 1} | f is given by formula (1) for someΛi, ~wi}

We can assume that prototypes are located within the data points, i.e.|~wi| ≤ B.
Assume some unknown underlying probability measureP is given onRN×{−1, 1}.

The goal of learning is to find a functionf ∈ F such that the generalization error

EP (f) := P (y 6= f(y))

is as small as possible. However,P is not known during training; instead, examples
for the distribution(~ξi, yi), i = 1, . . . , m, are available, which are independent and
identically distributed according toP . Training aims at minimizing the empirical error

Êm(f) :=

m
∑

i=1

|{yi 6= f(~ξi)}|/m .

Thus, the learning algorithm generalizes to unseen data ifÊm(f) becomes representa-
tive for EP (f) for an increasing number of examplesm with high probability.
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The training algorithm of LGMLVQ optimizes a cost function which is correlated to
the number of misclassifications of training. Assume a pattern (~ξ, y) is classified by a
GMLVQ network which implements the functionf . We define the margin

Mf (~ξ, y) = −dΛ
J

J + dΛ
K

K

wherebydΛ
J

J refers to the distance from the closest prototype with classy anddΛ
K

K

refers to the distance from the closest prototype with classdifferent fromy. Note that
LGMLVQ tries to maximize this margin during training since it occurs as nominator
within the cost function. Following the approach [1], we define the loss function

L : R → R, t 7→







1 if t ≤ 0
1 − t/ρ if 0 < t ≤ ρ
0 otherwise

whereρ > 0 is some fixed value. The term

ÊL
m(f) :=

m
∑

i=1

L(Mf(~ξi, yi))/m

accumulates the number of errors for a given data set, and, inaddition, also punishes
all correct classifications with a margin smaller thanρ.

It is possible to correlate the generalization error and this modified empirical error
by a dimensionality independent bound. According to [1](Theorem 7) for allf ∈ F
with probability at least1 − δ/2, the inequality

EP (f) ≤ ÊL
m(f) +

2K

ρ
· Gm(F) +

√

ln(4/δ)

2m

holds, wherebyK is a universal constant andGm(F) is the Gaussian complexity which
is the expectation of the quantity

Eg1,...,gm

(

sup
f∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

gi · f(~ξi)

∣

∣

∣

∣

∣

)

with respect to the patterns~ξi wheregi constitute independent Gaussian variables with
zero mean and unit variance. It measures the amount of surprise in the considered
function class.

A winner-takes-all classification according to equation (1) can be formulated as
Boolean formula over terms of the formdΛ

i

i −dΛ
j

j wherei andj enumerate the mutually
different prototypes. There existP (P − 1)/2 such pairs. According to [1](Theorem
16), we find

Gm(F) ≤ P (P − 1) · Gm(Fij)

DEPARTMENT OF INFORMATICS 8
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wherebyFij denotes a LGMLVQ network with only two prototypes. For a network
with two prototypes, we get for input~ξ

dΛ
i − dΛ

j

j ≤ 0

⇐⇒ ~ξT Λi~ξ − ~ξT Λj~ξ −
2(~wT

i Λi − ~wT
j Λj)~ξ + (~wi)

T Λi ~wi + (~wj)
T Λj ~wj ≤ 0

This is the sum of a linear classifier and a quadratic term. Adding a constant input
dimension1 to ~ξ, the input to the linear classifier is restricted byB + 1 and the length
of the weight vector is restricted by4B + 2B2 because vectors|~wi| are limited byB
and the sum of the eigenvalues ofΛi is at most1. The empirical Gaussian complexity
of this linear part is limited by

4B(B + 1)(B + 2)
√

m

m

according to [1](Lemma 22). According to the same theorem, the Gaussian complexity
of the quadratic term is limited by

4 · B · √m

m
.

Thus, an overall estimation is given by the sum of these termswhich is of orderB3/
√

m.
Since the empirical Gaussian complexity and the Gaussian complexity differ by more

thanǫ with probability at most2 exp(−ǫ2m/8) according to [1](Theorem 11), i.e. they
differ by no more than

√

8/m · ln(4/δ) with probability at least1− δ/2, we finally get

EP (f) ≤ ÊL
m(f) + O

(

1√
m

·
(

P 2B3

ρ
+

P 2
√

ln(1/δ)

ρ
+
√

ln(1/δ)

))

(2)

with probability1 − δ. This bound is independent of the dimensionality of the data.
Rather, it involves the marginρ which is directly optimized during GMLVQ training.

This bound holds for priorly fixed marginρ. For posterior marginρ, a generalization
of the argumentation as follows can be applied: Assume the empirical margin can be
upper bounded byC > 0, a naive bound being e.g. the maximum distance of data in the
given training set. We defineρi = C/i for i ≥ 1, and we choose prior probabilitiespi ≥
0 with

∑

pi = 1 which indicate the confidence in achieving an empirical margin of size
ρi. Define the cost functionLi as above associated to marginρi and the corresponding
empirical errorÊLi

m (f). We are interested in the probability

P
(

∃i EP (f) ≥ ÊLi

m (f) + ǫ(i)
)

9 Technical Report IfI-06-14
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where the bound

ǫ(i) =

(

K ′

√
m

·
(

P 2B3

ρi
+

P 2
√

ln(1/(piδ))

ρi
+
√

ln(1/(piδ))

))

depends on the empirical margin,K ′ being a constant. We can argue

P
(

∃i EP (f) ≥ ÊLi
m (f) + ǫ(i)

)

≤
∑

i

P
(

EP (f) ≥ ÊLi
m (f) + ǫ(i)

)

≤
∑

i

pi · δ = δ

because the boundsǫ(i) are chosen according to equation (2). Thus, posterior bounds
depending on the empirical margin and the prior confidence inachieving this margin
can be derived.

5 Experiments

We test the performance of GMLVQ in comparison to GRLVQ and GLVQ without met-
ric adaptation using an artificial data set and the image segmentation data set provided
in the UCI repository [15].

5.1 Artificial Data

In a first experiment, the algorithm is applied to a two-dimensional artificial dataset
consisting of two classes with one cigar shaped cluster each. The two clusters intersect,
as depicted in Fig.1(a). The data consists of two Gaussians with the same probability
which give two classes. The Gaussians are generated with mean valuesµ1 = [1.5, 0.0]
andµ2 = [−1.5, 0.0], respectively, and varianceσ1,2 = [0.5, 3.0], these axes-aligned
cigars are rotated about the origin by the anglesϕ1 = π/4 andϕ2 = −π/6, respec-
tively. Training and test set consist of 300 and 600 datapoints per class, respectively.
For training, we use one prototype per class and the following settings: we use the stan-
dard euclidean metric (GLVQ), an adaptive diagonal metric (GRLVQ), individual adap-
tive diagonal metrics for each prototype (LGRLVQ), an adaptive matrix (GMLVQ),
and individual adaptive matrices for every prototype (LGMLVQ). Relevance or matrix
learning is done after an initial phase consisting of 500 epochs prototype adaptation.
Training is done for 2000 epochs for GLVQ and GRLVQ, and for 6000 epochs for GM-
LVQ to account for the more subtle matrix adaptation. In all experiments, learning rates
are chosen differently for prototypes and weight vectors resp. matrix elements, and the
learning rates are annealed during training. The initial learning rateǫp(0) for proto-
types is chosen as 0.01, the initial learning rate for the diagonal relevance termsǫd(0)

DEPARTMENT OF INFORMATICS 10



MATRIX LEARNING IN LVQ

Table 1: (a): Percentage of correctly classified patters forthe artificial training and test
set using the different LVQ-algorithms. (b): Percentage ofcorrectly classified patterns
for image data on training and test set.

(a)

Algorithm Training Test
GLVQ 75.33 71.83

GRLVQ 74.33 72.33
GMLVQ 79.67 77.83
LGRLVQ 81.0 78.0
LGMLVQ 91.67 90.75

(b)

Algorithm Training Test
GLVQ 82.38 79.05

GRLVQ 85.71 84.52
GMLVQ 91.9 87.86
LGRLVQ 90.0 89.05
LGMLVQ 96.19 94.29

is chosen as 0.005 and the initial learning rate for nondiagonal matrix elementsǫm(0)
is chosen as0.0001. For annealing, we use the following learning rate schedules:

ǫ(t) =
ǫ(0)

1 + τ · (t − tstart)

wheretstart denotes the starting epoch for the adaptation, i.e. it is 1 for the weight
adaptation and 500 for the adaptation of matrix elements andrelevance factors. The
parameterτ is chosen as 0.0001.

The classification accuracies on the training and test set are summarized in Tab.1(a).
The position of the resulting prototypes and decision boundaries are shown in Fig.1(b)-
(f). GMLVQ determines one single direction in feature space, which is used for classifi-
cation. The resulting matrixΩ projects the data onto the respective subspace as depicted
in Fig.1(g), Fig.1(h) denotes the projections of the classes using the LGMLVQ matrices

ΛClass1 =

(

0.5156 −0.4997
−0.4997 0.4844

)

ΛClass2 =

(

0.7195 0.4492
0.4492 0.2805

)

One can clearly observe the benefit of individual matrix adaptation: this allows each
prototype to shape its cluster according to the local ellipsoidal form of the class. This
way, the data points of both cigar shaped clusters can be classified correctly except
for the tiny region where the classes overlap. Note that, forlocal metric parameter
adaptation, the receptive fields of the prototypes are no longer separated by straight
lines (see Fig. 1(d)) and, further, need no longer be convex in this case (see Fig. 1(f)).

5.2 Image Data

In a second experiment, the algorithm was applied to the image segmentation dataset
provided in the UCI repository [15]. The dataset contains 19dimensional feature vec-
tors, which encode different attributes of 3x3 Pixel regions extracted out of seven out-
door images (brickface, sky, foliage, cement, window, path, grass). The features 3-5 are
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Figure 1: (a): Artificial dataset used for training. (b)-(f)Position of prototypes and deci-
sion boundaries after training with different LVQ-algorithms. (b):GLVQ, (c):GRLVQ,
(d):LGRLVQ, (e):GMLVQ, (f):LGMLVQ, (g):data transformedby global matrixΩ,
(h): data transformed by individual matrices for both prototypes.

(nearly) constant and were eliminated for this experiment.The training set consists of
210 datapoints (30 per class), the test sets contains 300 datapoints per class.

As beforehand, we used one prototype per class. In all experiments, the adaptation
of metric parameters starts after an initial training phasefor the prototypes consisting of
a few 100 epochs. As beforehand, we compare global and local relevance resp. matrix
adaptation and simple GLVQ. The initial learning rates havebeen optimized on the
training set and they are chosen as follows:

• GLVQ: ǫp(0) = 0.8

• GRLVQ: ǫp(0) = 0.8, ǫd(0) = 5 · 10−6

• LGRLVQ: ǫd(0) = 5 · 10−5

• GMLVQ: ǫp(0) = 0.8, ǫd(0) = 1 · 10−4, ǫm(0) = 5 · 10−5

• LGMLVQ: ǫp(0) = 0.8, ǫd(0) = 1 · 10−3, ǫm(0) = 5 · 10−5

These learning rates are annealed as beforehand usingτ = 0.001.
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Figure 2: Visualization of the final relevance matrix for brickface-class. Left: diagonal
elements. Right: nondiagonal elements
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Figure 3: Visualization of the final relevance matrix for window-class. Left: diagonal
elements. Right: nondiagonal elements

Figures 2 and 3 visualize the resulting matrices for the brickface- and the window
class after training of individual matrices for all prototypes. It is visible that espe-
cially relations between the dimensions encoding color information are emphasized:
The emphasized dimensions include feature 8: rawred-mean (average over the regions
red values), feature 9: rawblue-mean (average over the regions green values), feature
10: rawgreen-mean (average over the regions green values),feature 11: exred-mean
(2R - (G + B)), feature 12: exblue-mean (2B - (R + G)), feature 13: exgreen-mean (2G
- (R + B)).

The classification accuracy can be observed in Table 1(b). Obviously, relevance and
matrix adaptation allows to improve the classification accuracy. Thereby, local matri-
ces yield an improvement of more than 10% compared to simple GLVQ. Remarkably,
although the number of free parameters of the model is dramatically increased (being
of orderPN2 for P prototypes and input dimensionalityN ) no overfitting takes place.

13 Technical Report IfI-06-14



References

This demonstrates the good generalization ability of the model as substantiated by the
formal generalization bounds.

6 Discussion

We have extended GRLVQ, a particularly efficient and powerful prototype based classi-
fier, by a full matrix adaptation scheme. This allows the adaptation of the class borders
such that local ellipsoidal shapes are taken into account. The possibility to improve
the classification accuracy by this extension has been demonstrated in two examples.
Remarkably, the generalization ability of the method is quite high as substantiated by
theoretical findings.

The complexity of full local matrix adaptations scales withN2 per epoch,N being
the input dimensionality. This is better than comparable matrix adaptation methods as
used e.g. in unsupervised fuzzy clustering [7, 9], however,the computational load be-
comes quite large for large input dimensionality. Therefore, specific schemes to shape
the form of the matrix based on prior information are of particular interest. Nondiagonal
matrix elements indicate a correlation of input features relevant for the classification. In
many cases, one can restrict useful correlations due to prior knowledge. As an example,
spatial or temporal data likely sho a high correlation of neighbored elements, whereas
the other elements are probably independent. In such cases,one can restrict to a fixed
adaptive bandwidth, decreasing the quadratic complexity to a linear term with respect
to input dimensionality. Similarly, spatial correlationsin images or functional data can
lead to a massive restriction of the free parameters of the matrices to promising regions.
This possibility will be the subject of future experiments.
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