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ABSTRACT: Acarviosyl transferase (ATase) fromActinoplanessp. SE50/110 is a bacterial enzyme that
transfers the acarviosyl moiety of the diabetic drug acarbose to sugar acceptors. The enzyme exhibits
42% sequence identity with cyclodextrin glycosyltransferases (CGTase), and both enzymes are members
of the R-amylase family, a large clan of enzymes acting on starch and related compounds. ATase is
virtually inactive on starch, however. In contrast, ATase is the only known enzyme to efficiently use
acarbose as substrate (2µmol min-1 mg-1); acarbose is a strong inhibitor of CGTase and of most other
R-amylase family enzymes. This distinct reaction specificity makes ATase an interesting enzyme to
investigate the variation in reaction specificity ofR-amylase family enzymes. Here we show that a G140H
mutation in ATase, introducing the typical His of the conserved sequence region I of theR-amylase
family, changed ATase into an enzyme with 4-R-glucanotransferase activity (3.4µmol min-1 mg-1).
Moreover, this mutation introduced cyclodextrin-forming activity into ATase, converting 2% of starch
into cyclodextrins. The opposite experiment, removing this typical His side chain in CGTase (H140A),
introduced acarviosyl transferase activity in CGTase (0.25µmol min-1 mg-1).

The R-amylase family, or glycoside hydrolase family 13
(1), is a large family of enzymes acting onR-glycosidic
bonds in starch and related compounds (2). About 20
different reaction specificities have been identified in this
family, including hydrolysis ofR-(1,4)- andR-(1,6)-glyco-
sidic linkages (e.g.,R-amylase and isoamylase, respectively),
as well as the formation ofR-(1,4)- andR-(1,6)-glycosidic
bonds (e.g., amylosucrase, acarviosyl transferase, cyclodex-
trin glycosyltransferase, and branching enzyme, respectively;
Figure 1) (2, 3). All members use anR-retaining double
displacement mechanism (4) in which reactions proceed via
a covalent glycosyl-enzyme intermediate (5). Glycosidic
bond cleavage occurs between subsites-1 and+1 (Figure
2A), and after cleavage the glycosyl reaction intermediate
remains bound at the donor subsites (-1, -2, -3, etc.) (6).

Cyclodextrin glycosyltransferase (CGTase,1 EC 2.4.1.19)
is also a member of theR-amylase family. It is a 75 kDa
extracellular enzyme that produces circularR-(1,4)-glucans

(cyclodextrins) from starch via an intramolecular transgly-
cosylation reaction (Figure 1). The major products areR-,
â-, and γ-cyclodextrin (with six, seven, or eight glucose
residues) (7, 8), which are subsequently imported into the
bacteria excreting CGTase and are used as a carbon and
energy source (9). CGTase also catalyzes a disproportionation
reaction in which a segment of anR-(1,4)-glucan is
transferred to the 4-hydroxyl group of a second sugar to yield
a linear product (Figure 1). This reaction is also catalyzed
by 4-R-glucanotransferase (also called amylomaltase and
disproportionation enzyme), which is also a member of the
R-amylase family. CGTases are organized in five domains
(A-E) (10, 11). The N-terminal part consists of the catalytic
(â/R)8-barrel fold (domain A) with a loop of 60 residues
protruding at the thirdâ-strand (domain B). Domains A and
B together form the substrate binding groove, which consists
of at least seven donor substrate binding subsites (-1 to-7)
and two acceptor subsites (+1 and+2) (5, 10, 12). Domains
C and E are involved in starch binding (13), while the
function of domain D remains to be elucidated.

Acarviosyl transferase (ATase,1 EC 2.1.4.19) is a 76 kDa
extracellular enzyme fromActinoplanessp. SE50/110 that
transfers the acarviosyl moiety of acarbose to the 4-hydroxyl
group of various sugars (14) (Figure 1). This is the only
enzyme known to catalyze this reaction. ATase has the
highest sequence identity (42%) with CGTases (14), and the
protein is most likely organized in five domains (A-E),
similar to CGTases. The substrate of ATase, acarbose, is a
pseudotetrasaccharide, composed of the C7-cyclitol valien-
amine, 4-amino-4,6-dideoxyglucose, and maltose (Figure 3),
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that is found in culture medium fromActinoplanessp. SE50/
110 when it is grown on starch or maltooligosaccharides (15).
This secondary metabolite is produced industrially using
engineered strains ofActinoplanessp. SE50/110 (16), and
it is used as a drug (Glucobay/Precose) in the treatment of
diabetes patients to slow the intestinal release of glucose (17).
Acarbose is a strong reversible inhibitor of manyR-amylase
family enzymes, including the cyclization reactions with
starch catalyzed by the CGTases ofBacillus circulansstrain
251 [Ki ) 0.2 µM (18)] and Thermoanaerobacterium
thermosulfurigenesstrain EM1 [Tabium;1 Ki ) 0.1µM (19)].
Protein crystallography studies have shown that acarbose
inhibits R-amylase family enzymes by binding in the active
site with the acarviosyl moiety at the-1 and+1 subsites
(20-25). In ATase, in contrast, acarbose must bind at the
-2 to +2 subsites to allow catalysis of the acarviosyl
transferase reaction (Figure 1). The gene encoding ATase
(acbD, part of accession number AJ293724) has been cloned,
and the protein has been purified from culture medium (14).

TheacbDgene is located in a biosynthetic gene cluster for
acarbose production fromActinoplanessp. SE50/110 (26,
27). Despite its high similarity to CGTases, it has been
reported that ATase has no cyclodextrin-forming activity and
is not inhibited by acarbose (14). Rather, acarbose is its main
substrate, with aKM value of 0.65 mM (14).

Here we describe single amino acid mutations that inter-
change the reaction specificities of ATase (from acarviosyl
transferase into a cyclodextrin-producing 4-R-glucanotrans-
ferase) and CGTase (from a cyclodextrin-producing 4-R-
glucanotransferase into an acarviosyl transferase).

EXPERIMENTAL PROCEDURES
Bacterial Strains, Plasmids, and Growth Conditions.

Escherichia coliDH5R (28) was used for cloning experi-
ments and was grown at 37°C in LB medium (29)
supplemented with ampicillin (100µg/mL). Streptomyces
liVidans66 strain 1326 (30) was used as host for heterologous
expression of ATase protein.S. liVidans was cultured on

FIGURE 1: Reactions catalyzed by the enzymes acarviosyl transferase, 4-R-glucanotransferase, and cyclodextrin glycosyltransferase. The
thick arrows indicate the scissile bonds, and the dashed lines indicate the bonds to be formed.

Active Site of Acarviosyl Transferase Biochemistry, Vol. 43, No. 41, 200413205



R2YE agar plates (30) or in liquid YEME medium with 34%
(w/v) sucrose (30). E. coli vector pET3b (Stratagene) was
used for cloning experiments, and theE. coli/actinomycete
shuttle vector pUWL201PW was used for heterologous

expression of ATase protein using streptomycetes host strains
(31). This vector contains a constitutiveermEP promoter.
S. liVidanstransformants were selected on R2YE agar plates
with thiostrepton (20µg/mL). CGTase (mutant) proteins of
Tabium were produced using the pCScgt-tt vector (19) and
Bacillus subtilisstrain DB104A (32) as host.

General DNA Manipulations. DNA manipulations and
calcium chloride transformation ofE. coli were according
to standard protocols (29). Preparation of protoplasts and
subsequent transformation ofS. liVidanswith plasmid were
carried out as described (30). TheacbD gene fromActino-
planessp. SE50/110 (encoding ATase) was amplified by
PCR from plasmid pAS5 (26) using forward primer F1 with
a NdeI restriction site and reverse primer R1 that added six
histidine codons to the 3′ end of the gene and with aBamHI
restriction site (Table 1). The PCR product (2.1 kb) was
restricted withNdeI and BamHI and cloned into pET3b to
yield pET3b-AT. Site-directed mutations were introduced in
pET3b-AT using the QuickChange site-directed mutagenesis

FIGURE 2: Schematic overview of the interactions between substrate binding subsites-3 to +2 of CGTase and maltooligosaccharides: (A)
adapted from aB. circulansstrain 251 CGTase-maltononaose substrate crystal structure (5); (B) adapted from a Tabium CGTase crystal
structure with a maltohexaose inhibitor (extended acarbose) (24). For clarity, not all residues at the-2, -1, and+1 subsites are shown.

Table 1: Primers Used for PCR Amplification of the ATase Encoding Gene (acbD) and for Site-Directed Mutagenesisa

primer (5′ to 3′ direction)

ATase
F1 AAAAAACATATGCAACGTCACGCCAGGCA
R1 TTTGGATCCTCAATGATGATGATGATGATGGCGCTGCCAGGTGAGCGT
D229N for GGCATCCGGGTCAACGCCGTCAAGCACAT
D229N rev ATGTGCTTGACGGCGTTGACCCGGATGCC
E257Q for GCCATCTTCGGCCAGTGGTACAT
E257Q rev ATGTACCACTGGCCGAAGATGGC
D328N for CTGGACAACCAGAACACCCGGCGCTT
D328N rev AAGCGCCGGGTGTTCTGGTTGTCCAG
G140H for TGGACGCCGAACCACACCAACCCG
G140H rev CGGGTTGGTGTGGTTCGGCGTCCA
Q327H for CTGGACAACCACGACACCCGGCGC
Q327H rev GCGCCGGGTGTCGTGGTTGTCCAG
T329M for AACCAGGACATGCGGCGCTTCGGG
T329M rev CCCGAAGCGCCGCATGTCCTGGTT
Q327H/T329M for CTGGACAACCACGACATGCGGCGCTTCG
Q327H/T329M rev CGAAGCGCCGCATGTCGTGGTTGTCCAG

CGTase
H140A TGCACCAAATGCAACTTCACCTGC

a Restriction sites used are underlined.

FIGURE 3: Structure of acarbose. The arrows indicate the three
differences between acarbose and maltotetraose.
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kit from Stratagene and the primers as listed in Table 1. For
expression of ATase (mutant) proteins, theNdeI-BamHI
fragment of pET3b-AT was cloned in pUWL201PW to
obtain pUWL201PW-AT, followed by transformation toS.
liVidans 66 strain 1326. Mutation H140A was introduced
into Tabium CGTase as described (33).

Expression and Purification of ATase and CGTase. Liquid
YEME medium (10-500 mL) was inoculated with mycelium
from S. liVidans/pUWL201PW-AT transformants. After 3-4
days of cultivation in Erlenmeyer flasks at 30°C and shaking
at 200 rpm, cultures were centrifuged (10000g, 40 min), and
the supernatants were filtered by gravity through filtrate
paper. Subsequently, imidazole (to 10 mM), sodium chloride
(to 250 mM) and 1 mL of a Ni-agarose suspension (Qiagen)
were added per 100 mL of supernatant, and the mixture was
incubated at 4°C for 4 h. After the Ni-agarose material
was washed with 10 volumes of 20 mM Tris-HCl (pH 7.5),
1 mM CaCl2, 250 mM NaCl, and 10 mM imidazole, bound
ATase protein was eluted with the same buffer containing
200 mM imidazole. Tabium CGTase proteins were produced
and purified as described (8). The purity of the proteins was
checked with SDS-PAGE. Protein concentrations were
determined with the Bradford reagent of Bio-Rad and bovine
serum albumin as standard.

Enzyme Assays. All assays were carried out in Tris-maleic
acid buffer (20 mM, pH 6.5, total volume 0.3-1.0 mL)
supplemented with 1 mM CaCl2 at 30°C (ATase) or 60°C
(CGTase). Reactions were started by adding enzyme and
stopped by boiling samples for 5 min. Acarviosyl transferase
activity was determined by measuring the transfer rate of
the acarviosyl moiety from acarbose (donor substrate) to
maltotriose (acceptor substrate), resulting in maltose release
and the formation of acarviosylmaltotriose (Figure 1).
Activity is defined as the amount of acarviosylmaltotriose
produced per minute. Reaction mixtures contained 1-20 mM
acarbose, 20 mM maltotriose, and 6-50 µg of (mutant)
ATase enzyme/mL. 4-R-Glucanotransferase activity was
determined by incubating 10µg of (mutant) ATase enzyme/
mL with 20 mM maltotetraose and measuring maltose
transfer, resulting in the formation of maltose and malto-
hexaose. Activity is defined as the amount of maltohexaose
produced per minute. Products formed, in both reactions,
were analyzed by HPLC using an econosphere NH2 5U
column (250 by 4.6 mm; Alltech, Breda, The Netherlands)
linked to a refractive index detector. A mobile phase of 60-
75% acetonitrile and 40-25% water at a flow rate of 1 mL/
min was used.

Starch Degradation. Starch-degrading activities were
measured by incubating soluble potato starch (1% w/v;
Sigma) with 10µg of (mutant) ATase enzyme/mL at 30°C.
Formation of â-cyclodextrin was measured with phenol-
phthalein (8). Formation ofR-, â-, andγ-cyclodextrin was
determined with HPAEC1 analysis as described below.
Hydrolysis of starch was assayed by measuring the amount
of reducing sugars with dinitrosalicylic acid as described (13).
CGTase activities were determined with 0.01-1.0 µg of
enzyme/mL. Acarbose inhibition of (mutant) CGTases was
determined with 1µg of enzyme/mL and acarbose concen-
trations between 0 and 2 mM.

HPAEC Analysis. The amounts of cyclodextrins formed
were quantified using a HPAEC system. Before analysis,
the reaction mixtures containing residual starch were incu-

bated with 1500 units of amyloglucosidase (Megazyme,
County Wicklow, Ireland) per gram of starch substrate at
50 °C overnight to degrade all starch into glucose. Subse-
quently, the samples were diluted in 80% dimethyl sulfoxide.
R-, â-, and γ-cyclodextrins from Fluka were used as
standards. Separation was achieved with a CarboPac PA1
anion-exchange column (250× 4 mm; Dionex, Sunnyvale,
CA) with a CarboPac1 guard column (50× 4 mm; Dionex)
and a mobile phase of 0.1 M NaOH (solution A) and 0.6 M
sodium acetate in 0.1 M NaOH (solution B) at a flow rate
of 1 mL/min. The following gradient program was used:
0-10 min 5-35% solution B, 10-20 min 35-45% solution
B, 20-50 min 45-65% solution B, 50-54 min 65-100%
solution B, 54-60 min 100% solution B, 60-61 min 100-
5% solution B, and 61-65 min 5% solution B. Detection
was performed with an ED40 electrochemical detector
(Dionex). The pulse program used was+1.0 V (0-0.40 s),
+0.7 V (0.41-0.60 s), and-0.1 V (0.61-1.00 s).

Mass Spectrometry. Mass spectra of samples containing
cyclodextrins and acarviosylmaltotriose were recorded on a
Perkin-Elmer Sciex Instruments API3000 triple quadru-
pole LC/MS/MS mass spectrometer. In each case samples
were diluted in MeOH/H2O (50/50) and directly injected
into the mass spectrometer. For detection of cyclodextrins
1 mM NaCl was added to the samples. Cyclodextrins were
detected as Na+, Tris+, and Tris/Na+ complexes; these
complexes were also formed with commercially available
cyclodextrins.

RESULTS AND DISCUSSION

Heterologous Expression and Purification of ATase.
Heterologous expression of the ATase protein has been
described previously (14). However, theseS. liVidanstrans-
formants appeared to be unstable, as the results were not
reproducible or the expression failed completely. Therefore,
new expression clones were constructed. Attempts to express
ATase inE. coli BL21(DE3) under control of a T7 promoter
and inB. subtilisunder control of an erythromycin promoter
failed (data not shown). In contrast, ATase overproduction
was readily achieved inS. liVidans when the E. coli/
actinomycete shuttle vector pUWL201PW-AT was used.
Acarviosyl transferase activity was found in the culture
medium, demonstrating that the signal sequence for ATase
secretion is also recognized byS. liVidans.The ATase protein
was purified from the culture medium using a standard His-
tag purification protocol, yielding about 4 mg of ATase
protein/L of culture.

The acarviosyl transferase activity of this recombinant
ATase is 2.0µmol min-1 mg-1 (Table 2), which is very
similar to the value measured for partially purified ATase
from Actinoplanessp. SE50/110 (data not shown). In
addition, the activity of the recombinant ATase is in the same
order of magnitude as the 4.6µmol min-1 mg-1 measured
by Hemker et al. (14) for the ATase enzyme purified from
Actinoplanessp. SE50/110. Note that we measured the
formation of acarviosylmaltotriose (Figure 1), whereas
Hemker et al. (14) determined the exchange rate of the
maltose moiety of acarbose for14C-labeled maltose. Our
activities were determined at an acarbose concentration of
20 mM far above theKM value of wild-type ATase, about 1
mM (14). KM values for acarbose were not determined as
our detection method was not sensitive enough at the very
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low acarbose concentrations needed to determine theKM

values for this compound.
Also the maltogenic amylases fromBacillus stearo-

thermophilusET1 andThermusstrain IM6501 are able to
use acarbose as substrate (34-35). However, these enzymes
are obviously different from ATase as they cleave the
R-(1,4)-glycosidic bond between the two glucose residues
of acarbose (Figure 3) to release glucose. The remaining
pseudotrisaccharide is subsequently transferred to water
(hydrolysis) or the 4- or 6-hydroxyl group of a sugar acceptor
(transglycosylation). Thus, in maltogenic amylases a native
glucose residue is bound at the catalytic subsite-1 during
bond cleavage, whereas ATase is the only enzyme of the
R-amylase family to bind a modified glucose moiety at
subsite-1 during catalysis. Unfortunately, reaction rates for
acarbose degradation by maltogenic amylases have not been
reported, although they must be rather efficient as acarbose
is completely degraded upon incubation with large amounts
of maltogenic amylase (35).

Catalytic Residues. Sequence alignments of ATase with
various R-amylase family enzymes revealed that the four
short sequence regions (I-IV) characteristic of theR-amylase
family (2, 37) are present in ATase (Figure 4). Of the seven
residues most stringently conserved in theR-amylase family,
two were different in ATase (Figure 4; see below). Asp229,
Glu257, and Asp328 were identified as the putative catalytic

nucleophile, acid/base catalyst, and transition state stabilizer,
respectively (Table 3); throughout the paper all amino acids
are numbered according toB. circulansstrain 251 CGTase.
Mutating these residues into the corresponding amide

FIGURE 4: The four conserved amino acid sequence regions in enzymes of theR-amylase family. The numbering is according toB. circulans
strain 251 CGTase. The seven most conserved residues are shown in bold and italic, catalytic residues are marked with an asterisk (*), and
the residues that are different in ATase are marked with a vertical line (|). The following sequences were used in the alignment: ATase of
Actinoplanessp. SE50/110 (Q9K5L5); CGTase ofB. circulansstrain 251 (P43379); 4-R-glucanotransferase ofT. maritima (P80099);
R-amylase ofAspergillus oryzae(P10529); cyclomaltodextrinase of alkalophilicBacillussp. I-5 (Q59226); oligo-1,6-glucosidase ofBacillus
cereus(P21332); amylosucrase ofNeisseria polysaccharea(Q9ZEU2); branching enzyme ofEscherichia coli(P07762).

Table 2: Acarviosyl Transferase and 4-R-Glucanotransferase
Activities of (Mutant) ATase Proteinsa

enzyme

acarviosyl
transferase activity

(acarviosylmaltotriose
formation)

(µmol min-1 mg-1)

4-R-glucano-
transferase activity

(maltohexaose
formation)

(µmol min-1 mg-1)

wild type 2.0( 0.2 0.05( 0.01
D229N <0.001 <0.001
E257Q <0.001 <0.001
D328N <0.001 <0.001
G140H 0.23( 0.04 1.1( 0.2
Q327H 1.2( 0.2 0.02( 0.01
T329M 1.7( 0.2 0.6( 0.1
Q327H/T329M 1.2( 0.2 0.6( 0.1
G140H/Q327H 0.23( 0.03 1.0( 0.1
G140H/Q327H/T329M 0.24( 0.05 3.4( 0.3

a Acarbose and maltotriose were used as substrates in the acarviosyl
transferase reaction and maltotetraose in the 4-R-glucanotransferase
reaction, as shown in Figure 1.

Table 3: Typical CGTase Residues that Are Conserved in the
ATase Sequence and Their Functional Roles Previously Evaluated
in CGTases.

residue in
CGTasea

residue in
ATase function in CGTase

subsite+2
Phe183 Phe185 cyclization (46, 47)
Lys232 Lys234 general activity (47)
Phe/Tyr259 Tyr261 essential for transglycosylation

specificity (33)
subsite+1

Leu194 Leu196 cyclization (48)
Ala230 Ala232 essential for transglycosylation

specificity (49)
His233 His235 general activity (39)

subsite-1
Asp229 Asp231 catalytic nucleophile (5, 50)
Glu257 Glu259 acid/base catalyst (5)
Asp328 Asp331 transition state stabilization (5)
Tyr100 Tyr106 general activity (51)
Asp135 Asp141 essential for conformation of

Glu257 and Arg227 (52)
His140 Gly146 general activity (39)
Arg227 Arg229 general activity (52)
His327 Gln330 general activity (39)

subsite-2
His98 His104 general activity (53)
Trp101 Trp107 unknown function
Arg375 Arg386 unknown function

subsite-3
Arg/Lys/His47 Arg55 cyclization (54)
Asp196 Asp198 cyclization (24)
Asp371 Asp382 cyclization (24)

other
Tyr/Phe195 Ala197 cyclization (39), central

aromatic residue
Met329 Thr332 unknown function, close to the

acceptor subsites+1/+2
Phe283 Phe287 cyclization, close to Glu257 (24)

maltose binding sites I, II and III (11)
Trp616/Trp662 Trp627/Trp674 binding to starch, E-domain (13)
Tyr633 Glu644 binding to starch, E-domain (13)
Trp413 Trp424 binding to starch, C-domain (13)
a These are all typical CGTase residues; numbering is according to

B. circulansstrain 251 CGTase (accession number P43379).
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residues resulted in loss of catalytic activity (Table 2),
demonstrating that Asp229, Glu257, and Asp328 are essential
for catalysis. Therefore, we assume that the catalytic site
architecture of ATase is similar to those of otherR-amylase
family enzymes and that the preference of ATase for
acarbose is probably the result of relatively small differences
(e.g., point mutations) in or close to its active site.

Sequence Comparison of ATase and CGTase. To explain
why ATase uses acarbose as substrate and lacks the ability
to form cyclodextrins from starch (see Results), its amino
acid sequence was compared with those of CGTases.
Although the total identity between ATase and CGTase (B.
circulansstrain 251, accession number P43379) is only 42%
(not shown), the sequence alignment revealed that most of
the typical CGTase residues are conserved in ATase. This
is especially significant for active site residues, e.g., the
residues of the-3 to+2 subsites (Figure 2). At the acceptor
subsites+1 and+2, all residues providing substrate interac-
tions in CGTase are conserved in ATase (Table 3), which is
in agreement with the identical acceptor substrate preference
of both enzymes; both prefer the OH4 group of glucose or
longer oligosaccharides as acceptor substrate.

At donor subsite-1, in contrast, there are striking
differences between CGTase and ATase. His140 and His327
of CGTase (Figure 2) are replaced by Gly and Gln in ATase,
respectively (Table 3). Both histidines are conserved in
roughly 95% of theR-amylase family enzymes (38), and
they are found in all CGTases known to date. Structural and
mutagenesis studies onR-amylases and CGTases have
demonstrated that these His residues have a function in
distortion of the substrate toward transition state planarity
(His140) and in transition state stabilization (His327) (5, 39,
40). In the absence of these two His residues acarbose most
likely obtains a different binding mode in the active site of
ATase (acarviosyl moiety at the-2 and -1 subsites)
compared toR-amylases and CGTases (acarviosyl moiety
at the-1 and+1 subsites; Figure 2B), thereby explaining
why ATase is not inhibited by acarbose.

Opposite to the variation at subsite-1, the residues
forming the-2 and-3 subsites in CGTase are all conserved
in ATase (Table 3). This was surprising as ATase binds the
valienamine moiety of acarbose at subsite-2, whereas
CGTase binds a glucose ring at this subsite. Although this
indicates that subsite-2 is conserved between ATase and
CGTases, this is no proof that ligand binding at subsite-2
in ATase is identical to that observed in CGTases. The
presence of a putative-3 subsite in ATase is not needed
for the acarviosyl transferase reaction as shown in Figure 1.
However, a-3 donor subsite may be beneficial in the
processing of acarbose variants with one or more glucose
residues attached to the nonreducing end, compounds that
are found in the culture medium ofActinoplanessp. SE50/
110 (15). In contrast, the residues forming the remote donor
subsite-6, which are characteristic for CGTases (41), are
not conserved in ATase.

Other interesting differences between ATase and CGTase
are the replacement of the invariant CGTase residues Tyr/
Phe195 by Ala and Met329 by Thr (Table 3). Tyr/Phe195
is important for cyclization and cyclodextrin size specificity
(39, 42), whereas the function of Met329 for CGTase is
unknown. However, the fact that Met329 follows the
transition state stabilizer Asp328 (5) and its proximity to the

acceptor subsites suggest that it is important for catalysis
and/or reaction specificity.

Mutations in Gly140, Gln327, and Thr329 Decrease
AcarViosyl Transfer ActiVity. To investigate whether the
distinct reaction specificities of ATase and CGTase are the
result of point mutations in their active sites, G140H, Q327H,
and T329M mutations were introduced in ATase to increase
its similarity to CGTase. All three mutations decreased the
acarviosyl transferase activities (Table 2), most pronounced
for the G140H mutation. Combinations of the mutants did
not further reduce the acarviosyl transferase activity (Table
2). The reduced activities were not due to acarbose inhibition
(not detectable; data not shown), even though the mutations
increased the similarity to CGTase, which is strongly
inhibited by acarbose. This indicated that acarbose binds in
the-2 to+2 subsites in these mutant ATases, as in the wild-
type enzyme, which is the binding mode needed to transfer
the acarviosyl moiety of acarbose. In this binding mode
acarbose cannot benefit from hydrogen bonding with G140H
since the substrate ring at subsite-1 has no OH group. In
contrast, inhibition would indicate binding at the-1 to +3
subsites, the acarbose binding mode observed in crystal
structures of CGTases (24, 25) (Figure 2B).

The precise reason for the strongly decreased acarviosyl
transferase activity of mutant G140H is not known, but
possible explanations are the larger size and the basic
character of the His side chain. Nevertheless, it is concluded
that the acarviosyl transferase activity of ATase is strongly
reduced by introducing a His side chain at the position of
Gly140, whereas mutagenesis studies have shown that the
His side chain at the equivalent position in CGTases and
R-amylases is important for the catalytic efficiency of these
enzymes with starch substrates (39, 40).

G140H and T329M Mutations GiVe ATase 4-R-Glucano-
transferase ActiVity. Subsequently, the (mutant) ATase
enzymes were tested for their ability to catalyze the 4-R-
glucanotransferase reaction. Maltotetraose was chosen as
substrate, because this oligosaccharide is similar to acarbose.
Wild-type ATase has a very low activity on this substrate
(Table 2), forming maltose and maltohexaose, by transferring
a maltose moiety of one maltotetraose to a second malto-
tetraose molecule (see Figure 1, 4-R-glucanotransferase). The
ATase catalytic residue mutants lacked this activity (Table
2), indicating that the 4-R-glucanotransferase activity was
not due to, for instance, a contamination in the ATase protein
preparation. The low 4-R-glucanotransferase activity there-
fore must be a property of ATase.

The G140H and T329M mutations strongly enhanced
(12-22-fold) the 4-R-glucanotransferase activity, whereas
it was reduced in mutant Q327H (Table 2). Triple mutant
G140H/Q327H/T329M increased the 4-R-glucanotransferase
activity 68-fold, reaching a value even higher than the
acarviosyl transferase activity of the wild-type enzyme. The
mutant ATases formed maltose and maltohexaose as initial
products and, somewhat later, also maltooctaose. After
prolonged incubation, also oligosaccharides of uneven
lengths appeared (Figure 5A). In contrast to maltotetraose,
the shorter maltotriose was only very slowly used as donor
substrate by the wild-type and mutant ATases (not shown).
Thus, the wild-type and mutant ATases have a preference
for maltose transfer with oligosaccharide substrates, although
the specificity for maltose is not absolute.
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The stimulatory effect of mutation T329M on the 4-R-
glucanotransferase activity of ATase is not understood; this
Met residue (following the invariant Asp of conserved
sequence region IV; Figure 4) has no interactions with
substrates in CGTase. However, in another member of the
R-amylase family (amylosucrase), a mutation in the equiva-
lent residue decreased the glucan-forming reaction specificity
of the enzyme (43), also showing the importance of the side
chain at this position for reaction specificity within the
R-amylase family. A likely explanation for the increased 4-R-
glucanotransferase activity of mutant G140H is that the
introduced His side chain enables ATase to form a hydrogen
bond with the OH6 group of the glucose residue in subsite
-1, similar to the interactions observed in a CGTase-
substrate structure (Figure 2A). Moreover, the increased 4-R-
glucanotransferase activity (22-fold; Table 2) of mutant
G140H corresponds well with the decreased cyclization
activities [10-25-fold (39) and below] of CGTase mutants
where this His side chain was substituted. This suggests that
the His140 side chain introduced in ATase plays a similar
role as in CGTase. Thus, both G140H and T329M mutations,
in conserved sequence regions I and IV of theR-amylase
family, strongly increase the 4-R-glucanotransferase activity
of ATase.

In comparison with other 4-R-glucanotransferase enzymes
(e.g., amylomaltase and maltosyltransferase), the 4-R-glu-
canotransferase activity of the most active ATase mutant is
relative low, with an activity of 3.4µmol min-1 mg-1 (Table
2), which is equivalent to a turnover rate of 4.3 s-1. Aquifex
aeolicus4-R-glucanotransferase is four times more active

with maltotetraose as substrate, with akcat of 17 s-1 (44),
while the amylomaltases ofPyrobaculum aerophilumand
Thermus thermophilushavekcat values of 115 and 317 s-1,
respectively, using maltotriose as substrate (T. Kaper,
personal communication). A major difference between the
(mutant) ATases and other 4-R-glucanotransferase is that
ATase is virtually inactive with maltotriose, whereas amylo-
maltases and maltosyltransferase have high activities with
maltotriose as well as longer maltooligosacchraides (44, 45).
This difference may reflect the similarity between ATase
and CGTases, asB. circulansstrain 251 and Tabium CGTase
are inactive on maltotriose (8, 19). Interestingly, the ATase
variants have a strong preference for maltose transfer, which
is also observed for the maltosyltransferase fromThermotoga
maritima, although for the later enzyme this specificity
appears to be absolute (45).

ActiVity on Starch. Previously it has been reported that
ATase has no activity with starch as substrate (14). However,
upon prolonged incubation with 10µg of enzyme/mL, a very
low starch hydrolysis activity was detectable, with about 1
mM reducing sugars formed after 168 h of incubation. This
ATase hydrolytic activity with starch of 0.01µmol min-1

mg-1 is much lower than the hydrolytic activity of Tabium
CGTase, 54µmol min-1 mg-1 (33), which is, in turn, much
lower than the hydrolytic activity ofR-amylases (2). The
different data for starch degradation by ATase in Hemker et
al. (14) and in the present study may be explained either by
the longer incubation times and larger amounts of enzyme
used by us or by the different starch substrates used in both
studies. No starch hydrolysis was observed with the ATase
catalytic residue mutants (data not shown), indicating that
this activity is not due to a contamination but a true ATase
property. The hydrolytic activity of the mutant ATase was
not significantly different from the wild-type (recombinant)
ATase. Thus, ATase has a detectable but very low starch
degrading activity.

A Single G140H Mutation GiVes ATase Cyclodextrin-
Forming ActiVity. Despite the 42% sequence identity with
CGTases, ATase did not form cyclodextrins from starch, not
even upon 2 weeks of incubation with 10µg/mL enzyme
(detection limit of∼5 µM, using the color reagent phenol-
phthalein). In contrast, ATase variants containing the G140H
mutation clearly formed cyclodextrins (Table 4). Mass
spectrometry confirmed that the G140H mutants produced
R-, â-, and γ-cyclodextrins from starch. Compounds with
these masses were not detectable following incubation of

FIGURE 5: HPLC elution profiles of substrates and reaction products
of ATase and (mutant) CGTase enzymes. (A) ATase mutant
G140H/Q327H/T329M (10µg/mL) incubated with 20 mM malto-
tetraose for 18 h. (B) Wild-type ATase (10µg/mL), wild-type
CGTase (2µg/mL), and CGTase mutant H140A (2µg/mL)
incubated with 20 mM acarbose and 20 mM maltotriose (40 mM
for wild-type CGTase) for 24 h. G1-G8, glucose to malto-
octaose. The G1 peak in panel A overlaps with the buffer used in
the assay.

Table 4: Production of Cyclodextrins by (Mutant) ATase Proteins
after Incubation with 1% (w/v) Starch at 30°C for 2 Weeks

enzyme

conversion of
starch into
CDsa (%)

R-CDa

(mg/L)
â- andγ-CDa,b

(mg/L)

CGTasec 25 700 1800
wild type 0 ndd nd
G140H 1.9 80 110
Q327H 0 nd nd
T329M 0 nd nd
Q327H/T329M 0.1 6 5
G140H/Q327H 1.2 38 80
G140H/Q327H/T329M 7.4 460 280

a CD ) cyclodextrin.b â- and γ-cyclodextrin eluted at the same
retention time.c Tabium CGTase and data from ref41. d nd, not
detectable.
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starch with ATase wild type or derived Q327H, T329M, and
Q327H/T329M mutant proteins for 2 weeks. HPAEC
analysis revealed that the G140H mutants converted 1.2-
7.4% of the starch into cyclodextrins (Table 4). By com-
parison, CGTases can reach up to 40% conversion of starch
into cyclodextrins, depending on the particular CGTase (25%
in the case of Tabium CGTase; Table 4). HPAEC analysis
also showed a very low amount of cyclodextrins in the
sample incubated with mutant Q327H/T329M (Table 4). A
cyclization activity of 0.002µmol min-1 mg-1 was calcu-
lated, equivalent to 0.15 turnovers per minute, for ATase
mutant G140H/Q327H/T329M, which is 105-fold lower than
that of Tabium CGTase [250µmol min-1 mg-1 (19)].
Nevertheless, the ATase mutants converted a significant
amount of the starch into cyclodextrins after prolonged
incubation (Table 4), reflecting the similarity between ATase
mutants and CGTases.

CGTase Gains AcarViosyl Transferase ActiVity upon a
H140A Mutation. Since mutation G140H introduced cyclo-
dextrin-forming activity into ATase, the question arose
whether the opposite mutation would give CGTase acarviosyl
transferase activity. Since a Tabium CGTase H140A mutant
was already available in our laboratory, this mutant was
tested for its ability to catalyze the acarviosyl transferase
reaction (Figure 1). Mutation H140A reduced the cyclization
activity of Tabium CGTase from 250 to 10µmol min-1

mg-1. CGTase mutant H140A displayed indeed considerable
acarviosyl transferase activity (Figure 5B), only 8 times less
than that of ATase (0.25µmol min-1 mg-1; equivalent to a
turnover rate of about 0.3 s-1). In contrast, wild-type CGTase
did not form acarviosylmaltotriose (Figure 5B), not even
during much longer incubation periods (data not shown).
Mass spectrometry confirmed the formation of a compound
with the mass of acarviosylmaltotriose- H+ (808 Da) by
CGTase-H140A but not by wild-type CGTase. Interestingly,
to catalyze this reaction, acarbose must bind at the-2 to
+2 subsites of CGTase mutant H140A, whereas it is bound
in the -1 to +3 subsites of wild-type CGTase proteins
according to crystal structural information (24, 25), with the
C-N-C linkage at the cleavage site (Figure 2B). The
CGTase structures also showed a hydrogen bond between
the His140 side chain and the OH6 group of the valienamine
moiety of acarbose at subsite-1, similar to the hydrogen
bond formed with a natural substrate (Figure 2A), indicating
the importance of this His residue for acarbose inhibition.
Indeed, CGTase mutant H140A required a 400-fold higher
acarbose concentration for 50% inhibition of cyclization
activity (40 versus 0.1µM for wild-type Tabium CGTase;
data not shown). This is in agreement with the much higher
Ki values for acarbose measured for His to Asn mutations
at the same positions in barleyR-amylase I and alkalophilic
Bacillus sp. 1011 CGTase (39, 40). Thus, our data demon-
strate that acarbose can also bind in the-2 to +2 subsites
of CGTase mutant H140A and that a single H140A mutation
is sufficient to give CGTase acarviosyl transferase activity.

CONCLUSIONS

By comparing the ATase and CGTase sequences and using
site-directed mutagenesis, we have identified two residues
(Gly140 and Thr329) that are essential for the acarviosyl
transferase versus 4-R-glucanotransferase specificity of
ATase (Table 2). A single G140H mutation introduced

cyclodextrin-forming activity into ATase, whereas Tabium
CGTase acquired acarviosyl transferase activity with a single
H140A mutation in its active site. The data thus indicate
that the active sites of the ATase and CGTase proteins are
very similar. The different reaction specificities of the two
enzymes can be interchanged by single mutations at their
active sites (Tables 2 and 4).

These observations suggest thatActinoplaneshas recruited
a CGTase enzyme to perform a new and special task in its
acarbose/starch metabolism. The acarbose (acb) gene cluster
of Actinoplanessp. SE50/110 encodes a mixture of proteins
related to enzymes of the primary and secondary metabolism
(27), supporting a new type of starch metabolism based on
acarbose as a central structure. Acarbose serves as an
inhibitor for starch-degrading enzymes used by competitors
in the natural environment and also serves as an acceptor
molecule for glucose and longer oligosaccharides (16, 27).
Acarbose is structurally related to starch molecules (Figure
3), and acarbose metabolism involves several enzymes
closely related to starch-modifying enzymes (16). Since our
data show that a single amino acid change in the active site
of a CGTase is sufficient to make it an acarbose-modifying
enzyme (and vice versa), theR-amylase encoded by the
acarbose (acb) gene of theActinoplanessp. SE50/110 cluster
may have become adapted in a similar manner. Also, this
R-amylase (AcbE) is resistant to acarbose inhibition (27).
The molecular basis for this resistance is not understood so
far, since the two histidine residues studied in this paper are
both present, and thisR-amylase is highly related to other
long-chainR-amylases. The detailed characterization of this
R-amylase in future work may reveal an alternative adapta-
tion mechanism.

The detailed knowledge and understanding at the molec-
ular level of the effects of the modifications described in
this paper allow the design of enzymes with new reaction
specificities which may find application in the enzymatic
synthesis of a new (or modified) carbohydrate type of
primary and secondary metabolites.
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