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Harnessing the catabolic diversity of rhodococci for
environmental and biotechnological applications
Robert van der Geize and Lubbert Dijkhuizen�

The field of Rhodococcus cell engineering is rapidly advancing

because of the availability of improved genetic tools and

increased insights in their broad catabolic and biochemical

diversity. Rhodococci harbor large linear plasmids that may

contribute to their catabolic diversity. In addition, multiple

pathways and gene homologs are often present, thus further

increasing Rhodococcus catabolic versatility and efficiency.

The recent development of effective genetic tools for

Rhodococcus, such as unmarked gene deletion, transposon-

based mutagenesis, and gene expression systems, now allows

the construction of biocatalysts with desirable properties for

industrial purposes. This is exemplified here by a description of

cell engineering of biocatalysts for improved desulphurization

and steroid biotransformation.
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Abbreviations
9OHAD 9a-hydroxy-4-androstene-3,17-dione

AD 4-androstene-3,17-dione

ADD 1,4-androstadiene-3,17-dione

BT benzothiophene

DBT dibenzothiopene

DHBD 2,3-dihydroxybiphenyl 1,2-dioxygenases

NTH naphtho[2,1-b]thiophene

ORF open reading frame

PCB polychlorinated biphenyls

Introduction
Members of the genus Rhodococcus occur widely, and are

aerobic, non-sporulating bacteria, with a high GþC con-

tent. Rhodococci are of environmental and biotechnolo-

gical importance because of their broad catabolic diversity

and array of unique enzymatic capabilities [1,2]. Many

applications are found in the environmental, pharmaceu-

tical, chemical and energy sectors. Rhodococci are well-

suited industrial biocatalysts because of their robustness

and their exceptional ability to degrade hydrophobic

natural compounds and xenobiotics, including polychlori-

nated biphenyls (PCBs). Rhodococci are well-established

industrial organisms for the large-scale production of

acrylamide and acrylic acid. They also are good candi-

dates for the industrial production of bioactive steroid

compounds [3]. Over the years, advances in Rhodococcus
genetics were relatively slow [4,5], but effective tools

have become available recently.

In this review, we discuss the apparent redundancy in

catabolic pathways and genes observed in rhodococci,

giving them their broad metabolic diversity and the

important role that large linear plasmids may play

herein. The application of effective genetic tools for

rhodococci, such as unmarked gene deletion and trans-

posome-complex based methods is described, that have

enabled Rhodococcus researchers to successfully engineer

useful biocatalysts for desulphurization and steroid bio-

transformation.

Metabolic diversity of rhodococci is related
to the presence and mobilization of large
linear plasmids
Recent whole genome sequence analysis of Rhodococcus
sp. strain RHA1 (9.7 Mb) (http://www.bcgsc.bc.ca/cgi-

bin/rhodococcus/blast_rha1.pl), Rhodococcus aetherovorans
strain I24 (7 Mb) (J Archer, personal communication),

Rhodococcus erythropolis strain PR4 (7 Mb) (S Harayama,

personal communication), and additional experimental

data in the literature, have shown that Rhodococcus strains

harbor a variety of large, mostly linear plasmids. The most

effective PCB degrader, Rhodococcus sp. strain RHA1,

contains three linear plasmids pRHL1 (1100 kb), pRHL2

(450 kb) and pRHL3 (330 kb) harboring biphenyl/PCB

degradative bph genes, many of which encode dioxygen-

ase enzymes. The bph genes are scattered throughout the

RHA1 genome and are located on the chromosome as

well as on linear plasmids pRHL1 and pRHL2 [6]. Genes

encoding isopropylbenzene degradation (ipb) and an

etbD1 homolog, involved in biphenyl degradation, were

identified on a large linear plasmid pBD2 (210 kb) of R.
erythropolis strain BD2 [7��]. The complete nucleotide

sequence of pBD2 revealed a total of 212 open reading

frames (ORFs), with putative catabolic functions for 23

ORFs and an even greater number of ORFs (32) with

putative functions in transposition events. Functional

analysis of pRHL2 suggests that linear plasmids may well

function as a determinant of propagation of the diverse

degradative genes among the rhodococci [6]. Moreover,

the similarities found in the key enzymes and in the
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regulators of the isopropylbenzene catabolic pathway

genes in R. erythropolis BD2 and the linear plasmid

encoded functions of biphenyl degradation pathways,

indicate that the ipb and bph operons have been distrib-

uted among Gram-positive soil bacteria via linear plasmid

mediated horizontal gene transfer [7��]. More examples of

plasmid-borne catabolic pathways in Rhodococcus have

been reported. Rhodococcus sp. strain IGTS8, for example,

harbours a large 150 kb plasmid that is involved in the

desulphurization of organosulphur compounds [8]. Rho-
dococcus sp. strain DK17 harbors two large plasmids, pDK1

(380 kb) and pDK2 (330 kb), the latter carrying genes

encoding the initial oxygenase and meta-ring cleavage

dioxygenase steps in alkylbenzene metabolism [9]. The

wide catabolic diversity of Rhodococcus species therefore

partly owes to the presence and mobility of these large

linear plasmids. It should be noted however that this

diversity does not solely relate to large linear plasmids.

Other features contribute to the considerable gene

diversity of rhodococci. Considerable redundancy is

observed in the genome sequences noted, with multiple

copies of many genes on plasmids and the chromosome

(e.g. many copies of TCA cycle enzymes in central

metabolism).

Multiple homologs of enzymes in catabolic
pathways further enhance Rhodococcus
versatility
Rhodococcus genomes encode large numbers of oxygenase

enzymes, many of which may be functional homologs.

The presence of four alkane monooxygenase genes

(alkB1–alkB4) has been reported for Rhodococcus sp.

strain Q15 and R. erythropolis strain NRRL B-16531,

encoding similar, but not identical, enzymes of similar

size displaying high amino acid sequence homology

[10��]. Three to five alkane hydroxylase homologs have

been identified in eight other Rhodococcus strains. There-

fore the presence of multiple alkane hydroxylases may

well be a common feature of Rhodococcus strains [11�]. The

number of alkB homologs present appears to correlate

with the metabolic diversity of the strain (i.e. the range of

n-alkanes that can be metabolized). R. erythropolis strain

SQ1 and R. rhodochrous strain DSM43269 both degrade

steroids and were found to contain three and four 3-

ketosteroid 9a-monooxygenases, respectively, sharing

50–60% amino acid sequence identity (Van der Geize

et al., unpublished). Three 2,3-dihydroxybiphenyl 1,2-

dioxygenases (DHBD) were characterized from the PCB

degrading R. globerulus strain P6, encoded by the bphC1
(DHBD-I), bphC2 (DHBD-II) and bphC3 (DHBD-III)

genes. Recent studies indicated that the presence of

multiple DHBD isoenzymes in R. globerulus strain P6

improved its PCB-degrading capabilities [12,13]. In R.
erythropolis strain YK2 five extradiol dioxygenase genes

(edi1, edi2, edi3, edi4 and dfdB) have been identified, with

some of the gene products displaying similarities to

DHBD [14]. Besides many biphenyl dioxygenases, Rho-

dococcus sp. strain RHA1 harbors two nearly identical 2-

hydroxy-6oxohepta-2,4-dienoate hydrolase genes (etbD1,

etbD2) [15]. In addition to the chromosomally located

bphGF1E1 gene cluster, a second set of bphE2F2 genes

was identified downstream of bphD1 in strain RHA1. The

first set encodes the primary 2-hydroxypenta-2,4-dieno-

ate metabolic pathway of biphenyl and ethylbenzene

degradation, whereas the bphE2F2 genes are probably

not essential for biphenyl degradation [16,17]. Strain

YK2 was shown to contain three hydrolase-like genes,

two of which were clustered with extradiol dioxygenase

genes [14].

In contrast to the highly homologous biphenyl degrada-

tion genes (bph) in the clusters of R. globerulus P6, Rho-
dococcus sp. strain RHA1 and R. erythropolis TA421, the

mapping order and sequences of the bph genes in Rho-
dococcus rhodochrous strain K37 are clearly different. This

was taken to suggest that this R. rhodochrous bph gene

cluster evolved separately from the well-known bph gene

clusters of the other three strains [18]. Rhodococcus opacus
strain 1CP contains a cluster of four chlorocatechol cata-

bolic genes that are only distantly related to the known

Rhodococcus genes encoding chlorocatechol enzymes.

They appear to represent a new evolutionary line of

3-chlorocatechol catabolic enzymes [19].

Figure 1
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Optimizing biodesulphurization by
rhodococci for a better environment
There is considerable interest in developing a biocatalytic

system as precombustion technology for the specific

removal of organic sulphur from coal and petroleum pro-

ducts. Sulphur oxides generated by combustion of fossil

fuel contribute to acid rain and air pollution. Hydrodesul-

phurization of fossil fuels results in the formation of the

recalcitrant cyclic compounds benzothiophene (BT),

dibenzothiopene (DBT) and 4,6-dimethyldibenzothio-

phene. Rhodococcus strains are metabolically diverse with

respect to their desulphurization capabilities. The sub-

strate specificities of enzymes involved in desulphurization

of BT, DBT and their derivatives, were suggested to be

different in Rhodococcus sp. strain KT462 and R. erythropolis
KA2-5-1. Rhodococcus sp. strain KT462 can use both BT and

alkylated forms of BT as a sole source of sulphur, whereas

R. erythropolis KA2-5-1 is unable to degrade BT, but can

desulphurize alkylated forms of (D)BT [20,21]. Rhodococ-
cus sp. strain WU-K2R and Rhodococcus sp. strain T09 also

differ clearly in desulphurization, despite the fact that 16S

ribosomal DNA of strain T09 is 99.9% identical to that of

strain WU-K2R [22]. Strain WU-K2R desulphurizes BT

and an asymmetric structural isomer of DBT, naphtho[2,1-

b]thiophene (NTH), whereas Rhodococcus sp. strain T09

desulphurizes BT, but not NTH.

In recent years, genetically engineered DBT desulphuriz-

ing rhodococci have been constructed, aiming to enhance

desulphurization. The genes encoding DBT desulphur-

ization have been named sox (sulphur oxidation) [23] or

Figure 2
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Schematic drawing of the transposome complex method used in

transposon mutagenesis [30��]. (a) gene expression [28�], (b) or as a
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integrated into the genome upon transposition. Closed circle,

transposase enzyme; pentagon, transposon outer end; open bar, single

gene or gene cluster; striped bar, promoter-less reporter gene; P,

promoter; black arrow, resistance marker. Adapted from [28�].
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dsz (desulphurization) (Figure 1) [24] and are plasmid-

borne in Rhodococcus sp. strain IGTS8 (150 kb plasmid)

and other Rhodococcus strains (100 kb plasmids) [8]. Var-

ious sulfur compounds, such as inorganic sulfate, methio-

nine and cysteine, repressed desulphurization [25].

Strains with de-regulated and/or enhanced expression

of the dsz genes were therefore needed. The dszABC
gene cluster, encoding a monooxygenase, a desulphinase

and another monooxygenase, respectively, and the

related dszD gene, encoding a flavin reductase, from R.
erythropolis strain KA2-5-1 have been re-introduced into

strain KA2-5-1 on a pRC4 (R. rhodochrous strain IFO3338

derived) shuttle vector and efficiently expressed. The

resulting recombinant strain, containing two copies of the

dszABC gene cluster and one copy of the dszD gene,

showed a four-fold higher DBT desulphurization ability

than strain KA2-5-1 [26]. Matsui et al. [27�] constructed a

recombinant strain of Rhodococcus sp. strain T09 expres-

sing the dszABC and dszD genes on Rhodococcus–E. coli
shuttle vector pRHK1 [26]. The rrn promoter region of

the 16S ribosomal RNA gene was used to drive dszABCD
gene expression, enabling the recombinant strain to

desulphurize DBT even in the presence of methionine,

cysteine or inorganic sulphate as a source of sulphur.

Similarly, Watanabe et al. [28�] expressed the dsz gene

cluster of KA2-5-1 under control of the kapI promoter,

which is not repressed by sulphate. The kapI promoter of

strain KA2-5-1 was isolated via a transposon-based pro-

moter-probe system using red-shifted gfp as a reporter

gene (Figure 2c). The PkapI-dszABCD expression cassette

Figure 4
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was transferred to R. erythropolis strain MC1109 using

either a transposome-based method (Figure 2b) or shuttle

vector pRHK1 [28�,29��]. Recombinant strains from both

methods showed an approximate two-fold increase in

DBT desulphurization activity compared to parent strain

KA2-5-1. The transposome method also proved useful in

isolating random mutants (Figure 2a) of R. erythropolis
strain KA2-5-1 [30��] and Rhodococcus equi [31]. The strain

KA2-5-1 mutants, expressing the desulphurization phe-

notype in the presence of sulphate, were shown to have a

disrupted cbs gene, encoding cystathionine b-synthase,

which is part of the trans-sulphurization pathway con-

verting homocysteine into cysteine. It is now believed

that only cysteine and sulphite contribute to repression,

and that cbs inactivation results in a reduction of the

amount of cysteine in cells, resulting in desulphurization

derepressing [30��].

Cell engineering of Rhodococcus
biocatalysts by inactivating multiple
(iso)enzymes by gene deletion
Besides enhancing and (de)regulating the expression of

catabolic pathway genes, specific inactivation of undesir-

able enzyme activity steps is also generally important for

the construction of strains suitable for industrial produc-

tion processes for high-value pathway intermediates. As

outlined above, rhodococcal catabolic pathways are of

high complexity and may contain isoenzymes. This

necessitates the sequential inactivation of multiple genes.

Bacterial strains performing sterol-steroid transforma-

tions, for example, need to be blocked at the level of

steroid polyaromatic ring structure opening. Otherwise,

catabolic activities in the strain will cause a substantial, if

not complete loss of substrate and desired product. Enzy-

matic steps in steroid ring degradation by R. erythropolis
strain SQ1 involve two 3-ketosteroid D1-dehydrogenase

isoenzymes, encoded by kstD and kstD2, and a two-com-

ponent 3-ketosteroid-9a-hydroxylase, encoded by kshA
and kshB (Figure 3) [32,33��]. An unmarked gene deletion

method, using sacB as a positive selection marker, was

developed for Rhodococcus, enabling the isolation of

mutants blocked in multiple steps (Figure 4) [34]. Inter-

generic conjugation between E. coli S17-1 and Rhodococcus
species was suggested to be of crucial importance to

minimize random integration of the construct used

[34,35]. Single kstD or kstD2 gene deletion mutants

showed that the presence of either gene can promote

degradation and growth on the steroid compounds 4-

androstene-3,17-dione (AD) and 9a-hydroxy-4-andros-

tene-3,17-dione (9OHAD) [32,36]. Deletion of both

genes, however, completely inhibited growth on these

steroid substrates. AD biotransformation by the kstD
kstD2 double mutant resulted in sustained 9OHAD accu-

mulation in high (>90%) yields [32]. Gene deletion of

either kshA or kshB in R. erythropolis SQ1 was shown to

completely inhibit growth on AD as well as on 1,4-

androstadiene-3,17-dione (ADD), while growth on

9OHAD was not blocked [33��]. Accumulation of ADD

(30–50%) was observed in AD biotransformation experi-

ments with kshA and kshB mutant strains. A kshA kstD
kstD2 triple gene deletion mutant strain was additionally

constructed that was fully blocked in steroid polyaromatic

ring degradation.

The same gene deletion technology has also been applied

in R. rhodochrous to inactivate multiple gene homologs

involved in steroid degradation (van der Geize et al.,
unpublished) and in R. opacus strain HL PM-1 to delete

the transcriptional regulatory gene npdR involved in

picric acid degradation [37,38�].

Conclusions
Members of the genus Rhodococcus are well known for

their extensive catabolic diversity, and as very promising

robust biocatalysts for industrial chemical production.

Extensive information is available in the literature about

the presence of multiple homologous pathways and var-

ious isoenzymes in rhodococci, often located on plasmids.

Evidence is available that suggests these plasmids may

also contribute to propagation and mobilization of genes

encoding these catabolic pathways and enzymes between

rhodococci. In an exciting development, the first com-

plete Rhodococcus genome sequences are just coming

available, revealing very large genome sizes, partly owing

to the presence of (multiple) large (linear) plasmids.

Further analysis of these genome sequences will

undoubtedly improve insights in the basis of this catabolic

complexity and diversity, and its genomic organisation.

This will greatly support attempts to construct Rhodococ-
cus strains with suitable properties for environmental and

biotechnological applications. With the recent emergence

of effective gene technology for various rhodococci,

rational cell engineering is becoming increasingly feasi-

ble. This will allow harnessing of the catabolic diversity of

rhodococci, involving overexpression of key catabolic

pathways and enzymes, as well as inactivation of undesir-

able pathways/enzymes, resulting in optimalization of

biocatalyst properties.
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