

 University of Groningen

Formalizing the minimalist program
Veenstra, Mettina Jolanda Arnoldina

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Veenstra, M. J. A. (1998). Formalizing the minimalist program. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/68df2cfc-c80e-4627-9f47-baeedb8736a2

Chapter 6

Lexicon

The role of the lexicon in the Minimalist Program is to serve as input for
the structure-building operation Merge. The structure-building operations
Merge and Move take two trees � and � to construct a tree with � and �

as its left and right subtrees. The input trees for the operation Merge can
either be lexical items or trees already built by Merge and Move (see also
Section 1.6).

The formalization, which is representational instead of derivational, en-
ables to judge if trees are correct according to the Minimalist Program.
The structure-building operations Merge and Move do not play a role. The
formalization de�nes the requirements an LF-tree must meet, not the way
it is built up. The lexicon is linked with the rest of the formalization via
X-Theory (see Chapter 7). Within the X-module of the formalization, it
is de�ned that heads must be associated with a feature structure that is a
member of the lexicon. Note that also in the derivational version the lexi-
con and X-Theory are closely related, since the operations Move and Merge
build structures that are permitted by X-Theory.

In Section 6.1 I will outline the ideas on the lexicon on which the for-
malization is based. The formalization itself is discussed in Section 6.2.

6.1 Introduction

Phonological, semantic and formal features In the Minimalist Pro-
gram, the lexicon is considered to be a set of lexical elements represented
by bundles of features. In Chomsky's 1995 framework [Cho95] features are
divided into three categories: phonological, semantic and formal (or syntac-
tic) features. Phonological features are interpreted at PF, semantic features
are interpreted at LF, and formal features trigger the movements that take

85

86 CHAPTER 6. LEXICON

place during overt and covert syntax.
As we saw in Chapter 5, what are called bundles of features in the min-

imalist framework are treated as feature structures in the formalization.
Hence, lexical items are represented as feature structures in the formaliza-
tion. And furthermore, in our framework formal features do not trigger
movements. Since the formalization is non-derivational, movements are
modelled by declaratively de�ned `licensing chains'. A chain may have a
copy in a given position within a functional projection if the formal fea-
tures of the copy can be checked against the formal features of the relevant
functional head.

Formal features are split up in two categories according to Chomsky
[Cho95]: optional and intrinsic. Optional features are called variable fea-
tures by Zwart [Zwa97] for reasons that will be explained later in this sec-
tion.

According to Chomsky [Cho95, Page 236], formal features are intrinsic
if they are idiosyncratic or if they can be predicted from other properties
(semantic features) of the lexical item.

An example of an idiosyncratic feature is grammatical gender for the
Dutch word klok (clock). The fact that klok is feminine is not predictable
from any semantic feature of the word and therefore this [gender] feature
must be listed explicitly in the lexicon. Note that Dutch does not have a
feminine/masculine distinction with respect to the selection of determiners.
Both feminine and masculine nouns select the de�nite article de while neuter
nouns select the de�nite article het.

An example of a predictable feature is [person]. The fact that klok is
third person is predictable from the semantic feature [artifact]. Therefore
[person] is also considered to be intrinsic to klok, like [gender]. Chomsky
assumes that features such as [person], that can be determined by semantic
features, are not listed explicitly in the lexical entry. These features are
added to the lexical item when it enters the derivation.

Zwart's view di�ers from Chomsky's view at this point. Zwart assumes
that both types of intrinsic features (idiosyncratic features and features
derivable from semantic features) should be listed explicitly in the lexical
item.

Furthermore Zwart does not consider the [category] feature to be a for-
mal feature. This feature is grouped together with semantic features in a
category of features that is referred to as lexical-categorial features (hence-
forth LC-features). The reason for calling the [category] feature an LC-
feature is that it is derivable from semantic features. For instance, we do
not need to stipulate a formal feature [category noun] since we know that
all lexical items with the semantic feature [artifact] automatically are nouns
[Zwa97, Page 169].

6.1. INTRODUCTION 87

Optional features are all formal features that are not intrinsic. Zwart
[Zwa97, Page 170-171] claims that `optional' is the wrong name for this type
of feature. It suggests that the presence of the feature is optional whereas
its presence is no more optional than the presence of intrinsic features. The
real di�erence between intrinsic features and what Chomsky calls optional
features is that optional features have a variable value whereas the values
of intrinsic features are �xed.1 Therefore Zwart prefers to refer to optional
features as variable features. Examples of variable (or optional) features for
a noun are [case] and [number]. For instance, the [case] of the Dutch word
stoel (chair) can either be nominative or accusative.

Traditionally the lexicon is the location for everything in a language
that is unpredictable.2 In the same spirit, Chomsky claims that variable
(optional) features are �rst added to the lexical entry as it enters the deriva-
tion, since those features are predictable from other properties of the lexical
entry (see earlier in this section). Zwart reformulates this idea in the follow-
ing way: the value of a variable feature is �xed as it enters the derivation,
i.e. at this point a choice from the possible values is made. The di�erence
between the two approaches is that in Zwart's point of view the lexicon con-
tains both intrinsic and variable formal features, whereas it only contains
intrinsic formal features in Chomsky's point of view.

Postlexicalism There is also a di�erence between Chomsky's approach
and Zwart's approach in the presence of phonological features in the lexicon.
Chomsky assumes that lexical entries contain phonological, semantic and
intrinsic formal features. Zwart assumes that lexical entries only contain
semantic and formal features. This approach is called postlexicalism. In
postlexicalism (introduced as Distributed Morphology by Halle and Marantz
[HM93]) phonological features, which determine how a lexical item is pro-
nounced, are added after the syntactic derivation has been completed (cf.
also [Bea66, Aro76, Bea91, And92, Aro92]).

Zwart [Zwa97, Page 162-165] advances several arguments (of which, for
the sake of simplicity, only one will be described here) to adopt this ap-
proach. One of the arguments is connected with Economy of Representa-
tion. Because phonological features are not relevant to syntax it is more
economical if phonological features are absent during the syntactic deriva-
tion. In the postlexicalist approach as opposed to the lexicalist view that is
adopted by Chomsky [Cho93], phonological features are added after Spell-
Out.3 Therefore postlexicalism is more economical than lexicalism, in which

1There are exceptions to this rule. For example, the Dutch word �ets (bicycle) can
either be masculine or feminine, although [gender] is an intrinsic feature.

2Cf. [Blo33, Page 274] and [Aro92].
3In the lexicalist approach, lexical items enter the derivation in fully inected form.

The syntax cannot manipulate inectional a�xes of words.

88 CHAPTER 6. LEXICON

phonological features are present throughout the syntactic derivation (cf.
[Zwa97, Page 160-165]).

Zwart assumes that in the morphological component after Spell-Out, the
features of the morphosyntactic object determine the phonological features
of the object, i.e. the actual word as it appears at PF. It is claimed that the
morphological component can be considered as a kind of lexical insertion
that takes place after the derivation [Zwa97, Page 161]. After syntax, a
choice (based on morphosyntactic objects) is made from a postsyntactic
lexicon. On the basis of semantic features (such as [artifact]) and formal
features (such as [person] and [number]) the phonological features of the
morphosyntactic object are selected.

Possibly there will be more than one match between the morphosyntac-
tic object and the postsyntactic lexicon. In such a case the most speci�c
entry will be selected. Zwart [Zwa97, Page 164] clari�es this idea with the
words in Example 6.1 and 6.2. Example 6.1 gives a possible lexical repre-
sentation for singular forms of the Dutch verb kussen (to kiss). Example
6.2 gives the representation of the forms in Example 6.1 as they appear in
the underspeci�ed postsyntactic lexicon.

Example 6.1

[number singular], [person 1] kus
[number singular], [person 2] kust
[number singular], [person 3] kust

Example 6.2

[number singular], [person 1] kus
[number singular] kust

The lexical entries in the postsyntactic lexicon are underspeci�ed because
this is the most economical way of representing morphological paradigms (cf.
[Kip73] and [HM93]). If the relevant morphosyntactic object is �rst person,
both kus en kust in Example 6.2 will match. As noted above, the closest
match is the right match. Therefore kus is selected from the postsyntactic
lexicon.

In the formalization two di�erent lexicons are de�ned: one on which the
input of the LF-tree are based (henceforth: the prelexicon) and one which
is consulted at PF (henceforth: the postlexicon).

Disjunctive feature values In the lexicon we apply feature values that
are disjunctions (of either atomic values or feature values that are feature
structures).4 This implies that what looks like a feature structure in the

4Cf. [Shi86, Page 14].

6.2. THE FORMALIZATION 89

lexicon might actually be a description of a set of feature structures. I will
clarify this with the help of the simpli�ed feature structure representing a
lexical item for the Dutch noun boek (book) in Example 6.3.

Example 6.3

2
6666666664

word boek

category noun

agreement

2
64
person third

number singular

gender neuter

3
75

case nominative OR accusative

3
7777777775

At �rst sight Example 6.3 seems to represent a feature structure. How-
ever, the fact that the feature name [case] has two possible values (either
nominative or accusative) implies that it represents two feature structures,
or to put it di�erently, a set of feature structures. The two feature struc-
tures are identical, except for their case values: the �rst has a nominative
case, the second an accusative case.

The reason for using disjunctive feature values is conciseness. By apply-
ing one or more disjunctive feature values per lexical item, the number of
items in a lexicon can be reduced considerably.

6.2 The formalization

The formalization of Zwart's framework as described in this section formal-
izes Zwart's ideas on postlexicalism:

� the prelexicon will contain intrinsic as well as variable formal features

� the prelexicon will contain only semantic and formal features (no
phonological features)

� a postlexicon containing phonological features `simulates' morpholog-
ical processes

� semantic and categorial features form a complex that is referred to as
LC-features

Phonological, semantic and formal features In the formalization,
phonological features are represented by the feature Word and semantic fea-
tures are represented by the feature Sememe. Word takes a fully inected

90 CHAPTER 6. LEXICON

word form as its value, while Sememe takes a stem as its value (see also
Chapter 5). The reason for this simpli�ed treatment of phonological and
semantic features is that the exact character of these features is not worked
out in much detail in the minimalist literature. Furthermore, the chosen
approach is e�ective in the formalization.

The formal features in the formalization are: Agreement, Subject,
Object, Person, Number, Gender, Case, Tense, Inversion, WhWord and
Determiner.

Features that do not belong to any of the above three types of features
are: Category, CompCat and SpecCat. In Zwart's framework the Category
feature is grouped together with the semantic features. This type of feature
is called LC-feature (lexical categorial) by Zwart.

Postlexicalism In the formalization Zwart's postlexicalism is imple-
mented by de�ning two di�erent lexicons. The �rst lexicon, which according
to Zwart is consulted when a lexical item enters the derivation, is called the
prelexicon. The second lexicon, which according to Zwart is consulted after
the derivation (at PF), is called the postlexicon.

Disjunctive feature values Before I turn to the treatment of disjunctive
feature values, I will deal with the way feature structures are built up in
the formalization. The function Add is the central function with respect to
feature structures.

The function Add, which adds feature-value pairs to feature structures,
is an indexed function. The index is given between square brackets. Each
index stands for a di�erent kind of Add. For instance in De�nition 6.1, which
contains the lexical item for the Dutch word for book, Add[Sememe] adds a
value of the type Sememe to a feature structure yielding a feature structure,
Add[Agreement] adds a value of the type Agreement to a feature structure
yielding a feature structure etc.

The function Add is speci�ed in such a way that adding the same feature
name twice to a feature structure makes the whole lexicon unde�ned. A
feature-value pair can only be added to a feature structure if the relevant
feature name has an unde�ned value until then.

The feature structures in the formalization are built by starting with an
empty feature structure and adding feature-value pairs to it. In De�nition
6.1 we start with an empty feature structure of the category noun (N). This
is relevant information because feature structures belonging to nouns do
contain other features than, for example, feature structures belonging to
verbs. As we saw in Chapter 5 the formalization indicates which lexical
items may contain which feature-value pairs.

Also the permitted feature-value pairs for the complex feature values

6.2. THE FORMALIZATION 91

of the feature names Agreement, Object and Subject are indicated in
the formalization. For instance, the agreement value is a feature struc-
ture that is built in a way that is comparable with building a main feature
structure (representing the entire noun): feature-value pairs are added to
an empty feature structure. The only di�erence with the main feature
structure is the name of the empty feature structure. Main feature struc-
tures are always introduced by EmptyCatStruct[N], EmptyCatStruct[V],
EmptyCatStruct[Agro] etc., called after the category of the lexical item.
Complex feature values are introduced by EmptyStruct. The feature name
(such as the feature name Cat for Category above) need not be included
because Agreement is already mentioned outside of the feature structure.
The features in the feature structure that can be referred to as the agree-
ment features are all permitted because Person, Number and Gender are
de�ned as agreement features in the feature module (see Chapter 5).

The shared properties of di�erent types of feature structures indicate
the redundancy of the lexicon. However, the formalization does not con-
tain inheritance principles as in feature-based theories (see [PS94], [PS87],
[FPW85],[FN92]) since Zwart assumes that the lexicon contains both vari-
able and intrinsic features. Chomsky's idea that the lexicon only contains
unpredictable material resembles the idea of inheritance principles. By in-
heritance principles the amount of idiosyncratic information that needs to
be stipulated in individual lexical items is reduced by grouping lexical items
into di�erent types. For instance, all nouns share a considerable amount of
information. Of course they share the same category (N) and often (in
the case of artifacts but not always in the case of personal pronouns) they
have third person. Furthermore, a considerable amount of other features
are shared, which may have di�erent values for di�erent nouns.

Now we know how feature structures are built up, we can turn to the
treatment of disjunctive feature values in the formalization. There are two
di�erent ways to express sets of values in the formalization: one is a dis-
junction of values represented by ++ (cf. `OR' in predicate logic), the other
is in principle also a disjunction represented by Any[Name] which indicates
the set of possible values for the feature name Name.

The AFSL-function ++ represents set theoretical joining. In the lexicons
in our formalization the function ++ both joins the di�erent lexical items
(which themselves may be sets, as we saw above) and feature values (see
De�nition 6.1).

In the line ++ (EmptyCatStruct[N] the function ++ joins the lexical
item for book with all the preceding lexical items, which are not represented
here for the sake of simplicity. This is the same concept of the lexicon
used in feature-based grammars: the lexicon is a disjunction of all its items
[PS87, Page 44].

92 CHAPTER 6. LEXICON

In lines such as Add[Number] (Singular ++ Plural) and Add[Case]

(Nominative ++ Accusative) the function ++ joins two feature values.

De�nition 6.1

.

.

.

++ (EmptyCatStruct[N]

Add[Sememe] "boek"

Add[Agreement] (EmptyStruct

Add[Person] Third

Add[Number] (Singular ++

Plural)

Add[Gender] Neuter

)

Add[Case] (Nominative ++ Accusative)

Add[Determiner] (Yes ++ No)

Add[WhWord] No

)

.

.

.

A lexical itemwith only singleton sets as its feature values is a description
of a set of feature structures with only one element, which can also be called
a feature structure. All feature values that do not contain the function ++

are sets as well: they are singleton sets.
The line Add[Number] (Singular ++ Plural) and the line

Add[Determiner] (Yes ++ No) in De�nition 6.1 can be replaced by
Any[Number] and Any[Determiner] respectively, as is shown in De�nition
6.2. Any[Name] is applied for the disjunction of all the possible values of a
given feature name. Both the feature name Number and the feature name
Determiner have only two possible values, Singular and Plural, and
Yes and No respectively. Since for both the feature name Number and the
feature name Determiner all possible feature values are applied, De�nition
6.1 can be replaced by De�nition 6.2.

De�nition 6.2

.

.

.

++ (EmptyCatStruct[N]

Add[Sememe] "boek"

Add[Agreement] (EmptyStruct

Add[Person] Third

6.2. THE FORMALIZATION 93

Add[Number] Any[Number]

Add[Gender] Neuter

)

Add[Case] (Nominative ++ Accusative)

Add[Determiner] Any[Determiner]

Add[WhWord] No

)

.

.

.

Any[Name] is needed because of the nature of checking. In standard
uni�cation-based grammar the fact that a certain feature is not represented
means that it can take any possible value, because uni�cation succeeds when
just one of the two feature structures contains a certain feature. However,
checking is only possible if a certain feature is present in a given functional
head as well as in the lexical constituent that checks its features against it
(i.e. the lexical constituent adjoined to the functional head and/or the lexi-
cal constituent in the speci�er position of the functional head) (see Chapter
5). Hence, the approach of indicating that any possible value for a given
feature name can be chosen by not representing the feature-value pair at
all is fatal for a theory where checking plays a role: if a feature-value pair
is not visibly represented on a lexical head, the feature cannot be checked
against a functional head. In Zwart's framework all functional heads need
to have checked all their features against those of a lexical constituent by
LF. If lexical heads might miss certain features to indicate that the feature
can take any possible value, there will be a functional head that cannot
check all its features, and hence LF will never be reached.

For instance, if in the sentence in Example 6.4 (Bill reads the newspaper)
krant (newspaper) is represented by the feature structure in De�nition 6.3
then the tree in Example 6.4 is not an LF-tree. AgrO cannot check its
agreement number feature since the lexical item for krant does not contain
this feature.

De�nition 6.3

.

.

.

++ (EmptyCatStruct[N]

Add[Sememe] "krant"

Add[Agreement] (EmptyStruct

Add[Person] Third

Add[Gender] Neuter

)

94 CHAPTER 6. LEXICON

Add[Case] (Nominative ++ Accusative)

)

.

.

.

Example 6.4

AgrSP

DP AgrS

Billi

AgrS TP

T AgrS ei T

AgrO T ek AgrOP

V AgrO DP AgrO

leestk de krantj

ek VP

ei V

ek ej

Any[Name] and ++ occur only in lexical items in the lexicon; therefore
the de�nition of checking in De�nition 5.4 on Page 83 does not deal with
sets of feature values. If a lexical item is integrated in a tree, a choice
has to be made between the disjuncts. Both Any[Name] and ++ are ap-
plied to avoid requiring that a new lexical item has to be written down for
each of the disjuncts. Hence, lexical items are not always feature struc-
tures: if they contain disjunctive values (i.e. sets of values) they represent
sets of features structures. We assure that a derivation tree can never con-
tain a set of feature structures by requiring that nodes contain labels of
the type FeatureStructS (feature structure) and not labels of the type
SetS[FeatureStructS] (sets of feature structures).

Any[Name] resembles the atomic value ANY described in [Shi86, Page
43] and introduced by Kay [Kay85]. ANY is a kind of variable because it
uni�es with anything, just like Any[Name]. In a �nal functional structure
ANY has to have been uni�ed with something else. In our formalization
something similar is the case. Only the lexicon may contain disjunctions;
successful derivation trees may not.

prelexicon The de�nition of the prelexicon, including only the �rst lexical
item for the sake of conciseness, is given in De�nition 6.4.

6.2. THE FORMALIZATION 95

De�nition 6.4

MODULE PreLexiconZW

IMPORT FeaturesM

IMPORT SetM[FeatureStructS]

OBJ PreLexicon : SetS[FeatureStructS]

= ++ (EmptyCatStruct[N]

Add[Sememe] "boek"

Add[Agreement] (EmptyStruct

Add[Person] Third

Add[Number] Any[Number]

Add[Gender] Neuter

)

Add[Case] (Nominative ++ Accusative)

Add[Determiner] Any[Determiner]

Add[WhWord] No

)

.

.

.

END MODULE

In De�nition 6.4 we see that, �rstly, the module where all features and
their values are introduced is imported: IMPORT FeaturesM. Of course, this
is done because a prelexicon is a set of feature structures with feature names
and feature values as its main building blocks. Next, we import all the spec-
i�ed information about sets by the line: IMPORT SetM[FeatureStructS].
Finally, it is declared that the prelexicon is an object existing of sets of
feature structures: OBJ PreLexicon : SetS[FeatureStructS].

The prelexicon is connected with the rest of the formalization via the
functions XFeatures in the module on X-Theory (see Chapter 7). This
axiom says that leaves with BarLevel 0 have a feature structure that is a
member of the lexicon. What has to be taken into account is that nodes
of trees may never contain disjunctive feature values. In the formaliza-
tion typing takes care of this: nodes of trees contain feature structures
(FeatureStructS), not sets of feature structures (SetS[FeatureStructS]).
As we said earlier in this section, we must distinguish between a description
of a set of feature structures (which contains disjunctive feature values) and
a single feature value (which may not contain disjunctive feature values).
Nodes of trees may not contain sets of feature structures, as they are not of
the right type.

96 CHAPTER 6. LEXICON

The fact that sets of feature structures are not appropriate in nodes of
trees is a consequence of the necessity of feature checking. Checking cannot
take place if, for instance, it is not clear if a lexical item has nominative or
accusative case. When a feature is checked it must have a singleton feature
value.

By the application of the prelexicon in the formalization, we simulate
Zwart's �xation of variable features when the lexical element enters the
derivation. Namely, elements from the prelexicon do not contain multiple
values once they are applied in an LF-tree.

Postlexicon Since we apply postlexicalism in the formalization we need
two di�erent lexicons. The �rst lexicon (prelexicon) contains one lexical
entry per stem (sememe). We will see that the lexicon that is consulted at
PF (postlexicon) contains one item per inected form, for instance one for
zij (she) and one for haar (her). The prelexicon does not contain Word fea-
tures as opposed to the postlexicon. This is because Zwart argues that the
prelexicon is a more or less language independent lexicon, with only formal
(intrinsic as well as variable) and semantic features. In our formalization
the Sememe feature represents the semantic features, as the literature is not
speci�c enough about the nature of semantic features. The application of
the Sememe feature instead of semantic features causes the prelexicon to be
less language independent than it would be if actual semantic features were
used, as the Sememe feature takes a language speci�c stem as its value. The
Word feature in the postlexicon replaces phonological features. The Mini-
malist Program is not explicit about phonological features. Therefore, we
decided to apply the Word feature instead of phonological features, as the
word is a representation of how to pronounce a lexical item.

The postlexicon is the more extensive of the two lexicons, because it
often contains more than one form of the same paradigm. For instance, the
stem zij (she) appears in two di�erent forms: once as zij and once as haar
(see De�nition 6.5).

De�nition 6.5

MODULE PostLexiconZW

IMPORT FeaturesM

IMPORT SetM[FeatureStructS]

OBJ PostLexicon : SetS[FeatureStructS]

AXIOM PostLexicon

= .

6.2. THE FORMALIZATION 97

.

.

++ (EmptyCatStruct[N]

Add[Stem] "zij"

Add[Word] "zij"

Add[Agreement] (EmptyStruct

Add[Person] Third

Add[Number] Singular

Add[Gender] Feminine

)

Add[Case] Nominative

Add[Determiner] No

Add[WhWord] No

)

++ (EmptyCatStruct[N]

Add[Stem] "zij"

Add[Word] "haar"

Add[Agreement] (EmptyStruct

Add[Person] Third

Add[Number] Singular

Add[Gender] Feminine

)

Add[Case] Accusative

Add[Determiner] No

Add[WhWord] No

)

.

.

.

END MODULE

The part above the axiom in De�nition 6.5 is comparable with the be-
ginning of the prelexicon module.

The postlexicon is connected with the rest of the formalization at PF
by the function LookUpWord (see Chapter 9): when a tree is spelled out,
the postlexicon is consulted. In a tree that is spelled out there are no
phonetic/word features to be found, as the prelexicon, on which the LF-
tree is based, does not contain Word features. However, the prelexicon
does contain Sememe features. At PF, entries that can be uni�ed with
the features of the heads of the tree are selected from the postlexicon. A
sentence that is spelled out is a list of words that is based on the Word values
of those elements. Sometimes more than one entry per head is selected
from the postlexicon. In such a case the most speci�c entry is chosen. The
most speci�c entry is the entry with most features that can still be checked
against the features of the head from the tree that is spelled out. For
example, the paradigm kus (kiss) has two occurrences that can be checked
against a feature structure with a �rst person singular form. The �rst has
the word feature kus and contains an explicit person feature with the value
�rst. The second has the word feature kust and does not contain a person

98 CHAPTER 6. LEXICON

feature, which means that it uni�es with any person value (cf. Examples
6.1 and 6.2). The most speci�c occurrence of the two is, of course, the �rst.
Namely, the second does not have a person feature at all. Therefore the �rst
occurrence of the Sememe kus with the word value kus is spelled out. Hence,
if more than one matching feature structure is found in the postlexicon, the
most speci�c feature structure is selected by the function LookUpWord.

In the postlexicon, the Any-value is not applied when a feature can occur
with any possible value. Not listing the feature at all is more economical
according to Zwart. Moreover, it would be incorrect to use the Any-value
for this objective. If we would apply Any-values in the case of the above
example, the postlexicon would contain three occurrences of the word kust,
of which one is �rst person. This is a form that does not occur in Dutch: Ik
kust hem (I kisses him) is not a grammatical Dutch sentence. If this form
did exist it would be impossible to select the most speci�c form from the
postlexicon because kus and kust are equally speci�c: they both contain a
person feature with the value �rst.

Therefore Zwart's idea of not giving a person feature at all for the form
kust is preferred here. If an LF-tree includes a head with a feature structure
containing a stem kus and a person value �rst, the form that is spelled out
is kus. The reason for this is that the postlexicon contains two matching
feature structures, one with the word value kus and the other with the word
value kust, of which the former is the more speci�c because it contains a
person feature with the value �rst, while the latter has no person feature.

The idea of selecting the most speci�c form is well-known in linguistic
literature. Arono� [Aro76] describes the principle of Morphological Block-
ing, which implies that the existence of a more highly speci�ed form in the
lexicon excludes the selection of a less highly speci�ed form. Morphological
Blocking is considered to be a consequence of the Elsewhere Condition. The
Elsewhere Condition requires that rules with more speci�c constraints apply
before rules with more general constraints (cf. [And69, Kip73, And86]).

What is problematic is that it is not always possible to indicate which
feature structure is the more speci�c of two. For instance, two feature
structures that both consist of three feature-value pairs might share two
feature-value pairs while the third is di�erent for both. Such cases do not
occur in the fragment that our formalization describes. However, theoreti-
cally it might happen that it is impossible to indicate which of two feature
structures is the most speci�c.

Note that the use of the postlexicon more or less denies the role of inec-
tional morphology. Inectional morphology enables us to derive inected
forms from a stem on the basis of inectional features such as [number],
[person] and [tense]. In the approach chosen here the paradigm belonging
to a stem consists of a group of postlexical items in the lexicon from which

6.3. THE LEXICON IN CHOMSKY'S 1993 FRAMEWORK 99

we can make a choice.

6.3 The lexicon in Chomsky's 1993 frame-

work

In the formalization of Chomsky's 1993 framework there only is one lexicon.
As we saw earlier this lexicon contains semantic, formal and phonological
features. As in the formalization of Zwart's framework the lexicon is con-
nected with the rest of the formalization via X-Theory. The Word features
in the lexicon represent the phonological features of the lexical items. At
PF these are the features that are spelled out.

6.4 Summary

In this chapter I discussed the treatment of the lexicon in the formalization.
There are di�erences between the treatment of the lexicon in Zwart's frame-
work and in Chomsky's 1993 framework. These di�erences are caused by the
postlexicalist approach chosen by Zwart. In this approach, the main idea is
that phonological features are �rst introduced after the derivation. The lex-
icon only contains semantic and formal features. In Chomsky's framework
the lexicon contains semantic and formal as well as phonological features.
In Zwart's framework an extra lexicon is introduced which is consulted at
PF and which does contain phonological features. The selection from the
extra lexicon (which is called postlexicon in the formalization) is based on
the formal and semantic features from the lexical heads in the LF-tree. The
idea behind Zwart's postlexicalism is that it is more economical to intro-
duce the phonological features, which are not needed in the course of the
derivation, after the derivation.

100 CHAPTER 6. LEXICON

