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ALM model for pension funds: numerical results
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and Maarten H. van der Vlerk∗

January 2002

Abstract

A multistage mixed-integer stochastic programming model is formulated for an Asset Liability
Management problem for pension funds. Since these models are too difficult to solve for re-
alistically sized problems, a heuristic is described. Numerical results for several instances of a
prototype model are presented and discussed.

∗ The research of the third author has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.
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1. Introduction

Stochastic programming for planning under uncertainty provides a versatile tool for
dynamic financial analysis, and its use in finance has been gaining popularity since
the 1980s [0]. In Drijver et al. [0], we presented a multistage decision model of this
type to support the Asset Liability Management (ALM) of a pension fund. Special
attention is paid to the incorporation of risk measures that are relevant in the actual
practise. Some features of risk measures give rise to the introduction of binary decision
variables. Because of that, it is expected that realistically sized models cannot be solved
to optimality. However, it is hoped that good feasible solutions can be found by the use
of a heuristic.

In this discussion paper, we specify a prototype model of relatively small size. All data
are fictitious, but realistic; they are chosen in cooperation with an existing pension fund.
The size is such that it is possible to calculate the optimal solution. The results are used
to discuss the validity and the usefulness of the model, and to get an idea about suitable
parameter values. Moreover, we specify a heuristic, and give a first report on its quality.

The contents of this paper can be summarized as follows. For the readability, in Sec-
tion 2, we repeat the description of the model in Drijver et al. [0]. Special attention is
paid to specification of added features, such as the use of integrated chance constraints
with the aim to exclude decisions that give rise to a too large risk of underfunding next
year. Section 3 describes the heuristic. In Section 4 the prototype model is specified
completely. We choose a planning period of 5 successive years, and restricted the sce-
nario tree to two branches at every node, so that the number of scenarios is only 32. In
some detail it is explained which numerical values we selected for these scenarios (in
particular, the development of the returns on the 4 asset classes that we distinguish),
and how we calculated corresponding values for the discount factors. Moreover, using
these discount factors, a valuation of the liabilities in the scenarios is derived. Section
5 contains the numerical results.

2. ALM model for pension funds

A pension fund has the task of making benefit payments to participants who have ended
their active income earning career. We assume that the pension fund has three sources
of funding its liabilities: revenues from its asset portfolio, regular contributions made
by the sponsor of the fund and remedial contributions made by the sponsor. The latter
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payments may be called for if the value of the assets is too low compared to the value
of the liabilities. The pension fund has to decide periodically how to distribute the
investments over different asset classes and what the contribution rate should be in order
to meet all its obligations. This decision process is called Asset Liability Management.

A pension fund has long term obligations, up to decades, and therefore its planning
horizon is large, too. The main goal of ALM is to find acceptable investment and con-
tribution policies that guarantee that the solvency of the fund is sufficient during the
planning horizon. Usually, the solvency at time t is characterized by the funding ratio
Ft at time t , defined by Ft := At/Lt , where At denotes the value of the assets and Lt
is the value of the liabilities.

In this section, we give a short description of our stochastic programming model for
the ALM process of a pension fund. For more details we refer to Drijver et al. [0]. The
model is dynamic, that is, information on the actual value of uncertain parameters is
revealed in stages, and the decisions of any stage do depend on the known observations
of them at that time, but not on unknown future realizations.

2.1 Scenarios and decisions

In this section we discuss basic elements of our ALM model. This is a finite-horizon,
discrete time optimization model. It is assumed, that decisions on asset mix, contribu-
tion rate and remedial contributions are made once a year. These moments are denoted
as t = 0, 1, . . . , T −1, where t = 0 is the current decision moment and T is the number
of years in the planning horizon. The year t (t = 1, . . . , T ) is then the time between
decision moment t − 1 and decision moment t .

Uncertainty is modeled through a finite number S of scenarios. Each scenario repre-
sents a possible realization of all uncertain parameters in the model. Each scenario s

has a probability ps , where ps > 0 and
∑S

s=1 p
s = 1. Since in a dynamic model infor-

mation on the actual value of the uncertain parameters is revealed in stages, a suitable
representation of the set of scenarios is given by a scenario tree.

In our model formulation it is convenient to introduce a complete set of decision vari-
ables for each scenario separately. Since the decisions in all scenarios passing one node
in the scenario tree should be the same, so-called nonanticipativity or information con-
straints have to be added, in order to guarantee that decisions do not depend on values
of random parameters that will be revealed in later periods.

Let us now introduce the random parameters and the decision variables of the ALM

3



model. For t ∈ T1 := {1, 2, . . . , T }, we define the vector of parameters that get their
value during year t as

ωt = (r1t , r2t , . . . , rNt ,Wt , Pt , Lt),

where

rit = return on asset class i in year t , i = 1, . . . , N,

Wt = total wages of active participants in year t,
Pt = total benefit payments in year t,

Lt = total value of liabilities after year t.

Their

realizations in scenario s ∈ S are denoted by

ωs
t = (rs1t , r

s
2t , . . . , r

s
Nt ,W

s
t , P

s
t , L

s
t ).

The decisions at time t ∈ T0 := {0, 1, . . . , T − 1} are for scenario s ∈ S:

Zs
t = remedial contribution by the sponsor,

�+Xs
it = value of assets in class i bought, i = 1, . . . , N,

�−Xs
it = value of assets in class i sold, i = 1, . . . , N,

cst+1 = contribution rate for year t + 1.

At the time horizon t = T only the decisions ZsT occur. The following additional
variables are important too. For each scenario s, and for t ∈ T1:

As
t = total asset value at time t

Xs
it = value of investments in asset class i, at the beginning of year t

(after the adjustment of the portfolio at time t − 1).

These are state variables (together with Lst ). They are determined by the parameters
and the decision variables, but from an optimization point of view they are decision
variables too, if one includes their definitions as constraints in the model, as we shall
do. Next, we have to explain in more detail what we mean by ‘time t’ in the definition
of As

t . We assume that at the end of year t , i.e., just before decision moment t , the
realization of ωt becomes available, the corresponding contribution cst W

s
t of year t

comes in, and the corresponding benefit payments Pt of year t are made. After this, the
value of the assets is calculated, based on the revealed returns:

As
t =

N∑
i=1

(1 + rsit )X
s
it + cst W

s
t − P s

t , s ∈ S, t ∈ T1.
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It is compared with the actual value of the liabilities Lst , and then a possible remedial
contribution Zs

t is added. Finally, all assets are (re)allocated (and the contribution rate
cst+1 of next year is chosen):

N∑
i=1

Xs
i,t+1 = As

t + Zs
t , s ∈ S, t ∈ T0,

with

Xs
i,t+1 = (1 + rsit )X

s
it −�−Xs

it +�+Xs
it − ki(�

−Xs
it +�+Xs

it ), s ∈ S, t ∈ T0,

where ki denotes the proportional transaction cost for asset class i. In the last formula,
for t = 0 the term (1 + rsit )X

s
it is to be replaced by the parameter Xi0, denoting the

initial position of asset class i, just before a possible remedial contribution Zs0 and
possible reallocations �+Xs

i0,�−Xs
i0. Similarly, the asset value at the same time is a

given parameter A0.

2.2 Basic constraints

In the previous subsection we defined the scenarios and the decision variables of the
model. Here, we will discuss the constraints on the decision variables. Some constraints
have already been mentioned before: the nonanticipativity constraints and the defini-
tions of the state variables. In addition, nonnegativity is required for the value of each
asset class i, and for restitutions and remedial contributions

�+Xs
it ≥ 0, �−Xs

it ≥ 0, Zs
t ≥ 0, s ∈ S, t ∈ T0, i = 1, . . . , N.

At the horizon, the remedial contributions should also be nonnegative, which is denoted
by Zs

T ≥ 0. Since the sponsor is not willing to pay extremely large remedial contribu-
tions, an upper bound is given on this amount. This upper bound is defined as a fraction
τ of the total level of the wages:

Zs
t ≤ τWs

t s ∈ S, t = 0, 1, . . . , T .

There are also lower and upper bounds for the asset mix:

wl
i

N∑
j=1

Xs
jt ≤ Xs

it ≤ wu
i

N∑
j=1

Xs
jt s ∈ S, t ∈ T1, i = 1, . . . , N,

where wl
i and wu

i are parameters that specify upper and lower bounds on the value of
asset class i as a fraction of the total asset portfolio.
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In addition, lower and upper bounds on the contribution rate are given by

cl ≤ cst ≤ cu, s ∈ S, t ∈ T1,

where the numbers cl and cu have to be decided by the management of the pension
fund.

The constraints described up to now are called basic constraints. There are more con-
straints in our model, however:

• Constraints on one-stage risks of underfunding.

• Constraints on remedial contributions.

• Soft constraints on (too) large changes in the contribution rate.

These constraints are described in Sections 2.3, 2.4 and 2.5, respectively. After that, in
Section 2.6 the objective function is specified.

2.3 One-stage risk constraints

In order to avoid decisions, that are considered to be too risky, we introduce a set of
(one-stage) risk constraints. One-stage risk is the risk of underfunding at time t + 1
as seen at time t (for any t = 0, . . . , T − 1), measured in a way to be described.
The underlying idea is, that the management of the pension fund specifies a maximum
acceptable value for the one-stage risk. The risk constraints enforce, that in the model
only solutions are considered where all one-stage risks do not exceed the upper bound.

How to measure such risks? We assume, that the management of the pension fund spec-
ifies a value α for the funding ratio, in such a way that values below α are considered to
be risky; they should be avoided if possible. The shortage at level α at any time is then
the minimum amount by which the asset value of that moment must increase in order to
have a funding ratio of at least α. As risk measure we use the expected shortage at level
α, at time t + 1, as calculated with data up to and including time t (t = 0, . . . , T − 1).
This definition leads to the following one-stage risk constraints:

[(At+1 − αLt+1)
−|(s, t)] ≤ β, s ∈ S, t ∈ T0,

where
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At+1 = asset value at time t + 1,

Lt+1 = liability value at time t + 1,
(At+1 − αLt+1)

− = max(0, αLt+1 − At+1)

= shortage at level α at time t + 1,

β = maximum acceptable value of one-stage risk.

By [.|(s, t)] we mean that the expected value is calculated at time t , based on all infor-
mation revealed in scenario s from the beginning up to and including t . By writing out
this expectation we get

S∑
s ′=1

pt+1(s
′|s, t)(As ′

t+1 − αLs ′
t+1

)− ≤ β.

Here, pt+1(s
′|s, t) denotes the conditional probability that at time t + 1 scenario s′

occurs, given that (ω1, ω2, . . . , ωt) coincides with scenario s; it can be calculated from
the data. In this way, the risk constraints fit in a linear programming framework, since
the only nonlinearity, caused by taking the negative part, can be eliminated by replacing
As ′
t+1 − αLs ′

t+1 by the difference of two nonnegative variables.

In Subsection we explain in more detail why our choice of risk measure is suitable.

2.4 Constraints on remedial contributions

Our model adopts the following rules for remedial contributions from the sponsor:
- Remedial contributions can only occur at states of the world where the funding ratio
is less than α.
- If there is a positive remedial contribution, it should cover at least the actual shortage
(at level α).
- If there is a positive shortage at time t at level α, and if also at time t − 1 there was a
positive shortage at that level, then a remedial contribution has to be made.

These rules are formulated as linear constraints in the decision variables, after adding
the following binary decision variables (for s = 1, . . . , S; t = 0, . . . , T ).

δst :=
{

1 if As
t < αLs

t

0 if not
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dst :=
{

1 if Zs
t > 0

0 if not.

These binary variables get the correct values, because of the following ’definition in-
equalities’. For all t = 0, . . . , T and s = 1, . . . , S, δst ∈ {0, 1}, dst ∈ {0, 1} and Zs

t ≥ 0,
and

As
t − αLs

t ≥ −Mδst

As
t − αLs

t ≤ M(1 − δst )− 1

M

Zs
t ≥ M(dst − 1) − (As

t − αLs
t )

Zs
t ≤ Mdst

Here M is a sufficiently large number. The third inequality also forces the remedial
contribution to satisfy the second rule. The first and third rule are forced to hold by the
conditions

dst ≤ δst

dst ≥ δst + δst−1 − 1

for s ∈ S , t = 0, . . . , T . Here δs−1 is a given parameter, just as δs0, not depending on s.

2.5 Soft constraints on changes of contribution rates

Often it is undesirable that the contribution rate changes too fast. Our model gives the
possibility to pay attention to this idea, in the following way. If the increase of the con-
tribution rate in two consecutive years is larger then ρ, a parameter to be determined by
the management of the pension fund, it is penalized in the objective function. Similarly
this is done for any decrease larger than ρ, but its penalty is different. That is, with λc+
(λc−) the penalty parameter for a too fast increase (too fast decrease) of the contribution
rate, the incurred penalty cost at time t in scenario s are(

λc+(cst − cst−1 − ρ)+ + λc−(cst − cst−1 + ρ)+
)
Ws

t ,

where, as before, the positive (negative) part operator is defined as (x)+ = max(0, x),
(x)− = max(0,−x). By introducing additional decision variables, these nonlinearities
can be removed easily from the formulation.
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2.6 Objective function

Usually, a pension fund has many goals. Moreover, different parties have different in-
terests. In our model, this phenomenon is reflected in the objective function, which is
going to be minimized over all strategies for contribution, asset mix, and remedial con-
tribution that satisfy the constraints. It consists of the expected total discounted funding
costs, to which penalties are added for undesirable situations (and rewards for desirable
situations). The parameters in the penalties do not have a financial meaning necessarily,
but one can play with them in order to generate solutions from the model corresponding
to various weights on different goals.

The objective function is

S∑
s=1

T∑
t=1

psγ s
t (c

s
t W

s
t + Zs

t )

+
S∑

s=1

T∑
t=1

psγ s
t

(
λc+(cst − cst−1 − ρ)+ + λc−(cst − cst−1 + ρ)+

)
Ws

t

+
S∑

s=1

T∑
t=0

psγ s
t

(
λδδ

s
t

)

+
S∑

s=1

T∑
t=0

psγ s
t

(
λdd

s
t + (λZ − 1)Zs

t

)

+
S∑

s=1

psγ s
T

(
λθ(A

s
T − θLs

T )
− + λξ(A

s
T − ξLs

T )
+)
.

Here, ps is the probability of scenario s, γst is the discount factor for a cash flow at time
t in scenario s. The first term gives the funding cost, and the second one corresponds
to the penalties for rapidly changing contribution rates. The third term indicates that at
each node in the scenario tree a cost of λδ is incurred if the funding ratio is less than
α. The fourth term gives the expected total discounted penalties for remedial contribu-
tions: each time it occurs, the fixed λd is incurred, together with a variable penalty with
rate (λZ − 1). The last term penalizes a terminal funding ratio less than θ , and rewards
a terminal funding ratio larger than ξ (usually, θ ≤ α ≤ ξ , λθ > 0, λξ < 0).
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Although transactions costs can also be seen as funding costs, they are not included in
the objective function. They appear in the costraints, such that buying and selling leads
to a lower asset value.

2.7 One-stage risk constraints: background

We now discuss the conceptual and mathematical background of the one-stage risk
constraints introduced in Section 2.3. As far as we know, such constraints have not
been used before in related ALM models. Dert [0] used one-stage chance constraints:
only the probability of shortage next year is restricted in the model. In our specification
of one-stage risk, not only the probability, but also the amount of shortage counts: it is
a special case of integrated chance constraints, introduced by W.K. Klein Haneveld [0].
In Subsection 2.7.1 we discuss Dert’s chance constraints and their relation to our risk
constraint. Next, we make clear that integrated chance constraints fit nicely in a linear
programming framework.

2.7.1 Chance constraints and integrated chance constraints

Underfunding is an undesirable event. However, it cannot always be avoided. Since it
is undesirable, we would like that the probability of underfunding in time period t + 1,
given the state of the world at time t , is sufficiently low. That is,

P {As
t+1 < αLs

t+1} ≤ 1 − φt ,

where φt gives the minimum required reliability.

In stochastic programming, these type of constraints are called chance constraints. Dert
[0] used chance constraints in an ALM model. If discrete distributions are considered,
one can add chance constraints in a mixed-integer program using binary variables and
linear inequalities. At time t , we observe the realization of ωt , and therefore know the
actual state of affairs (t, s). Defining pt+1(s

′|(t, s)) as the conditional probability that
scenario s′ occurs at time t + 1, given the state of affairs (t, s), the chance constraints
can be written as

Mδs
′
t+1 ≥ αLs ′

t+1 − As ′
t+1, s′ ∈ S, t ∈ T0 (1)

S∑
s ′=1

pt+1(s
′|(t, s))δs ′t+1 ≤ 1 − φt , s′ ∈ S, t ∈ T0. (2)
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Here, M is a sufficiently large number, and δs
′
t+1 ∈ {0, 1}.

From algorithmic point of view, continuous variables are to be prefered to discrete ones.
So it is interesting to find out, what the interpretation of the constraints (1) and (2) will
be if the binary variables δs

′
t+1 ∈ {0, 1} are relaxed to continuous variables δs

′
t+1 ∈ [0, 1].

Condition (1), together with nonnegativity, gives the following lower bound for δs
′
t+1:

δs
′
t+1 ≥ (As ′

t+1 − αLs ′
t+1)

−/M s′ ∈ S, t ∈ T0.

Assuming that this lower bound is binding (small values for δst+1 are prefered in the
objective function), we conclude that the relaxation of (1) and (2) becomes

S∑
s ′=1

pt+1(s
′|(t, s))(αLs ′

t+1 − As ′
t+1

)+ ≤ M(1 − φt ). (3)

This last expression is simply

t,s

[
(αLt+1 − At+1)

+] ≤ β, (4)

for appropriately chosen β. These constraints are called integrated chance constraints
(ICC). We refer to W.K. Klein Haneveld [0] for details on ICC. Note that the right
hand side of (4) also has an interpretation: β gives the maximum acceptable expected
shortage for the next time period.

Constraint (4) can be used in a linear programming framework by introducing addi-
tional decision variables. These are denoted by the nonnegative, continuous variables
Gs

t and Hs
t . These measure the amount of shortage and surplus in state of the world

(t, s) respectively. Adding the constraints

As
t +Gs

t −Hs
t = αLs

t s ∈ S, t = 0, 1, . . . , T ,

the integrated chance constraints (4) can be written as

S∑
s ′=1

pt+1(s
′|(t, s))Gs

t ≤ β s ∈ S, t = 0, 1, . . . , T .

The inequalities above define convex, polyhedral feasibility sets. These are very attrac-
tive from an optimization point of view. Since the constraints defining the integrated
chance constraints are all linear, they can be used in a linear programming framework.
The properties of integrated chance constraints are to be preferred over those of the
chance constraints, not only from a mathematical point of view. Integrated chance con-
straints are also preferred over chance constraints here, since not only probabilities
of underfunding are considered, but also amounts of shortage. Therefore, we will use
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integrated chance constraints 4 in our ALM model.

3. Heuristic

From computational point of view, the multistage stochastic ALM model described in
the previous section is just a deterministic mixed-integer linear programming model,
basically. This is due to the fact, that uncertainty and time are modeled as a finite
number of scenarios and years, respectively. For mixed-integer linear programming,
powerful software exists. In Section 5 we will discuss the optimal solution of a pro-
totype model (to be described in Section 4) that we got by using AIMMS with solver
XA. However, the size of the deterministic equivalent model is growing extremely fast
with the number of scenarios S, and the number of years T in the planning horizon.
Since we have decisions in each state of the world (t, s), the total number of states is
equal to S(T + 1). If each state before the horizon has for example ten child nodes,
and the horizon is split in 5 time periods, the total number of decision nodes is equal to
600,000.

Therefore, it is to be expected that for realistically sized ALM problems, even the best
available software will not provide the optimal solution in a reasonable time. For that
reason, we developed a heuristic, that is able to provide a (hopefully good but not nec-
essarily optimal) feasible solution of the model. The heuristic uses linear programming
relaxation (that is: replace binary variables by continuous variables in [0, 1]); so we
assume that the size of the model is such, that the optimal solution of the model can be
found if all binary variables are allowed to take fractional values too.

The main ideas of the heuristic will be described first. Then, this heuristic will be pre-
sented. Finally, some comments will be made about the heuristic.

3.1 Main idea

Suppose that a feasible solution of the ALM model can be found. How to find a better
solution, with a lower value of the objective function? Suppose that a remedial con-
tribution has to be made in two consecutive years. The main idea of the heuristic is
then, to analyze whether it is advantageous to shift remedial contributions to an earlier
time moment. The idea of shifting decisions in a multistage mixed-integer stochastic
program is also used by Ahmed and Sahinidis [0] in a capacity expansion model.
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Increasing remedial contributions may be advantageous, since this may lead to less
states of the world in which these contributions have to be made. As a result, this
leads to a lower contribution of the fixed costs to the objective function. On the other
hand, such increases lead to earlier payments, which are therefore more expensive.
The relationship between the fixed costs and the variable costs play a crucial role in
determining whether it is beneficial to increase a remedial contribution or not.

Before we will discuss the consequences of shifting in more detail, we first give a
description of the heuristic.

3.2 Description of the heuristic

The heuristic consists of five steps. These steps will now be explained.

Step 1

Solve the linear programming relaxation of the multistage mixed-integer stochastic pro-
gram. Relaxation means that the requirements δst ∈ {0, 1} and dst ∈ {0, 1} are replaced
by δst ∈ [0, 1] and dst ∈ [0, 1], respectively.

• If the linear programming relaxation is infeasible: STOP. The original ALM
model is infeasible, too.

• If the linear programming relaxation has integer optimal values for all δst and all
dst : STOP. The solution found is also an optimal solution for the original ALM
model.

• If the linear programming relaxation has an optimal solution, but some of the
variables δst and/or dst are non-integer, go to step 2.

Step 2

In this step, the optimal solution of the linear programming relaxation (having some
fractional δst and/or dst ) is transformed into a feasible solution of the original mixed-
integer problem by only changing some of the variables δst , d

s
t and/or Zs

t as follows.

13



First, all binary variables δst are set to their correct binary value. If δst and δst−1 = 1, or
Zs
t > 0, we set dst = 1. Then, the following procedure is applied:

for t = 0 to T do
for s = 1 to S do

if dst = 1 then
Zs
t = αLs

t − As
t

update asset values
update δs and ds

endif
endfor

endfor

In this forward procedure, the funding ratio is restored to its minimum required level
α if the sponsor of the fund has to make a remedial contribution. A cash inflow has
consequences for all future states of the world. If the remedial contribution is made in
state of the world (t, s), all asset values in states with (t, s) as parent are updated. This
is done by keeping contribution rates fixed as found in step 1 of the heuristic. Also the
fractions of assets in the asset portfolio are not changed. Due to the increases in the asset
values, it may happen that funding ratios increase to values above α, while this ratio was
strictly less than α before this step. If this is the case, we set the corresponding δ equal
to zero. As a result, it may also happen that a remedial contribution is not necessary
any more. Therefore, also the values of d are changed to zero, if this is necessary.

Step 3

Check if we can improve the solution constructed in step 2. This is done by checking
whether the value of the objective function will decrease if a remedial contribution will
be increased, such that in at least one child node a remedial contribution is not neces-
sary anymore. Formally, we apply the following procedure:

for t = 0 to T − 1 do
for s = 1 to S do

if Zs
t > 0 and Zs

t+1 > 0 then
if increase in Zs

t is profitable and possible
update asset values

14



update Zs accordingly
update δs and ds

endif
endif

endfor
endfor

To check whether the increase in Zs
t , denoted by �Zs

t , is profitable, we compare the
costs of this increase with the corresponding returns. The costs are psγ s

t λZ�Z
s
t , where,

as before, ps denotes the probability of scenario s and γst is the discount rate for state
of the world (t, s). On the other hand, an increase �Zst may lead to a decrease of the
objective function value, due to one or more of the following effects:

• In all child nodes with (t, s) as parent, the asset values are increased. This is
done in the same way as explained in step 2. As a result, some values of δ may
change from 1 to 0, and the corresponding fixed costs are removed.

• The same argument holds for dst , the binary variable which indicates whether a
remedial contribution has to be made or not.

• There may be some child nodes in which we still have Z > 0, although the
asset values in these states are increased. However, the amount of the remedial
contribution is decreased. This also lowers the value of the objective function.

• Surplusses at the horizon are rewarded if the funding ratio is above ξ . Due to
the increases in the asset values, the objective function decreases.

• Shortages at the horizon are penalized if the funding ratio is below θ . Since asset
values are increased, this may also lead to lower penalties due to underfunding
with respect to the level ξ at the horizon.

Suppose in state (t, s) of the current solution, we observe Zst > 0. If there is only one
child node in which Z > 0, we check whether it is profitable to increase Zst such that
the funding ratio is equal to α in this child node. If there are more child nodes in which
the sponsor of the fund has to make a remedial contribution, we consider all increases
in the remedial contribution in state of the world (t, s) such that the funding ratio is
equal to α in one child node. The increase (if any) which leads to the lowest value of
the objective function is finally chosen.

In the process of checking whether it is profitable to increase a remedial contribution,
we take into account the upper bound on this amount. Since we have the constraint
Zs
t ≤ τWs

t in our ALM model, we check whether this constraint is not violated by
increasing Zs

t .

15



If it is profitable to increase the remedial contribution in state of the world (t, s), we
update the asset values and also the values of δ and d. This is done in the same way as
explained in step 2 of the heuristic.

Step 4

Solve the multistage mixed-integer stochastic program with δst and dst fixed, as found
in the previous step of the heuristic.

3.3 Comments on the heuristic

In this subsection, we will make some additional remarks on the heuristic as described
above.

The linear programming relaxation in the first step of the heuristic is a multistage
stochastic linear program. For realistically sized ALM problems, solving it may al-
ready require a lot of work.

In general, we do not expect to find a feasible solution for the mixed-integer model
after the first step. However, if we obtain a feasible solution here, it is also an optimal
solution. It may for example be the case that an optimal solution is found if the funding
ratio at time t = 0 is very high, and, as a result, in the next T years underfunding never
occurs.

If no feasible solution is found after this first step, we will try to find one in the second
step. The result of this step may be that we cannot find a feasible solution. This may be
the case if a remedial contribution Z should be greater than allowed by its upper bound,
to restore the funding ratio to its minimum required level α.

If we obtain a feasible solution in step 3, we check whether this can be improved by
shifting remedial contributions to an earlier time period, as described above. We con-
sider only a finite number of potential increases in the remedial contribution and take
the best of these values. Maybe a larger amount leads to an even lower value of the
objective function. The increase in the remedial contribution is not optimized, since in
that case we have to solve a multistage mixed-integer stochastic program, which is too
difficult to solve in general.

In step 4 of the heuristic, again a multistage stochastic linear program is solved. The
reason to resolve the model is that the current portfolio decisions an the levels of the
contribution rates are presumably non-optimal, given the fixed values of δ and d. For
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states (t, s) in which we had δst = 0, we get the hard constraint As
t ≥ αLs

t , indicating
that for these states, underfunding is not allowed.

If we have found a feasible solution after step 2 of the heuristic, we obtain a feasible
solution after steps 3 and 4. That is, the result of the heuristic is a feasible solution.

The following example is intended to clarify the central step of the heuristic.

3.4 Example step 3 of heuristic

In this example, we will show how step 3 of heuristic works. It is simplified in the
sense that we do not take into account discounting or an upper bound on the remedial
contributions. Consider the following (small) part of the scenario tree, which is depicted
in Figure . There are two scenarios, denoted by 1 and 2. We assume that both scenarios
have equal probabilities. Since the nonanticipativity constraints have to be satisfied, the
decisions at time 1 coincide in this example.

•

•

•

1 2

Z
1
1=Z

1
2=2

Z
2
2=4

Z
2
1=5

Figure 3.1: Small part of scenario tree to demonstrate idea heuristic.

The sponsor of the fund has to make a remedial contribution at time 1 and in the two
states of the world at time 2. This is the solution after step 2 of the heuristic.

We assume in addition that the penalty parameters are λZ = 1, λδ = 2 and λd = 5.
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The relevant returns on the portfolios in the last time period are 3 and 2 percent for
scenarios 1 and 2 respectively.

Since we have Zs
t > 0 for all s = 1, 2 and t = 1, 2, we also have δst = dst = 1 for

s = 1, 2 and t = 1, 2. The contribution to the objective function due to underfunding
and making remedial contributions is the following. At time 1, the contribution is equal
to λδ + λd + λZZ = 2 + 5 + 2 = 9. At time 2 we have in scenario 1 a contribution of 1

2
(2+5+5)=6 and in scenario 2 of 1

2 (2+5+4)=51
2 . Therefore, the total contribution to the

objective function after step 2 of the heuristic is equal to 9+201
2 .

In step 3 of the heuristic, two increases in the remedial contribution at time 1 are con-
sidered. This contribution should be increased with 4

1.02 ≈ 3.92 to remove Z2
2 , and it

should be increased with 5
1.03 ≈ 4.85 to remove Z1

2 .

If the remedial contribution is increased with 3.92 at time 1, the contribution to the
objective function is equal to 9+3.92=12.92 at time 1 and 1

2 (2+5+(5-(3.92 × 1.03)))≈
3.98 at time 2. The remedial contribution is reduced to approximately 0.96 in scenario
1, due to the increase in the asset value at time 1. The total contribution to the objec-
tive function is therefore 12.92+3.98=16.9. Since the value of the objective function is
decreased, this shift is advantageous.

We will check whether is advantageous to increase this remedial contribution slightly
more, such that we also have Z1

2 = 0. Therefore, we have to increase Z1
1 further with

0.96
1.03 ≈ 0.93. As a result, the contribution to the objective function is in this case equal
to 9+3.92+0.93=13.85. Since the value of the objective function is decreased again,
and since the remedial contributions are equal to 0 in both states at time 2, this is the
solution obtained from the heuristic after step 3.

4. Prototype model

In this section, we specify a relatively small instance of the ALM model of Section 2.
The data are fictitious, but supposed to be semi-realistic; the size is sufficiently small,
so that the optimal solution can be found by a mixed-integer linear programming (LP)
code.

We use this so-called prototype model for various purposes. These will be explained
in the next section, where also preliminary numerical results will be presented. The
current section deals with the specification of the prototype model.

In the prototype model, we have a planning horizon of T = 5 years and S = 2T =
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32 scenarios. Each state of the world before the horizon has 2 child nodes, and the
conditional probabilities are both 1

2 .

The prototype model has 5,672 constraints, 4,033 decision variables, and 17,962 non-
zero coefficients. The number of binary variables is equal to 2(T + 1)S = 384. This
follows, since the funding ratio is considered at (T + 1) time periods and in all S
scenarios, and we have 2 binary variables in each state of the world, the total number of
binary variables equals 2(T + 1)S. However, due to the nonanticipativity constraints,
only 126 of them are free variables.

4.1 Data

In the prototype model, we consider four asset classes: stocks, (10-year) bonds, real
estate and cash. These four asset classes are considered by the management of the pen-
sion fund we cooperate with. Lower and upper bounds on the fractions of the various
asset classes in the asset portfolio, and on the contribution rate, together with the val-
ues for the transaction costs for asset class i, denoted by ki , are presented in table . The
management of a pension fund provided us with these data.

asset class i lower bound upper bound ki

stocks 1 0.45 0.65 0.00425
bonds 2 0.24 0.44 0.0015
real estate 3 0.06 0.16 0.00425
cash 4 0 0.05 0.0005
contribution rate 0 0.21

Table 4.1: Lower and upper bounds and transaction costs.

In the scenario tree, numerical values for ωst = (rs1t , . . . , r
s
4t ,W

s
t , P

s
t , L

s
t ) are required.

In addition, the discount factor γst , associated with state (t, s), has to be specified. In
the next subsections will be described how the scenarios are generated.

4.2 Scenario generation: methods

Ultimately, the goal of scenario generation is to get realizations for the uncertain pa-
rameters in each node of the scenario tree. These realizations have to satisfy certain
criteria, as explained below.
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First, it will be explained how the relationships between the uncertain parameters are
defined. Once these relationships are defined, we will use them to get realizations for
the parameters in all states of the world in the scenario tree. We will find realizations for
the returns on the different asset classes and for the increase in the general wage level.
Then, special attention is paid to the valuation of the liabilities. This is necessary to
understand how the scenarios are generated for the liabilities. As a result of finding the
realizations for the uncertain future value of the liabilities, we also come to the question
of how we can get realizations for Ps

t , the level of the benefit payments in each state of
the world (t, s). Finally, numerical values for pst and γ s

t are found.

4.2.1 Vector Autoregressive Model

In this subsection, the relationship between the change in the general wage level, de-
noted by vst , and the returns on stocks, bonds, real estate, and deposits in a bank account
will be modeled. These returns are denoted by rsit , where, as before, i denotes the asset
class, and t and s are the indices for time and scenario respectively. If the values for vst
are found, the numerical values for Ws

t , the level of the wages at time t in scenario s, is
given by

Ws
t = W0/

t
q=1(1 + vsq),

where W0 is the level of the wages at time 0.

In the literature, it is customary to model the relationships between these returns as a
first order vector autoregressive (VAR) model, see for example Sims [0], Boender et
al. [0], Dert [0], and Kouwenberg [0]. Kouwenberg [0] uses only the returns which we
actually need in each state of the world in our scenario tree, while Boender et al. [0]
also use other macroeconomic quantities, like nominal GNP growth, to model these
relationships.

Defining ht = (h1t , . . . , hN+1,t ), where

hit = ln(1 + rit ) i = 1, . . . , N, t = 1, . . . , T

and

hN+1,t = ln(1 + vt) t = 1, . . . , T ,

Kouwenbergs VAR model can be written as follows:

ht = a +3ht−1 + εt εt ∼ N(0, 5), t = 1, . . . , T . (5)
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Here, ht is a vector of continuously compounded returns and εt is an (N + 1)-vector of
independently and identically distributed error terms. It is assumed that these errors are
normally distributed with mean zero and covariance matrix 5. The periods considered
are all one year. The vector a and the matrix 3 are to be estimated. This can be done
using econometric techniques. Lagged variables are only used for the changes in the
wage level and the returns on the bank account. This is done, since otherwise returns
on stocks, bonds and real estate are predictable, which is in contradiction with what is
generally believed, see for example Campbell et al. [0]. To get these numerical values
for a, 3 and 5, we used the VAR model estimated by Kouwenberg [0]. As starting
values for hi0, i = 1, . . . , 5, the mean values of the returns and the mean increase in
the general wage level are used.

As we will see in the next subsections, these 5 random variables are used, together with
the stream of future benefit payments, to generate scenarios for all random parameters.

4.2.2 Generating error terms

In this subsection will be described how the scenarios for the returns on the four asset
classes and the change in the general wage level are generated. We assume that the
scenario tree is specified in advance, that is, for each state of the world, we know the
number of child nodes in advance. An alternative method is described in King and
Warden [0]; they convert isolated scenarios into a tree structure.

We assume that the relation between the uncertain parameters can be described by the
VAR model (5). We will find future realizations of the parameters by finding appropri-
ate values for these error terms. Once we have found these value for εst , r

s
it and vst are

found by means of (5).

Moment fitting is used to find numerical values for the disturbance terms in the VAR
model (5). To that end, define the following minimization problem:

min
ε∈R

5
‖εεT − 5̂‖, (6)

with ‖S‖ = ∑5
i=1

∑5
j=i S

2
ij . Its optimal solution ε∗ determines the symmetric two point

distribution P {εt = ε∗}= P {εt = −ε∗} = 1
2 , with the best fitting second order moment

matrix (in the sense of the norm: all variances and covariances are weighted equally).

Mathematical program (6) is solved only once, since each state of the world has two
child nodes. This does have consequences, since dependencies between the error terms
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are introduced. Once we have found numerical values for (εsi )
∗, i = 1, . . . , 5, s = 1, 2,

we use them to find returns on the asset classes and the changes in the general wage
level for every time period by means of the VAR model (5).

4.2.3 Other random parameters

In this subsection will be described how to get values for Lst and P s
t , the value of the

liabilities and the benefit payments at time t in scenario s respectively. In addition, it is
described how we found values for pst and γ s

t .

Valuing liabilities is done by finding the present value of all future benefit payments.
We used the results of H.A. Klein Haneveld [0] to find appropriate discount factors.
Therefore, we have to specify a zero-coupon yield curve and an equity spot curve to
find the pension spot curve, the set of discount factors used in finding values for Lst .

4.2.4 Probabilities and discount rates

In the prototype model considered, we assume that the conditional probabilities are a
half in each node of the scenario tree. Therefore, probabilities of all scenarios are equal.
As a result, we have

ps = 1

32
, s ∈ S.

In our ALM model, all cash flows are discounted by the risk-free interest rate, using
compounding. That is,

γ s
t =

(
/t

q=1(1 + rs4q)
)−1

.

4.2.5 Generating scenarios for the liabilities and benefit payments

First the returns for the four asset classes and the increase in the general wage level
were generated, using the VAR model (5) in each node of the scenario tree. Therefore,
we have already the risk free interest rate, denoted by rs4t , and the return on a 10 year
bond, denoted by rs2t . These two data points will be used to estimate the zero coupon
yield curve. The following characteristics will be satisfied in finding the zero coupon
yield curves:

• The zero coupon yield curve should contain only positive zero coupon yields.
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• The forward rates implied by the estimated zero coupon yield curve should all
be nonnegative.

• The zero coupon yield curve is monotonically increasing and concave.

This last characteristic is used, since Haugen [0] concludes that upward sloping term
structures are far more common than other shapes. In addition, some shapes of the
bond spot curve may be a priori implausible. There exists a lot of literature about the
shape of term structures and estimation techniques. Famous term structure models are
for example those by Vasicek [0], Cox et al. [0], Ho and Lee [0] and Hull and White
[0].

We want to satisfy the three characteristics above to find the zero coupon yield curve.
We use rs4t as a point on the yield curve. In general, we cannot use rs2t as an estimate
for the ten year zero coupon yield. For example, if the return on this bond would be
negative, this estimate would not make sense. Campbell et al. [0] conclude that the
average spread of the ten year zero coupon yield over the one year zero coupon yield is
µb = 1.367 percent, with a standard deviation of σb = 1.237 percent.

The ten year zero coupon yield used to estimate the yield curve in state (t, s) is denoted
by f s

t . We define f s
t as follows:

f s
t :=

{
rs2t if rs2t ∈ [rs2 , µb + 2σb];
max{rs4t , rs4t + νst } otherwise,

where νst is a random drawing from a normal distribution with the mean and standard
deviation of the spread as defined above.

The zero coupon yield curve in state of the world (t, s) corresponding to maturity q, is
denoted by bst (q). We define bst (q) as follows:

bst (q) = rs4t + est ln(q + 1),

where rs4t is the risk free interest rate in state (t, s) and est is a parameter. Since we want
to use f s

t as an estimate for the ten-year yield, we have

f s
t = rs4t + est ln(q + 1),

or

est = f s
t − rs4t

ln(11)
.
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Therefore, we will use the following zero coupon yield curve in each state of the world
(t, s):

bst (q) = rs4t + f s
t − rs4t

ln(11)
ln(1 + q). (7)

To find the equity spot curve, we add the average risk premium for stocks to (7). This
average risk premium is approximately 0.0495, as can be found in Chan et al. [0]. This
is consistent with the data used in estimating (5).

The return on a broadly diversified stock portfolio always outperformed a bond portfo-
lio if the considered period was twenty years or longer, see H.A. Klein Haneveld [0].
Therefore, we will use the equity spot curve to discount expected future benefit pay-
ments for maturities greater than or equal to twenty years. For earlier time periods, we
will use a linear combination of the zero coupon yield curve and the equity spot curve
to define the pension spot curve. These ideas are taken from H.A. Klein Haneveld [0].

Defining Ds
t (q) as the discount rate used to discount expected future benefit payments

with maturity q years, in state of the world (t, s), we get the following definition for
the pension spot curve:

Ds
t (q) :=

{
bst (q) + q

20 0.0495 q = 0, 1, . . . , 20
bst (q) + 0.0495 q ≥ 20

where, as before, the equity risk premium is 0.0495.

We assume that workers retire at the age of 65 and that they are replaced by workers
who are 25. In addition, we assume that the fund guarantees full indexation.

The value of the liabilities in state (t, s) is given by

Ls
t :=

∞∑
q=t

P s
q

1 +Os
t (q)

,

where P s
q is the value of the benefit payments in state of the world (q, s), given by

P s
q = Bq/

q

z=1(1 + vsz),

and Bq is the expected benefit payment for year q as given at time t = 0.

The valuation of the liabilities and benefit payments in this way is new insofar as in
other ALM models, it is explicitly mentioned how these values are actually calculated.
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4.3 Scenario generation: numerical results

In this subsection, numerical results from the scenario generation will be described.
The numerical values for a, 5 and 3 are copied from Kouwenberg [0]. The vector a,
and the matrix 5, introduces in (5) are given by

a =




0.086
0.058
0.072
0.020
0.018




and

5 =




0.0253 0.0037 0.0526 −0.0014 −0.0019
0.0037 0.0036 0.0023 −0.0003 −0.0003
0.0526 0.0023 0.0125 −0.0003 −0.0000

−0.0014 −0.0003 −0.0003 0.0003 0.0001
−0.0019 −0.0003 −0.0000 0.0001 0.0009


 .

The matrix 3 consists of zeros, except the elements 344 = 0.644 and 355 = 0.693.

For the numerical values of the returns on the four asset classes, the value of the liabili-
ties, the level of the wages, the benefit payments, and the discount factors in each node
of the scenario tree, we refer to appendix .

5. Numerical Results

In this section, we describe numerical results for several instances of the prototype
model. The two most important questions we would like to answer are:

• Can we understand the results of the model? For example, do we observe a
positive correlation between the level of the funding ratio and the fraction of the
assets invested in stocks, as we would expect? Does the level of the contribution
rate increase as the funding ratio decreases?

• How good is the solution of the heuristic, compared to the optimal solution?
Are there large differences between the optimal and the heuristic solutions? If
so, how can we explain these differences?
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To be able to answer the questions posed above in detail, we would also answer the
following questions:

• How do the solutions change if we replace the lower and upper bounds on the
fractions invested in each asset class by zero and one, respectively?

• If the funding ratio at time t = 0 is below α, are the contribution rates higher
than in the basic instance, and are the asset portfolios different?

• What are the consequences if a euro paid by the sponsor is penalized harder
than a euro paid by the active participants? Do the contributions by the active
participants increase in this case?

• Do the solutions change if all returns on stocks are decreased by, for example,
four percent?

• Do the solutions change if there is no upper bound on the remedial contribu-
tions?

• Do the solutions change if surplusses and shortages at the horizon are not re-
warded or penalized? And how do the solutions change if the rewards at the
horizon are increased?

• Are the integrated chance constraints binding? If not, what are the results if they
become binding due to a lower maximum expected shortage for the next year?

• Are the contribution rates more volatile if large changes in these rates are not
penalized?

• Does the requirement that the sponsor has to make a remedial contribution only
after two consecutive years of underfunding lead to lower funding costs, com-
pared to the common restriction which asks for immediate correction?

• If the sponsor has to make a remedial contribution, are these contributions al-
ways such that the funding ratio becomes exactly equal to α, or are there also
situations in which the remedial contribution is higher?

We will answer these questions by one basic instance and eleven other instances. First,
the basic instance is analyzed in detail. The other instances differ each slighly from the
basic instance, so that we are able to analyze the effect of a single change in the inputs
on the restults.

Instance 1: basic instance

In this basic instance, the minimum required funding ratio, denoted by α, is equal to
1.05. The initial funding ratio, that is, the funding ratio at time t = 0, just before
changes in the asset portfolio can be made at time t = 0, is equal to 1.10. The initial as-
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set value equals 10,394 and the value of the liabilities is equal to 9,449. These numbers
are all in million euros.

If the funding ratio is below α in a certain state of the world, fixed penalty costs of
λδ = 200 (million euros) are incurred. In addition, if the sponsor of the fund has to
make a remedial contribution, fixed costs of λd = 600 (million euros) are incurred.
In this case, also variable costs have to be paid. We set λZ = 1 in this basic instance,
indicating that one euro paid by the sponsor is equally expensive as a euro paid by
the active participants of the fund. There is an upper bound on the amount the sponsor
is able or can be forced to pay in cases of financial distress for the pension fund. As
described above, this upper bound is a fraction τ of the level of the wages. In this basic
instance, it is 150 percent of the wages, denoted by τ = 1.5. At time t = 0, this implies
that the upper bound on a remedial contribution is equal to 366.

The contribution rate in ’year -1’ is supposed to be 17 percent. This information is
relevant, since changes in the contribution rate from one time period to the next are
penalized if they ar greater than ρ = 0.03. Larger increases are multiplied by λc+ = 2
times the level of the wages, and larger decreases are multiplied by λc− = 1.5 times
the level of the wages. Thus, the management of the fund pursues a relatively stable
contribution rate; large increases in the contribution rates are considered to be worse
than large decreases.

The maximum allowed expected shortage for the next year is equal to β = 450 (million
euros). This is slightly more than four percent of the initial asset value.

At the horizon, shortages are penalized and surplusses are rewarded. Shortages with
respect to the level θ = 1.05 are penalized by λθ = 0.0125, on top of λδ = 200.
On the other hand, surplusses with respect to the level ξ = 1.05 are rewarded by
λξ = −0.0045, thus shortages are penalized harder than surplusses are rewarded at the
horizon.

A summary of these parameter values is given in Table .

We solved the basic instance of the prototype model (with parameter settings as pre-
sented in Tables and ) by using AIMMS with solver XA. It took 25.56 seconds to find
the optimal solution. We also applied the heuristic, described in Section 3. It took 7.99
seconds to find the heuristic solution. Detailed information on the optimal solution and
the heuristic solution can be found in the appendix. The core of the numerical results is
described in Table .
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α = 1.05 λZ = 1 β = 400
F0 = 1.10 τ = 1.5 θ = 1.05
A0 = 10,394 c0 = 0.17 λθ = 0.00125
L0 = 9,449 ρ = 0.03 ξ = 1.05
λδ = 200 λc+ = 2 λξ = -0.00450
λd = 600 λc− = 1.5

Table 5.1: Parameter values for model 1.

In Table , it can be seen that the optimal value of the objective function is equal to
337 (million euros), whereas the value of the objective functin for the heuristic solution
is 23 percent higher: 414 (million euros). Moreover, in the second and fourth column
of Table it can be seen how these values are composed in funding costs and various
penalties. Also, the corresponding values of the decisions are indicated in the first and
third column. Basically, they denote ’total expected discounted value’.

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 23 7
Remedial contributions 41 40
Penalties Underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 21 31 28 42
Penalties Horizon
Surplus 6,447 -29 6,383 -29
Shortage 132 0 177 0
Total 337 414

Table 5.2: Decisions and contributions to the objective function for model instance 1.

From the numerical results in appendix ??, we conclude that in the basic instance,
there is a positive relationship between the level of the funding ratio and the fraction
of stocks in the asset portfolio. There is a negative relationship between the level of
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the funding ratio and the fraction of the assets invested in bonds and real estate. This
is what we expected, since if the funding ratio is relatively high, a little bit more risk
may be acceptable to invest in more promising assets. These relations hold for both the
optimal solution and the heuristic solution.

We will consider three scenarios (1, 25, and 32) in more detail, since in these scenarios
some interesting aspects appear. Although the numerical results for all scenarios for
this instance can be found in the appendix, we will present the results for the three
scenario mentioned above in Table for convenience. The return on the asset portfolio
from time t to time t + 1 is denoted by rtp.

s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.06 0 0 0 1.100

1 0.49 0.34 0.16 0 0.132 0.03 0 0 0 1.099
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.182
3 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.343
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.521
5 0 0 0 1.751

25 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.118 0 1 1 190 1.035
3 0.60 0.24 0.16 0 0.160 0 0 0 0 1.170
4 0.55 0.24 0.16 0.05 0.149 0 0 0 0 1.214
5 0 0 0 0 1.333

32 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.050 0 1 1 190 1.035
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 5.3: Results for optimal solution model instance 1.

In the initial asset portfolio, 45 percent of the assets is invested in stocks, which is equal
to its lower bound. The fraction invested in real estate is equal to its upper bound (16
percent), while the remaining assets are invested in bonds.
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The contribution rate at time t = 0 is equal to 6 percent. Penalty costs are incurred,
since the decrease in the contribution rate is 11 percent, which is more than ρ.

In scenario 1, the funding ratio increases from time t = 1 on. The fund never has to
deal with underfunding, and therefore the sponsor does not have to make a remedial
contribution. The contribution rate at time t = 1 is lowered to 3 percent, which is the
maximum decrease such that no penalties are incurred.

In scenario 25, we see that the sponsor of the pension fund has to make a remedial
contribution at time 2, since the funding ratios are less than α at times 1 and 2. Although
the funding ratio falls below its minimum required level at time t = 1, the contribution
rate decreases to 3 percent. This is not very realistic, and most managers would not
accept this decision. It would be more realistic if the contribution rate is relatively high
in cases of underfunding, so that the remedial contributions are not unnecessarily high.

In scenario 32, we have the same results as in scenario 25 for decision moments up
to and including time t = 2. This is forced by the nonanticipativity constraints, since
scenarios 25-32 coincide before time t = 3. In this scenario, the fund also has to deal
with underfunding at the horizon. The remedial contribution Z at time t = 2 is chosen,
such that underfunding is avoided at time t = 3.

The asset portfolios is constant through time in this scenario. At each decision moment,
assets are bought and sold, in such a way that the fraction of stocks is equal to its lower
bound, the fraction of real estate is equal to its upper bound, and the remaining assets
are invested in bonds.

In this scenario we have again unrealistic levels of the contribution rate. They are ac-
cording to us generally too low, and even equal to zero in the last three years, even
though the fund has to deal with underfunding at the horizon.

As already mentioned above, the solution of the heuristic differs from the optimal solu-
tion. However, the portfolio at time t = 0 coincides. The contribution rate at time t = 0
is 3 percent in the heuristic solution, which is even lower than the contribution rate in
the optimal solution. As a result, a larger penalty due to unstable contribution rates in
the heuristic solution is incurred.

The numerical results of the heuristic solution for all scenarios can be found in the
appendix. Scenarios 1, 25, and 32 will be discussed in more detail here. The numerical
results of these scenarios are presented in Table .

The numerical results for scenario 1 are approximately the same as in the optimal so-
lution. The funding ratio increases over time, the contribution rate decreases towards
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.100

1 0.49 0.35 0.16 0 0.130 0 0 0 0 1.097
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.178
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.338
4 0.65 0.24 0.11 0 0.180 0 0 0 0 1.510
5 0 0 0 1.731

25 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.118 0 1 1 167 1.033
3 0.65 0.24 0.11 0 0.150 0 0 0 0 1.166
4 0.65 0.24 0.11 0 0.178 0 0 0 0 1.226
5 0 0 0 1.380

32 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.050 0 1 1 167 1.033
3 0.45 0.39 0.16 0 0.050 0 1 1 40 1.046
4 0.55 0.29 0.16 0 0.050 0 0 0 0 1.077
5 1 0 0 1.032

Table 5.4: Results for heuristic solution model instance 1.

zero, and the fraction of the assets invested in stocks increases to its upper bound.

In scenario 25, there are also similarities between the solutions, since the funding ratio
is below α at times t = 1 and t = 2. The level of the remedial contribution in the
heuristic solution is equal to the amount of the shortage. This amount is lower than the
level of the remedial contribution made by the sponsor in the optimal solution.

In scenario 32, the sponsor has to make a remedial contribution twice. The first at time
t = 1 and the second one year later. The reason is that the contribution rate at the
beginning of the planning horizon is too low, such that underfunding cannot be avoided
at these decision moments. The level of the second remedial contribution is again equal
to the amount of the shortage.

We summarize the results of this first instance as follows:

• The portfolio decisions are in agreement with what we expect: the fraction of
stocks in the portfolio increases with the funding ratio.
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• The contribution rates are low, even if the fund has to deal with underfunding.
This is not what most managers would accept.

• The solution of the heuristic differs from the optimal solution. The major dif-
ferences are the number of remedial contributions to be made by the sponsor,
and the level of the contribution rates.

Instance 2: Other bounds on fractions in asset classes

In this instance, we will answer the fourth question. We consider a fund which is al-
lowed to invest all assets in one asset class. However, short selling is not allowed, re-
sulting in lower bounds equal to zero and upper bounds equal to one on the fractions of
the four asset classes in the portfolio. In the basic instance, the lower and upper bounds
on the asset classes were often binding. We expect that in this instance the fractions
of stocks in the asset portfolio increases above 65 percent in states of the world where
the funding ratio is relatively high, resulting in lower fractions of bonds, real estate and
cash in the portfolio. Due to other compositions of the portfolios, also the contribution
rates may change.

The objective function value for both the optimal and the heuristic solution are split up
in components. The results can be fount in Table in appendix . The numerical results
for scenarios 1, 25 and 32 are presented in Table in the appendix.

We will describe the results of the optimal solution first. It appears that relaxing the as-
set mix constraints results in an almost ideal solution for the pension fund: the funding
cost reduces from 64 to 8 (million euros), there is no underfunding and no remedial
contributions at any time in any scenario, and the levels of the contributions is modest
in the first year, and disappears in further years. The fund only invests in two asset
classes: stocks and real estate. In some states of the world, all assets are invested in
stocks. The reason that investments are only made in these two asset classes, is that the
mean returns on these two asset classes are the highest, and that there is a perfect neg-
ative correlation between stocks and real estate in our model. The best way to analyze
these results is by considering the funding ratios. In many states this ratio is equal to α.
We conclude that the amounts invested in real estate are such that there is a guarantee
that underfunding never occurs. Of course, this in an irrealistic feature of the scenar-
ios. It indicates that arbitrage is possible. By exploiting this property, the model is able
to guarantee that underfunding never occurs, by investing at a sufficient level in real
estate. The remaining fraction of the assets is invested in stocks. This results in large
changes in the composition of the asset portfolios.

32



At time t = 0, the contribution rate is three percent. This is the minimum amount,
necessary to have a guarantee that underfunding at time t = 1 does not occur in the
two states of the world which are possible. At later time moments, this guarantee also
holds for a contribution rate equal to zero. Due to this way of investing, the funding
ratios increase considerably in some scenarios.

The heuristic solution coincides with the optimal solution. This follows, since the linear
programming relaxation already gives the optimal solution.

Instance 3: Underfunding at time t = 0

In this instance, we will answer question five. We consider a pension fund which starts
at time t = 0 with a funding ratio of 1, which is less than α. We expect higher funding
costs in this case, due to both higher contributions by the active participants and higher
remedial contributions. If only the initial funding ratio is decreased to 1, i.e. A0 is
set equal to L0, and all other parameter values are as specified in Table , no feasible
solution exits. In order to be able to obtain a feasible solution, the maximum expected
shortage in the next year, denoted by β, is increased to 1,250 (million euros). Also the
upper bound on a remedial contribution has to be increased The value of τ has to be
increased to 6, given the value of β = 1, 250.

From the numerical results, which are presented in Table in the appendix, we conclude
that the funding costs increase dramatically, from 64 to 545 (million euros). There are
five states of the world in which the funding ratio is below α (one of them is the state
at time t = 0). In both states at time t = 1, the funding ratio is too low, indicating that
the sponsor has to make a remedial contribution in these states. In the optimal solution,
these amounts are such that no remedial contribution has to be made at later decision
moments.

Also the contribution rates are higher than in the basic instance in many states of the
world. The level of the initial contribution rate is surprising, however. Although the
sponsor has to make a remedial contribution at the end of the first year, the contribution
rate is lowered to 14 percent in the first year. The contribution rate gradually decreases
to zero at later decision moments.

The fraction of the assets invested in stocks at time t = 0 is 4% higher than in the basic
instance, and the fraction of the assets invested in bonds is lowered by this percentage.
The amounts invested in real estate and cash at time t = 0 are the same as in the basic
instance.
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In the heuristic solution, the funding ratio is below α in only four states of the world.
This is the result of an even higher remedial contribution at time t = 1. The sponsor
has to make these contributions in the same states of the world.

The contribution rates are always zero, except in two states of the world, in which
this rate is equal to three percent. This is not what most managers will consider as
reasonable solutions, given the low initial funding ratio.

The portfolios in the optimal solutions closely resemble those in the heuristic solution.
The largest difference in the optimal and heuristic solutions between the fractions of
the assets invested in one asset class is 5%.

Instance 4: Increase variable costs sponsor

Here, we will answer question 6. In this instance, each euro the sponsor has to pay is
more expensive than each euro which is paid by the active participants. This may be
reasonable, since the sponsor may have to lend the money, in which case interest costs
also have to be paid. We represent these higher costs by increasing λZ to 1.1. That is,
each euro paid by the sponsor is ten percent more expensive than a euro paid by the
participants.

In the optimal solution, we obtained the same portfolios and also the same levels of
the contribution rates as in the basic instance. The contribution rate at time t = 0 is 6
percent. This is the minimum level such that the funding ratio in scenario 32 at time
t = 3 is equal to α, and such that no penalty costs are incurred after time t = 0 due to
large increases in the contribution rate. The results of this scenario, together with those
of scenarios 1 and 25, are presented in the appendix.

There are three states of the world in which the funding ratio is below its minimum
required level. The sponsor has to make a remedial contribution in one of them.

The heuristic solution coincides with the corresponding solution in the basic instace.
The only difference between the solutions, is that in instance 4 there are also penalties
incurred for the remedial contributions.

Instance 5: Higher penalty variable costs remedial contributions

In the previous instance, each euro to be paid by the sponsor is ten percent more expen-
sive than a euro to be paid by the active participants. However, the contribution rates are
still very low in that instance. This can be explained by the fact that a positive contribu-
tion rate implies costs in both child nodes, while a remedial contribution is only made
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in the child node in which underfunding occurs. Since the cash flows are multiplied by
the probabilities, making remedial contributions is more advantageous in cases where
only in one of the two child nodes the sponsor has to make a remedial contribution if
λZ is not much higher than 1. Therefore, we increase the variable costs for each euro
paid by the sponsor to λZ = 2.5. We expect that the contribution rates are higher in this
case.

The numerical results of this instance are presented in Table in the appendix. From this
table we conclude that the contribution rate is indeed higher than in the basic instance
at time t = 0. It equals 14 percent at this decision moment.

As a result of the higher contribution rates, it suffices to pay a lower remedial contri-
bution at time t = 2. The asset portfolio is approximately equal to those in the basic
instance.

The results of the heuristic solution are presented in Table . In this heuristic solution, the
funding ratio is below its minimum required level in 4 states of the world, and in two of
them the sponsor has to make a remedial contribution. As already mentioned in a few
instances described above, the contribution rates are very low. In fact, most managers
will consider them to be too low. The asset portfolios in the heuristic solution are close
to the portfolios in the optimal solution.

Instance 6: Lower returns on stocks

In the sixth instance we consider, the returns on stocks are lowered by four percent in
all time periods in all scenarios. This is done, since the average return of more than ten
percent per year, is considered as too optimistic by some managers. We expect that the
fraction of assets invested in stocks will decrease.

This is indeed the case. The fraction of assets invested in real estate is always equal to
its upper bound. The fund invests also more in cash, and, to a lesser degree, it increases
in bonds. The initial portfolio is approximately the same as in the first instance.

The contribution rate is in our opinion more realistic than in the instances considered
before. The initial contribution rate is almost 20 percent. However, even if the fund-
ing ratio drops to a level below α at time t = 1, the contribution rate is decreased
considerably. This is not very realistic.

The value of the objective function equals 937. This is 178 % higher than the corre-
sponding value in the basic instance. The funding costs are 436 % higher than in the
basic instance. In the appendix, the results for scenarios 1, 13, 25 and 32 are presented.
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In scenario 13, the funding ratio is below α at time t = 3. However, the sponsor does
not have to make a remedial contribution. In scenario 32, the funding ratio is below its
minimum required level at three decision moments. However, the sponsor has to make
a remedial contribution only once.

The composition of the asset portfolios in the heuristic solution closely resembles those
in the optimal solution. However, the differences in the levels of the contribution rates in
these two solutions are dramatically. The contribution rates are all zero in the heuristic
solution, although there are four states of the world in which the funding ratio is below
α, and the sponsor has to make a remedial contribution in three of them.

Instance 7: No upper bound on remedial contribution

Instead of requiring an upper bound on the amount the sponsor is prepared to (or can be
forced to) pay in case of financial distress, we consider an instance in which no upper
bound on this amount is given. We obtained the same solution as in the basic instance,
both for the optimal and the heuristic solution.

We considered also the parameter settings as described in instance 3, except that the
fixed costs associated with underfunding is increased to λδ = 1500. The funding ratio
at time t = 0 is 1, which is strictly below its minimum required level. We expect
that higher fixed costs associated with underfunding will lead to discrepancies with the
basic instance.

The numerical results of this instance are presented in Table ?? in appendix . The
sponsor of the fund has to make a remedial contribution immediately in this case. The
level of this contribution is such that in all future states considered, the funding ratio is
sufficiently high, so that fixed costs due to underfunding are avoided in the future. The
contribution rates are in all time periods equal to zero.

The heuristic solution coincides coincides with the heuristic solution of instance 3. The
contribution rates are lower than in the optimal solution. This results in underfunding
at the horizon in scenario 32.

Instance 8: No rewards and penalties horizon

In all instances described above, surplusses at the horizon were rewarded, and short-
ages penalized. In this instance of the prototype model, we remove these rewards and
penalties. We do not expect major changes in the decisions.
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The initial portfolio in the optimal solution is the same as in the basic instance. How-
ever, there are significant differences in the composition of the portfolios as we ap-
proach the horizon. If surplusses and shortages at the horizon are rewarded or penal-
ized, the fraction of assets invested in stocks is often equal to its upper bound. The
reason is that the fund invests rather aggressively in order to reap the profits in case of
high funding ratios. Other decisions are more or less the same: low contribution rates,
and the sponsor has to make a remedial contribution only once.

At times t = 3 and t = 4, there are large differences in the compositions of the asset
portfolios in the optimal and heuristic solution. In the heuristic solution, the fraction
of assets invested in stocks is higher than in the optimal solution in most states of the
world at times t = 3 and t = 4.

The average funding ratio is one percent higher if surplusses are rewarded and shortages
are penalized.

Instance 9: Higher rewards horizon

In the first eight instances of the prototype model, shortages at the horizon were penal-
ized harder than surplusses rewarded. In this instance, we do the opposite. This is done
by changing the value of λξ to -0.01. The numerical results of this change can be found
in Table in the appendix.

In the optimal solution, all decisions regarding contribution rates and remedial contri-
butions are exactly the same as in the basic instance. The asset portfolios are also the
same up to and including time t = 2. In decision nodes at times time t = 3 and t = 4,
a higher fraction of the assets is invested in stocks.

The same conclusion can be drawn from the heuristic solution. The portfolios are the
same in the first three decision periods. In the last two years, there are differences: more
is invested in stocks.

Instance 10: Integrated chance constraints binding

In the previously described instances, the integrated chance constraints were not bind-
ing. We consider here an instance, in which the maximum expected shortage in the next
year is decreased to 200. Question ten will be answered here.

The asset portfolios do not change much, as compared to the basic instance. In partic-
ular, the initial portfolios are equal. In scenario 32 at time t = 1, the integrated chance
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constraints are binding. However, the same portfolio is selected as in the basic instance
at this decision moment.

The contribution rate is 11.5 percent at time t = 0, while this rate was 0 in the basic
instance. This level is necessary to obtain an asset value at time t = 1, such that the
integrated chance constraints can be satisfied.

In the heuristic solution, we obtain the same initial portfolio, and also the same initial
contribution rate as in the optimal solution. Of course, the reason is the same as de-
scribed previously. For the remaining decision moments, the heuristic solution closely
resembles the solutions of many other instances described above. Although the funding
ratio is below its minimum required level in some states of the world, the contribution
rates are considered as too low by most managers.

Instance 11: No penalties large changes contribution rate

In the first ten instances, changes (either increases or decreases) in the contribution
rates in two consecutive time periods greater than three percent were penalized. In
this instance we do not penalize large deviations. Given the results of the previously
described instances, we expect that the contribution rates decrease faster or become
even zero in all periods, since at time t = 0 a contribution rate equal to zero will not be
penalized.

The numerical results can be found in Table in the appendix. The contribution rates in
the optimal solution are zero in all states of the world. The initial portfolio is equal to
the portfolio in the basic instance. Also at later decision moment, the portfolios closely
resemble.

The absence of the contributions by the active participants results in a higher remedial
contribution in scenario 25 at time t = 2. This is the only state of the world in which
the sponsor has to make a remedial contribution in this instance.

In the heuristic solution, the contribution rates are always zero too. As in the basic
instance, the sponsor of the fund has to make a remedial contribution in two states of
the wold. The asset portfolios are approximately the same as in the optimal solution,
although the fund invests more in cash in the heuristic solution when the horizon is
approached.

38



Instance 12: Remedial contribution as soon as funding ratio is too low

In this instance, the sponsor of the fund has to make a remedial contribution as soon as
the funding ratio is below α. The results of this instance are presented in Table .

The funding costs increase in this case to 131. This is an increase of 105% compared
with the funding costs in the basic instance. These costs increase due to both higher
contribution rates and a higher level of the remedial contribution in scenario 17 at time
t = 1. The higher funding costs result in only one state of the world in which the
funding ratio is too low.

The contribution rates are more in accordance with what we expect. They increase in
scenario 32, so that the funding ratio is sufficiently high at the horizon.

In the solution of the heurisitic, the sponsor has to make a remedial contribution twice.
The total amount the sponsor has to pay is larger, due to lower levels of the contribution
rate.

Answers to the questions

We started this section with a number of questions. Now we will give provisional an-
swers to them, based on the numerical results of the instances described.

1. The portfolios are in accordance with what we expected. There is a positive
correlation between the level of the contribution rate and the fraction of assets
invested in stocks.
The contribution rates are more puzzling. They are generally very low, and in
most states of the world even equal to zero, although the sponsor has to make
remedial contributions in some states of the world.

2. In the optimal solutions, the sponsor has to make a remedial contribution only if
the funding ratio is below its minimum required level in two consecutive years.
The funding costs are in this case lower than if the sponsor has to restore the
funding ratio as soon as it drops below α. In the optimal solutions, the levels of
the remedial contributions are such that in the next time period(s) the funding
ratio is greater than or equal to α.

3. By and large, the portfolios in the heuristic solution resemble those in the op-
timal solution. However, in most instances the contribution rates are equal to
zero in all states of the world, whereas they are strictly positive in some states
of the world in the optimal solutions. This results in higher remedial contribu-
tions. To compensate, the remedial contributions are larger and more frequent
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in the heuristic solution.

4. The portfolios change substantially if the lower and upper bounds on the frac-
tions of the asset classes are replaced by zero and one respectively. The pension
fund only invests in stocks and real estate in this case, since there is a perfect
negative correlation between the returns of these asset classes in our model.
This results in a sufficiently high funding ratio in all 32 scenarios in all time
periods.

5. If the initial funding ratio is below α at time t = 0, the contribution rates are
higher than in the basic instance. This results in lower remedial contributions at
time t = 1.

6. If each euro paid by the sponsor is ten percent more expensive than a euro
paid by active participant, the contribution rates are still very low in both the
optimal and the heuristic solution. However, as the penalty costs associated with
payments by the sponsor increases to 150 percent (λZ = 2.5), the contributions
rates do increase, leading to lower remedial contributions. This conforms to our
expectations.

7. If all returns on stocks are lowered by four percent, the fund invests less in this
asset class in most states of the world. The contribution rates increase in the
first years. However, there are large discrepancies between the optimal and the
heuristic solution, both in asset allocations and contribution rates.

8. The solutions do not change if there are no upper bounds on the remedial contri-
butions in the eleven instances described above. However, for sufficiently large
fixed costs, a remedial contribution has to be made only once, if the funding
ratio at time t = 0 is below its minimum required level α.

9. The optimal and heuristic solution change only marginally from those of the
basic instance in the first three years if surplusses and shortages at the hori-
zon are not rewarded and penalized anymore. Only in the last two years, the
composition of the portfolios differ much from those in the basic instance.

10. Instance 10 is the only instance in which the integrated chance constraints are
binding. In this instance, the contribution rates are higher than in the basic in-
stance, because the asset value in one state of the world has to increase in order
to be able to meet this constraint. The composition of the asset portfolio are not
much different from those in the basic instance.

11. If there are no penalties on the contribution rate increases or decreases substan-
tially in two consecutive years, the contributions become zero in all states of the
world.

40



Future research

The numerical results of the instances of the prototype model described in this paper,
are used to make decisions regarding future research. First of all, we would like to
improve the heuristic. In some instances, the solution of the heuristic resembles the
optimal solution, but in some cases, the results differ too much. Especially the levels of
the contribution rates are of much concern.

A second improvement can be made in the way the scenarios are generated. In par-
ticular the dependencies between the returns on stocks, bonds, and real estate are not
realistic. In addition, the number of scenarios should be increased, to make decision
making more realistic.

In the future, we will also add other decision variables to the ALM model. For example,
we would like to add indexations as decisions. Also, a restitution to the sponsor in case
of high funding ratios can be considered.

6. Summary and conclusions

We developed an Asset Liability Management (ALM) model which contains some new
and important aspects which we did not encounter in other ALM models, leading to
more realistic ALM models for pension funds. The first new aspect is the flexible mod-
eling of remedial contributions after several periods of underfunding. This new model-
ing feature is important, since as described in H.A. Klein Haneveld [0] the supervisor
of pension funds in The Netherlands uses this criterion to judge the solvency position
of a pension fund.

Special attention is also paid to the incorporation of risk constraints. We have seen
that there is a close relationship between chance constraints and integrated chance con-
straints. The latter are to be preferred, from a mathematical point of view, and also by
the fact that not only probabilities are taken into account, but also amounts of shortage.

We also presented a heuristic to find a feasible solution for our ALM model, since for
realistically sized ALM models, it is in general impossible to find an optimal solution,
due to the introduction of binary variables.

The most remarkable results are those for the contribution rates. They are in general
very low, and in most states of the world even equal to zero. This is explained by the
relatively low variable costs if a remedial contribution has to be made. If these costs are
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increased, contribution rates increase in the years before the sponsor has to restore the
funding ratio. If all returns on stocks are lowered by four percent, or in cases where the
integrated chance constraints are binding, the initial contribution rates are more on a
level that we expect. In these instances, high contribution rates are necessary to obtain
a feasible solution. In the solution of the heuristic, the contribution rates generally are
even lower than those in the optimal solution.

At time t = 0, the asset portfolios of the different instances are very similar. At later
decision moments, however, there are substantial differences between these portfolios.
The results of instance 8 stand out in particular. In this instance, we also saw the largest
differences between the portfolios in the heuristic solution, and the portfolios in the
optimal solution.

In many instances, the funding ratio is below α in 3 states of the world in the optimal
solution, but the sponsor has to make a remedial contribution only once. In the solution
obtained with the heuristic, in almost all instances the funding ratio is below its mini-
mum required level in 4 states, while the sponsor has to make a remedial contribution
to the fund twice.

If the sponsor of the fund has to make a remedial contribution as soon as the funding
ratio is below its minimum required level, funding costs increase. The reason is that
the sponsor has to make these payments more often, and the total amount the sponsor
has to pay increases significantly in this case. If a remedial contribution has to be made
after two consecutive periods of underfunding, there is a possibility of a recovery of
financial markets, which may cause funding ratios to increase.

42



]

Appendix

43



Appendix A:

Realizations uncertain parameters

s Returns stocks Returns bonds
1 0.278 0.278 0.278 0.278 0.278 -0.002 -0.002 -0.002 -0.002 -0.002
2 -0.070 0.125
3 -0.070 0.278 0.125 -0.002
4 -0.070 0.125
5 -0.070 0.278 0.278 0.125 -0.002 -0.002
6 -0.070 0.125
7 -0.070 0.278 0.125 -0.002
8 -0.070 0.125
9 -0.070 0.278 0.278 0.278 0.125 -0.002 -0.002 -0.002
10 -0.070 0.125
11 -0.070 0.278 0.125 -0.002
12 -0.070 0.125
13 -0.070 0.278 0.278 0.125 -0.002 -0.002
14 -0.070 0.125
15 -0.070 0.278 0.125 -0.002
16 -0.070 0.125
17 -0.070 0.278 0.278 0.278 0.278 0.125 -0.002 -0.002 -0.002 -0.002
18 -0.070 0.125
19 -0.070 0.278 0.125 -0.002
20 -0.070 0.125
21 -0.070 0.278 0.278 0.125 -0.002 -0.002
22 -0.070 0.125
23 -0.070 0.278 0.125 -0.002
24 -0.070 0.125
25 -0.070 0.278 0.278 0.278 0.125 -0.002 -0.002 -0.002
26 -0.070 0.125
27 -0.070 0.278 0.125 -0.002
28 -0.070 0.125
29 -0.07 0.278 0.278 0.125 -0.002 -0.002
30 -0.070 0.125
31 -0.070 0.278 0.125 -0.002
32 -0.070 0.125
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s Returns real estate Returns cash
1 -0.039 -0.039 -0.039 -0.039 -0.039 0.054 0.050 0.048 0.046 0.045
2 0.202 0.061
3 0.202 -0.039 0.062 0.055
4 0.202 0.071
5 0.202 -0.039 -0.039 0.063 0.056 0.051
6 0.202 0.067
7 0.202 -0.039 0.072 0.062
8 0.202 0.078
9 0.202 -0.039 -0.039 -0.039 0.066 0.058 0.052 0.049
10 0.202 0.065
11 0.202 -0.039 0.068 0.059
12 0.202 0.075
13 0.202 -0.039 -0.039 0.074 0.063 0.056
14 0.202 0.072
15 0.202 -0.039 0.079 0.066
16 0.202 0.082
17 0.202 -0.039 -0.039 -0.039 -0.039 0.070 0.060 0.054 0.050 0.048
18 0.202 0.063
19 0.202 -0.039 0.066 0.058
20 0.202 0.074
21 0.202 -0.039 -0.039 0.070 0.060 0.054
22 0.202 0.070
23 0.202 -0.039 0.076 0.064
24 0.202 0.081
25 0.202 -0.039 -0.039 -0.039 0.076 0.064 0.057 0.052
26 0.202 0.068
27 0.202 -0.039 0.073 0.062
28 0.202 0.078
29 -0.07 -0.039 -0.039 0.08 0.067 0.058
30 0.202 0.074
31 0.202 -0.039 0.083 0.069
32 0.202 0.085
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s Liabilities Wages
1 9449 10118 10198 10139 10177 10086 244 257 256 255 254 254
2 10127 259
3 10073 10157 260 258
4 9970 263
5 10179 9897 9808 260 258 256
6 10150 262
7 9970 9654 264 260
8 9520 266
9 10321 9904 10063 10067 261 259 257 256
10 10086 261
11 9977 9684 262 259
12 9935 265
13 10403 9646 10148 264 261 258
14 10159 264
15 9522 9336 266 262
16 9381 267
17 10104 9941 9920 10021 10269 262 259 257 256 255
18 10274 260
19 10291 9846 261 259
20 9893 264
21 9879 9560 10064 263 260 258
22 10016 263
23 9525 9382 265 261
24 9193 267
25 9999 9549 10143 10102 265 261 259 257
26 10023 262
27 10048 9470 264 261
28 9606 266
29 9941 9400 9942 267 262 259
30 9782 265
31 9500 9014 268 263
32 9676 269
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s Benefit payments Discount factors
1 514 538 562 586 609 0.949 0.904 0.863 0.825 0.789
2 622 0.778
3 598 631 0.813 0.770
4 645 0.759
5 574 607 638 0.850 0.805 0.765
6 651 0.754
7 620 661 0.793 0.747
8 675 0.736
5 550 582 613 642 0.890 0.842 0.800 0.762
10 656 0.751
11 658 665 0.788 0.744
12 684 0.733
13 642 635 672 0.829 0.780 0.739
14 686 0.728
15 649 696 0.769 0.721
16 711 0.710
17 524 558 588 617 645 0.935 0.882 0.836 0.796 0.760
18 659 0.749
15 630 669 0.785 0.742
20 683 0.731
21 601 640 675 0.824 0.777 0.737
22 690 0.726
23 653 700 0.765 0.719
24 715 0.708
25 570 601 646 680 0.868 0.816 0.772 0.734
26 694 0.723
27 660 705 0.761 0.716
28 720 0.706
25 623 669 712 0.804 0.753 0.712
30 727 0.701
31 684 738 0.742 0.694
32 753 0.684
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Appendix B:

Basic instance: optimal solution

s Fractions stocks Fractions bonds
1 0.45 0.50 0.65 0.65 0.65 0.39 0.34 0.24 0.24 0.24
2
3 0.55 0.24
4
5 0.65 0.65 0.25 0.24
6
7 0.65 0.24
8
9 0.45 0.65 0.55 0.39 0.24 0.24
10
11 0.65 0.24
12
13 0.65 0.65 0.24 0.25
14
15 0.55 0.24
16
17 0.45 0.65 0.65 0.55 0.39 0.24 0.24 0.24
18
19 0.65 0.29
20
21 0.60 0.65 0.24 0.24
22
23 0.56 0.24
24
25 0.45 0.60 0.55 0.39 0.24 0.24
26
27 0.62 0.27
28
29 0.45 0.55 0.39 0.24
30
31 0.45 0.39
32
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s Fractions real estate Fractions cash
1 0.16 0.16 0.11 0.06 0.06 0 0 0 0.05 0.05
2
3 0.16 0.05
4
5 0.06 0.06 0.04 0.05
6
7 0.06 0.05
8
9 0.16 0.11 0.16 0 0 0.05
10
11 0.06 0.05
12
13 0.06 0.06 0.05 0.04
14
15 0.16 0.05
16
17 0.16 0.11 0.06 0.16 0 0 0.05 0.05
18
19 0.06 0
20
21 0.16 0.11 0 0
22
23 0.16 0.04
24
25 0.16 0.16 0.16 0 0 0.05
26
27 0.06 0.05
28
29 0.16 0.16 0 0.05
30
31 0.16 0
32
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s Portfolio returns Contribution rates
1 0.118 0.132 0.176 0.180 0.180 0.06 0.03 0 0 0
2 0.000
3 -0.000 0.149 0
4 0.027
5 0.007 0.180 0.180 0 0
6 0.000
7 0.000 0.181 0
8 0.001
9 0.040 0.118 0.176 0.149 0 0 0
10 0.027
11 0.007 0.181 0
12 0.000
13 0.050 0.181 0.180 0 0
14 0.001
15 0.001 0.149 0
16 0.028
17 0.050 0.118 0.176 0.180 0.149 0.03 0 0 0
18 0.027
19 0.000 0.178 0
20 0.003
21 0.007 0.161 0.176 0 0
22 0.007
23 0.020 0.152 0
24 0.026
25 0.050 0.118 0.160 0.149 0 0 0
26 0.027
27 0.020 0.173 0
28 0.006
29 0.050 0.118 0.149 0 0
30 0.028
31 0.050 0.118 0
32 0.005
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s δ d

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0
3 0 0 0 0
4 0 0
5 0 0 0 0 0 0
6 0 0
7 0 0 0 0
8 0 0
9 0 0 0 0 0 0 0 0
10 0 0
11 0 0 0 0
12 0 0
13 0 0 0 0 0 0
14 0 0
15 0 0 0 0
16 0 0
17 1 0 0 0 0 0 0 0 0 0
18 0 0
19 0 0 0 0
20 0 0
21 0 0 0 0 0 0
22 0 0
23 0 0 0 0
24 0 0
25 1 0 0 0 1 0 0 0
26 0 0
27 0 0 0 0
28 0 0
29 0 0 0 0 0 0
30 0 0
31 0 0 0 0
32 1 0
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s Remedial contributions Funding ratios
1 0 0 0 0 0 0 1.100 1.099 1.182 1.343 1.521 1.751
2 0 1.467
3 0 0 1.292 1.410
4 0 1.276
5 0 0 0 1.136 1.318 1.505
6 0 1.221
7 0 0 1.098 1.271
8 0 1.080
9 0 0 0 0 1.068 1.185 1.311 1.441
10 0 1.278
11 0 0 1.118 1.292
12 0 1.055
13 0 0 0 1.050 1.272 1.360
14 0 1.140
15 0 0 1.080 1.191
16 0 1.051
17 1 0 0 0 0 1.029 1.114 1.253 1.403 1.510
18 0 1.341
19 0 0 1.147 1.344
20 0 1.127
21 0 0 0 1.068 1.213 1.288
22 0 1.097
23 0 0 1.061 1.167
24 0 1.050
25 190 0 0 0 1.035 1.170 1.214 1.333
26 0 1.193
27 0 0 1.069 1.256
28 0 1.050
29 0 0 0 1.050 1.170 1.200
30 0 1.081
31 0 0 1.081 1.192
32 1 1.036
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Appendix C:

Basic instance: heuristic solution

s Fractions stocks Fractions bonds
1 0.45 0.49 0.65 0.65 0.65 0.39 0.35 0.24 0.24 0.24
2
3 0.60 0.24
4
5 0.65 0.60 0.24 0.24
6
7 0.65 0.24
8
9 0.45 0.65 0.60 0.39 0.24 0.24
10
11 0.65 0.24
12
13 0.60 0.55 0.24 0.24
14
15 0.63 0.24
16
17 0.45 0.65 0.65 0.65 0.39 0.24 0.24 0.24
18
19 0.55 0.24
20
21 0.58 0.55 0.24 0.24
22
23 0.55 0.24
24
25 0.45 0.65 0.65 0.39 0.24 0.24
26
27 0.56 0.24
28
29 0.45 0.65 0.39 0.29
30
31 0.45 0.39
32
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s Fractions real estate Fractions cash
1 0.16 0.16 0.11 0.11 0.11 0 0 0 0 0
2
3 0.16 0
4
5 0.11 0.16 0 0
6
7 0.11 0
8
9 0.16 0.11 0.16 0 0 0
10
11 0.06 0.05
12
13 0.16 0.16 0 0.05
14
15 0.08 0.05
16
17 0.16 0.11 0.06 0.06 0 0 0.05 0.05
18
19 0.16 0.05
20
21 0.13 0.16 0.05 0.05
22
23 0.16 0.05
24
25 0.16 0.11 0.11 0 0 0
26
27 0.15 0.05
28
29 0.16 0.06 0 0
30
31 0.16 0
32
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s Portfolio returns Contribution rates
1 0.118 0.130 0.176 0.176 0.176 0.03 0 0 0 0
2 0.000
3 0.007 0.160 0
4 0.020
5 0.007 0.176 0.160 0 0
6 0.000
7 0.007 0.176 0
8 0.007
9 0.041 0.118 0.176 0.160 0 0 0
10 0.020
11 0.007 0.181 0
12 0.000
13 0.050 0.160 0.149 0 0
14 0.027
15 0.020 0.175 0
16 0.006
17 0.050 0.118 0.176 0.180 0.180 0 0 0 0
18 -0.000
19 0.000 0.149 0
20 0.028
21 0.007 0.158 0.149 0 0
22 0.027
23 0.020 0.149 0
24 0.028
25 0.050 0.118 0.154 0.176 0 0 0
26 0.007
27 0.024 0.153 0
28 0.024
29 0.050 0.118 0.150 0 0
30 0.022
31 0.050 0.118 0
32 0.005
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s δ d

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0
3 0 0 0 0
4 0 0
5 0 0 0 0 0 0
6 0 0
7 0 0 0 0
8 0 0
9 0 0 0 0 0 0 0 0
10 0 0
11 0 0 0 0
12 0 0
13 0 0 0 0 0 0
14 0 0
15 0 0 0 0
16 0 0
17 1 0 0 0 0 0 0 0 0 0
18 0 0
19 0 0 0 0
20 0 0
21 0 0 0 0 0 0
22 0 0
23 0 0 0 0
24 0 0
25 1 0 0 0 1 0 0 0
26 0 0
27 0 0 0 0
28 0 0
29 1 0 0 1 0 0
30 0 0
31 0 0 0 0
32 1 0
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s Remedial contributions Funding ratios
1 0 0 0 0 0 0 1.100 1.098 1.178 1.338 1.510 1.731
2 0 1.466
3 0 0 1.297 1.430
4 0 1.272
5 0 0 0 1.132 1.308 1.466
6 0 1.237
7 0 0 1.101 1.269
8 0 1.090
9 0 0 0 0 1.068 1.185 1.311 1.456
10 0 1.269
11 0 0 1.118 1.292
12 0 1.055
13 0 0 0 1.050 1.248 1.297
14 0 1.150
15 0 0 1.102 1.246
16 0 1.050
17 1 0 0 0 0 1.028 1.112 1.251 1.401 1.550
18 0 1.302
19 0 0 1.145 1.307
20 0 1.155
21 0 0 0 1.066 1.209 1.252
22 0 1.116
23 0 0 1.059 1.161
24 0 1.050
25 167 0 0 0 1.033 1.166 1.226 1.380
26 0 1.180
27 0 0 1.050 1.211
28 0 1.050
29 40 0 0 1.046 1.166 1.225
30 0 1.050
31 0 0 1.077 1.187
32 1 1.032
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Appendix D:

Instance 2

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 8 8
Remedial contributions 0 0 0 0
Penalties underfunding
Fixed costs underfunding 0 0 0 0
Fixed costs Z > 0 0 0 0 0
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 28 42 28 42
Penalties horizon
Surplus 8200 -36.9 8200 -36.9
Shortage 0 0 0 0
Total 13 13

Table 4.1: Decisions and contributions to the objective function for model instance 2.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.47 0 0.53 0 0.111 0.03 0 0 0 1.100

1 0.62 0 0.38 0 0.157 0 0 0 0 1.089
2 0.97 0 0.03 0 0.269 0 0 0 0 1.197
3 1.00 0 0.00 0 0.278 0 0 0 0 1.472
4 0.59 0 0.41 0 0.147 0 0 0 0 1.817
5 0 0 0 2.041

25 0 0.47 0 0.53 0 0.073 0.03 0 0 0 1.100
1 0.58 0 0.41 0 0.043 0 0 0 0 1.050
2 0.55 0 0.45 0 0.134 0 0 0 0 1.050
3 0.77 0 0.23 0 0.206 0 0 0 0 1.183
4 1.00 0 0.00 0 0.278 0 0 0 0 1.279
5 0 0 0 1.574

32 0 0.47 0 0.53 0 0.073 0.03 0 0 0 1.100
1 0.58 0 0.41 0 0.043 0 0 0 0 1.050
2 0.55 0 0.45 0 0.053 0 0 0 0 1.050
3 0.67 0 0.33 0 0.021 0 0 0 0 1.050
4 0.40 0 0.60 0 0.094 0 0 0 0 1.050
5 0 0 0 1.050

Table 4.2: Results optimal solution for model instance 2.
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Appendix E:

Instance 3

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 56 9
Remedial contributions 889 1,102
Penalties underfunding
Fixed costs underfunding 2.1 413 2 393
Fixed costs Z > 0 0.9 565 0.9 565
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 15 23 28 42
Penalties horizon
Surplus 6,214 -28 6,497 -29
Shortage 132 0 100 0
Total 1,920 2,082

Table 5.1: Decisions and contributions to the objective function for model instance 3.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.49 0.35 0.16 0 0.128 0.14 1 0 0 1.000

1 0.45 0.39 0.16 0 0.118 0.11 1 1 643 1.006
2 0.65 0.24 0.11 0 0.176 0.03 0 0 0 1.136
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.289
4 0.60 0.24 0.16 0 0.176 0 0 0 0 1.453
5 0 0 0 1.641

25 0 0.49 0.35 0.16 0 0.043 0.14 1 0 0 1.000
1 0.47 0.37 0.16 0 0.046 0.03 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.118 0 0 0 0 1.054
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.170
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.231
5 0 0 0 1.387

32 0 0.49 0.35 0.16 0 0.043 0.14 1 0 0 1.000
1 0.47 0.37 0.16 0 0.046 0.03 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.050 0 0 0 0 1.054
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 5.2: Results optimal solution for model instance 3.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.47 0.37 0.16 0 0.118 0.03 1 0 0 1.000

1 0.45 0.39 0.16 0 0.130 0 1 1 1,198 0.999
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.155
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.310
4 0.65 0.24 0.11 0 0.180 0 0 0 0 1.478
5 0 0 0 1.693

25 0 0.47 0.37 0.16 0 0.050 0.03 1 0 0 1.000
1 0.45 0.39 0.16 0 0.050 0 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.118 0 0 0 0 1.057
3 0.65 0.24 0.11 0 0.150 0 0 0 0 1.173
4 0.60 0.24 0.16 0 0.178 0 0 0 0 1.235
5 0 0 0 1.371

32 0 0.47 0.37 0.16 0 0.050 0.03 1 0 0 1.000
1 0.45 0.39 0.16 0 0.050 0 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.050 0 0 0 0 1.057
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.053
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.084
5 1 0 0 1.040

Table 5.3: Results heuristic solution for model instance 3.
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Appendix F:

Instance 4

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 23 7
Remedial contributions 41 40
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z 41 4 40 4
Penalties contribution
Large increases and decreases 21 31 28 42
Penalties horizon
Surplus 6,444 -29 6,422 -29
Shortage 132 0 177 0
Total 341 418

Table 6.1: Decisions and contributions to the objective function for model instance 4.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.06 0 0 0 1.100

1 0.50 0.34 0.16 0 0.132 0.03 0 0 0 1.099
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.182
3 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.343
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.521
5 0 0 0 1.751

25 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.118 0 1 1 190 1.035
3 0.60 0.24 0.16 0 0.160 0 0 0 0 1.170
4 0.55 0.24 0.16 0.05 0.149 0 0 0 0 1.214
5 0 0 0 1.333

32 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.050 0 1 1 190 1.035
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 6.2: Results optimal solution for model instance 4.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.100

1 0.49 0.35 0.16 0 0.130 0 0 0 0 1.097
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.178
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.338
4 0.65 0.24 0.11 0 0.180 0 0 0 0 1.510
5 0 0 0 1.731

25 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.118 0 1 1 167 1.033
3 0.65 0.24 0.11 0 0.150 0 0 0 0 1.166
4 0.65 0.24 0.11 0 0.178 0 0 0 0 1.226
5 0 0 0 1.380

32 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.050 0 1 1 167 1.033
3 0.45 0.39 0.16 0 0.050 0 1 1 40 1.046
4 0.55 0.29 0.16 0 0.050 0 0 0 0 1.077
5 1 0 0 1.032

Table 6.3: Results heuristic solution for model instance 4.
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Instance 5

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 64 9
Remedial contributions 60 143
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 17 25 28 42
Penalties horizon
Surplus 6,582 -30 6,353 -29
Shortage 132 0 231 0
Total 391 517

Table 6.4: Decisions and contributions to the objective function for model instance 5.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.14 0 0 0 1.100

1 0.51 0.33 0.16 0 0.135 0.03 0 0 0 1.101
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.187
3 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.349
4 0.65 0.29 0.06 0 0.178 0 0 0 0 1.529
5 0 0 0 1.756

25 0 0.45 0.39 0.16 0 0.050 0.14 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.11 1 0 0 1.031
2 0.45 0.39 0.16 0 0.118 0.03 1 1 111 1.039
3 0.60 0.24 0.16 0 0.160 0 0 0 0 1.170
4 0.55 0.24 0.16 0.05 0.149 0 0 0 0 1.215
5 0 0 0 1.333

32 0 0.45 0.39 0.16 0 0.050 0.14 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.11 1 0 0 1.031
2 0.45 0.39 0.16 0 0.050 0.14 1 1 111 1.039
3 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.082
5 1 0 0 1.037

Table 6.5: Results optimal solution for model instance 5.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.100

1 0.49 0.35 0.16 0 0.130 0 0 0 0 1.098
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.178
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.338
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.510
5 0 0 0 1.731

25 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.118 0.03 1 1 167 1.033
3 0.58 0.26 0.16 0 0.154 0 0 0 0 1.147
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.184
5 0 0 0 1.330

32 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.050 0.03 1 1 167 1.033
3 0.45 0.39 0.16 0 0.050 0 1 1 208 1.029
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 6.6: Results heuristic solution for model instance 5.
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Instance 6

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 89 0
Remedial contributions 254 334
Penalties underfunding
Fixed costs underfunding 0.8 162 0.9 186
Fixed costs Z > 0 0.7 411 0.9 544
Penalties variable costs Z -0 0 - 0
Penalties contribution
Large increases and decreases 24 35 36 54
Penalties horizon
Surplus 3,422 -15 3,622 -16
Shortage 132 0 32 0
Total 937 1,053

Table 6.7: Decisions and contributions to the objective function for model instance 6.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.46 0.38 0.16 0 0.103 0.20 0 0 0 1.100

1 0.45 0.39 0.16 0 0.100 0.17 0 0 0 1.087
2 0.60 0.24 0.16 0 0.136 0.03 0 0 0 1.138
3 0.60 0.24 0.16 0 0.136 0 0 0 0 1.245
4 0.60 0.24 0.16 0 0.136 0 0 0 0 1.352
5 0 0 0 1.489

13 0 0.46 0.38 0.16 0 0.103 0.20 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0.17 0 0 0 1.087
2 0.45 0.39 0.16 0 0.032 0.07 0 0 0 1.050
3 0.45 0.36 0.16 0.03 0.102 0.04 1 0 0 1.015
4 0.45 0.39 0.16 0 0.100 0.01 0 0 0 1.141
5 0 0 0 1.127

25 0 0.46 0.38 0.16 0 0.029 0.20 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0.06 1 0 0 1.011
2 0.45 0.39 0.16 0 0.100 0.03 1 1 393 1.039
3 0.55 0.24 0.16 0.05 0.127 0 0 0 0 1.171
4 0.45 0.35 0.16 0.05 0.103 0 0 0 0 1.179
5 0 0 0 1.238

32 0 0.46 0.38 0.16 0 0.029 0.20 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0.06 1 0 0 1.011
2 0.45 0.39 0.16 0 0.032 0.03 1 1 393 1.039
3 0.45 0.39 0.16 0 0.032 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.032 0 0 0 0 1.062
5 1 0 0 0.997

Table 6.8: Results optimal solution for model instance 6.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.100 0 0 0 0 1.100

1 0.49 0.39 0.16 0 0.100 0 0 0 0 1.079
2 0.60 0.24 0.16 0 0.127 0 0 0 0 1.125
3 0.60 0.24 0.16 0 0.136 0 0 0 0 1.230
4 0.55 0.24 0.16 0.05 0.126 0 0 0 0 1.334
5 0 0 0 1.456

13 0 0.45 0.39 0.16 0 0.100 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0 0 0 0 1.079
2 0.45 0.39 0.16 0 0.032 0 1 1 501 1.038
3 0.45 0.34 0.16 0.05 0.112 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.100 0 0 0 0 1.184
5 0 0 0 1.171

25 0 0.45 0.39 0.16 0 0.032 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0 1 1 417 1.009
2 0.45 0.39 0.16 0 0.100 0 1 1 125 1.038
3 0.56 0.28 0.16 0 0.100 0 0 0 0 1.171
4 0.64 0.30 0.06 0.05 0.120 0 0 0 0 1.177
5 0 0 0 1.293

32 0 0.45 0.39 0.16 0 0.032 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.032 0 1 1 417 1.009
2 0.45 0.39 0.16 0 0.032 0 1 1 125 1.038
3 0.45 0.39 0.16 0 0.032 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.032 0 0 0 0 1.062
5 1 0 0 0.998

Table 6.9: Results heuristic solution for model instance 6.
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Appendix G:

Instance 7

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 72 9
Remedial contributions 962 1,102
Penalties underfunding
Fixed costs underfunding 1.9 1,457 2 1474
Fixed costs Z > 0 0.9 565 0.9 565
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 12 18 28 42
Penalties horizon
Surplus 6,561 -30 6,497 -29
Shortage 0 0 100 0
Total 3,045 3,163

Table 7.1: Decisions and contributions to the objective function for model instance 7.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.49 0.35 0.16 0 0.128 0.14 1 0 0 1.000

1 0.45 0.39 0.16 0 0.118 0.11 1 1 796 1.006
2 0.65 0.24 0.11 0 0.176 0.03 0 0 0 1.153
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.309
4 0.60 0.24 0.16 0 0.176 0 0 0 0 1.477
5 0 0 0 1.670

25 0 0.49 0.35 0.16 0 0.043 0.14 1 0 0 1.000
1 0.45 0.39 0.16 0 0.046 0.06 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.058
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.238
5 0 0 0 1.395

32 0 0.49 0.35 0.16 0 0.043 0.14 1 0 0 1.000
1 0.45 0.39 0.16 0 0.046 0.06 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.058
3 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.056
4 0.45 0.39 0.16 0 0.050 0.21 0 0 0 1.089
5 0 0 0 1.050

Table 7.2: Results optimal solution for model instance 7.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.47 0.37 0.16 0 0.118 0.03 1 0 0 1.000

1 0.45 0.39 0.16 0 0.118 0 1 1 1,198 0.999
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.155
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.310
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.478
5 0 0 0 1.693

25 0 0.47 0.37 0.16 0 0.050 0 1 0 0 1.000
1 0.45 0.39 0.16 0 0.050 0 1 1 1,250 0.926
2 0.45 0.39 0.16 0 0.118 0 0 0 0 1.057
3 0.65 0.24 0.11 0 0.150 0 0 0 0 1.173
4 0.60 0.24 0.16 0 0.178 0 0 0 0 1.235
5 0 0 0 1.371

32 0 0.47 0.37 0.16 0 0.050 0.14 1 0 0 1.000
1 0.45 0.39 0.16 0 0.050 0.03 1 1 1,250 0.932
2 0.45 0.39 0.16 0 0.050 0 0 0 0 1.063
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.053
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.084
5 1 0 0 1.040

Table 7.3: Results heuristic solution for model instance 7.
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Instance 8

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 22.7 0
Remedial contributions 41 42
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 21 31 36 53
Penalties horizon
Surplus 0 0
Shortage 0 0 0 0
Total 366 399

Table 7.4: Decisions and contributions to the objective function for model instance 8.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.06 0 0 0 1.100

1 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.099
2 0.58 0.36 0.06 0 0.157 0 0 0 0 1.167
3 0.56 0.33 0.06 0.05 0.156 0 0 0 0 1.303
4 0.65 0.25 0.06 0.05 0.180 0 0 0 0 1.443
5 0 0 0 1.657

25 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.118 0 1 1 190 1.035
3 0.56 0.38 0.06 0 0.154 0 0 0 0 1.170
4 0.55 0.24 0.16 0.05 0.149 0 0 0 0 1.207
5 0 0 0 1.325

32 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.050 0 1 1 190 1.035
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 7.5: Results optimal solution for model instance 8.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0 0 0 0 1.100

1 0.49 0.35 0.16 0 0.130 0 0 0 0 1.097
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.338
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.507
5 0 0 0 1.735

25 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.45 0.39 0.16 0 0.118 0 1 1 176 1.032
3 0.55 0.24 0.16 0.05 0.150 0 0 0 0 1.166
4 0.65 0.29 0.06 0 0.178 0 0 0 0 1.198
5 0 0 0 1.350

32 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.45 0.39 0.16 0 0.050 0 1 1 176 1.032
3 0.45 0.39 0.16 0 0.050 0 1 1 40 1.046
4 0.55 0.29 0.16 0 0.050 0 0 0 0 1.077
5 1 0 0 1.012

Table 7.6: Results in heuristic solution for model instance 8.
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Instance 9

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 23 7
Remedial contributions 41 40
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 21 31 28 42
Penalties horizon
Surplus 6,619 -66 6,460 -65
Shortage 132 0 177 0
Total 301 376

Table 7.7: Decisions and contributions to the objective function for model instance 9.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.06 0 0 0 1.100

1 0.50 0.34 0.16 0 0.132 0.03 0 0 0 1.100
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.182
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.343
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.516
5 0 0 0 1.738

25 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.118 0 1 1 190 1.035
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.170
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.232
5 0 0 0 1.387

32 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 0 1.029
2 0.45 0.39 0.16 0 0.050 0 1 1 190 1.035
3 0.59 0.24 0.16 0.01 0.021 0 0 0 0 1.050
4 0.60 0.24 0.16 0 0.020 0 0 0 0 1.050
5 1 0 0 0.974

Table 7.8: Results optimal solution for model instance 9.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.100

1 0.49 0.35 0.16 0 0.130 0 0 0 0 1.098
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.178
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.338
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.510
5 0 0 0 1.731

25 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.118 0 1 1 167 1.033
3 0.58 0.26 0.16 0 0.154 0 0 0 0 1.146
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.182
5 0 0 0 1.328

32 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.028
2 0.45 0.39 0.16 0 0.050 0 1 1 167 1.033
3 0.59 0.24 0.16 0.01 0.050 0 1 1 40 1.028
4 0.60 0.24 0.16 0 0.050 0 0 0 0 1.050
5 1 0 0 0.974

Table 7.9: Results heuristic solution for model instance 9.
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Instance 10

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 44 30
Remedial contributions 34 35
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 16 24 32 48
Penalties horizon
Surplus 6,556 -30 6,489 -29
Shortage 16 0 16 0
Total 345 436

Table 7.10: Decisions and contributions to the objective function for model instance
10.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.12 0 0 0 1.100

1 0.51 0.33 0.16 0 0.134 0.03 0 0 0 1.099
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.167
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.303
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.443
5 0 0 0 1.657

25 0 0.45 0.39 0.16 0 0.050 0.12 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.06 1 0 0 1.029
2 0.45 0.39 0.16 0 0.118 0.03 1 1 159 1.035
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.170
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.207
5 0 0 0 1.325

32 0 0.45 0.39 0.16 0 0.050 0.12 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.06 1 0 0 1.029
2 0.45 0.39 0.16 0 0.050 0.03 1 1 159 1.035
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 7.11: Results optimal solution for model instance 10.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.12 0 0 0 1.100

1 0.50 0.34 0.16 0 0.133 0 0 0 0 1.100
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.184
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.345
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.518
5 0 0 0 1.747

25 0 0.45 0.39 0.16 0 0.050 0.12 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.030
2 0.45 0.39 0.16 0 0.118 0 1 1 144 1.036
3 0.65 0.24 0.11 0 0.158 0 0 0 0 1.166
4 0.65 0.29 0.06 0 0.178 0 0 0 0 1.226
5 0 0 0 1.383

32 0 0.45 0.39 0.16 0 0.050 0.12 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.030
2 0.45 0.39 0.16 0 0.050 0 1 1 144 1.036
3 0.45 0.39 0.16 0 0.050 0 1 1 40 1.046
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.077
5 1 0 0 1.032

Table 7.12: Results heuristic solution for model instance 10.
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Instance 11

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 0 0
Remedial contributions 46 47
Penalties underfunding
Fixed costs underfunding 0.7 141 0.8 161
Fixed costs Z > 0 0.2 130 0.3 191
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 0 0 0 0
Penalties horizon
Surplus 6,355 -29 6,365 -29
Shortage 132 0 231 0
Total 289 370

Table 7.13: Decisions and contributions to the objective function for model instance
11.

84



s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0 0 0 0 1.100

1 0.49 0.35 0.16 0 0.129 0 0 0 0 1.100
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
3 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.336
4 0.65 0.24 0.06 0.05 0.180 0 0 0 0 1.513
5 0 0 0 1.741

25 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.45 0.39 0.16 0 0.118 0 1 1 214 1.032
3 0.60 0.24 0.16 0 0.160 0 0 0 0 1.170
4 0.55 0.24 0.16 0.05 0.149 0 0 0 0 1.214
5 0 0 0 1.333

32 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.45 0.39 0.16 0 0.050 0 1 1 214 1.032
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.081
5 1 0 0 1.036

Table 7.14: Results optimal solution for model instance 11.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0 0 0 0 1.100

1 0.49 0.35 0.16 0 0.129 0 0 0 0 1.097
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.336
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.507
5 0 0 0 1.728

25 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.47 0.37 0.16 0 0.118 0 1 1 176 1.032
3 0.65 0.24 0.11 0 0.153 0 0 0 0 1.173
4 0.65 0.24 0.11 0 0.176 0 0 0 0 1.235
5 0 0 0 1.391

32 0 0.45 0.39 0.16 0 0.050 0 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 0 0 1.027
2 0.47 0.37 0.16 0 0.050 0 1 1 176 1.032
3 0.45 0.39 0.16 0 0.050 0 1 1 90 1.041
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.071
5 1 0 0 1.026

Table 7.15: Results heuristic solution for model instance 11.
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Instance 12

Optimal Heuristic
decisions objective decisions objective

Funding costs
Contributions participants 31 8
Remedial contributions 100 109
Penalties underfunding
Fixed costs underfunding 0.5 94 0.5 98
Fixed costs Z > 0 0.5 281 0.5 293
Penalties variable costs Z - 0 - 0
Penalties contribution
Large increases and decreases 21 33 28 42
Penalties horizon
Surplus 6,455 -30 6,401 -30
Shortage 0 0 231 0
Total 508 520

Table 7.16: Decisions and contributions to the objective function for model instance
12.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.06 0 0 0 1.100

1 0.50 0.34 0.16 0 0.129 0.03 0 0 0 1.100
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
3 0.65 0.24 0.11 0 0.180 0 0 0 0 1.336
4 0.60 0.24 0.16 0 0.180 0 0 0 0 1.513
5 0 0 0 1.741

25 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 1 215 1.027
2 0.45 0.39 0.16 0 0.118 0.05 0 0 0 1.032
3 0.65 0.24 0.11 0 0.160 0.02 0 0 0 1.170
4 0.65 0.24 0.06 0.05 0.149 0 0 0 0 1.214
5 0 0 0 1.333

32 0 0.45 0.39 0.16 0 0.050 0.06 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0.03 1 0 215 1.027
2 0.45 0.39 0.16 0 0.050 0.05 0 0 0 1.032
3 0.45 0.39 0.16 0 0.050 0.08 0 0 0 1.050
4 0.45 0.39 0.16 0 0.050 0.21 0 0 0 1.081
5 0 0 0 1.036

Table 7.17: Results optimal solution for model instance 12.
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s t stocks bonds real estate cash rp c δ d Z F
1 0 0.45 0.39 0.16 0 0.118 0.03 0 0 0 1.100

1 0.49 0.35 0.16 0 0.129 0 0 0 0 1.097
2 0.65 0.24 0.11 0 0.176 0 0 0 0 1.176
3 0.65 0.24 0.11 0 0.176 0 0 0 0 1.336
4 0.65 0.24 0.16 0.05 0.176 0 0 0 0 1.507
5 0 0 0 1.728

25 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 1 222 1.027
2 0.45 0.39 0.16 0 0.118 0 0 0 0 1.032
3 0.65 0.24 0.11 0 0.153 0 0 0 0 1.173
4 0.65 0.24 0.16 0.04 0.176 0 0 0 0 1.235
5 0 0 0 1.391

32 0 0.45 0.39 0.16 0 0.050 0.03 0 0 0 1.100
1 0.45 0.39 0.16 0 0.050 0 1 1 222 1.027
2 0.45 0.39 0.16 0 0.050 0 0 0 0 1.032
3 0.45 0.39 0.16 0 0.050 0 0 0 0 1.041
4 0.45 0.39 0.16 0 0.050 0 0 0 0 1.071
5 1 1 232 1.026

Table 7.18: Results heuristic solution for model instance 12.
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