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Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the
fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe21-dependent fruc-
tosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and
heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP
aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to
pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase
proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is
only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes
eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the
closest relatives.

Xanthobacter flavus grows autotrophically by using the Cal-
vin cycle for the fixation of CO2. Only 2 of the 11 enzymes of
the Calvin cycle are characteristic for this pathway; the others
are also present during heterotrophic growth. The key enzymes
of the Calvin cycle, phosphoribulokinase and ribulosebisphos-
phate carboxylase, are encoded within the cbb operon, which is
transcribed only during autotrophic growth. Two additional
genes are located within this operon: cbbX, encoding a protein
with unknown function, and cbbF, encoding fructosebisphos-
phatase (27, 29). The transcription of the cbb operon is posi-
tively regulated by CbbR, a LysR-type transcriptional regula-
tor, which binds to two sites in the cbb promoter (47).
During autotrophic growth, X. flavus uses two fructosebis-

phosphatase enzymes with distinct properties. The inducible
enzyme encoded by cbbF has a high level of sedoheptulosebis-
phosphatase activity and is stimulated by ATP. The second
constitutive fructosebisphosphatase has a low level of sedohep-
tulosebisphosphatase activity and is not stimulated by ATP
(48). In contrast to the fructosebisphosphatase isoenzyme pair,
only one phoshoglycerate kinase gene, which is not encoded
within the cbb operon, is employed by X. flavus. The pgk gene
is constitutively expressed, but the expression level is higher
during autotrophic growth than during heterotrophic growth
(26).
Little is known about the transketolase (EC 2.2.1.1) and

fructosebisphosphate aldolase (FBP aldolase; EC 4.1.2.13) en-

zymes of X. flavus. Like fructosebisphosphatase and phospho-
glycerate kinase, these enzymes are involved in both hetero-
trophic metabolism and the fixation of CO2 via the Calvin
cycle. Two unrelated mechanistically distinct types of FBP al-
dolase enzymes are encountered in bacteria, archaea, and eu-
karya (24). Class I FBP aldolases form a covalent Schiff base
between the substrate and the a-amino group of a lysine res-
idue during catalysis, whereas the class II enzymes depend on
a divalent cation as the electrophile in the catalytic cycle (24).
X. flavus (Table 1) was grown heterotrophically on succinate

(10 mM) or gluconate (10 mM) and autotrophically on meth-
anol (0.5% [vol/vol]) at 308C as described previously (22, 28).
The activities of transketolase and FBP aldolase were deter-
mined, according to published methods (15, 49), in cell extracts
which were prepared by using a French pressure cell as de-
scribed previously (27). The activity of transketolase was in-
creased sixfold following autotrophic growth on methanol
compared with that of heterotrophically grown cells. In sharp
contrast, the activity of FBP aldolase (without Fe21) was the
same for both heterotrophic and autotrophic growth. Because
the activity of class II FBP aldolase is dependent on Fe21 as
the electrophile (24), FeSO4 (700 mM) was included in the
reaction assay. Surprisingly, Fe21 did not affect the FBP aldo-
lase activity in the cell extracts of heterotrophically grown cells
but stimulated the activity of FBP aldolase in cell extracts of
autotrophically grown cells 14-fold (Table 2). These results
strongly suggest that X. flavus employs a class I FBP aldolase
during heterotrophic growth and synthesizes an additional
class II FBP aldolase during autotrophic growth. The use of
class II FBP aldolase is common among bacterial autotrophs
(4, 13, 38, 53). Whether a class I FBP aldolase is used during
the heterotrophic growth of these bacteria is unknown. The
opposite situation exists in the algae Chlamydomonas mundana
and Euglena gracilis, which use a class II FBP aldolase for
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heterotrophic metabolism and, like higher plants (20), employ
a class I FBP aldolase in the Calvin cycle (9, 32, 34). Esche-
richia coli contains a constitutive class II FBP aldolase, whereas
a class I enzyme is induced by gluconeogenic growth conditions
(37). At present no clear link between growth conditions and
the use of a class I or II FBP aldolase can be established.
Biochemical characterization of both classes of FBP aldolases
of X. flavus will be required in order to establish whether the
class II FBP aldolase is better adapted to the autotrophic
metabolism of this bacterium.
The cbb downstream region encodes two proteins. The

4.4-kb BamHI fragment of pBM1 was analyzed with an E. coli
minicell-producing strain (Table 1) by a modified procedure of
Clark-Curtiss and Curtiss (5) as described previously (8). A
unique 42-kDa protein was present in extracts of minicells
containing pSB375 and pBM1. Two additional proteins with
sizes of 71 and 69 kDa were present in the latter extracts only
(Fig. 1B). This shows that a gene encoding a 42-kDa protein is
located on the right-hand side of the 4.4-kb BamHI fragment
of pBM1. The left-hand side of the BamHI fragment encodes
two additional proteins with sizes of 71 and 69 kDa (Fig. 1A).
Since this DNA fragment is not large enough to encode two
proteins of this size, it is likely that the 71-kDa protein gave
rise to the 69-kDa protein via proteolytic degradation, a pro-
cess which has been observed previously in minicell experi-
ments (8).
Identification of cbbT, cbbA, and cbbE genes. The nucleotide

sequence of the BamHI fragment of pBM1 on which the genes
encoding the 71- and 42-kDa proteins are located was deter-
mined with the automated laser fluorescent DNA sequencer
(Pharmacia, Uppsala, Sweden). Dideoxy sequencing reactions
were carried out with T7 DNA polymerase, with either 59-end
labelled primers or unlabelled primers and fluorescein-labeled

ATP (51, 54). Two open reading frames (ORFA and ORFB)
preceded by plausible ribosome binding sites that were tran-
scribed in the same direction as cbbP were identified. ORFA is
located 255 bp downstream from cbbP and may encode a
protein with a molecular mass of 73,236 Da. ORFB may en-
code a protein with a size of 37,982 Da and is separated from
ORFA by 219 bp. The predicted molecular masses of the
proteins encoded by ORFA and ORFB are in good agreement
with the results from the minicell experiments. It is therefore
concluded that ORFA and ORFB represent functional genes.
A search of the PIR database, by using the deduced amino

acid sequence of ORFA as the query sequence, revealed ex-
tensive similarities with the sequences of other transketolase
proteins. The putative transketolase protein of X. flavus was
most similar to transketolase proteins encoded by the cbbT
genes of Rhodobacter sphaeroides (50% identity) (4) and Al-
caligenes eutrophus (63% identity) (39); the lowest degree of
similarity (29% identity) was observed with the human enzyme
(25). A similar database search with the amino acid sequence
derived from ORFB as the query sequence resulted in the
identification of ORFB as a class II FBP aldolase gene. The
similarity of the sequence of FBP aldolase of X. flavus to those
of other organisms varied between 68% identity (A. eutrophus)
(38) and 30% identity (Saccharomyces cerevisiae) (17). Because
X. flavus induces the synthesis of class II FBP aldolase only
during autotrophic growth, we designated the gene encoding
this enzyme as cbbA (44). The transketolase-encoding gene
identified in this study is located between the known cbb genes
and cbbA (Fig. 1). We therefore designated the transketolase
gene as cbbT (44).
The 59 end of an open reading frame which was preceded by

a plausible ribosome binding site was detected 267 bp down-
stream from cbbA. The deduced amino acid sequence of this
partial open reading frame was 52 and 49% identical to the
amino-terminal sequences of autotrophic pentose-5-phosphate
3-epimerase (CbbE) from A. eutrophus and Rhodospirillum
rubrum, respectively (10, 19). The partial open reading frame
was therefore tentatively identified as cbbE (44).
The plasmids pET11 and pEA11 containing cbbT and cbbA

downstream from the lac promoter of pBluescript were trans-
formed into E. coliDH5a (Table 1). The addition of isopropyl-
b-D-thiogalactopyranoside (IPTG; 1 mM) to E. coli(pET11)
and E. coli(pEA11) during mid-exponentional growth on Lu-
ria-Bertani (LB) medium at 378C (36) resulted in high activi-

TABLE 1. Bacteria and plasmids used in this study

Strain or plasmid Genotype or relevant characteristic(s) Source or reference

Strains
E. coli
DH5a supE44 DlacU169 (f80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Bethesda Research

Laboratories
P678-54 F thr-1 ara-13 leu-6 azi-8 tonA2 lacY1 glnU44 gal6 minB2 rpsL135 malA1 xyl-7 mtl-2 thi-1 1

X. flavus H4-14 Wild-type strain 23

Plasmids
pBluescriptKS1 Apr lacZ9, cloning vector Stratagene
pCD102 Tcr cbbLSXFPTA 21
pBM1 Apr, 4.4-kb BamHI fragment from pCD102 containing cbbP cbbT cbbA in the same

orientation as lacZ
This study

pSB375 Apr, 2.7-kb EcoRI-BamHI fragment containing 9cbbT cbbA This study
pEA11 Apr, 1.5-kb BssII-XbaI fragment containing cbbA in the same orientation as lacZ This study
pET11 Apr, 2.1-kb SmaI-StuI fragment containing cbbT in the same orientation as lacZ This study

TABLE 2. Activities of transketolase and FBP aldolase

Enzyme Fe21 in assay

Enzyme activity (nmol min21 mg of
protein21) on growth substrate

Gluconate Succinate Methanol

Transketolase NDa 86 88 551
FBP aldolase 2 17 18 25
FBP aldolase 1 18 15 232

a ND, not determined.
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ties of transketolase (395 nmol min21 mg of protein21) and
FBP aldolase (381 nmol min21 mg of protein21). IPTG-in-
duced E. coli (pBluescript) contained threefold less transketo-
lase (114 nmol min21 mg of protein21) and FBP aldolase (152
nmol min21 mg of protein21).
The localization of the cbbT gene downstream from the

conserved cbbFP cluster is common (4, 10, 18, 39), with the
form I cbb operon of Rhodobacter sphaeroides and the cbbFPA
cluster of Nitrobacter vulgaris as the only exceptions (13, 43). In
contrast, the genetic organization of the cbbA (4, 13, 38, 43)
and cbbE (10, 19) genes with respect to those of the other cbb
genes is not conserved. The relatively large intergenic regions
between the cbbP, cbbT, cbbA, and cbbE genes are in sharp
contrast to the short distances, varying between 11 and 91 bp,
between the previously identified cbb genes from X. flavus. The
transcriptional organization and the potential role of these
large intergenic region in the regulation of cbbT, cbbA, and
cbbE are currently under investigation.
Phylogeny of FBP aldolase and transketolase proteins. The

amino acid sequences of class II FBP aldolase (Fig. 2) and
transketolase proteins were aligned by using ClustalW (45).
The program Treecon for Windows, version 1.1 (46), was used
to analyze the phylogenetic relationships of the FBP aldolase
and transketolase proteins. A distance matrix of the FBP al-
dolase and transketolase protein alignments was calculated by

using the model of Dayhoff et al. (6, 14). Insertions and dele-
tions in the sequence alignment were not taken into account.
Subsequently, a phylogenetic tree was constructed via the
neighbor-joining method developed by Saitou and Nei (35). A
bootstrap analysis (1,000 replicates) was carried out to test the
reliability of the tree (11). The branching order of the transke-
tolase phylogenetic tree is conventional; the proteins from the
proteobacteria, including the enzyme from X. flavus, from the
gram-positive bacteria, from yeasts, and from mammals each
form distinct clusters (data not shown). In contrast, a distance
tree of the class II FBP aldolase proteins is unusual in that it
does not follow the branching order of a phylogenetic tree
based on 16S rRNA alignments (Fig. 3). As has been noted
previously (42), the FBP aldolase enzymes from E. coli (g sub-
division of proteobacteria) and Campylobacter jejuni (ε sub-
division of proteobacteria) are more related to those of the
yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe
than to other bacterial enzymes. This has been explained as an
example of horizontal gene transfer from bacteria to eukarya
(42).
A second anomaly in the FBP aldolase phylogenetic tree is

that the FBP aldolase proteins from the proteobacteria are not
monophyletic (Fig. 3). Instead, the proteins of A. eutrophus,
Rhodobacter sphaeroides, and X. flavus, which belong to the a
and b subdivisions of the proteobacteria, have the protein from

FIG. 1. (A) Restriction map of BamHI fragment containing cbbT, cbbA, and cbbE. The cbbP gene was identified previously (27, 29). For the sake of clarity, only
one of the BssHII sites which was used in cloning is shown. The molecular masses of the proteins expressed in minicells containing pBM1 and pSB375 are indicated
below the bars indicating the size of the DNA insert. (B) Fluorogram of [35S]methionine-labelled proteins from minicells. Lanes: 1, pBM1 (cbbT cbbA); 2, pSB375
(9cbbT cbbA); 3, pBluescript1. The numbers indicate the sizes (in kilodaltons) the molecular mass markers. Arrows indicate the positions of the proteins encoded by
cbbT and cbbA.
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Bacillus subtilis (low G1C subdivision of the gram-positive
bacteria) as their closest relative instead of the E. coli and
Campylobacter jejuni enzymes.
The FBP aldolase enzymes from A. eutrophus, Rhodobacter

sphaeroides, and X. flavus function only in the Calvin cycle and,
unlike the proteins of other organisms, do not play a role in
gluconeogenesis or glycolysis. The FBP aldolase sequences of

additional proteobacteria remain to be determined in order to
ascertain whether the phylogenetic positions of the E. coli and
Campylobacter jejuni enzymes are unusual or, conversely,
whether the autotrophic bacteria have acquired a special Cal-
vin cycle FBP aldolase that is related to those from gram-
positive bacteria.
The latter scenario is not unlikely, considering the fact that

FIG. 2. Alignment of sequence of X. flavus FBP aldolase encoded by cbbA (Xfl) with those from A. eutrophus (Ap [plasmid]; Ac [chromosomal]) (38), B. subtilis
(Bsu) (30), Campylobacter jejuni (Cje) (accession no. X84703), Corynebacterium glutamicum (Cgl) (50), E. coli (Eco) (2), Rhodobacter sphaeroides (RI [form I]; RII [form
II]) (4, 13), Saccharomyces cerevisiae (Sce) (40), and Schizosaccharomyces pombe (Spo) (31). Identical residues are indicated by asterisks; conservative substitutions
according to the schemes PAGST, ILVM, QN, ED, HKR, YFW, and C are indicated by dots. The amino acids are represented in one-letter code.
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autotrophic genes are frequently encountered on self-transmis-
sible elements in both gram-positive and gram-negative bacte-
ria. The gram-positive autotrophic bacterium Nocardia opaca
harbors a selftransmissible genetic element containing cbb
genes which can be transferred via conjugation to other bac-
terial species such as Rhodococcus erythropolis and Corynebac-
terium hydrocarboclastus (3, 7, 33, 41). Plasmids harboring cbb
genes which can be transferred via conjugation to other bac-
teria are frequently encountered in gram-negative bacteria (12,
16, 38, 52). These mobile genetic elements in bacteria provide
a means via which lateral transfer of autotrophic genes could
have occurred.
Nucleotide sequence accession number. The nucleotide se-

quence data reported in this paper have been entered into
GenBank under accession no. U29134.

S.C.B. was supported by a Royal Society European Fellowship.
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