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Second-Harmonic Generation Frequency-Resolved
Optical Gating in the Single-Cycle Regime

Andrius Baltŭska, Maxim S. Pshenichnikov, and Douwe A. Wiersma

(Invited Paper)

Abstract—The problem of measuring broad-band femtosecond
pulses by the technique of second-harmonic generation
frequency-resolved optical gating (SHG FROG) is addressed.
We derive the full equation for the FROG signal, which is
valid even for single-optical-cycle pulses. The effect of the phase
mismatch in the second-harmonic crystal, the implications of the
beam geometry, and the frequency-dependent variation of the
nonlinearity are discussed in detail. Our numerical simulations
show that, under carefully chosen experimental conditions and
with a proper spectral correction of the data, the traditional
FROG inversion routines work well even in the single-cycle
regime. The developed description of the SHG FROG signal
was applied to measure the white-light continuum pulses in the
spectral region of 500–1100 nm. The obtained spectral phase of
these pulses served as a target function for the pulse compressor
design. The pulses produced by compression around 800 nm were
also characterized by SHG FROG. The resulting pulse duration
measures 4.5 fs which corresponds to�2.5 optical cycles.

Index Terms—Frequency conversion, nonlinear optics, optical
beam focusing, optical pulse compression, optical pulse measure-
ments, ultrafast optics.

I. INTRODUCTION

RECENT progress in complete characterization of ultra-
short pulses reflects the growing demand for detailed

information on pulse structure and phase distortion. This
knowledge plays a decisive role in the outcome of many
applications. For instance, it has been recognized that pulses
with identical spectra but different spectral phases can strongly
enhance efficiency of high-harmonic generation [1], affect
wavepacket motion in organic molecules [2], [3], enhance
population inversion in liquid [4] and gas [5] phases, and
even steer a chemical reaction in a predetermined direction
[6]. Moreover, a totally automated search for the best pulse
was recently demonstrated to optimize a preselected reaction
channel [7]. Then, by measuring the phase and amplitude of
the excitation pulses, one can perform a back-reconstruction
of potential surfaces of the parent molecule.

The complete determination of the electric field of femtosec-
ond pulses also uncovers the physics behind their generation as
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has been demonstrated in the case of femtosecond Ti:sapphire
lasers [8], [9]. Such information is invaluable to determine
the ways of and ultimate limits for further pulse shortening.
Last, owing to the great complexity of broad-band phase
correction required to produce spectrum-limited pulses with
durations shorter than 5 fs [10]–[13], the characterization of the
white-light continuum as well as compressed pulses becomes
mandatory.

A breakthrough in the full characterization of ultrashort
pulses occurred five years ago with the introduction of
frequency-resolved optical gating (FROG) [14], [15]. FROG
measures a two-dimensional (2-D) spectrogram in which the
signal of any autocorrelation-type experiment is resolved as
a function of both time delay and frequency. The full pulse
intensity and phase may be subsequently retrieved from such
a spectrogram (called FROG trace) via an iterative retrieval
algorithm. Notably, noa priori information about the pulse
shape, as it is always the case for conventional autocorrelation
measurements, is necessary to reconstruct the pulse from the
experimental FROG trace.

In general, FROG is quite accurate and rigorous [16].
Because a FROG trace is a plot of both frequency and delay,
the likelihood of the same FROG trace corresponding to
different pulses is very low. Additionally, the great number of
data points in the 2-D FROG trace makes it under equivalent
conditions much less sensitive to noise than the pulse
diagnostics based on one-dimensional (1-D) measurements,
such as the ordinary autocorrelation. Last but not least, FROG
offers self-consistency checks for data that are unavailable in
other pulse-measuring techniques. This feedback mechanism
involves computing the temporal and spectral marginals
that are the integrals of the FROG trace along the delay
and frequency axes. The comparison of the marginals with
the independently measured fundamental spectrum and
autocorrelation verifies the validity of the measured FROG
trace [9], [17], [18]. To date, FROG methods have been
applied to measure a vast variety of pulses with different
duration, wavelength, and complexity [19].

A number of outstanding features make FROG especially
valuable for the measurement of extremely short pulses in the
range of 10 fs and below.

First, since FROG utilizes the excite–probe geometry, com-
mon for most nonlinear optical experiments, it is ideally suited
to characterize pulses that are used in many spectroscopic labo-
ratories. Unlike other pulse diagnostics [20]–[24], FROG does
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not require splitting of auxiliary laser beams and prefabrication
of reference pulses. This fact is of great practical relevance,
since the setup complexity in many spectroscopic experiments
is already quite high [25]–[31]. Therefore, it is desirable to
minimize the additional effort and setup modifications that are
necessary for proper pulse diagnostics. FROG directly offers
this possibility. Pulse characterization is performed precisely
at the position of the sample by simply interchanging the
sample with a nonlinear medium for optical gating. The last
point becomes especially essential for the pulses consisting of
only several optical cycles [10]–[13], [32] currently available
for spectroscopy. The dispersive lengthening that such pulses
experience even due to propagation through air precludes the
use of a separate diagnostics device. Thus, FROG is the ideal
way to measure and optimize pulses on target prior to carrying
out a spectroscopic experiment.

Second, it is still possible to correctly measure such short
pulses by FROG even in the presence of systematic errors.
Several types of such errors will inevitably appear in the
measurement of pulses whose spectra span over a hundred
nanometers or more. For example, a FROG trace affected
by wavelength-dependent detector sensitivity and frequency
conversion efficiency can be validated via the consistency
checks [9]. In contrast, an autocorrelation trace measured
under identical conditions may be corrupted irreparably.

Third, the temporal resolution of the FROG measurement
is not limited by the sampling increment in the time domain,
provided the whole time–frequency spectrogram of the pulse
is properly contained within the measured FROG trace. The
broadest feature in the frequency domain determines in this
case the shortest feature in the time domain. Therefore, no
fine pulse structure can be overlooked [19], even if the delay
increment used to collect the FROG trace is larger than the
duration of such a structure. Thus, reliability of the FROG data
relies more on the proper delay axis calibration rather than on
the very fine sampling in time, which might be troublesome
considering that the pulse itself measures only a couple of
micrometers in space.

Choosing the appropriate type of autocorrelation that can be
used in FROG (so-called FROG geometries [17], [19]), one
must carefully consider possible distortions that are due to the
beam arrangement and the nonlinear medium. Consequently,
not every FROG geometry can be straightforwardly applied
to measure extremely short pulses, i.e., 10 fs and below.
In particular, it has been shown that in some -based
techniques (for instance, polarization-gating, transient grating,
etc.) the finite response time due to the Raman contribution
to nonlinearity played a significant role even in the measure-
ment of 20-fs pulses [33]. Therefore, the FROG with the
use of the second-harmonic generation (SHG) in transpar-
ent crystals [34]–[36] and surface third-harmonic generation
[37], that have instantaneous nonlinearity, presents the best
choice for the measurement of the shortest pulses available
to date.

Another important experimental concern is the level of the
signal to be detected in the FROG measurement. Among
different FROG variations, its version based on SHG is the
most appropriate technique for low-energy pulses. Obviously,

SHG FROG [34] potentially has a higher sensitivity than
the FROG geometries based on third-order nonlinearities that
under similar circumstances are much weaker. Different spec-
tral ranges and polarizations of the SHG FROG signal and
the fundamental radiation allow the effective suppression of
the background, adding to the suppression provided by the
geometry. The low-order nonlinearity involved, combined with
the background elimination, results in the higher dynamic
range in SHG FROG than in any other FROG geometry.

In general, the FROG pulse reconstruction does not depend
on pulse duration since the FROG traces simply scale in
the time–frequency domain. However, with the decrease of
the pulse duration that is accompanied by the growth of the
bandwidth, the experimentally collected data begin to deviate
significantly from the mathematically defined ideal FROG
trace. Previous studies [8], [9] have addressed the effect of the
limited phase-matching bandwidth of the nonlinear medium
[38] and time smearing due to noncollinear geometry on SHG
FROG measurement which become increasingly important for
10-fs pulses. The possible breakdown of the slowly-varying
envelope approximation and frequency dependence of the
nonlinearity are the other points of concern for the pulses that
consist of a few optical cycles. Some of these issues have been
briefly considered in our recent letter [39].

In this paper, we provide a detailed description of SHG
FROG performance for ultrabroad-band pulses, the bandwidths
of which correspond to 3-fs spectral-transformed duration.
Starting from the Maxwell equations, we derive a complete
expression for the SHG FROG signal that is valid even
in a single-cycle pulse regime and includes phase matching
in the crystal, beam geometry, dispersive pulse-broadening
inside the crystal, and dispersion of the second-order non-
linearity. Subsequently, we obtain a simplified expression
that decomposes the SHG FROG signal to a product of the
ideal SHG FROG and a spectral filter applied to the second-
harmonic (SH) radiation. Numerical simulations, presented
later in the paper, convincingly show that the approximations
made upon the derivation of the simplified expression are
well justified. Finally, we demonstrate practical applications
of SHG FROG technique to strongly chirped ultrabroad-band
pulses and compressed 4.5-fs pulses.

The outline of this paper follows. In Section II, we define
the pulse intensity and phase in time and frequency domains.
In Section III, the spatial profile of ultrabroad-band pulses is
addressed. The complete expression for SHG FROG signal
for single-cycled pulses is derived in Section IV. We discuss
the ultimate time resolution of the SHG FROG in Section
V. The approximate expression for the SHG FROG signal
obtained in Section VI is verified by numerical simulations
in Section VII. In Section VIII, we briefly comment on Type
II phase matching in SHG FROG measurements. Section IX
provides several useful pieces of advise on the choice of the
SHG crystal. Possible distortions of the experimental data
resulting from spatial filtering are considered in Section X.
In Section XI we describe our SHG FROG apparatus. SHG
FROG characterization of the white-light continuum and 4.5-fs
pulses is demonstrated in Sections XII and XIII, respectively.
Finally, in Section XIV, we summarize our findings.
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II. A MPLITUDE AND PHASE CHARACTERIZATION OF THEPULSE

The objective of a FROG experiment lies in finding the
pulse intensity and phase in time, that is or,
equivalently, in frequency . The laser pulse is
conventionally defined by its electric field

(1)

where is the modulus of the time-dependent amplitude
and is the time-dependent phase. The temporal pulse
intensity is determined as . The time-
dependent phase contains information about the change of
instantaneous frequency as a function of time (the so-called
chirp) that is given by [40], [41]

(2)

The chirped pulse, therefore, experiences a frequency sweep
in time, i.e., changes frequency within the pulse length.

The frequency-domain equivalent of pulse field description
is

(3)

where is the Fourier transform of and is the
frequency-dependent (or spectral) phase. Analogously to the
time domain, the spectral intensity, or the pulse spectrum, is
defined as . The relative time separation among
various frequency components of the pulse, or group delay,
can be determined by [41]

(4)

Hence, the pulse with a flat spectral phase is completely
“focused” in time and has the shortest duration attainable for
its bandwidth.

It is important to notice that none of the presently existing
pulse-measuring techniques retrieve the absolute phase of the
pulse, i.e., pulses with phases and appear to
be identical [42]. Indeed, all nonlinear processes employed in
FROG are not sensitive to the absolute phase. However, the
knowledge of this phase becomes essential in the strong-field
optics of nearly single-cycled pulses [43], [44]. It has been
suggested [45] that the absolute phase may be assessable via
photo-emission in the optically tunneling regime [46].

In fact, the full pulse characterization remains incomplete
without the analysis of spatio-temporal or spatio-spectral dis-
tribution of the pulse intensity. In this paper, we assume
that the light field is linearly polarized and that each spectral
component of it has a Gaussian spatial profile. The Gaussian
beam approximation is discussed in detail in Section III.

III. PROPAGATION AND FOCUSING OFSINGLE-CYCLE PULSES

The spatial representation of a pulse of which its spectral
width is close to its carrier frequency is a nontrivial problem.
Because of diffraction, lower frequency components have
stronger divergence compared with high-frequency ones. As
a consequence, such pulse parameters as the spectrum and

duration are no longer constants and may change appreciably
as the beam propagates even in free space [47].

We represent a Gaussian beam field in the focal plane as

E (5)

where is the beam diameter (FWHM) of the spectral
component with the frequency and and are transverse
coordinates. The normalization terms are chosen to provide
the correct spectrum integrated over the beam as measured by
a spectrometer

E (6)

We now calculate the beam diameter after propagating a
distance

(7)

where is the speed of light in vacuum. To avoid the
aforementioned problems, we require diameters of different
spectral components to scale proportionally as the Gaussian
beam propagates in free space, i.e.,

(8)

The constant in (8) can be defined by introducing the FWHM
beam diameter at the central frequency . Therefore, the
electric field of the Gaussian beam given by (5) becomes

E

(9)

At this point, the question can be raised about the low-
frequency components, the size of which, according to (9),
becomes infinitely large. However, the spectral amplitude
of these components decreases rapidly with frequency. For
instance, the spectral amplitude of a single-cycle Gaussian
pulse with a central frequency is given by

(10)

Consequently, the amplitude of the electric field at zero
frequency amounts to only 0.1% of its peak value.

The spatial frequency distribution was observed experimen-
tally with focused terahertz beams [48] and was discussed
recently by Fenget al. [49]. Note that our definition of
transversal spectral distribution in the beam implies that con-
focal parameters of all spectral components are identical

(11)

This is totally consistent with the beam size in laser resonators
where longer wavelength components have a larger beam size.
The spatial distribution of radiation produced due to self-phase
modulation in single-mode fibers is more complicated. First,
the transverse mode is described by the zeroth-order Bessel
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(a)

(b) (c)

Fig. 1. Spatial parameters of an ideal single-cycle Gaussian pulse centered
at 800 nm. (a) Spatial intensity profiles of two spectral components that
are separated by FWHM�! from the central frequency!0. (b) Intensity
spectra as a function of transverse coordinatex. (c) Dependence of pulse
central frequency (solid curve) and pulse duration (dashed curve) on transverse
coordinatex. The beam axis corresponds tox = 0.

function [50]. Second, near the cut-off frequency, the mode
diameter experiences strong changes [51]. However, for short
pieces of fiber conventionally used for pulse compression and
reasonable values of a normalizad frequency[50], it can
be shown that a Gaussian distrubution given by (9) is an
acceptable approximation. The situation with hollow waveg-
uides [52] is quite different since all spectral components have
identical radia [53].

Another important issue concernes beam focusing, which
should not change the distribution of spectral components.
Since the equations for mode matching contain only confocal
parameters [54], the validity of (9) at the new focal point
is automatically fulfilled provided, of course, the focusing
remains achromatic.

Although (9) ensures that different spectral components
scale identically during beam propagation and focusing, it also
implies that the pulse spectrum changes along the transversal
coordinates. Fortunately, this effect is negligibly small even in
the single-cycle regime. Fig. 1(a) shows the spatial intensity
distribution of several spectral components of a Gaussian
single-cycle pulse with a central wavelength of 800 nm. As one
moves away from the beam axis, a red shift is clearly observed
[Fig. 1(b)], since the higher frequency spectral components are
contained in tighter spatial modes. However, the change of the
carrier frequency does not exceed 10% (Fig. 1(c), solid line),
while the variation of the pulsewidth is virtually undetectable
(Fig. 1(c), dotted line). Therefore, this kind of spatial chirp
can be disregarded even for the shortest optical pulses.

Fig. 2. Noncollinear phase matching for three-wave interaction.k(!) and
k(
 � !) are the wavevectors of the fundamental fields that form an angle
� with the z axis. kSH(
) is the wavevector of the SH that intersects the
z axis at an angle�.

IV. THE SHG FROG SIGNAL IN THE SINGLE-CYCLE REGIME

In this section, the complete equation that describes the
SHG FROG signal for pulses as short as one optical cycle
is derived. We consistently include such effects as phase-
matching conditions in a nonlinear crystal, time-smearing
effects due to noncollinear geometry, spectral filtering of the
SH radiation, and dispersion of the second-order nonlinearity.

We consider the case of noncollinear geometry in which
the fundamental beams intersect at a small angle (Fig. 2).
As it has been pointed out [38], pulse broadening due to
crystal bulk dispersion is negligibly small compared to the
group-velocity mismatch. This means that the appropriate
crystal thickness should mostly be determined from the phase-
matching conditions. For instance, in a 10-m BBO crystal,
the bulk dispersion broadens a single-cycle pulse by only0.1
fs while the group-velocity mismatch between the fundamental
and SH pulses is as much as 0.9 fs.

We assume such focusing conditions of the fundamental
beams that the confocal parameter and the longitudinal beam
overlap of the fundamental beams are considerably longer
than the crystal length. For instance, for an ideal Gaussian
beam of 2-mm diameter focused by a 10-cm achromatic
lens, the confocal parameter, that is, the longitudinal extent
of the focal region, is 1.2 mm. This is considerably longer
than the practical length of the nonlinear crystal. Under such
conditions, wavefronts of the fundamental waves inside the
crystal are practically flat. Therefore, we treat the SHG as
a function of the longitudinal coordinate only and include the
transversal coordinates at the last step to account for the spatial
beam profile [see (9)]. Note that the constraint on the focusing
is not always automatically fulfilled. For example, the use
of a 1-cm lens in the situation described above reduces the
length of the focal region to only 12m, and, in this case,
it is impossible to disregard the dependence on transverse
coordinates.

We assume that the SH field is not absorbed in the nonlinear
crystal. This is well justified even for single-cycle pulses.
Absorption bands of the crystals that are transparent in the
visible start at 200 nm. Consequently, at these frequencies
the field amplitude decreases by a factor

[see (10)] compared to its maximum at 400 nm. We
also require the efficiency of SHG to be low enough to avoid
depletion of the fundamental beams. Hence, the system of
two coupled equations describing nonlinear interaction [55] is
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reduced to one. The equation that governs propagation of the
SH wave in the direction inside the crystal can be obtained
directly from Maxwell’s equations [56]

(12)

where is the SH field, is the
relative permittivity, and is the induced second-
order dielectric polarization. By writing both and

as a Fourier superposition of monochromatic waves,
one obtains a simple equivalent of (12) in the frequency
domain

(13)

where and are Fourier transforms of
and , respectively, is the frequency,

and is the wavevector of the second harmonic field:
, with being the Fourier transform

of the relative permittivity .
In order to simplify the left part of (13), we write the SH

field as a plane wave propagating along theaxis

(14)

whence (13) becomes

(15)

So far, we have made no simplifications concerning the
pulse duration. Now we apply the slowly-varying amplitude
approximation [56], i.e.,

(16)

in order to omit the term . Nonequality (16) is a
good approximation even for single-cycle pulses propagating
in transparent media [57]. The only point of concern is related
to the lowest frequencies for which becomes close to
zero. However, as we have already mentioned in Section III,
the amplitude of such components do not exceed 0.1% of
the maximum and therefore can be disregarded. Consequently,
(15) can be readily solved by integration over the crystal length

(17)

where is the refractive index for the SH
wave. Now we should calculate the second-order polarization

. We assume that two fundamental fields cross in
the plane at a small angle (see Fig. 2). The inclination
with the axis of each beam inside the crystal is then

. We denote the relative

delay between the pulses as. An additional delay for off-
axis components of the beam due to the geometry can be
expressed for a plane wave as

for the beam propagating in direction,
and for the beam in the direction. The
electric fields in the frequency domain can be found via Fourier
transforms

(18)

In order to calculate the second-order dielectric polarization
induced at frequency by the two fundamental fields, we
should sum over all possible permutations of fundamental
frequencies

(19)

In (19), we included frequency dependence of the nonlinear
susceptibility and represent the fundamental
fields analogously to (14). The electric field of the SH therefore
becomes

(20)

where is the phase mismatch given by the
equation

(21)

with and the refractive indices of the fundamental
waves and the angle between and the

axis inside the crystal. The appearance of this angle can be
easily understood from Fig. 2. The momentum conservation
law determines the direction of the emitted SH field

(22)

where and are the wavevectors of the incident
fundamental waves. In the case is nonzero
and it can be found from the following equation1:

(23)
1In fact, if the SH is an extraordinary wave, the magnitude ofkSH(
) in

(23) is a function of�(!;
 � !). The problem of finding the exact values
of both kSH(
) and�(!;
� !) could be easily solved by employing the
relations of crystaloptics and (23). However, (23) alone gives an excellent
approximation for�(!;
� !) if one chooseskSH(
)j�=0.
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Since is the same order of magnitude as the intersection
angle, the correction is required only in the

expression [see (21)]. Elsewhere this correction can be
dropped.

The values of the wavevectors and refractive indices in
(21) and (23) depend on the actual polarization of the three
interacting waves. Thus, for Type I phase matching, we obtain

(24)

and for Type II

(25)

Here indices and correspond to the ordinary and extra-
ordinary waves, respectively.

To calculate the total FROG signal, one should integrate
the signal intensity

(26)

over the transverse coordinatesand . Hence, for the SH
signal detected in FROG, we obtain

(27)

In (27), is the spectral sensitivity of the photodetector.
We also took into consideration the transverse profiles of the
fundamental beams as given in Section III.

Thus far, we have limited our discussion to the case of low-
efficiency SHG, i.e., when the depletion of the fundamental
waves can be disregarded. In the high conversion efficiency
regime, however, additional effects play an important role.
While the SH intensity depends quadratically on the crystal
length in the case of an undepleted pump [58], in the
high-efficiency regime, conversion efficiency “saturates” for
more intense spectral modes but remains proportional to

for the weaker ones. Consequently, the FROG traces
measured in a Type I SHG crystal in the presence of significant
pump depletion typically have both spectral and temporal
marginals broader than those in the low-conversion-efficiency
case. Hence, despite seemingly increased bandwidth in the
high-efficiency regime, the FROG trace is intrinsically in-
correct. The case of the high-efficiency SHG in a Type II
crystal [59], [60] is more complex than in Type I and can

result in both shortening and widening of the temporal width
of the FROG trace. Another important example of the SH
spectral shaping in the high-conversion-efficiency regime is
the nonlinear absorption of the frequency-doubled radiation
inside the SHG crystal [61]. Therefore, the high-efficiency SH
conversion is a potential source of systematic errors in a FROG
experiment and should be avoided.

To conclude this section, we would like to make a remark
on the frequency—as opposed to time—domain approach to
the wave equation (12) in the single-optical-cycle regime.
Clearly, the former has a number of advantages. The spectral
amplitude of a femtosecond pulse is directly observable while
the temporal amplitude is not. The frequency representation
allowed us to include automatically dispersive broadening of
both fundamental and SH pulses as well as their group mis-
match, frequency dependence of the nonlinear susceptibility,
frequency-dependent spatial profiles of the beams, and the blue
shift of the SH spectrum (analog of self-steepening in fibers
[50]). Furthermore, we have made a single approximation
given by (15), which is easily avoidable in computer simula-
tions. Equation (20) can also be used to describe the process of
SH generation in the low pump-depletion regime to optimize a
compressor needed to compensate phase distortions in the SH
pulse. Extension of the theory to high conversion efficiency
by including the second equation for the fundamental beam
is also straightforward. Note that a similar frequency-domain
approach to ultrashort-pulse propagation in optical fibers [62]
helped solve a long-standing question of the magnitude of the
shock term [50], [63].

V. ULTIMATE TEMPORAL RESOLUTION OF THESHG FROG

In the general case of arbitrary pulses, the complete ex-
pression for the SHG FROG signal given by (27) must be
computed numerically. However, for the limited class of
pulses, such as linearly chirped Gaussian pulses, (27) can be
evaluated analytically. Such analysis is valuable to estimate
the temporal resolution of the SHG FROG experiment.

The geometrical smearing of the delay due to the crossing
angle is an important experimental issue of the noncollinear
multishot FROG measurement of ultrashort pulses. As can be
seen from (27), the dependence on the transverse coordinate
yields a range of delays across the beam simultaneously which
“blurs” the fixed delay between the pulses and broadens the
FROG trace along the delay axis. Analogously to Taftet al.
[9], we assume Gaussian-intensity pulses and, under perfect
phase-matching conditions, obtain the measured pulse duration

that corresponds to a longer pulse as given by

(28)

where is the true pulse duration and is the effective
delay smearing

(29)

with being the beam diameter in the focal plane and
the intersection angle of the fundamental beams.

We consider the best scenario of the two Gaussian beams
separated by their diameter on the focusing optic. In this
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case, the intersection angle and the beam diameter
in the focal plane , where is the focal
length of the focusing optic. Therefore, the resultant time
smearing amounts only to fs at
nm. This value presents the ultimate resolution of the pulse
measurement in the noncollinear geometry. Interestingly, this
figure does not depend on the chosen focusing optic or the
beam diameter, since the beam waist is proportional whereas
the intersection angle is inversely proportional to the focal
distance . It should be noted that the temporal resolution
deteriorates if the beams are other than Gaussian. For instance,
if the beams of the same diameter with a rectangular spatial
intensity profile replace the Gaussian beams in the situation
described above, the resultant temporal resolution becomes
0.7 fs.

Additional enhancement of the temporal resolution could be
achieved either by placing a narrow slit behind the nonlinear
medium [64], as will be discussed in Section X, or by
employing a collinear geometry [65], [66].

VI. A PPROXIMATE EXPRESSION FOR THESHG FROG SIGNAL

In this section, our goal is to obtain a simplified expression
for SHG FROG that can be used even for single-cycle optical
pulses. We start from the complete expression given by (27)
and show that the measured signal can be described by an
ideal, i.e., perfectly phase-matched, SHG FROG and a spectral
filter applied to the SH field. Throughout this section, we
consider Type I phase matching.

In order to simplify (27), we make several approximations.
First, as was shown in the previous section, under carefully
chosen beam geometry the effect of geometrical smearing is
negligibly small. For instance, it causes only a 10% error
in the duration measurement of a 3-fs pulse and can be
safely neglected. With such approximation, the integral along

in (27) can be performed analytically. Second, we assume
that and apply this to modify the factor that is
proportional to the overlap area between different fundamental
frequency modes: . Third, we expand

and into Taylor series around
and keep the terms that are linear with frequency.2 Hence, for
Type I phase matching, we write

(30)

Fourth, we estimate dispersion of the second-order suscep-
tibility from the dispersion of the refrac-
tive index. For a classical anharmonic oscillator model [55],

, where
. Equation (27) can now be decomposed

to a product of the spectral filter , which originates from
the finite conversion bandwidth of the SH crystal and varying

2Alternatively, one can perform Taylor expansion around the central
frequency of the fundamental pulse! = !0 [21], [38], [42]. However, in
this case, the first derivative terms do not cancel each other and must be
retained. Our simulations also prove that the expansion around! = 
=2
provides a better approximation when broad-band pulses are concerned.

Fig. 3. Constituent terms of spectral filterR(
) given by (33). The
3

dependence (dotted line), estimated squared magnitude of second-order sus-
ceptibility �h2i (dash–dotted line), the crystal phase-matching curve for a
Type I 10-�m BBO crystal cut at� = 29� (dashed line), and their product
(solid curve). The SH spectrum of a 3-fs Gaussian pulse is shown for
comparison (shaded contour).

detector sensitivity, and an ideal FROG signal

(31)

where

(32)

and

(33)

In (31)–(33), we retained only the terms that are-dependent.
The FROG signal given by (32) is the well-known classic

definition of SHG FROG [14], [17], [34] written in the
frequency domain. The same description is also employed in
existing FROG retrieval algorithms. Note that the complete
(27) can be readily implemented into the algorithm based on
the method of generalized projections [67]. However, (31) is
more advantageous numerically, since the integral (32) takes
form of autoconvolution in the time domain and can be rapidly
computed via fast Fourier transforms [68]. It is also important
that the use of (31) permits a direct check of FROG marginals
to validate experimental data.

The spectral filter , as given by (33), is a product of
several factors (see Fig. 3). The -term (dotted line) results
from the dependence of the SH intensity on the spatial
overlap of the different fundamental frequency modes,3 and
from the dependence that follows from Maxwell’s equa-
tions. The meaning of the latter factor is that the generation of
the higher frequency components is more efficient than of the
lower frequency ones. The combined dependence leads to
a substantial distortion of the SH spectrum of ultrabroad-band
pulses. For instance, due to this factor alone, the upconversion
efficiency of a spectral component at 600 nm is 4.5 times
higher than of a 1000-nm one.

3For a hollow fiber, this dependence should be disregarded [42], [53].
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(a) (b)

(c) (d)

Fig. 4. Simulation of SHG FROG signal for an ideal 3-fs Gaussian pulse for
Type I phase matching. (a) Ideal FROG trace as given by (32). (b) Complete
FROG trace as given by (27). (c) Spectral filter curveR(
) computed
according to (33) (shaded contour) and the ratio of FROG traces given in
(b) and (a) at several delays (broken curves). (d) Spectral marginal of the
traces shown in (b) (solid curve) and autoconvolution of the fundamental
spectrum (dashed curve). The FROG traces here and further on are shown as
density plots with overlaid contour lines at the values 0.01, 0.02, 0.05, 0.1,
0.2, 0.4, and 0.8 of the peak SH intensity.

The variation of the second-order susceptibility with fre-
quency, expressed in (33) as the dependence on the refractive
indices, plays a much less significant role than thefactor
(dotted line). According to our estimations for the BBO crystal,
the squared magnitude of for the 600-nm component
of the fundamental wave is only 1.3 times larger than for
the 1000-nm component. Such a virtually flat second-order
response over the immense bandwidth is a good illustration
of the almost instantaneous nature of in transparent
crystals. Nonetheless, estimation of the contribution of the
dispersion is required for the measurement of the optical pulses
with the spectra that are hundreds of nanometers wide.

The last factor contributing to is the phase-matching
curve of the SHG crystal (Fig. 3, dashed line). The shape
and the bandwidth of this curve depend on the thickness,
orientation and type of the crystal. Some practical comments
on this issue will be provided in Section IX.

VII. N UMERICAL SIMULATIONS

In this section, we verify the approximations that were
applied to derive (31)–(33). In order to do so, we numerically
generate FROG traces of various pulses using the complete
expression (27) and compare them with the ideal FROG traces
calculated according to (32). To examine contributions of
different factors to pulse reconstruction, we compare FROG
inversion results with the input pulses.

(a) (b)

(c) (d)

Fig. 5. Simulation of SHG FROG signal for a linearly chirped 26-fs Gauss-
ian pulse. The conditions are the same as in Fig. 4. (a) Ideal FROG trace
as given by (32). (b) Complete FROG trace as given by (27). (c) Spectral
filter curveR(
) computed according to (33) (shaded contour) and the ratio
of FROG traces given in (b) and (a) at several delays (broken curves). (d)
Spectral marginal of the traces shown in (b) (solid curve) and autoconvolution
of the fundamental spectrum (dashed curve).

Two types of pulses with the central wavelength at 800 nm
are considered: 1) a bandwidth-limited 3-fs Gaussian pulse and
2) a pulse with the same bandwidth that is linearly chirped
to 26 fs. We assume that the fundamental beam diameter
in the focus is m and the beams intersect at

. Therefore, the geometrical delay smearing that
was defined in Section V [see (29)] amounts to
fs. The m BBO Type I crystal is oriented for the
peak conversion efficiency at 700 nm.4 As we pointed out in
Section IV, such a short crystal lengthens the pulse less than
0.1 fs, and, therefore, dispersive pulse broadening inside the
crystal can be disregarded. The spectral sensitivity of
the light detector is set to unity.

The results of FROG simulations for each type of pulses
are presented in Figs. 4 and 5. The ideal traces calculated
according to (32) are shown in Figs. 4(a) and 5(a), while the
traces computed using (27) are displayed in Figs. 4(b) and
5(b). The FROG trace of the 3-fs pulse is also noticeably
extended along the delay axis as the consequence of the geo-
metrical smearing. For the 26-fs pulse, as should be expected,

4The phase-matching angle is slightly affected by the noncollinear geome-
try. Due to the fact that the fundamental beams intersect at an angle2�0,
the equivalent phase-matching angle is different from that in the case of
collinear SHG:� = �collinear + �0=n, wheren is the refractive index
of the fundamental wave at the phase-matching wavelength. For instance,
the 800-nm phase-matched cut of a BBO crystal for2�0 = 2� becomes
� = 29:6� instead of�collinear = 29� for collinear SHG. This fact should
be kept in mind since the phase-matching curve is quite sensitive to the precise
orientation of the crystal.
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(a) (b) (c) (d)

Fig. 6. Retrieved pulse parameters in the time and frequency domains for various simulated FROG traces. (a) Perfectly phase-matched zero-thickness
crystal, no geometrical smearing. (b) Type I 10-�m BBO crystal cut at� = 33:4�, no geometrical smearing. (c) The same as in (b), and the FROG
trace is corrected according to (33). (d) The same as in (c) but with the geometrical smearing included. Dashed curves correspond to initial fields,
while solid curves are obtained by FROG retrieval.

this effect is negligible. The spectral filtering occurring in the
crystal becomes apparent from the comparison of the spectral
marginals that are depicted in Figs. 4(d) and 5(d). Calculated
marginals are asymmetric and substantially shifted toward
shorter wavelengths.

By computing a ratio of the FROG signals given by (32)
and (27), we obtain delay-dependent conversion efficiency,
as shown in Figs. 4(c) and 5(c). The spectral filter ,
calculated according to (33), is shown as shaded contours.
Clearly, at the small delays, the conversion efficiency is
almost exactly described by . With the increase of pulse
separation, the approximation given by (33) worsens, as both
the conversion peak position and the magnitude change. The
rapid ratio scaling at nonzero delays for the 3-fs pulse [broken
curves in Fig. 4(c)] is mostly determined by the geometrical
smearing rather than by the phase matching, as in the case of
the chirped pulse [Fig. 5(c)]. On the other hand, the deviations
from at longer delays become unimportant because of
the decreasing signals at large pulse separations.

To estimate the significance of the spectral correction of
the distorted FROG traces and feasibility of performing it
in the case of extreme bandwidths, we examined FROG

inversion results of the numerically generated traces using the
commercially available program from Femtosoft Technologies.
Four different cases were considered for each type of pulses: 1)
an ideal phase-matching (zero-thickness crystal); 2) a 10-m
BBO crystal with the parameters defined above; 3) the trace
generated in case 2) is corrected by ; and 4) geometrical
smearing is included as well. In its essence, case 4) is similar
to 3), but in 4) the FROG trace was additionally distorted by
the geometrical smearing. The results of the FROG inversion
of cases 1)–(4) are presented in Fig. 6(a)–(d), respectively.

In Fig. 6(a), the dependence is exclusively responsible
for the spectral filtering that substantially shifts the whole
FROG trace along the frequency axis. Both the bandwidth-
limited and the chirped Gaussian pulses showed excellent
convergence to their input fields, but around a blue-shifted
central frequency. In Fig. 6(b), where the phase-matching of a
10- m BBO crystal is taken into account as well, the central
wavelength is even more blue-shifted due to spectral filtering
in the crystal. A small phase distortion is obtained for both
types of pulses. The retrieved 3-fs pulse is also artificially
lengthened to 3.4 fs to match the bandwidth narrowed by the
spectral filtering in the crystal. The results of FROG retrieval
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of the same trace upon the correction by [Fig. 6(c)]
indicate an excellent recovery of both the bandwidth-limited
and the chirped pulses.

Finally, in Fig. 6(d) the geometrical smearing had a neg-
ligible effect on the 26-fs pulse. However, the FROG of the
shorter pulse converged to a linearly chirped 3.3-fs Gaussian
pulse. This should be expected, since the FROG trace broadens
in time and remains Gaussian, while the spectral bandwidth is
not affected. In principle, like the spectral correction , the
correction for the temporal smearing should also be feasible.
It can be implemented directly into the FROG inversion
algorithm by temporal averaging of the guess trace, produced
in every iteration, prior to computing the FROG error.

Several important conclusions can be drawn from these sim-
ulations. First, they confirm the correctness of approximations
used to obtain (31)–(33). Therefore, the spectral correction
given by is satisfactory even in the case of single-cycle
pulses, provided the crystal length and orientation permit one
to maintain a certain, though not necessarily high, level of
conversion over the entire bandwidth of the pulse. Second,
a time-smearing effect does not greatly affect the retrieved
pulses if the experimental geometry is carefully chosen. Third,
the unmodified version of the FROG algorithm can be readily
applied even to the shortest pulses. Fourth, it is often possible
to closely reproduce the pulse parameters by FROG inversion
of a spectrally filtered trace without any spectral correction
[42]. However, such traces correspond to similar pulses shifted
in frequency rather than to the original pulses for which they
were obtained.

In order to quantify the distortions that are introduced into
the SHG FROG traces by phase matching and the noncollinear
geometry and that cannot be removed by the -correction,
we compute the systematic error as an rms average of the
difference between the actual corrected FROG trace and the
ideal trace normalized to unity. Given the form of the FROG
error [18], the systematic error can be defined as follows:

(34)

where and are given by (32) and (33),
respectively, and is computed according to (27).
The parameter is a scaling factor necessary to obtain the
lowest value of . The dependence of on the duration of a
bandwidth-limited pulse for the 128128 FROG matrix that
has optimal sampling along the time and frequency axes is
presented in Fig. 7. As can be seen, the systematic error for

5-fs pulses becomes comparable with the typical achievable
experimental SHG FROG error. It also should be noted that
the contribution of geometrical smearing is about equal to or
higher than that due to spectral distortions remaining after the
spectral correction.

The systematic error should not be confused with the
ultimate error achievable by the FROG inversion algorithm.
Frequently, as, for instance, in the case of linearly chirped
Gaussian pulses measured in the presence of geometrical
smearing, it means that the FROG trace continues to exactly
correspond to a pulse, but to a different one. However, for an

Fig. 7. Dependence of the systematic FROG trace error on the pulse dura-
tion. FROG matrix size is 128�128. The dotted curve corresponds to the trace
after the spectral correction is given by (33). The error due to geometrical
smearing of a perfectly phase-matched trace is shown as a dashed curve,
while the error of a spectrally corrected and geometrically smeared FROG is
given by the solid curve. The parameters of the crystal and of the geometrical
smearing are the same as above. The central wavelength of the pulse is kept
at 800 nm.

arbitrary pulse of 3 fs in duration, it is likely that the FROG
retrieval error will increase due to the systematic error.

VIII. T YPE II PHASE MATCHING

So far, we have limited our consideration to Type I phase
matching. In this section, we briefly discuss the application
of Type II phase matching to the measurement of ultrashort
laser pulses.

In Type II, the two fundamental waves are nonidentical,
i.e., one ordinary and one extraordinary. This allows the
implementation of the collinear SHG FROG geometry free
of geometrical smearing [66]. The FROG traces generated in
this arrangement in principle do not contain optical fringes
associated with the interferometric collinear autocorrelation
and, therefore, can be processed using the existing SHG FROG
algorithms. However, the fact that the group velocities of the
fundamental pulses in a Type II crystal become quite different
has several important implications. First, the SH signal is no
longer a symmetric function of the time delay [38]. Second,
because the faster traveling fundamental pulse can catch up
and pass the slower one, some broadening of the SH signal
along the delay axis should be expected [38].

In order to check the applicability of the collinear Type II
SHG FROG for the conditions comparable to those discussed
earlier for the case of Type I phase matching, we performed
numerical simulations identical to those in Section VII. The
same pulses were used, i.e., the bandwidth-limited 3-fs pulse
at 800 nm and the pulse with the same bandwidth stretched
to 26 fs. The thickness of the Type II BBO is m,
and the crystal is oriented for the peak conversion efficiency
at 700 nm . The expression for the spectral filter,
adapted for Type II, is given by

(35)
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(a) (b)

(c) (d)

Fig. 8. Simulation of SHG FROG signal for an ideal 3-fs Gaussian pulse for
Type II phase matching. (a) Ideal FROG trace as given by (32). (b) Complete
FROG trace as given by (27). (c) Spectral filter curveR(
) computed
according to (33) (shaded contour) and the ratio of FROG traces given in
(b) and (a) at several delays (broken curves). (d) Spectral marginal of the
traces shown in (b) (solid curve) and autoconvolution of the fundamental
spectrum (dashed curve).

where the phase mismatch5 is

(36)

The results of FROG simulations are presented in Figs. 8
and 9. The FROG trace of the 3-fs pulse [see Fig. 8(b)] is
practically symmetrical along the delay axis. However, despite
the fact that no geometrical smearing has occurred, this trace
is evidently broadened along the delay axis. Consequently,
the FROG inversion of this trace after the spectral correction
yields a longer 3.3-fs pulse. The elongation of the trace is
due to the temporal walkoff of the fundamental waves, which
in this case is about 1 fs. The magnitude of this temporal
distortion is approximately equal to the geometrical smearing
discussed in the previous section. The trace of the chirped
pulse, produced under the same conditions [see Fig. 9(b)],
is much more severely distorted than in the case of the
bandwidth-limited pulse. The straightforward use of this trace
is virtually impossible because of its strong asymmetry.

As in the Type I case, the conversion efficiency, obtained
as a ratio of the ideal and simulated FROG traces, continues
to correspond nicely to the spectral filter [see Figs. 8(c)
and 9(c), shaded contours] at near-zero delays. Conversion
efficiency at other delays, however, sharply depends on the
sign of the delay . Similar to Type I phase matching, the
frequency marginals [see Figs. 8(d) and 9(d)] are substantially

5Unlike the case of Type I phase matching, the first derivative terms do not
cancel each other out, but they have been disregarded anyway.

(a) (b)

(c) (d)

Fig. 9. Simulation of SHG FROG signal for a linearly chirped 26-fs Gauss-
ian pulse. The conditions are the same as in Fig. 8. (a) Ideal FROG trace
as given by (32). (b) Complete FROG trace as given by (27). (c) Spectral
filter curveR(
) computed according to (33) (shaded contour) and the ratio
of FROG traces given in (b) and (a) at several delays (broken curves). (d)
Spectral marginal of the traces shown in (b) (solid curve) and autoconvolution
of the fundamental spectrum (dashed curve). Note the skewness of the FROG
trace in (b).

blue-shifted. It is also apparent from Figs. 8(c) and 9(c)
that the phase-matching bandwidth in this case is somewhat
broader than in the analogous Type I crystal.

We can conclude from our simulations that Type II SHG
FROG offers no enhancement of the temporal resolution and is
less versatile compared to the noncollinear Type I arrangement.
Additionally, the collinear Type II SHG FROG requires a
greater experimental involvement than in the Type I SHG
FROG. However, for some applications such as confocal
microscopy, where the implementation of the noncollinear
geometry is hardly possible due to the high numerical aperture
of the focusing optics, the use of Type-II-based FROG appears
quite promising [66].

IX. THE CHOICE OF THE SHG CRYSTAL

In this section, we provide several guidelines for selecting
the correct SHG crystal in the FROG measurement. On the
one hand, the crystal should be thick enough to generate an
appropriate level of the SH signal for a high dynamic range
measurement. One the other hand, the thickness of the crystal
should be sufficiently small to provide an appropriate phase-
matching bandwidth and minimize pulse broadening in the
crystal.

Obviously, when choosing the crystal one must consider
the bandwidth of the pulse that has to be characterized. We
employ a simple criterion to estimate the required crystal
thickness: the conversion efficiency calculated according to
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Fig. 10. Crystal thickness required for SHG FROG measurement as a
function of the pulse duration at the central wavelength of (a) 800 nm and (b)
600 nm. The crystals are cut for Type I phase matching, which correspond to
� = 29� for BBO (solid line) and� = 44� for KDP (dashed line).

(33) must be higher than 50% of the peak conversion efficiency
everywhere over the double FWHM of the FROG spectral
marginal. For the pulses that are Gaussian in frequency,
the ideal spectral marginal, or the autoconvolution of the
fundamental spectrum, is times broader than the pulse
bandwidth. Using this criterion, we evaluated BBO and KDP
crystals, which are typically employed for ultrashort pulse
measurement. Both considered crystals are cut for Type I
phase matching at wavelengths of 800 and 600 nm. Fig. 10
depicts the appropriate crystal thickness of the BBO (solid
curve) and KDP (dashed curve) as a function of duration of a
bandwidth-limited Gaussian pulse.

As can be noted from Fig. 10, a BBO crystal approximately
10 m-thick should be employed to measure 5-fs pulses
at 800 nm. The adequate thickness of the KDP crystal is
approximately 2.5 times larger due to its lower dispersion.
However, while clearly providing an advantage in thickness,
the KDP crystal has a disadvantage in the SHG efficiency. The
signal level that can be obtained with a BBO crystal that is 2.5
times thinner is still approximately larger than in a KDP crystal
by a factor of 6 because of the higher nonlinear coefficients
and lower phase-matching angle in the BBO crystal [69].
Therefore, BBO is a more suitable choice for characterization
of weak-intensity pulses. For high-intensity pulses, when the
low level of the SH signal is not really the issue, KDP presents
a better choice [42].

With the growth of the phase-matching bandwidth of the
crystal, the dependence [see (33)] begins to dominate
the conversion efficiency. As shown in Section VI, this de-
pendence blue-shifts the SH spectrum. In case the phase-
matching bandwidth of the SHG crystal is wider than required
by the pulse bandwidth, angular tuning of the crystal can
effectively counteract such blue-shift [42]. To illustrate the
point, we consider a 10-m BBO crystal applied to measure
8-fs Gaussian pulses at 800 nm. Fig. 11(a) shows the blue-
shift of the FROG spectral marginal (filled circles) with
respect to the autoconvolution (solid curve) if the crystal is
perfectly phase-matched at 800 nm, i.e., . However,
after adjusting the phase-matching angle to that
now corresponds to the central wavelength of 970 nm [see
Fig. 11(b)], the phase-matching curve of the crystal (dashed
curve) nearly perfectly balances the dependence (dotted

(a) (b)

(c) (d)

Fig. 11. Correction of frequency conversion efficiency by crystal orientation
for (a), (b) 8-fs and (c), (d) 3-fs bandwidth-limited Gaussian pulses. A Type I
10-�m BBO crystal is oriented for the phase-matched wavelength of 800 nm
(a), (c) and 970 nm (b), (d). The phase-matching curve and the
3 dependence
are shown as the dashed and dotted lines, respectively. The solid curves
depict the autoconvolution of fundamental spectra, while spectral marginals
of FROG traces are given by filled circles. In (b), no spectral correction
of the FROG trace is required for an 8-fs pulse because of the red-shifted
phase-matched wavelength. In contrast, the use of the 970-nm phase-matched
crystal irreparably corrupts the SH spectrum in the case of a shorter 3-fs pulse
(d). Note the difference in horizontal scales in (a), (b) and (c), (d).

curve). The overall conversion efficiency becomes almost flat
and no spectral correction of the FROG trace is required.
Experimentally, Taftet al. [9] demonstrated the effectiveness
of the angular adjustment that enabled them to yield correct
FROG data.

The mutual compensation of the and phase-matching
terms is only possible for relatively long (10-fs) pulses.
As a thinner crystal is chosen to measure shorter pulses, the
high-frequency slope of the phase-matching curve becomes
relatively steeper than the low-frequency one [see Figs. 11(c)
and (d)]. This is to be expected, since crystal dispersion is
low in the infrared and increases approaching the ultraviolet
(UV) absorption band. Tuning the central wavelength of the
crystal from 800 nm [Fig. 11(c)] to 970 nm [Fig. 11(d)]
substantially narrows the SH spectrum in the blue due to
the crystal phase matching. Even worse, the FROG trace
can hardly be corrected for the imposed spectral filter since
the conversion efficiency becomes extremely low in the blue
wing [Fig. 11(d)]. This should be contrasted to the 800-nm-
cut case when the correction is still possible (see Fig. 6).
Therefore, in order to extend the phase-matching bandwidth in
the blue, one should consider using a crystal with the phase-
matching wavelength blue-shifted with respect to the central
frequency of the pulse. For example, a m BBO
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Fig. 12. Delay-dependent change of the SH direction in the case of a chirped
pulse.

crystal oriented for peak conversion efficiency at 700 nm is
more suitable for the measurement of sub-5-fs pulses centered
at 800 nm than the same crystal tuned to 970 nm. Although
the 700-nm-cut crystal has poorer conversion efficiency in the
infrared, it nonetheless allows the extension of phase matching
below 600 nm. Consequently, this crystal has an appreciable
efficiency of frequency conversion all over the spectrum of a
5-fs pulse and, therefore, the FROG traces can be validated
upon spectral correction. In contrast, information concerning
the blue spectral wing is completely filtered out if the crystal
oriented for 970 nm is used.

X. SPATIAL FILTERING OF THE SH BEAM

In this section, we show how spatial filtering of the SH beam
can corrupt an autocorrelation or FROG trace. Unfortunately,
this type of distortion can pass undetected since the FROG
trace may still correspond to a valid pulse, but not the one
that is being measured.

As already mentioned in Section IV [see (23)], the direction
in which an SH frequency is emitted varies because of the
noncollinear geometry. Even though the intersection angle of
the fundamental beams is small, this effect becomes rather
important for the measurement of broad-band pulses due to
the substantial variation of the wavevector magnitude across
the bandwidth.

Let us consider a certain component of the SH signal that
has a frequency of (Fig. 12). This component can be gen-
erated for several combinations of fundamental frequencies,
for example, such as the pairs of and , and of and

. The direction in which the component is emitted

(a) (b)

Fig. 13. Angular dependence of the noncollinear SH signal for a linearly
chirped Gaussian pulse in the far field. (a) Autocorrelation intensity as a
density plot of delay between the fundamental pulses and the SH angle.
(b) Autocorrelation intensity trace obtained by integration over all spatial
components of the SH beam (solid curve) and the traces detected through a
narrow slit at the SH angle of 0� (dashed curve) and 0.4� (dotted curve).
The pulse is stretched to�5 times the bandwidth-limited pulse duration. The
intersection angle of the fundamental beams is 2�.

for each pair can vary, as determined by the noncollinear phase
matching. Therefore, as can be seen from Fig. 12, the direction
of the SH beam changes as a function of delay between the
fundamental pulses. This phenomenon is utilized in the chirp
measurement by angle-resolved autocorrelation [70], [71].

To illustrate the effect of spatial filtering of the SH beam, we
examine the same Gaussian pulses linearly chirped to 26 fs,
which were used in the numerical simulations described above.
We keep the same geometrical parameters as in the previous
sections of this paper, i.e., m and . The
resulting dependence of the autocorrelation intensity as a func-
tion of the SH angle in the far field is depicted in Fig. 13(a).
The tilt of the trace clearly indicates the sweep of the SH
beam direction. The signal beam traverses approximately half
the angle between the fundamental beams, and the magnitude
of this sweep scales linearly with the intersection angle. The
autocorrelation trace obtained by integration over all spatial
components of the SH beam is depicted in Fig. 13(b) (solid
curve). The FROG trace corresponding to this autocorrelation,
i.e., measured by detecting of the whole beam, is entirely
correct and allows recovery of the true pulse parameters.

The situation, however, becomes different if only a portion
of the SH beam is selected. In the considered example, the
autocorrelation or FROG, measured through a narrow slit
placed on the axis of the second harmonic beam, would
“shrink” along the delay axis, as shown in Fig. 13(b) (dashed
curve). The width of this trace is10% narrower than the true
autocorrelation width. Positioning of the slit off the beam axis
(see Fig. 13(b), dotted curve) leads to the shift of the whole
trace along the delay axis and, for some pulses, to asymmetry
in the autocorrelation wings. In the case of Gaussian pulses
examined here, the FROG traces measured with such spatial
selection remain self-consistent, disregarding the delay shift.
The spectral marginal of such FROG traces is exactly the same
as in the case of the whole-beam detection. Consequently, the
FROG retrieval of the spatially filtered traces yields pulses of
correct bandwidth but less chirped than in reality.
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Fig. 14. Schematic of the SHG FROG apparatus. Spectrometer and its
coupling optics are not shown.

The described effect should not be identified alone with the
pulses that are much longer than the bandwidth limit, since
even the bandwidth-limited pulses with asymmetric spectra
carry a chirp in time. Therefore, careful collecting of all
spatial components of the SH field is extremely essential.
We also underline importance of measuring an independent
autocorrelation trace in front of the spectrometer, since its
comparison with the temporal marginal of the FROG trace
might signal improper spatial filtration occurring in the FROG
detection.

In Section V, we mentioned the ability to enhance the
temporal resolution of a noncollinear measurement by placing
a slit behind the nonlinear medium. This reduces the effective
spot of the SH beyond the size of the diffraction-limited
focus. However, placing a slit into the collimated beam would
cause the spatial selection considered above. To avoid such
undesirable distortion, one should position the slit behind the
crystal within the Rayleigh range, or, alternatively, into the
scaled image of the crystal plane projected by an achromatic
objective lens. The realization of both these options is rather
difficult and becomes really necessary only if the beams are
poorly focusable.

XI. SHG FROG APPARATUS

In our experiments, we used pulses from a self-mode-
locked cavity-dumped Ti:sapphire oscillator compressed upon
chirping in a single-mode fused silica fiber. We measured
the white-light continuum (WLC) pulses directly at the fiber
output and, again, upon the their compression performed as
described elsewhere [11].

The SHG FROG apparatus (Fig. 14) is based on a phase
and amplitude balanced multishot autocorrelator designed for
sub-5-fs short pulses [11]. The input beam was split and
recombined in such a way that each of the beams travels once
through an identical 50% beam splitter with both reflections
occurring on the same coating–air interfaces.6 To match the
beam splitters, the initial horizontal polarization of the laser
beam was rotated by a periscope. The moving arm of the
autocorrelator was driven by a piezo transducer (Physik Instru-
mente) which is controlled by a computer via a digital–analog
converter and a high-voltage amplifier. The precise time cali-
bration was provided by an auxiliary Michelson interferometer.

6For shorter pulses, one should use lower reflectivity beam splitters that
have a broader reflectivity range and flatter spectral phase.

The photodiode monitored the interference fringes that serve
as time calibration marks.

Fundamental pulses were focused in the nonlinear crystal
with an -cm spherical mirror at near normal incidence
to minimize astigmatism. Due to the low curvature of the
mirrors, delay variations within each beam are less than
0.1 fs. To achieve simultaneous upconversion of the entire
fundamental bandwidth, we employed a 10-m-thick BBO
crystal cut for a central wavelength of 700 nm (EKSMA
Inc.). Dispersive lengthening of a 5-fs pulse by such a crystal
does not exceed 0.02 fs. The blue-shifted central wavelength
permits one to extend the phase-matching bandwidth below
600 nm, as shown in Fig. 4(c). The cut angle of the crystal
was verified with a tunable 100-fs laser. Retroreflection of
the beams from the crystal surface provided exact reference
for crystal orientation. This enables us to accurately calculate

required for data correction according to (33). A visible-
IR PC1000 (Ocean Optics) spectrometer was used to detect
the fundamental spectra.

Two different SH detection systems were employed in the
measurements of the compressed and the chirped pulses. In
the case of compressed pulses, a well-characterized UV-Vis
PC1000 (Ocean Optics) spectrometer was used. Therefore, the
FROG traces could be readily corrected by , as described
above.

In the case of the strongly chirped pulses, a combination of a
scanning monochromator and a photomultiplier tube provided
the dynamic range necessary to measure the spectral wings
(see Section XII). The reason for this was the following:
the dynamic range of the measurement in a CCD-based
spectrometer is determined not only by the spectral sensitivity,
which is adequately high, but by the charge spreading all
over the array due to the overload of some channels. To
further extend the dynamic range, a lock-in amplifier was
used to detect the SH signal. Because of the unknown spectral
sensitivity , the spectral correction of the FROG traces
in this case was performed according to the method suggested
in Taft et al. [9], i.e., by using the ratio of the autoconvoluted
fundamental spectrum and the spectral marginal.

XII. SHG FROGOF WHITE-LIGHT CONTINUUM

The study of the group delay of the chirped WLC is the
corner stone of pulse compression. The phase measurement of
the pulses leaving the fiber permits one to assess the feasibility
of pulse compression in general. Understandably, the spectral
phase must be sufficiently smooth to allow compensation by
means of the existing dispersion control. A measurement of the
spectral intensity, on the other hand, provides only a limited
insight and reveals the minimum duration of the would-be
compressed pulse. As an example of virtually uncompressible
pulses, one might consider the case of spectral broadening due
to a pure self-phase modulation. Furthermore, the task of build-
ing an appropriate pulse compressor is substantially eased if
the phase distortion on the pulse is measured beforehand. This
becomes increasingly important with the growth of the pulse
spectral bandwidth that puts severe limitations on dispersion
tunability of the pulse compressor. Therefore, it is desirable
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to replace a great deal of “trial and error” work by measuring
the phase distortion and computing the settings of the pulse
compressor.

Somewhat counterintuitively, the FROG measurement of
a strongly chirped pulse is considerably more complicated
compared with the case a bandwidth-limited pulse with the
identical spectrum.

First, the upconversion signals are weaker due to the lower
peak power. This is evident, since the SH intensity of a pulse
that is stretched to ten times its initial duration drops down
100 times.

Second, a higher dynamic range is required because of the
uneven temporal spread of spectral wings. This occurs due to
the high-order material dispersion. To explain this, we consider
two spectral components with frequencies separated by 1000
cm . The group delay accumulated between them after pass-
ing 1 mm of quartz amounts to 4 fs if these components are sit-
uated around 1000 nm and exceeds 11 fs in the case of 600 nm.
Evaluating roughly, the corresponding elements of the FROG
trace scale 7 times in intensity. In our experiments, the
bandwidth of the WLC that needs to be captured in the FROG
trace is broader than 10 000 cm, and, therefore, the signal
intensity varies very strongly across the resultant FROG traces.

The third complication is purely numerical, since FROG
inversion demands greater matrix sizes to provide adequate
sampling in both time and frequency domain. For the sake
of speed, the FROG inversion algorithms employ fast Fourier
transform (FFT) [68]. To avoid the loss of information in the
change from the time domain to the frequency domain and vice
versa, FFT requires equal number of pointsin both these
domains. Therefore, if the FROG matrix covers the total delay
of in the time domain, where is the time step, the
spectral width represented in this trace is . Compared
with bandwidth-limited pulses, the pulses stretched in time
require larger to contain the whole time information of
the FROG trace in the matrix used in the FROG inversion
algorithm. This narrows the spectral window covered by the
matrix. Consequently, the number of points(which in FFT
is an integer power of two) must be increased to fully represent
the FROG trace in the matrix used by the algorithm. This has
an appreciable effect on the calculation speed. The change
of from to , where is an integer, slows the
FROG retrieval by a factor of . In other words,
by changing a 128128 matrix with a 256 256 one increases
the calculation time by a factor of 4.5.

Lastly, we point out the experimental inconvenience. In
the case of strongly chirped pulses, the crystal alignment and
the detected FROG trace become very sensitive to the delay-
dependent change in the direction of the SH beam, as has
already been discussed in Section X.

The SHG FROG traces of the chirped WLC in our experi-
ments were recorded in 2.5-fs delay steps and converted into
256 256 matrices for processing. To reveal the conditions
best suited for the compression of the WLC, we varied the
parameters of the pulses entering the fiber by changing the
settings of the prism precompressor. The intensity and chirp
of the input pulses, derived by SHG FROG, are shown in
Fig. 15(a). The measured and retrieved FROG traces of the

WLC are depicted in Figs. 15(b) and (c), and the retrieved
WLC spectra and the group delay are shown in Fig. 15(d).
The combined action of self-phase modulation and dispersion
leads to a nearly linear group delay over most of the spectrum
(Fig. 15(d), solid curves). The departure of the overall group
delay from a linear asymptotic can be partly explained by the
bulk dispersion of the fiber, air, and the beamsplitters in the
FROG apparatus. For instance, while the optimal fiber length
was estimated to be 1 mm [10], we employed a 2-mm piece
for the practical convenience and in order to clean the exiting
mode structure.

The WLC spectrum changes dramatically with the change of
the input pulses (Fig. 15(d), shaded contours). The widest and
least modulated spectrum corresponds to the almost chirp-free
input pulse (Fig. 15(d), the third from the top panel). Positive
as well as negative chirping leads to a substantial narrowing
of the WLC spectrum. In contrast, the overall behavior of
the group delays, shown as solid lines in Fig. 15(d), remains
virtually unaffected. This ensures efficient pulse compression
under different experimental conditions.

Group delay measurements of the generated continuum
served as a target function for the design of the three-stage
high-throughput compressor, consisting of a quartz 45-prism
pair, broad-band chirped mirrors, and thin-film Gires–Tournois
dielectric interferometers [11]. The spectral bandwidth of the
compressor is 590–1100 nm and is limited by the reflectivity of
the employed chirped mirrors [72]. The phase characteristics
of the compressor have been analyzed using dispersive ray
tracing and mapped onto the measured group delay of the
continuum. Fig. 16 depicts the measured group delay for
different pulses, entering the fiber (shown as broken curves)
which are reproduced from Fig. 15(d) and the calculated group
delay of the pulse compressor (solid line). As one can see,
our design compensates for the group delay of the white light
everywhere across the compressor bandwidth. The adjustment
of the material of the prism pair allows final fine optimization
of the compressor dispersion, as judged from the FROG trace
of the compressed pulses.

XIII. SHG FROG OF COMPRESSEDPULSES

The FROG traces of the compressed pulses were recorded
by incrementing the time delay between the arms in steps
of 0.5 fs. The acquired 2-D arrays of points were converted
into a 128 128 FROG matrix. The experimental and retrieved
FROG traces of compressed pulses are depicted in Fig. 17(a)
and (b). The FROG error amounted to 0.004 and is mainly
caused by the noise in the spectral wings which scaled
up after the spectral correction of the FROG trace. The
temporal marginal of the FROG trace corresponds nicely
with the independently measured intensity autocorrelation [see
Fig. 17(a)] obtained by detecting the whole SH beam. This
suggests that no spatial filtering of the SH beam has taken
place. Comparison of the FROG frequency marginal and the
autoconvolution of the fundamental spectrum [see Fig. 17(d)]
indicates that no loss of spectral information has occurred.

Fig. 18 shows the retrieved intensity and phase in the
time and frequency domains. To remove the time direction
ambiguity in the measurement of the compressed pulses, we
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(a) (b) (c) (d)

Fig. 15. Experimental results of FROG measurement of the strongly chirped WLC. (a) Temporal intensity (shaded contours) and chirp (solid curves) of
the pulses entering a single-mode fused-silica fiber. (b) Measured and (c) retrieved SHG FROG traces of the WLC. (d) Retrieved spectral intensity (shaded
contours) and the group delay of the WLC (solid curves). The amount of bulk material (fused silica) used to prechirp the input pulses is indicated in theright
top corner of (a). Note that the input pulse energy is kept constant, while the respective scaling of the WLC spectra in (d) is preserved.

performed an additional FROG measurement introducing a
known amount of dispersion (a thin fused silica plate) in
front of the FROG apparatus. The obtained pulse duration
is 4.5 fs while variations of the spectral phase [dashed line
in Fig. 18(b)] is less than across the whole bandwidth.
These results fully confirm our previous analysis based on the
interferometric autocorrelation [11].

To additionally verify both the self-consistency of our com-
pressor calculations and the accuracy of the FROG retrieval,
we compare the obtained spectral phase of the 4.5-fs pulse

(Fig. 18(b), dashed curve) with the predicted residual phase
of the pulse compressor (Fig. 18(b), dash–dotted curve). The
close similarity of the two reassures us of the correctness of
all the procedures used, including the measurement of the
chirped WLC, the knowledge of the dispersion of compressor
constituent parts, the numerical routines employed for the
ray tracing analysis, and, finally, the characterization of the
compressed pulses.

The SHG FROG traces are generally considered unintu-
itive due to their symmetry along the delay axis [17], [19],
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Fig. 16. Group delay of the designed pulse compressor. Solid curve is
calculated by dispersive ray-tracing and is depicted reversed in time. The
broken curves are the measured group delay of the WLC reproduced from
all panels in Fig. 15(d).

(a) (b)

(c) (d)

Fig. 17. The results of SHG FROG characterization of compressed pulses.
(a) Experimental and (b) retrieved traces. (c) Temporal marginal (filled circles)
and independently measured autocorrelation of 4.5-fs pulses (solid curve). (d)
Frequency marginal (filled circles) and autoconvolution of the fundamental
spectrum (solid curve).

[34]. We found out that in the case of nearly bandwidth-
limited pulses, one can significantly increase the amount of
information available from the simple visual inspection of
the trace. In order to do so, every trace in the time domain
at its corresponding SH wavelength should be normalized
to unity. Effectively, this represents the FROG trace as a
series of normalized autocorrelations. In the case of the pulse
with an arbitrary spectrum and the flat spectral phase, such
representation of the SHG FROG trace would give a streak
of uniform thickness around zero delay. The result of such
operation applied to the FROG trace of the 4.5-fs pulse is

(a) (b)

Fig. 18. Retrieved parameters of 4.5-fs pulses in the (a) time and (b)
frequency (b) domains. The FROG-retrieved intensity and phase are shown
as shaded contours and dashed curves, respectively. Independently measured
spectrum (filled circles) and computed residual phase of the pulse compressor
(dash–dotted curve) are given in (b) for comparison.

(a) (b)

Fig. 19. Normalized FROG data of the 4.5-fs pulses. (a) SHG FROG trace
of compressed pulses normalized along the delay axis as described in the text.
(b) Autocorrelation traces derived from the FROG trace at the SH wavelength
of 350 nm (solid curve) and 470 (dashed curve). Note that because of spectral
selection the pulse duration estimated from the autocorrelation width can be
both lower and higher than the real one and differ by as much as a factor of 3.

presented in Fig. 19(a). The variation of the thickness, i.e.,
the width of autocorrelation at a given SH wavelength, which
can be seen in Fig. 19(a), indicates the nonperfect pulse
compression without the necessity to run the FROG inversion
algorithm.

Fig. 19(b) shows two autocorrelation traces derived from
the spectrogram in Fig. 19(a) at two separate wavelengths.
The FWHM of the autocorrelation at 350 nm is merely 6
fs, which is indicative of an 4-fs pulse duration. However,
the autocorrelation at 470 nm is three times broader. Such a
difference clearly illustrates the effect of the spectral filtering
in the nonlinear crystal as well as SH detection on the autocor-
relation width. This also underscores the importance of pulse
characterization by frequency-resolved (e.g., FROG) rather
than nonfrequency-resolved (e.g., intensity autocorrelation)
methods if one deals with such broad-band pulses.

Finally, we note that the width of the autocorrelation traces,
such as the ones shown in Fig. 19(a), can be directly related
to the instrument response of a spectroscopic experiment.
For instance, the temporal resolution of a kinetic trace in a
frequency-resolved pump-probe experiment [73], [74] detected
at 950 nm will be 12 fs, albeit the weighted average pulse
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duration is 4.5 fs [75], [76]. Therefore, the frequency-resolved
measurement (as FROG) brings invaluable information even if
the correct estimation of the pulsewidth could be achieved by
other simpler means, such as the autocorrelation measurement.

XIV. CONCLUSIONS AND THE OUTLOOK

SHG FROG is a powerful and accurate pulse diagnostics
technique that is ideally suited for the measurement of a vast
variety of pulses. In particular, the instantaneous nonlinearity,
high sensitivity, and broad-band response allow one to measure
the shortest pulses available to date. The FROG measurement
of the pulses that are shorter than 5 fs is nowadays probably the
only available means to evaluate the pulse parameters and the
temporal resolution of a nonlinear spectroscopic experiment.

In this paper, we have developed the SHG FROG de-
scription that includes phase matching in the SHG crystal,
noncollinear beam geometry, and dispersion of the second-
order nonlinearity. The derived master equation is valid down
to single-cycle pulses. Furthermore, the numerical simulations
have shown that the conventional description of FROG in
the case of Type I phase matching can be readily used even
for the single-cycle regime upon spectral correction of the
FROG traces, provided the beam geometry, the finite crystal
thickness, and phase-matching bandwidth are chosen correctly.

We have applied the developed theory to the SHG FROG
measurement of 2.5-optical-cycle pulses with a central wave-
length around 800 nm. To the best of our knowledge, these
are the shortest pulses that have been completely characterized
to date. We have also successfully measured strongly chirped
weak-intensity pulses generated at the fiber output. These two
key experiments that are required to design, test, and optimize
the pulse compressor have both been performed without a
single change in the SHG FROG apparatus. Under given
conditions, no other pulse-measuring technique allows similar
versatility.

FROG characterization of chirped spectrally broadened
pulses offers an important shortcut in the generation of the
ever-shorter pulses via external compression. The direct phase
measurement of the output of glass fibers, as demonstrated
in this paper, hollow waveguides [77], and parametric
amplification [32], [78], [79] provides a rigorous target
function for the pulse compressor design. In particular,
we foresee clear benefits for two direct methods of pulse
compression: adaptive dispersion control and all-mirror
compression.

In the first case, the whole pulse compressor or one stage
of it consists of the computer-controlled intensity and phase
masks [80] or an acoustooptical modulator [81]. The required
phase pattern can be calculated and set to match the target
function measured by FROG. Such straightforward finding of
the optimal conditions eliminates the time-consuming iterative
search based on feedback [82] and guarantees a suitable phase
correction.

In the second case, in which no flexible control over the
resulting dispersion of the pulse compressor is permitted,
the precise knowledge of the target function is even more
important. The well-developed theory of chirped mirrors [83]

makes it possible to design the adequate dielectric layer
structure that in many cases almost perfectly follows the
required dispersion curve, measured by FROG. In general, the
phase distortion of nearly any complexity can be compensated
for by a mirror that is based on the gradient change of the
refractive index instead of the discrete dielectric layers, as
is the case with currently available chirped mirrors [72]. No
doubt that with the growing interest in the intracavity [84],
[85] and extracavity broad-band dispersion control [11], [32],
[78], [86], the possibility of manufacturing the gradient-index
structures will shortly become available. Therefore, the phase
measurement of chirped pulses gains paramount importance.
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Häinsch, “Route to phase control of ultrashort light pulses,”Opt. Lett.,
vol. 21, no. 24, pp. 2008–2010, 1996.

[46] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,”
Sov. Phys. JETF, vol. 20, no. 5, pp. 1307–1314, 1965.

[47] I. P. Christov, “Propagation of femtosecond light pulses,”Opt. Com-
mun., vol. 53, no. 6, pp. 364–366, 1984.

[48] P. U. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled
terahertz antennas,”Opt. Lett., vol. 20, no. 8, pp. 807–809, 1995.

[49] S. Feng, H. G. Winful, and R. W. Hellwarth, “Gouy shift and temporal
reshaping of focused single-cycle electromagnetic pulses,”Opt. Lett.,
vol. 23, no. 5, pp. 385–388, 1998.

[50] G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA:
Academic, 1995.

[51] D. Marcuse, “Gaussian approximation of the fundamental modes of
graded-index fibers,”J. Opt. Soc. Amer., vol. 68, no. 1, pp. 103–109,
1978.

[52] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric
waveguides for long distance optical transmission and lasers,”Bell Syst.
Tech. J., vol. 43, pp. 1783–1809, 1964.

[53] F. Krausz, private communication, 1998.
[54] H. Kogelnik and T. Li, “Beams, modes and resonators,” inHandbook of

Lasers, E. R. J. Pressley, Ed. New York: Chemical, 1971, pp. 421–441.
[55] R. W. Boyd,Nonlinear Optics. San Diego, CA: Academic, 1992.
[56] Y. R. Shen,The Principles of Nonlinear Optics. New York: Wiley,

1984.
[57] T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the

single-cycle regime,”Phys. Rev. Lett., vol. 78, no. 17, pp. 3282–3285,
1997.

[58] N. Bloembergen,Nonlinear Optics. New York: Benjamin, 1965.
[59] Y. Wang and R. Dragila, “Efficient conversion of picosecond laser pulses

into second-harmonic frequency using group-velocity dispersion,”Phys.
Rev. A, vol. 41A, no. 10, pp. 5645–5649, 1990.

[60] A. Umbrasas, J.-C. Diels, J. Jacob, G. Valiulis, and A. Piskarskas, “Gen-
eration of femtosecond pulses through second-harmonic compression
of the output of a Nd:YAG laser,”Opt. Lett., vol. 20, no. 21, pp.
2228–2230, 1995.

[61] A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue
generation by frequency doubling of femtosecond pulses in a thick
nonlinear crystal,”Opt. Lett., vol. 23, no. 18, pp. 1441–1443, 1998.

[62] P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in
optical fibers,”Opt. Lett., vol. 15, no. 19, pp. 1076–1078, 1990.

[63] J. T. Manassah, M. A. Mustafa, R. R. Alfano, and P. P. Ho, “Spectral
extent and pulse shape of the supercontinuum for ultrashort laser pulse,”
IEEE J. Quantum Electron., vol. QE-22, pp. 197–204, Jan. 1986.

[64] R. Trebino, private communication, 1997.
[65] J. A. Squier, D. N. Fittinghoff, C. P. J. Barty, K. R. Wilson, M. Müller,

and G. J. Brakenhoff, “Characterization of femtosecond pulses focussed
with high numerical aperture optics using interferometric surface-third-
harmonic generation,”Opt. Commun., vol. 147, pp. 153–156, 1998.

[66] D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. Sweetser, R. Tre-
bino, and M. M̈uller, “Collinear Type II second-harmonic-generation



478 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 4, APRIL 1999

frequency-resolved optical gating for use with high-numerical aperture
objectives,”Opt. Lett., vol. 23, no. 13, pp. 1046–1048, 1998.

[67] K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K.
Wilson, “Pulse retrieval in frequency-resolved optical gating based on
the method of generalized projections,”Opt. Lett., vol. 19, no. 15, pp.
2152–2154, 1994.

[68] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C. New York: Cambridge Univ., 1996.

[69] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan,Handbook of
Non-Linear Optical Crystals. Berlin, Germany: Springer-Verlag, 1991.

[70] V. Kabelka and A. V. Masalov, “Angularly resolved autocorrelation
for single-shot time-frequency imaging of ultrashort light pulse,”Opt.
Commun., vol. 121, nos. 4–6, pp. 141–148, 1995.

[71] V. Kabelka and A. V. Masalov, “Time-frequency imaging of a single
ultrashort light pulse from angularly resolved autocorrelation,”Opt.
Lett., vol. 20, no. 11, pp. 1301–1303, 1995.

[72] E. J. Mayer, J. M̈obius, A. Euteneuer, W. W. R̈uhle, and R. Szip̈ocs,
“Ultrabroadband chirped mirrors for femtosecond lasers,”Opt. Lett.,
vol. 22, no. 8, pp. 528–530, 1997.

[73] C. Rullère (Ed.), Femtosecond Laser Pulses. Berlin, Germany:
Springer-Verlag, 1998, p. 310.

[74] C. H. B. Cruz, R. L. Fork, W. H. Knox, and C. V. Shank, “Spectral
hole burning in large molecules probed with 10 fs optical pulses,”Chem.
Phys. Lett., vol. 132, nos. 4–5, pp. 341–344, 1986.

[75] A. Kummrow, M. F. Emde, A. Baltŭska, D. A. Wiersma, and M. S.
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