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Second-Harmonic Generation Frequency-Resolved
Optical Gating in the Single-Cycle Regime
Andrius Baltigka, Maxim S. Pshenichnikov, and Douwe A. Wiersma

(Invited Paper)

Abstract—The problem of measuring broad-band femtosecond has been demonstrated in the case of femtosecond Ti:sapphire
pulses by the technique of second-harmonic generation |asers [8], [9]. Such information is invaluable to determine
frequency-resolved optical gating (SHG FROG) is addressed. o \yays of and ultimate limits for further pulse shortening.

We derive the full equation for the FROG signal, which is L . h lexi f broad-band oh
valid even for single-optical-cycle pulses. The effect of the phase -@St, Owing to the great complexity of broad-band phase

mismatch in the second-harmonic crystal, the implications of the Correction required to produce spectrum-limited pulses with
beam geometry, and the frequency-dependent variation of the durations shorter than 5 fs [10]-[13], the characterization of the

nonlinearity are discussed in detail. Our numerical simulations \yhjte-light continuum as well as compressed pulses becomes
show that, under carefully chosen experimental conditions and mandatory

with a proper spectral correction of the data, the traditional . o
FROG inversion routines work well even in the single-cycle A breakthrough in the full characterization of ultrashort

regime. The developed description of the SHG FROG signal pulses occurred five years ago with the introduction of
was applied to measure the white-light continuum pulses in the frequency-resolved optical gating (FROG) [14], [15]. FROG
spectral region of 500-1100 nm. The obtained spectral phase of measures a two-dimensional (2-D) spectrogram in which the

these pulses served as a target function for the pulse compressor_. . . .
design. The pulses produced by compression around 800 nm WereS|gnal of any autocorrelation-type experiment is resolved as

also characterized by SHG FROG. The resulting pulse duration & funqtion of both time delay and frequency. -The full pulse
measures 4.5 fs which corresponds te-2.5 optical cycles. intensity and phase may be subsequently retrieved from such
Index Terms—Frequency conversion, nonlinear optics, optical a spectrogram (called FROG trace) via an iterative retrieval

beam focusing, optical pulse compression, optical pulse measure-algorithm. .N.otably, noa priori information _abOUt the pulse .
ments, ultrafast optics. shape, as it is always the case for conventional autocorrelation

measurements, is necessary to reconstruct the pulse from the
experimental FROG trace.

In general, FROG is quite accurate and rigorous [16].
ECENT progress in complete characterization of ultra8ecause a FROG trace is a plot of both frequency and delay,
short pulses reflects the growing demand for detailgHe likelihood of the same FROG trace corresponding to

information on pulse structure and phase distortion. Thigfferent pulses is very low. Additionally, the great number of

knowledge plays a decisive role in the outcome of manyata points in the 2-D FROG trace makes it under equivalent
applications. For instance, it has been recognized that pulggditions much less sensitive to noise than the pulse
with identical SpeCtl’a but different SpeCtral phaseS can Strong’MgnostiCS based on one-dimensional (l_D) measurementS,
enhance efficiency of high-harmonic generation [1], affeglich as the ordinary autocorrelation. Last but not least, FROG
wavepacket motion in organic molecules [2], [3], enhancsters self-consistency checks for data that are unavailable in
population inversion in liquid [4] and gas [5] phases, angther pulse-measuring techniques. This feedback mechanism
even steer a chemical reaction in a predetermined directigiolves computing the temporal and spectral marginals

[6]. Moreover, a totally automated search for the best pulgeat are the integrals of the FROG trace along the delay
was recently demonstrated to optimize a preselected reactigfy frequency axes. The comparison of the marginals with
channel [7]. Then, by measuring the phase and amplitudegg  independently measured fundamental spectrum and
the excitation pulses, one can perform a back-reconstructigiyocorrelation verifies the validity of the measured FROG

of potential surfaces of the parent molecule. trace [9], [17], [18]. To date, FROG methods have been
The complete determination of the electric field of femtose%—pp"ed to measure a vast variety of pulses with different
ond pulses also uncovers the physics behind their generatiogyastion wavelength, and complexity [19].

A number of outstanding features make FROG especially

\ Mha”rscéiptlzrecec;v?d O‘}fg?]ef '29i é998- Tr\i?FVg)?\; '; W%SCS#PPQWTdR by tK}‘arlluable for the measurement of extremely short pulses in the
etherlands Foundation o ysical Researc an emical Researc
(SON) and by the Netherlands Organization for the Advancement of Scied@19€ of 10 fs and below.

(NWO). First, since FROG utilizes the excite—probe geometry, com-
The authors are with the Ultrafast Laser and Spectroscopy Laboratopion for most nonlinear optical experiments, it is ideally suited

I. INTRODUCTION

Department of Chemistry, University of Groningen, 9747 AG Groninge . . .
Th§ Netherlands. Y Y 9 9o characterize pulses that are used in many spectroscopic labo-
Publisher Item Identifier S 0018-9197(99)02554-3. ratories. Unlike other pulse diagnostics [20]-[24], FROG does
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not require splitting of auxiliary laser beams and prefabricatiddHG FROG [34] potentially has a higher sensitivity than
of reference pulses. This fact is of great practical relevandbe FROG geometries based on third-order nonlinearities that
since the setup complexity in many spectroscopic experimentsder similar circumstances are much weaker. Different spec-
is already quite high [25]-[31]. Therefore, it is desirable ttral ranges and polarizations of the SHG FROG signal and
minimize the additional effort and setup modifications that athe fundamental radiation allow the effective suppression of
necessary for proper pulse diagnostics. FROG directly offdtee background, adding to the suppression provided by the
this possibility. Pulse characterization is performed precisafpometry. The low-order nonlinearity involved, combined with
at the position of the sample by simply interchanging thiae background elimination, results in the higher dynamic
sample with a nonlinear medium for optical gating. The lasange in SHG FROG than in any other FROG geometry.
point becomes especially essential for the pulses consisting ofn general, the FROG pulse reconstruction does not depend
only several optical cycles [10]-[13], [32] currently availabl®n pulse duration since the FROG traces simply scale in
for spectroscopy. The dispersive lengthening that such pulske time—frequency domain. However, with the decrease of
experience even due to propagation through air precludes the pulse duration that is accompanied by the growth of the
use of a separate diagnostics device. Thus, FROG is the ideahdwidth, the experimentally collected data begin to deviate
way to measure and optimize pulses on target prior to carryiegnificantly from the mathematically defined ideal FROG
out a spectroscopic experiment. trace. Previous studies [8], [9] have addressed the effect of the
Second, it is still possible to correctly measure such shdirhited phase-matching bandwidth of the nonlinear medium
pulses by FROG even in the presence of systematic errd@8] and time smearing due to noncollinear geometry on SHG
Several types of such errors will inevitably appear in thEROG measurement which become increasingly important for
measurement of pulses whose spectra span over a hundr@ds pulses. The possible breakdown of the slowly-varying
nanometers or more. For example, a FROG trace affectenlvelope approximation and frequency dependence of the
by wavelength-dependent detector sensitivity and frequenegnlinearity are the other points of concern for the pulses that
conversion efficiency can be validated via the consistencgnsist of a few optical cycles. Some of these issues have been
checks [9]. In contrast, an autocorrelation trace measuredefly considered in our recent letter [39].
under identical conditions may be corrupted irreparably. In this paper, we provide a detailed description of SHG
Third, the temporal resolution of the FROG measuremeRROG performance for ultrabroad-band pulses, the bandwidths
is not limited by the sampling increment in the time domairgf which correspond to 3-fs spectral-transformed duration.
provided the whole time—frequency spectrogram of the pul§tarting from the Maxwell equations, we derive a complete
is properly contained within the measured FROG trace. Tleepression for the SHG FROG signal that is valid even
broadest feature in the frequency domain determines in tlmsa single-cycle pulse regime and includes phase matching
case the shortest feature in the time domain. Therefore, inothe crystal, beam geometry, dispersive pulse-broadening
fine pulse structure can be overlooked [19], even if the del&yside the crystal, and dispersion of the second-order non-
increment used to collect the FROG trace is larger than theearity. Subsequently, we obtain a simplified expression
duration of such a structure. Thus, reliability of the FROG dathat decomposes the SHG FROG signal to a product of the
relies more on the proper delay axis calibration rather than @eal SHG FROG and a spectral filter applied to the second-
the very fine sampling in time, which might be troublesombarmonic (SH) radiation. Numerical simulations, presented
considering that the pulse itself measures only a couple lafer in the paper, convincingly show that the approximations
micrometers in space. made upon the derivation of the simplified expression are
Choosing the appropriate type of autocorrelation that can tell justified. Finally, we demonstrate practical applications
used in FROG (so-called FROG geometries [17], [19]), ordf SHG FROG technique to strongly chirped ultrabroad-band
must carefully consider possible distortions that are due to thalses and compressed 4.5-fs pulses.
beam arrangement and the nonlinear medium. ConsequentlyThe outline of this paper follows. In Section Il, we define
not every FROG geometry can be straightforwardly appligte pulse intensity and phase in time and frequency domains.
to measure extremely short pulses, i.e., 10 fs and belol.Section I, the spatial profile of ultrabroad-band pulses is
In particular, it has been shown that in somé®-based addressed. The complete expression for SHG FROG signal
techniques (for instance, polarization-gating, transient gratirfgr single-cycled pulses is derived in Section IV. We discuss
etc.) the finite response time due to the Raman contributite ultimate time resolution of the SHG FROG in Section
to nonlinearity played a significant role even in the measurg: The approximate expression for the SHG FROG signal
ment of 20-fs pulses [33]. Therefore, the FROG with thebtained in Section VI is verified by numerical simulations
use of the second-harmonic generation (SHG) in transpar-Section VII. In Section VIII, we briefly comment on Type
ent crystals [34]-[36] and surface third-harmonic generatidhphase matching in SHG FROG measurements. Section IX
[37], that have instantaneous nonlinearity, presents the bpstvides several useful pieces of advise on the choice of the
choice for the measurement of the shortest pulses availaBldG crystal. Possible distortions of the experimental data
to date. resulting from spatial filtering are considered in Section X.
Another important experimental concern is the level of the Section Xl we describe our SHG FROG apparatus. SHG
signal to be detected in the FROG measurement. AmoRROG characterization of the white-light continuum and 4.5-fs
different FROG variations, its version based on SHG is timilses is demonstrated in Sections XlI and XIIl, respectively.
most appropriate technique for low-energy pulses. Obviouskinally, in Section XIV, we summarize our findings.
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Il. AMPLITUDE AND PHASE CHARACTERIZATION OF THEPULSE duration are no longer constants and may change appreciably

The objective of a FROG experiment lies in finding th&S the beam propagates even in free space [47].
pulse intensity and phase in time, that I€t), o(t) or We represent a Gaussian beam field in the focal plane as

equivalently, in frequencyf(w), @(w). The laser pulse is _ ~ olm2 1 22 4 42
conventionally defined by its electric field E(z,y,w) = E(w)y/ T dw) eXP{—th QW} (5)
B(t) = A(t) exp(ie(?)) @) where d(w) is the beam diameter (FWHM) of the spectral

where A(¢) is the modulus of the time-dependent amplitudé®MpPonent with the frequenay andx andy are transverse

and ¢(#) is the time-dependent phase. The temporal pu|§80rdinates. The normalization terms are chosen to provide
intensity I(¢) is determined asl(t) o« AZ%(t). The time- the correct spectrum integrated over the beam as measured by

dependent phase contains information about the change®ofPectrometer

instantaneous frequency as a function of time (the so-called - - 9
chirp) that is given by [40], [41] I{w) o / / E(z,y,w)|" d dy. 6)
w(t) = (1) 2) We now calculate the beam diameter after propagating a
ot distancex
The chirped pulse, therefore, experiences a frequency sweep 9 2
in time, i.e., changes frequency within the pulse length. d(w,z) =d(w,z=0)4/1+ <ﬁ> @)
The frequency-domain equivalent of pulse field description (w,z = O)w
is where ¢ is the speed of light in vacuum. To avoid the

. ) . » aforementioned problems, we require diameters of different
Bw) = /E(t) exp(iwt) dt = A(w)exp(ip(w))  (3) spectral components to scale proportionally as the Gaussian
~ beam propagates in free space, i.e.,

where E(w) is the Fourier transform oF/(t) and¢(w) is the )

frequency-dependent (or spectral) phase. Analogously to the d*(w, z = O)w = const. (8)

“m? domain, the spectral intensit_y, or the pulse _spectrum,-liﬁe constant in (8) can be defined by introducing the FWHM
defined as/ (w) o 4%(w). The relative time separation among,. .. jiameted, at the central frequenay,. Therefore, the

various frequency components of the pulse, or group delae\fectric field of the Gaussian beam given by (5) becomes
can be determined by [41]

- ~ - 2ln2 1 [w 224+ w
T(w) = (g((,u ) (4) (.T, ¥ CU) (w) ™ do wo eXp|: H d% Wo

Hence, the pulse with a flat spectral phase is completely ®)

“focused” in time and has the shortest duration attainable forAt this point, the question can be raised about the low-

its bandwidth. frequency components, the size of which, according to (9),
It is important to notice that none of the presently existingecomes infinitely large. However, the spectral amplitude

pulse-measuring techniques retrieve the absolute phase ofdhehese components decreases rapidly with frequency. For

pulse, i.e., pulses with phasegt) and ¢(¢) + ¢ appear to instance, the spectral amplitude of a single-cycle Gaussian

be identical [42]. Indeed, all nonlinear processes employedpalse with a central frequenay, is given by

FROG are not sensitive to the absolute phase. However, the ) )

knowledge of this phase becomes essential in the strong-field A(w) — exp [_ i <1 _ i) ] (10)

optics of nearly single-cycled pulses [43], [44]. It has been 2In2 wo

suggested [45] that the absolute phase may be assessable via ) o
photo-emission in the optically tunneling regime [46]. Consequently, the amplitude of the electric field at zero

In fact, the full pulse characterization remains incomplef§eduency amounts to only 0.1% of its peak value. ,
without the analysis of spatio-temporal or spatio-spectral dis- | "€ Spatial frequency distribution was observed experimen-
tribution of the pulse intensity. In this paper, we assunf@!ly With focused terahertz beams [48] and was discussed

that the light field is linearly polarized and that each spectrdicently by Fenget al. [49]. Note that our definition of

component of it has a Gaussian spatial profile. The Gaussfssversal spectral distribution in the beam implies that con-
beam approximation is discussed in detail in Section IIl. focal parameters of all spectral components are identical

b P(w,z=0w  diwo
I1l. PROPAGATION AND FOCUSING OF SINGLE-CYCLE PULSES - 41n2 T 4ln2’

(11)

The spatial representation of a pulse of which its spectrghis is totally consistent with the beam size in laser resonators
width is close to its carrier frequency is a nontrivial problemwvhere longer wavelength components have a larger beam size.
Because of diffraction, lower frequency components haveéne spatial distribution of radiation produced due to self-phase
stronger divergence compared with high-frequency ones. Asdulation in single-mode fibers is more complicated. First,
a consequence, such pulse parameters as the spectrumtlaadransverse mode is described by the zeroth-order Bessel
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Fig. 2. Noncollinear phase matching for three-wave interactiqi:) and

2 -1 1 2 k(Q — w) are the wavevectors of the fundamental fields that form an angle
« with the z axis. kgy (£2) is the wavevector of the SH that intersects the
(a) z axis at an angle3.

x=0
--- x=05mm

IV. THE SHG FROG %NAL IN THE SINGLE-CYCLE REGIME

In this section, the complete equation that describes the
SHG FROG signal for pulses as short as one optical cycle
is derived. We consistently include such effects as phase-
matching conditions in a nonlinear crystal, time-smearing
effects due to noncollinear geometry, spectral filtering of the
SH radiation, and dispersion of the second-order nonlinearity.
500 250 1000 1500 0~00.0 : ofs : 1.00'0 We consider the case .of noncollinear geometry in WhICh
Wavelength [nm] x [mm] the fundamental beams intersect at a small angle (Fig. 2).

®) © As it has begn p0|.nted. out [33], pulse broadening due to
Fig. 1. Spatial parameters of an ideal single-cycle Gaussian pulse centecryStal bUIk- dlsp(_arsmn N neg“glbly small compared to t.he
at 800 nm. (a) Spatial intensity profiles of two spectral components t TSUP'Ve!OCHy mismatch. This means that the appropriate
are separated by FWHMuw from the central frequencyyo. (b) Intensity ~Crystal thickness should mostly be determined from the phase-
spectra as a function of transverse coordinatg(c) Dependence of pulse matching conditions. For instance, in a A6+ BBO crystal,
central frequency (solid curve) and pulse duration (dashed curve) on transveihsg bulk dispersion broadens a single-cycle pulse by iyl

coordinatez. The beam axis corresponds to= 0. - ) >
fs while the group-velocity mismatch between the fundamental

function [50]. Second, near the cut-off frequency, the modd SH pulses is as much as 0.9 fs

diameter experiences strong changes [51]. However, for shor/e @ssume such focusing conditions of the fundamental
pieces of fiber conventionally used for pulse compression aheams that the confocal parameter and the Iongltudlnal beam
reasonable values of a normalizad frequed€y50], it can overlap of the fundamental beams are considerably longer

be shown that a Gaussian distrubution given by (9) is dhan the crystal length. For instance, for an ideal Gaussian
am of ~2-mm diameter focused by a 10-cm achromatic

acceptable approximation. The situation with hollow wave{g_‘ ) o
uides [52] is quite different since all spectral components hal@S: the confocal parameter, that is, the longitudinal extent

identical radia [53]. of the focal region, is~1.2 mm. This is considerably longer

Another important issue concernes beam focusing, whidin the practical length of the nonlinear crystal. Under such
should not change the distribution of spectral componen@nditions, Wavefronts of the fundamental waves inside the
Since the equations for mode matching contain only confocdlstal are practically flat. Therefore, we treat the SHG as

parameters [54], the validity of (9) at the new focal poin@ function of the longitudinal coordinate only and include the
is automatically fulfilled provided, of course, the focusingransversal coordinates at the last step to account for the spatial

remains achromatic. beam profile [see (9)]. Note that the constraint on the focusing

Although (9) ensures that different spectral componenis Not always automatically fulfilled. For example, the use
scale identically during beam propagation and focusing, it al§é @ 1-cm lens in the situation described above reduces the
implies that the pulse spectrum changes along the transvetgapth of the focal region to only 12m, and, in this case,
coordinates. Fortunately, this effect is negligibly small even if is impossible to disregard the dependence on transverse
the single-cycle regime. Fig. 1(a) shows the spatial intensigpordinates.
distribution of several spectral components of a GaussianWWe assume that the SH field is not absorbed in the nonlinear
single-cycle pulse with a central wavelength of 800 nm. As orggystal. This is well justified even for single-cycle pulses.
moves away from the beam axis, a red shift is clearly observAlisorption bands of the crystals that are transparent in the
[Fig. 1(b)], since the higher frequency spectral components atisible start at~200 nm. Consequently, at these frequencies
contained in tighter spatial modes. However, the change of the field amplitude decreases by a faatep(—#?/21n2) ~
carrier frequency does not exceed 10% (Fig. 1(c), solid ling),001 [see (10)] compared to its maximum at 400 nm. We
while the variation of the pulsewidth is virtually undetectablalso require the efficiency of SHG to be low enough to avoid
(Fig. 1(c), dotted line). Therefore, this kind of spatial chirglepletion of the fundamental beams. Hence, the system of
can be disregarded even for the shortest optical pulses. two coupled equations describing nonlinear interaction [55] is

o

1.0

.......... x = 1.0 mm

g
th
T
1

0.5

Intensity
uorjeInp asynd pazI[eULION

Normalized central frequency
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reduced to one. The equation that governs propagation of thelay between the pulses as An additional delay for off-
SH wave in thetz direction inside the crystal can be obtainedxis components of the beam due to the geometry can be

directly from Maxwell's equations [56] expressed for a plane wave az) = zn(w)sina(w)/c =
5?2 92 xsinag/c = xag/c for the beam prqpagating H_qa d_irection,
5 Esu(z,t) — Eouo—Q/ e(t —t")Esu(z,t') dt’ and7'(z) ~ —zag/c for the beam in the-« direction. The
9z 9t ) oo electric fields in the frequency domain can be found via Fourier
_ N03_2P<2> (2,1) (12) transformsw ~
It E1(w) = E(w) exp(iw(zag/c)) 18
where Esg(z,t) is the SH field, poeg = 1/c?, € is the Eg(w) :E(w) expliw(—zag/c—1)). (18)

relative permittivity, andP¢?(z,t) is the induced second-

order dielectric polarization. By writing bottsy (z, ) and In order to calculate the second-order dielectric polarization

P{)(z,t) as a Fourier superposition of monochromatic waveliduced at frequency2 by the two fundamental fields, we
one obtains a simple equivalent of (12) in the frequen ould sum over all possible permutations of fundamental
domain frequencies

2 - . . .
%ESH@, Q) + K(Q)Esi(2.Q) = —p@2 PP () TP = / Q0,2 — w)EL (W) E2(Q — w) dw
Z
(13) = exp(iQ(r + w0 /<)) / (20,9 - w)
where ESH(z,Q) and P?(z,Q) are Fourier transforms of S NFlO g’ B
Esu(z,t) and P (z,t), respectively,Q is the frequency, X EW)E( = w) explifh=(w)z + k(2 — w)z
and ksp () is the wavevector of the second harmonic field: + w(7 + 2za0/c))] dw. (19)

kgn (Q) = Q%e0108(Q), with £(2) being the Fourier transform 1, (19), we included frequency dependence of the nonlinear
of the relative permittivitye(t). . susceptibilityx (2 (€2, w, @ —w) and represent the fundamental
In order to simplify the left part of (13), we write the SHfie|ds analogously to (14). The electric field of the SH therefore

field as a plane wave propagating along thaxis becomes
Esi(z,Q) = Esu(z, Q) exp(iksn()z) (14)  Esu(L, Q)
= 'L'CZNO(%? exp(iQ(1 + zao/c)) /)Z<2> (Qw,Q—w)
n
; a G 82 ¢ . - —
2iksu () 82851{(2’ B+ 922 Esu(z Q) x E(Q— w)€(w) exp <i—Ak(w’ 2-w)l

N 2
= — 102 PP (2, Q) exp(—iksu(Q)z).  (15)
Ho p SH +iw <T n 23:040)) SinC<Ak(w, Q- w)L>dw (20)

c 2

whence (13) becomes

So far, we have made no simplifications concerning the
pulse duration. Now we apply the slowly-varying amplitudg ;o e Ak(w,

L . — w) is the phase mismatch given by the
approximation [56], i.e.,

equation
(e ) < b @] (1) Ak =) = k) cos{aun(v)
i + E(Q — w) cos(apn2(Q2 — w))
in order to omit the tern%SSH(z, ). Nonequality (16) is a — ksn(€2) cos B{w, 2 — w) (21)

good approximation even for single-cycle pulses propagatin L
in transparent media [57]. The only point of concern is relate th 7, a(r;;al HQche re]i[r;;lctlve llndk;c?s oLthe(;und?jnlEntal
to the lowest frequencies for whichsy becomes close to waves an 3(w, 2 — w) the angle betweeikss( _) an €
zero. However, as we have already mentioned in Section TR inside the crystal. The appearance of this angle can be

the amplitude of such components do not exceed 0.1% eoi?sily understood from Fig. 2. The momentum conservation

the maximum and therefore can be disregarded. ConsequeAﬂV\f determines the direction of the emitted SH field
(15) can be readily solved by integration over the crystal length k(w) + k(Q —w) = ksu(Q) (22)

L I
wherek(w) andk(2 — w) are the wavevectors of the incident

L .
(L, Q) =i Ciof? ; / PO (2, Q) exp(—ksu(Q)2) dz fundamental waves. In the cakév) # k(Q2—w), 3 is nonzero
0

2nsu(Q and it can be found from the following equatfon
a7 . (O — —
sin f(w, 2 — w) = sin aok(w)nl(w) R = w)na (§2 w)'
wherengn(Q) = /€() is the refractive index for the SH ksu(€2)
wave. Now we should calculate the second-order polarization (23)

P2 (z,€). We assume that two fundamental fields cross intin fact, if the SH is an extraordinary wave, the magnitudé:gfi () in

the xz plane at a small anglmo (See Flg. 2). The inclination (23) is a function Of,ﬁ(w,Q — L«)). The problem_ of f|nd|ng the eXaCt‘VaIUeS
ith the axis of each beam inside the crvstal is theof both ks (€2) and 8(w, 2 — w) could be easily solved by employing the
wi Z axXi nsi Y ' Fhiations of crystaloptics and (23). However, (23) alone gives an excellent

aw) = arcsin[n(w) sin ag] & aon(w). We denote the relative approximation for3(w, 2 — w) if one choosessy ()| g=o-
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Since g is the same order of magnitude as the intersectioasult in both shortening and widening of the temporal width
angle, the correctionos 3(w,2 — w) is required only in the of the FROG trace. Another important example of the SH
Ak expression [see (21)]. Elsewhere this correction can bpectral shaping in the high-conversion-efficiency regime is
dropped. the nonlinear absorption of the frequency-doubled radiation
The values of the wavevectors and refractive indices inside the SHG crystal [61]. Therefore, the high-efficiency SH
(21) and (23) depend on the actual polarization of the threenversion is a potential source of systematic errors in a FROG
interacting waves. Thus, for Type | phase matching, we obtamperiment and should be avoided.
Alb(w, 2 — ) = ko(w) cos(aono (@) To conclude this section, we WOU.|d like to mgke a remark
’ on the frequency—as opposed to time—domain approach to
+ ko (R — w) cos(aono(2 — w)) the wave equation (12) in the single-optical-cycle regime.
— kp(Q)cos B(w, 2 — w) (24) Clearly, the former has a number of advantages. The spectral
amplitude of a femtosecond pulse is directly observable while
the temporal amplitude is not. The frequency representation
Ak(w,Q — w) = kg(w) cos(agng(w)) allowed us to include automatically dispersive br_oadening (_)f
+ ko(Q — w) cos(aono(Q — w) both fundamental and SH pulses as well as their group mis-
match, frequency dependence of the nonlinear susceptibility,

and for Type Il

— kp(Q) cos fw, 2 — w). (25) frequency-dependent spatial profiles of the beams, and the blue
Here indicesO and E correspond to the ordinary and extraShift of the SH spectrum (analog of self-steepening in fibers
ordinary waves, respectively. [5_0]). Furthermor_e, we haye ma_de a s_lngle approximation
To calculate the total FROG signal, one should integrafiven by (15), which is easily avoidable in computer simula-
the signal intensity tions. Equa'Flon_(ZO) can also be used Fo desc_rlbe the process of
SH generation in the low pump-depletion regime to optimize a
Isn(L, Q) = o nsu($2) \Esn(L, Q)2 (26) compressor needed to compensate phase distortions in the SH
¢ pulse. Extension of the theory to high conversion efficiency
over the transverse coordinatesand y. Hence, for the SH by including the second equation for the fundamental beam
signal detected in FROG, we obtain is also straightforward. Note that a similar frequency-domain
S L) approach to ultrashort-pulse propagation in optical fibers [62]
) 7_7

helped solve a long-standing question of the magnitude of the
Q2I2V/Q0Q(Q) [In2]%? / . iina( & 70 shock term [50], [63].
= >4 —_ J— PR
2c¢%eonsu(Q) | 7wo P o/ wo
V. ULTIMATE TEMPORAL RESOLUTION OF THESHG FROG
X

2

Y 2(Q,w, Q- w) w(l—f) ;
X el Q In the general case of arbitrary pulses, the complete ex-
_ pression for the SHG FROG signal given by (27) must be
5 5 Ak(w, Q@ —w)L : Y
x E(Q —w)é(w)expl ¢ 5 computed numerically. However, for the limited class of
pulses, such as linearly chirped Gaussian pulses, (27) can be
e <T 4 237040)) SinC<A/€(W,Q _w)L)dw . evaluated analytically. Such analysis is valuable to estimate
c 2 the temporal resolution of the SHG FROG experiment.
(27) The geometrical smearing of the delay due to the crossing
) . angle is an important experimental issue of the noncollinear
In (27), Q(€2) is the spectral sensitivity of the photodetector., iishot FROG measurement of ultrashort pulses. As can be
We also took into consideration the transverse profiles of tQg., from (27), the dependence on the transverse coordinate
fundamental beams as given in _Sectlon . \zields a range of delays across the beam simultaneously which
Thus far, we have limited our discussion to the case of loWg) < the fixed delay between the pulses and broadens the
efficiency SHG, i.e,, when the depletion of the fundamentgh o race along the delay axis. Analogously to Ffal.
waves can be disregarded. In the high conversion effiCiengy \ye assume Gaussian-intensity pulses and, under perfect
regime, however, additional effects play an important rol§ <o matching conditions, obtain the measured pulse duration
While the SH intensity depends quadratically on the crystal corresponds to a longer pulse as given by
length L in the case of an undepleted pump [58], in the™"™
high-efficiency regime, conversion efficiency “saturates” for Toeas = Tp + 6 (28)
more intense spectral modes but remains proportional to ) ) ) )
L? for the weaker ones. Consequently, the FROG tracddlere 7, is the true pulse duration anét is the effective
measured in a Type | SHG crystal in the presence of signific&filay smearing
pump depletion typically have both spectral and temporal 8t = andy/c (29)
marginals broader than those in the low-conversion-efficiency
case. Hence, despite seemingly increased bandwidth in tiéh d; being the beam diameter in the focal plane and
high-efficiency regime, the FROG trace is intrinsically inthe intersection angle of the fundamental beams.

correct. The case of the high-efficiency SHG in a Type Il We consider the best scenario of the two Gaussian beams
crystal [59], [60] is more complex than in Type | and caseparated by their diametéron the focusing optic. In this
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case, the intersection andte, = d/f and the beam diameter

in the focal planed; = fA/wd, where f is the focal
length of the focusing optic. Therefore, the resultant time
smearing amounts only t&¢ = A\/2n¢ = 0.4 fs at A = 800

nm. This value presents the ultimate resolution of the pulse
measurement in the noncollinear geometry. Interestingly, this
figure does not depend on the chosen focusing optic or the
beam diameted, since the beam waist is proportional whereas
the intersection angle is inversely proportional to the focal
distance f. It should be noted that the temporal resolution

Efficiency [arb. units]

SO ] . Lo Ly
deteriorates if the beams are other than Gaussian. For instance, 300 400 500 600 700
if the beams of the same diameter with a rectangular spatial SH wavelength [nm]
intensity profile replace the Gaussian beams in the snuau%_ 3. Constituent terms of spectral filtét(2) given by (33). TheQ

described above, the resultant temporal resolution beconaggendence (dotted line), estimated squared magnitude of second-order sus-
0.7 fs. ceptibility X(2> (dash—dotted line), the crystal phase-matching curve for a

Additional enhancement of the temporal resolution could JgPe ! 10#m BBO crystal cut ab = 29° (dashed line), and their product
solid curve). The SH spectrum of a 3-fs Gaussian pulse is shown for

achieved either by placing a narrow slit behind the nonlineggmparison (shaded contour).
medium [64], as will be discussed in Section X, or by

employing a collinear geometry [65], [66]. L . .
ploying g y 1651, [66] detector sensitivity, and an ideal FROG siggh&..(Q,7)

SHG
VI. APPROXIMATE EXPRESSION FOR THESHG FROG ®5NAL 52,7, L) o< R(Q)Spreea(€T) (31)

In this section, our goal is to obtain a simplified expressionhere
for SHG FROG that can be used even for single-cycle optical
pulses. We start from the complete expression given by (27) SEHS (1) = ‘/g(g — w)g(w)exp(in) dw
and show that the measured signal can be described by an
ideal, i.e., perfectly phase-matched, SHG FROG and a specljgh

filter applied to the SH field. Throughout this section, we

2

(32)

3
consider Type | phase matching. R(Q) = O & a2 — 1) (n2(9/2) — 11312
In order to simplify (27), we make several approximations. (1) = )ﬂE(Q) (e = 1) (n(2/2) = 1)7]
First, as was shown in the previous section, under carefully . o AE(Q/2,9/2)L 33
chosen beam geometry the effect of geometrical smearing is X SIme 2 ) (33)

negligibly small. For instance, it causes only a 10% error )

in the duration measurement of a 3-fs pulse and can BE(31)—(33), we retained only the terms that &elependent.
safely neglected. With such approximation, the integral alorrﬁg-r_h_e_ FROG signal given by (32) is the well-known classic
« in (27) can be performed analytically. Second, we assurflgfinition of SHG FROG [14], [17], [34] written in the
that w ~ Q/2 and apply this to modify the factor that isfre_qu_ency domain. The same _descrlptlon is also employed in
proportional to the overlap area between different fundamenf3iSting FROG retrieval algorithms. Note that the complete

frequency modesi/w(1 — w/$2) ~ v/$1/2. Third, we expand (27) can be readily implemented into the algorithm based on
ko(w) and ko(© — w) into Taylor series arounds = /2 the method of generalized projections [67]. However, (31) is

and keep the terms that are linear with frequehejence, for More advantageous numerically, since the integral (32) takes
Type | phase matching, we write form of autoconvolution in the time domain and can be rapidly

computed via fast Fourier transforms [68]. It is also important
Ak(w,Q — w) & 2ko(/2) cos(agno(/2)) — ke(S) that the use of (31) permits a direct check of FROG marginals
= AK(Q/2,9/2) (30) to validate experimental data.
’ ’ The spectral filterR(€2), as given by (33), is a product of

. . . several factors (see Fig. 3). ThE-term (dotted line) results
Fourth, we estimate dispersion of the second-order SUSCER the O dependence of the SH intensity on the spatial
tibility %2 (Q,w,Q — w) from the dispersion of the refrac-

L ; ! ) verlap of the different fundamental frequency motiesd
tive index. For a classical anharmonic oscillator model [55, bom the Q2 dependence that follows from Maxwell's equa-
o (2) — AT (VN — ) ) . 1
XT(2,0,2 = w) o XX (W)X (2 — w), where a:ns. The meaning of the latter factor is that the generation of
e higher frequency components is more efficient than of the
lower frequency ones. The combin@d dependence leads to
Y substantial distortion of the SH spectrum of ultrabroad-band
) , , gulses. For instance, due to this factor alone, the upconversion
Alternatively, one can perform Taylor expansion around the centr If-f' . f | 600 is 4.5 i
frequency of the fundamental pulse = wo [21], [38], [42]. However, in EHICIENCY Of @ spectral component at nm is 4.5 times

this case, the first derivative terms do not cancel each other and musttigher than of a 1000-nm one.
retained. Our simulations also prove that the expansion araurd /2
provides a better approximation when broad-band pulses are concerned.  3For a hollow fiber, this dependence should be disregarded [42], [53].

x(Q) = n?(Q) — 1. Equation (27) can now be decompose
to a product of the spectral filtg®(£2), which originates from
the finite conversion bandwidth of the SH crystal and varyi



466 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 4, APRIL 1999

700 | 700 | 700 | 700 F
— 600 | — 600 | — 600 — 600}
g = £
£ 500 £ 500 £ 500 £ 500+
= = = =
:u ‘t_;u ol i)
5 400 S 4001 ; 400 ; 400 |
o E 2 e
Ed - Bt -
£ ] < <
= ES 4 S
jomt = L Jan jest L
o 300 o 300 o 300 o 300
L 1 1 1 1 1 1 1 1 . 1 I H 1 1 1 1 1 1 1 2 1 1 1
-6 0 6 &} 0 6 -60 -40 20 0 20 40 60 -60 -40 20 0 20 40 60
Delay [fs] Delay [fs] Delay [fs] Delay [fs]
@ (b) @ (b)
:' \_ R | | - Autoconvolution rRey | | T Autoconvolution
(2 :l _\‘_ =0 fs Marginal é» ———1=0fs —Mfu'ginal
[ "« N \ — N
3 PN eI SN w7l
= o A\ —e T=d6fs z H \ &= LAY — - =435 fy 5
o il. . ! Z ! \ © 5N g
o e = ! ' = A —--—- 71=£53 {3 1)
< y £ ! \ S i =
g = i Y g HERS A St 1==70 fs —
/ ) )
> / \ > i1 3
= ' \ =] Ly \
3 J \ S il
&) / % o k) *Q
’ A D Y
d 2 \\ Y, \E:Z:-.
. . ; " . S s ) Pty )
300 400 500 600 300 400 500 600 300 400 500 600 300 400 500 600
SH wavelength [nm] SH wavelength [nm] SH wavelength [nm] SH wavelength [nm]

© (d © )

Fig. 4. Simulation of SHG FROG signal for an ideal 3-fs Gaussian pulse féig. 5. Simulation of SHG FROG signal for a linearly chirped 26-fs Gauss-
Type | phase matching. (a) Ideal FROG trace as given by (32). (b) Complése pulse. The conditions are the same as in Fig. 4. (a) Ideal FROG trace
FROG trace as given by (27). (c) Spectral filter curf¢() computed as given by (32). (b) Complete FROG trace as given by (27). (c) Spectral
according to (33) (shaded contour) and the ratio of FROG traces givenfilter curve R(£2) computed according to (33) (shaded contour) and the ratio
(b) and (a) at several delays (broken curves). (d) Spectral marginal of thfeFROG traces given in (b) and (a) at several delays (broken curves). (d)
traces shown in (b) (solid curve) and autoconvolution of the fundament@pectral marginal of the traces shown in (b) (solid curve) and autoconvolution
spectrum (dashed curve). The FROG traces here and further on are showafdke fundamental spectrum (dashed curve).
density plots with overlaid contour lines at the values 0.01, 0.02, 0.05, 0.1,
0.2, 0.4, and 0.8 of the peak SH intensity.

Two types of pulses with the central wavelength at 800 nm

The variation of the second-order susceptibility with fred’® considered: 1) a bandwidth-limited 3-fs Gaussian pulse and
quency, expressed in (33) as the dependence on the refrac@vé@ Pulse with the same bandwidth that is linearly chlrped
indices, plays a much less significant role than iefactor 10 26 fs. We assume that the fundamental beam diameter
(dotted line). According to our estimations for the BBO crystai? the focus isd; = 20 um and the beams intersect at
the squared magnitude of® for the 600-nm component 2 = 2°. Thereforg, the geometrical delay smearing that
of the fundamental wave is only 1.3 times larger than fo¥as defined in Section V [see (29)] amounts o = 1.2
the 1000-nm component. Such a virtually flat second-ord& The L = 10 um BBO Type | crystal is oriented for the
response over the immense bandwidth is a good illustratiBfak conversion efficiency at 700 rfvks we pointed out in
of the almost instantaneous nature pf2 in transparent Section IV, such a short crystal lengthens the pulse less than
crystals. Nonetheless, estimation of the contribution ofifie  0-1 fs, and, therefore, dispersive pulse broadening inside the
dispersion is required for the measurement of the optical pul§&¥stal can be disregarded. The spectral sensitidf2) of
with the spectra that are hundreds of nanometers wide. e light detector is set to unity.

The last factor contributing td&¥(Q2) is the phase-matching The results of FROG simulations for each type of pulses
curve of the SHG crystal (Fig. 3, dashed line). The sha@ée pre_:sented in Figs. 4 anc_i 5._The ideal traces cal_culated
and the bandwidth of this curve depend on the thicknegccording to (32) are shown in Figs. 4(a) and 5(a), while the

orientation and type of the crystal. Some practical commerif§ces computed using (27) are displayed in Figs. 4(b) and
on this issue will be provided in Section IX. 5(b). The FROG trace of the 3-fs pulse is also noticeably

extended along the delay axis as the consequence of the geo-
VII. NUMERICAL SIMULATIONS metrical smearing. For the 26-fs pulse, as should be expected,
In this section, we verify the approximations that were 4The phase-matching angle is slightly affected by the noncollinear geome-

applied to derive (31)_(33)_ In order to do so. we numericaw%/. Due to the fact that the fundamental beams intersect at an angle
' equivalent phase-matching angle is different from that in the case of

generat_e FROG traces of various pL_JIses U_Sing the Complﬁfﬁnear SHG:0 = collincar + @o/n, Where n is the refractive index
expression (27) and compare them with the ideal FROG traagshe fundamental wave at the phase-matching wavelength. For instance,

calculated according to (32). To examine contributions @fé 800-nm phase-matched cut of a BBO crystal Zon = 2° becomes
= 29.6° instead off.,11inear = 29° for collinear SHG. This fact should

'd'ﬁere.nt factors to _DU|Se r_econStrUCt'on' we compare FRO{% kept in mind since the phase-matching curve is quite sensitive to the precise
inversion results with the input pulses. orientation of the crystal.
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Fig. 6. Retrieved pulse parameters in the time and frequency domains for various simulated FROG traces. (a) Perfectly phase-matched zero-thickness
crystal, no geometrical smearing. (b) Type | 26 BBO crystal cut a# = 33.4°, no geometrical smearing. (c) The same as in (b), and the FROG

trace is corrected according to (33). (d) The same as in (c) but with the geometrical smearing included. Dashed curves correspond to initial fields,
while solid curves are obtained by FROG retrieval.

this effect is negligible. The spectral filtering occurring in thnversion results of the numerically generated traces using the
crystal becomes apparent from the comparison of the spectammercially available program from Femtosoft Technologies.
marginals that are depicted in Figs. 4(d) and 5(d). Calculatédur different cases were considered for each type of pulses: 1)
marginals are asymmetric and substantially shifted towaam ideal phase-matching (zero-thickness crystal); 2) arhO-
shorter wavelengths. BBO crystal with the parameters defined above; 3) the trace
By computing a ratio of the FROG signals given by (32yenerated in case 2) is corrected Bf2); and 4) geometrical
and (27), we obtain delay-dependent conversion efficiengmearing is included as well. In its essence, case 4) is similar
as shown in Figs. 4(c) and 5(c). The spectral filfef{?), to 3), but in 4) the FROG trace was additionally distorted by
calculated according to (33), is shown as shaded contoute geometrical smearing. The results of the FROG inversion
Clearly, at the small delays, the conversion efficiency is of cases 1)—(4) are presented in Fig. 6(a)—(d), respectively.
almost exactly described b&(2). With the increase of pulse In Fig. 6(a), the®® dependence is exclusively responsible
separation, the approximation given by (33) worsens, as bdtin the spectral filtering that substantially shifts the whole
the conversion peak position and the magnitude change. THROG trace along the frequency axis. Both the bandwidth-
rapid ratio scaling at nonzero delays for the 3-fs pulse [brokémited and the chirped Gaussian pulses showed excellent
curves in Fig. 4(c)] is mostly determined by the geometricabnvergence to their input fields, but around a blue-shifted
smearing rather than by the phase matching, as in the caseaitral frequency. In Fig. 6(b), where the phase-matching of a
the chirped pulse [Fig. 5(c)]. On the other hand, the deviatiod®-:m BBO crystal is taken into account as well, the central
from R(Q2) at longer delays become unimportant because whvelength is even more blue-shifted due to spectral filtering
the decreasing signals at large pulse separations. in the crystal. A small phase distortion is obtained for both
To estimate the significance of the spectral correction tfpes of pulses. The retrieved 3-fs pulse is also artificially
the distorted FROG traces and feasibility of performing lengthened te-3.4 fs to match the bandwidth narrowed by the
in the case of extreme bandwidths, we examined FROEpectral filtering in the crystal. The results of FROG retrieval
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of the same trace upon the correction BY?) [Fig. 6(c)]
indicate an excellent recovery of both the bandwidth-limited
and the chirped pulses.

Finally, in Fig. 6(d) the geometrical smearing had a neg-
ligible effect on the 26-fs pulse. However, the FROG of the
shorter pulse converged to a linearly chirped 3.3-fs Gaussian
pulse. This should be expected, since the FROG trace broadens
in time and remains Gaussian, while the spectral bandwidth is
not affected. In principle, like the spectral correctiB(t2), the
correction for the temporal smearing should also be feasible. _ _ . . .
It can be implemented directly into the FROG inversion 5 10 15 20 25 30
algorithm by temporal averaging of the guess trace, produced Duration of bandwidth-limited pulse [fs]
in every iteration, prior to computing the FROG error. Fig. 7. Dependence of the systematic FROG trace error on the pulse dura-

Several important conclusions can be drawn from these sition. FROG matrix size is 128128. The dotted curve corresponds to the trace

ulations. First, they confirm the correctness of approximatioﬁ%er the spectral correction is given by (33). The error due to geometrical
smearing of a perfectly phase-matched trace is shown as a dashed curve,

u_sed to Obtair? (31)__(33)' Therefo_re' the SpeCtra_l correctiQhiie the error of a spectrally corrected and geometrically smeared FROG is
given by R(2) is satisfactory even in the case of single-cyclgiven by the solid curve. The parameters of the crystal and of the geometrical

pulses, provided the crystal Iength and orientation permit off@earing are the same as above. The central wavelength of the pulse is kept
A : oo at 800 nm.

to maintain a certain, though not necessarily high, level &f

conversion over the entire bandwidth of the pulse. Second,

a time-smearing effect does not greatly affect the retrievedbitrary pulse o3 fs in duration, it is likely that the FROG

pulses if the experimental geometry is carefully chosen. Thingtrieval error will increase due to the systematic error.

the unmodified version of the FROG algorithm can be readily

applied even to the shortest pulses. Fourth, it is often possible VI TYPE Il PHASE MATCHING

to closely reproduce the pulse parameters by FROG inversiorso far, we have limited our consideration to Type | phase

of a spectrally filtered trace without any spectral correctiomatching. In this section, we briefly discuss the application

[42]. However, such traces correspond to similar pulses shiftefl Type Il phase matching to the measurement of ultrashort

in frequency rather than to the original pulses for which thdgser pulses.

were obtained. In Type Il, the two fundamental waves are nonidentical,
In order to quantify the distortions that are introduced intge., one ordinary and one extraordinary. This allows the

the SHG FROG traces by phase matching and the noncollingaplementation of the collinear SHG FROG geometry free

geometry and that cannot be removed by B&{€)-correction, of geometrical smearing [66]. The FROG traces generated in

we compute the systematic error as an rms average of th& arrangement in principle do not contain optical fringes

difference between the actual corrected FROG trace and Hwociated with the interferometric collinear autocorrelation

ideal trace normalized to unity. Given the form of the FRO@nd, therefore, can be processed using the existing SHG FROG

error [18], the systematic error can be defined as follows: algorithms. However, the fact that the group velocities of the

fundamental pulses in a Type Il crystal become quite different

=]
&
1

Systematic error

a1 zj\: SSHG (), 7) — aS(Qi77j7L) ? (34) has several important implications. First, the SH signal is no
N = FROGA™ 1 R(Q) longer a symmetric function of the time delay [38]. Second,

because the faster traveling fundamental pulse can catch up
where SRS (2, 7) and R(2) are given by (32) and (33), and pass the slower one, some broadening of the SH signal
respectively, andS(f2,7, L) is computed according to (27).along the delay axis should be expected [38].

The parameter: is a scaling factor necessary to obtain the In order to check the applicability of the collinear Type Il
lowest value ofG. The dependence @ on the duration of a SHG FROG for the conditions comparable to those discussed
bandwidth-limited pulse for the 128128 FROG matrix that earlier for the case of Type | phase matching, we performed
has optimal sampling along the time and frequency axesnigmerical simulations identical to those in Section VII. The
presented in Fig. 7. As can be seen, the systematic error $ame pulses were used, i.e., the bandwidth-limited 3-fs pulse
~5-fs pulses becomes comparable with the typical achievale800 nm and the pulse with the same bandwidth stretched
experimental SHG FROG error. It also should be noted thia 26 fs. The thickness of the Type Il BBO Is = 10 um,

the contribution of geometrical smearing is about equal to and the crystal is oriented for the peak conversion efficiency
higher than that due to spectral distortions remaining after the 700 nm(# = 45°). The expression for the spectral filter,

spectral correction. adapted for Type Il, is given by
The systematic error should not be confused with the
ultimate error achievable by the FROG inversion algorithm. 03

Frequently, as, for instance, in the case of linearly chirpeB(Q2) = Q(Q)H—(Q)[(n%(ﬁ) —1)(n%(/2) — 1)
Gaussian pulses measured in the presence of geometrical E

smearing, it means that the FROG trace continues to exactly x (n%(/2) — 1)]25111(32 <W) (35)
correspond to a pulse, but to a different one. However, for an 2
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Fig. 8. Simulation of SHG FROG signal for an ideal 3-fs Gaussian pulse f6ig. 9. Simulation of SHG FROG signal for a linearly chirped 26-fs Gauss-
Type Il phase matching. (a) Ideal FROG trace as given by (32). (b) Complé@@ pulse. The conditions are the same as in Fig. 8. (a) Ideal FROG trace
FROG trace as given by (27). (c) Spectral filter cur®¢Q) computed as given by (32). (b) Complete FROG trace as given by (27). (c) Spectral
according to (33) (shaded contour) and the ratio of FROG traces givenfilter curve R(Q2) computed according to (33) (shaded contour) and the ratio
(b) and (a) at several delays (broken curves). (d) Spectral marginal of ®leFROG traces given in (b) and (a) at several delays (broken curves). (d)

traces shown in (b) (solid curve) and autoconvolution of the fundament@pectral marginal of the traces shown in (b) (solid curve) and autoconvolution
spectrum (dashed curve). of the fundamental spectrum (dashed curve). Note the skewness of the FROG

trace in (b).

where the phase mismatcts blue-shifted. It is also apparent from Figs. 8(c) and 9(c)
AK(/2,Q/2) = ko(2/2) + kp(Q/2) — kp(Q).  (36) that the phase-matching bandwidth in this case is somewhat
broader than in the analogous Type | crystal.

The results of FROG simulations are presented in Figs. 8We can conclude from our simulations that Type Il SHG
and 9. The FROG trace of the 3-fs pulse [see Fig. 8(b)] FFROG offers no enhancement of the temporal resolution and is
practically symmetrical along the delay axis. However, despil@ss versatile compared to the noncollinear Type | arrangement.
the fact that no geometrical smearing has occurred, this tra@ditionally, the collinear Type Il SHG FROG requires a
is evidently broadened along the delay axis. Consequengiyeater experimental involvement than in the Type | SHG
the FROG inversion of this trace after the spectral correcti6tROG. However, for some applications such as confocal
yields a longer~3.3-fs pulse. The elongation of the trace ignicroscopy, where the implementation of the noncollinear
due to the temporal walkoff of the fundamental waves, whigieometry is hardly possible due to the high numerical aperture
in this case is about 1 fs. The magnitude of this temporaf the focusing optics, the use of Type-Il-based FROG appears
distortion is approximately equal to the geometrical smearigglite promising [66].
discussed in the previous section. The trace of the chirped
pulse, produced under the same conditions [see Fig. 9(b)], IX. THE CHOICE OF THE SHG (RYSTAL
is much more severely distorted than in the case of they thjs section, we provide several guidelines for selecting
bandwidth-limited pulse. The straightforward use of this traGge correct SHG crystal in the FROG measurement. On the
is virtually impossible because of its strong asymmetry.  gne hand, the crystal should be thick enough to generate an

As in the Type | case, the conversion efficiency, obtaineghyropriate level of the SH signal for a high dynamic range
as a ratio of the ideal and simulated FROG traces, continygaasurement. One the other hand, the thickness of the crystal
to correspond nicely to the spectral filtB((2) [see Figs. 8(C) should be sufficiently small to provide an appropriate phase-
and 9(c), shaded contours] at near-zero delays. Conversigching bandwidth and minimize pulse broadening in the
efficiency at other delays, however, sharply depends on %stal.
sign of the delayr. Similar to Type | phase matching, the "opyijously, when choosing the crystal one must consider
frequency marginals [see Figs. 8(d) and 9(d)] are substantiaglie pandwidth of the pulse that has to be characterized. We

SUnlike the case of Type | phase matching, the first derivative terms do n%fnploy a simple Criterion tO. ?Stimate the reqUired C.ryStaI
cancel each other out, but they have been disregarded anyway. thickness: the conversion efficiency calculated according to
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Fig. 10. Crystal thickness required for SHG FROG measurement as a

function of the pulse duration at the central wavelength of (a) 800 nm and (b) |

600 nm. The crystals are cut for Type | phase matching, which correspond to
6 = 29° for BBO (solid line) and¢ = 44° for KDP (dashed line).

(33) must be higher than 50% of the peak conversion efficiency
everywhere over the double FWHM of the FROG spectral
marginal. For the pulses that are Gaussian in frequency,
the ideal spectral marginal, or the autoconvolution of the
fundamental spectrum, is/2 times broader than the pulse 0
bandwidth. Using this criterion, we evaluated BBO and KDP
crystals, which are typically employed for ultrashort pulse
measurement. Both considered crystals are cut for Type | © (d)
phase matching at wavelengths of 800 and 600 nm. Fig. 8@. 11. Correction of frequency conversion efficiency by crystal orientation

i ; i a), (b) 8-fs and (c), (d) 3-fs bandwidth-limited Gaussian pulses. A Type |
depICtS the appropriate CryStaI thickness .Of the BBC.) (SOEL%/(m)w éB?O crystal i(s)or(ie)nted for the phase-_matched wavel%ngth of So%pnm
curve) and KDP (dashed curve) as a function of duration of g (c) and 970 nm (b), (d). The phase-matching curve an€théependence
bandwidth-limited Gaussian pulse. are shown as the dashed and dotted lines, respectively. The solid curves

As can be noted from Fig. 10, a BBO crystal approximate pict the autoconvolution of fundamental spectra, while spectral marginals
’ f FROG traces are given by filled circles. In (b), no spectral correction

10 pm-thick should be emp'QVEd to measure 5-fs pU|S%$the FROG trace is required for an 8-fs pulse because of the red-shifted
at 800 nm. The adequate thickness of the KDP crystal sase-matched wavelength. In contrast, the use of the 970-nm phase-matched

approximately 25 imes larger due to i lower dispersioff [ePath CoTLBR e S shec s case 12 Stor 1 ple
However, while clearly providing an advantage in thickness,
the KDP crystal has a disadvantage in the SHG efficiency. The
signal level that can be obtained with a BBO crystal that is 2curve). The overall conversion efficiency becomes almost flat
times thinner is still approximately larger than in a KDP crystaind no spectral correction of the FROG trace is required.
by a factor of 6 because of the higher nonlinear coefficienperimentally, Taftet al. [9] demonstrated the effectiveness
and lower phase-matching angle in the BBO crystal [699f the angular adjustment that enabled them to yield correct
Therefore, BBO is a more suitable choice for characterizatiéiROG data.
of weak-intensity pulses. For high-intensity pulses, when theThe mutual compensation of th@* and phase-matching
low level of the SH signal is not really the issue, KDP presentsrms is only possible for relatively long~(0-fs) pulses.
a better choice [42]. As a thinner crystal is chosen to measure shorter pulses, the
With the growth of the phase-matching bandwidth of theigh-frequency slope of the phase-matching curve becomes
crystal, the® dependence [see (33)] begins to dominatelatively steeper than the low-frequency one [see Figs. 11(c)
the conversion efficiency. As shown in Section VI, this deand (d)]. This is to be expected, since crystal dispersion is
pendence blue-shifts the SH spectrum. In case the phdsev in the infrared and increases approaching the ultraviolet
matching bandwidth of the SHG crystal is wider than requirddlV) absorption band. Tuning the central wavelength of the
by the pulse bandwidth, angular tuning of the crystal carystal from 800 nm [Fig. 11(c)] to 970 nm [Fig. 11(d)]
effectively counteract such blue-shift [42]. To illustrate theubstantially narrows the SH spectrum in the blue due to
point, we consider a 1@m BBO crystal applied to measurethe crystal phase matching. Even worse, the FROG trace
8-fs Gaussian pulses at 800 nm. Fig. 11(a) shows the blwan hardly be corrected for the imposed spectral filter since
shift of the FROG spectral marginal (filled circles) withthe conversion efficiency becomes extremely low in the blue
respect to the autoconvolution (solid curve) if the crystal wing [Fig. 11(d)]. This should be contrasted to the 800-nm-
perfectly phase-matched at 800 nm, i+ 29°. However, cut case when the correction is still possible (see Fig. 6).
after adjusting the phase-matching anglefte= 24.4° that Therefore, in order to extend the phase-matching bandwidth in
now corresponds to the central wavelength of 970 nm [s#® blue, one should consider using a crystal with the phase-
Fig. 11(b)], the phase-matching curve of the crystal (dashethtching wavelength blue-shifted with respect to the central
curve) nearly perfectly balances t§& dependence (dottedfrequency of the pulse. For example,Ja= 10 pm BBO

Intensity

300 400 500 600 300 400 500 600
SH wavelength [nm] SH wavelength [nm]
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Fig. 13. Angular dependence of the noncollinear SH signal for a linearly
chirped Gaussian pulse in the far field. (a) Autocorrelation intensity as a
density plot of delay between the fundamental pulses and the SH angle.
(b) Autocorrelation intensity trace obtained by integration over all spatial
components of the SH beam (solid curve) and the traces detected through a
narrow slit at the SH angle of°0(dashed curve) and G24(dotted curve).

The pulse is stretched to5 times the bandwidth-limited pulse duration. The
intersection angle of the fundamental beams‘s 2

for each pair can vary, as determined by the noncollinear phase
matching. Therefore, as can be seen from Fig. 12, the direction
of the SH beam changes as a function of delay between the
Fig. 12. Delay-dependent change of the SH direction in the case of a chirjstidamental pulses. This phenomenon is utilized in the chirp
pulse. measurement by angle-resolved autocorrelation [70], [71].

To illustrate the effect of spatial filtering of the SH beam, we
%xamine the same Gaussian pulses linearly chirped to 26 fs,

ich were used in the numerical simulations described above.

e keep the same geometrical parameters as in the previous
ctions of this paper, i.edy = 20 pum and2ay = 2°. The

crystal oriented for peak conversion efficiency at 700 nm
more suitable for the measurement of sub-5-fs pulses cente
at 800 nm than the same crystal tuned to 970 nm. Althou
the 700-nm-cut crystal has poorer conversion efficiency in t &Ctlio L :
infrared, it nonetheless allows the extension of phase matchlff ulting dependence. of the autc_;correlatlorj '”tef.‘s'ty. as a func-
below 600 nm. Consequently, this crystal has an appreciaB O.f the SH angle in the f"’%r f'_eld is depicted in Fig. 13(a).
efficiency of frequency conversion all over the spectrum 01‘-5he t'lt_Of the trace c_IearIy indicates the sweep .Of the SH
5-fs pulse and, therefore, the FROG traces can be vaIidaFé‘?f"m direction. The signal beam traverses approximately _half
upon spectral correction. In contrast, information concernirlige angle between the fundamental beams, and the magnitude

the blue spectral wing is completely filtered out if the crystaﬁ this Sweep scales Imea_rly with t_he |nter_sect|on angle. The
oriented for 970 nm is used. autocorrelation trace obtained by integration over all spatial

components of the SH beam is depicted in Fig. 13(b) (solid
curve). The FROG trace corresponding to this autocorrelation,
X. SPATIAL FILTERING OF THE SH BEAM i.e., measured by detecting of the whole beam, is entirely

In this section, we show how spatial filtering of the SH bea®orrect and allows recovery of the true pulse parameters.
can corrupt an autocorrelation or FROG trace. Unfortunately, The situation, however, becomes different if only a portion
this type of distortion can pass undetected since the FR@Ethe SH beam is selected. In the considered example, the
trace may still correspond to a valid pulse, but not the oitocorrelation or FROG, measured through a narrow slit
that is being measured. placed on the axis of the second harmonic beam, would

As already mentioned in Section IV [see (23)], the directiofshrink” along the delay axis, as shown in Fig. 13(b) (dashed
in which an SH frequency is emitted varies because of tiegrve). The width of this trace is10% narrower than the true
noncollinear geometry. Even though the intersection angle afitocorrelation width. Positioning of the slit off the beam axis
the fundamental beams is small, this effect becomes ratligee Fig. 13(b), dotted curve) leads to the shift of the whole
important for the measurement of broad-band pulses duettace along the delay axis and, for some pulses, to asymmetry
the substantial variation of the wavevector magnitude acrdssthe autocorrelation wings. In the case of Gaussian pulses
the bandwidth. examined here, the FROG traces measured with such spatial

Let us consider a certain component of the SH signal theglection remain self-consistent, disregarding the delay shift.
has a frequency dfw, (Fig. 12). This component can be genThe spectral marginal of such FROG traces is exactly the same
erated for several combinations of fundamental frequencies, in the case of the whole-beam detection. Consequently, the
for example, such as the pairsuaf andwg, and ofwo+éw and FROG retrieval of the spatially filtered traces yields pulses of
wo — 6w. The direction in which th@w, component is emitted correct bandwidth but less chirped than in reality.
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W Variable The photodiode monitored the interference fringes that serve
delay ™ Michelson as time calibration marks.
|_interferometer Fundamental pulses were focused in the nonlinear crystal
with anr» = —25-cm spherical mirror at near normal incidence
to minimize astigmatism. Due to the low curvature of the
mirrors, delay variations within each beam are less than
% % 0.1 fs. To achieve simultaneous upconversion of the entire
fundamental bandwidth, we employed a A@-thick BBO
crystal cut for a central wavelength of 700 nm (EKSMA

Photodiode

10 wm BBO

To spectrometer Inc.). Dispersive lengthening of a 5-fs pulse by such a crystal
Fig. 14. Schematic of the SHG FROG apparatus. Spectrometer and quS.nOt exceed 0.02 fs. The blue-sh|fte_d central V_Vavelength
coupling optics are not shown. permits one to extend the phase-matching bandwidth below

600 nm, as shown in Fig. 4(c). The cut angle of the crystal
as verified with a tunable 100-fs laser. Retroreflection of
Hée beams from the crystal surface provided exact reference
r crystal orientation. This enables us to accurately calculate

The described effect should not be identified alone with t
pulses that are much longer than the bandwidth limit, sin

even the bandwidth-limited pulses with asymmetric specti () required for data correction according to (33). A visible-

carry a chirp in time. Therefore, careful collecting of al X
spatial components of the SH field is extremely essenti R PC1000 (Ocean Optics) spectrometer was used to detect
fundamental spectra.

We also underline importance of measuring an independ ) . .
b g b wo different SH detection systems were employed in the

autocorrelation trace in front of the spectrometer, since itseasurements of the compressed and the chiroed pulses. In
comparison with the temporal marginal of the FROG trac'ﬁe case of compressed pEIses a well characteprizeg uv Vis
might signal improper spatial filtration occurring in the FRO _ ’ i i

g 9 propersp 9 C1000 (Ocean Optics) spectrometer was used. Therefore, the

detection. . X
In Section V, we mentioned the ability to enhance th'éRoc\)/S traces could be readily corrected/i(2), as described

temporal resolution of a noncollinear measurement by placil"’?ll In th fthe st v chirped oul binati ¢
a slit behind the nonlinear medium. This reduces the effectivgannmﬁ Carlr?gn%chﬁ)rsn;otg? ;/nc p Ir;:peho?grssﬁi, ig:)?l]b?arlg\r;ige:
spot of the SH beyond the size of the diffraction-limite 9 P P p

focus. However, placing a slit into the collimated beam woul € dynamic range necessary to measure the spectral wings

cause the spatial selection considered above. To avoid s %%edSectpn XIl). Th? :Eason for this V\;ag the é%"g\’\gng: q
undesirable distortion, one should position the slit behind t ¢ dynamic range ol thé measurement in a -base
crystal within the Rayleigh range, or, alternatively, into thgPectrometer is determl_ned not only by the spectral sensitivity,
scaled image of the crystal plane projected by an achroma‘ﬁ@'Chﬂ:S adequ:(ajtely thlgtzl but bly tge fcharge spr)]readnlqg i"
objective lens. The realization of both these options is rath yer the array due lto the overioad of some channels. 1o

difficult and becomes really necessary only if the beams all,gther extend the dyngmlc range, a lock-in amplifier was
poorly focusable. used to detect the SH signal. Because of the unknown spectral

sensitivity Q(2), the spectral correction of the FROG traces
in this case was performed according to the method suggested
Xl. SHG FROG APPARATUS in Taft et al. [9], i.e., by using the ratio of the autoconvoluted
In our experiments, we used pulses from a self-mod&indamental spectrum and the spectral marginal.
locked cavity-dumped Ti:sapphire oscillator compressed upon
chirping in a single-mode fused silica fiber. We measured
the white-light continuum (WLC) pulses directly at the fiber Xll. SHG FROG OF WHITE-LIGHT CONTINUUM

output and, again, upon the their compression performed ashe study of the group delay of the chirped WLC is the
described elsewhere [11]. corner stone of pulse compression. The phase measurement of
The SHG FROG apparatus (Fig. 14) is based on a phage pulses leaving the fiber permits one to assess the feasibility
and amplitude balanced multishot autocorrelator designed ffirpulse compression in general. Understandably, the spectral
sub-5-fs short pulses [11]. The input beam was split anfhase must be sufficiently smooth to allow compensation by
recombined in such a way that each of the beams travels opggans of the existing dispersion control. A measurement of the
through an identical 50% beam spIitter with both reﬂeCtiO%ectrm intensity, on the other hand, provides 0n|y a limited
occurring on the same coating—air interfaéEo match the insight and reveals the minimum duration of the would-be
beam splitters, the initial horizontal polarization of the lasefompressed pulse. As an example of virtually uncompressible
beam was rotated by a periscope. The moving arm of th@ises, one might consider the case of spectral broadening due
autocorrelator was driven by a piezo transducer (Physik Insttg-a pure self-phase modulation. Furthermore, the task of build-
mente) which is controlled by a computer via a digital-analqéig an appropriate pulse compressor is substantially eased if
converter and a high-voltage amplifier. The precise time cajhe phase distortion on the pulse is measured beforehand. This
bration was provided by an auxiliary Michelson interferometepecomes increasingly important with the growth of the pulse
6For shorter pulses, one should use lower reflectivity beam splitters tI%QeCtral bandwidth that puts severe limitations on dispersion
have a broader reflectivity range and flatter spectral phase. tunability of the pulse compressor. Therefore, it is desirable
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to replace a great deal of “trial and error” work by measuring/LC are depicted in Figs. 15(b) and (c), and the retrieved
the phase distortion and computing the settings of the puM4.C spectra and the group delay are shown in Fig. 15(d).
compressor. The combined action of self-phase modulation and dispersion

Somewhat counterintuitively, the FROG measurement kfads to a nearly linear group delay over most of the spectrum
a strongly chirped pulse is considerably more complicat€Big. 15(d), solid curves). The departure of the overall group
compared with the case a bandwidth-limited pulse with thdelay from a linear asymptotic can be partly explained by the
identical spectrum. bulk dispersion of the fiber, air, and the beamsplitters in the

First, the upconversion signals are weaker due to the loweROG apparatus. For instance, while the optimal fiber length
peak power. This is evident, since the SH intensity of a pulges estimated to be 1 mm [10], we employed a 2-mm piece
that is stretched to ten times its initial duration drops dowfior the practical convenience and in order to clean the exiting
100 times. mode structure.

Second, a higher dynamic range is required because of th@he WLC spectrum changes dramatically with the change of
uneven temporal spread of spectral wings. This occurs duethe input pulses (Fig. 15(d), shaded contours). The widest and
the high-order material dispersion. To explain this, we considieast modulated spectrum corresponds to the almost chirp-free
two spectral components with frequencies separated by 100put pulse (Fig. 15(d), the third from the top panel). Positive
cm~*. The group delay accumulated between them after pass-well as negative chirping leads to a substantial narrowing
ing 1 mm of quartz amounts to 4 fs if these components are sif- the WLC spectrum. In contrast, the overall behavior of
uated around 1000 nm and exceeds 11 fs in the case of 600 tim. group delays, shown as solid lines in Fig. 15(d), remains
Evaluating roughly, the corresponding elements of the FRO@tually unaffected. This ensures efficient pulse compression
trace scale~7 times in intensity. In our experiments, theunder different experimental conditions.
bandwidth of the WLC that needs to be captured in the FROGGroup delay measurements of the generated continuum
trace is broader than 10000 ci and, therefore, the signalserved as a target function for the design of the three-stage
intensity varies very strongly across the resultant FROG tracbigh-throughput compressor, consisting of a quartz-gissm

The third complication is purely numerical, since FRO@air, broad-band chirped mirrors, and thin-film Gires—Tournois
inversion demands greater matrix sizes to provide adequdielectric interferometers [11]. The spectral bandwidth of the
sampling in both time and frequency domain. For the sakempressor is 590-1100 nm and is limited by the reflectivity of
of speed, the FROG inversion algorithms employ fast Fouritdre employed chirped mirrors [72]. The phase characteristics
transform (FFT) [68]. To avoid the loss of information in theof the compressor have been analyzed using dispersive ray
change from the time domain to the frequency domain and vitracing and mapped onto the measured group delay of the
versa, FFT requires equal number of poiffsin both these continuum. Fig. 16 depicts the measured group delay for
domains. Therefore, if the FROG matrix covers the total delaljfferent pulses, entering the fiber (shown as broken curves)
of A7N in the time domain, wheré\r is the time step, the which are reproduced from Fig. 15(d) and the calculated group
spectral width represented in this traceNgA7. Compared delay of the pulse compressor (solid line). As one can see,
with bandwidth-limited pulses, the pulses stretched in tinur design compensates for the group delay of the white light
require largerAr to contain the whole time information of everywhere across the compressor bandwidth. The adjustment
the FROG trace in the matrix used in the FROG inversiapf the material of the prism pair allows final fine optimization
algorithm. This narrows the spectral window covered by thef the compressor dispersion, as judged from the FROG trace
matrix. Consequently, the number of poits(which in FFT of the compressed pulses.
is an integer power of two) must be increased to fully represent
the FROG trace in the matrix used by the algorithm. This has Xlll. SHG FROG OF COMPRESSEDPULSES
an appreciable effect on the calculation speed. The chang&d@he FROG traces of the compressed pulses were recorded
of N from 2" to 2"*!, wheren is an integer, slows the by incrementing the time delay between the arms in steps
FROG retrieval by a factor ofi(1 + n~1). In other words, of 0.5 fs. The acquired 2-D arrays of points were converted
by changing a 128128 matrix with a 25& 256 one increases into a 128<128 FROG matrix. The experimental and retrieved
the calculation time by a factor of4.5. FROG traces of compressed pulses are depicted in Fig. 17(a)

Lastly, we point out the experimental inconvenience. land (b). The FROG error amounted to 0.004 and is mainly
the case of strongly chirped pulses, the crystal alignment acaused by the noise in the spectral wings which scaled
the detected FROG trace become very sensitive to the delap- after the spectral correction of the FROG trace. The
dependent change in the direction of the SH beam, as hemporal marginal of the FROG trace corresponds nicely
already been discussed in Section X. with the independently measured intensity autocorrelation [see

The SHG FROG traces of the chirped WLC in our experkig. 17(a)] obtained by detecting the whole SH beam. This
ments were recorded in 2.5-fs delay steps and converted ist@gests that no spatial filtering of the SH beam has taken
256x256 matrices for processing. To reveal the conditioqdace. Comparison of the FROG frequency marginal and the
best suited for the compression of the WLC, we varied thautoconvolution of the fundamental spectrum [see Fig. 17(d)]
parameters of the pulses entering the fiber by changing tihdicates that no loss of spectral information has occurred.
settings of the prism precompressor. The intensity and chirpFig. 18 shows the retrieved intensity and phase in the
of the input pulses, derived by SHG FROG, are shown time and frequency domains. To remove the time direction
Fig. 15(a). The measured and retrieved FROG traces of @@biguity in the measurement of the compressed pulses, we
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Fig. 15. Experimental results of FROG measurement of the strongly chirped WLC. (a) Temporal intensity (shaded contours) and chirp (solid curves) of
the pulses entering a single-mode fused-silica fiber. (b) Measured and (c) retrieved SHG FROG traces of the WLC. (d) Retrieved spectral imtedsity (sha
contours) and the group delay of the WLC (solid curves). The amount of bulk material (fused silica) used to prechirp the input pulses is indicatgt in the

top corner of (a). Note that the input pulse energy is kept constant, while the respective scaling of the WLC spectra in (d) is preserved.

performed an additional FROG measurement introducing(@ig. 18(b), dashed curve) with the predicted residual phase
known amount of dispersion (a thin fused silica plate) iof the pulse compressor (Fig. 18(b), dash—dotted curve). The
front of the FROG apparatus. The obtained pulse duratictose similarity of the two reassures us of the correctness of
is 4.5 fs while variations of the spectral phase [dashed liedl the procedures used, including the measurement of the
in Fig. 18(b)] is less thantw /4 across the whole bandwidth.chirped WLC, the knowledge of the dispersion of compressor
These results fully confirm our previous analysis based on tbenstituent parts, the numerical routines employed for the
interferometric autocorrelation [11]. ray tracing analysis, and, finally, the characterization of the
To additionally verify both the self-consistency of our comeompressed pulses.

pressor calculations and the accuracy of the FROG retrieval,The SHG FROG traces are generally considered unintu-
we compare the obtained spectral phase of the 4.5-fs puitbee due to their symmetry along the delay axis [17], [19],
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Fig. 16. Group delay of the designed pulse compressor. Solid curvefigquency (b) domains. The FROG-retrieved intensity and phase are shown
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(b) Autocorrelation traces derived from the FROG trace at the SH wavelength
of 350 nm (solid curve) and 470 (dashed curve). Note that because of spectral
= 6.9 2 selection the pulse duration estimated from the autocorrelation width can be
é 18 é both lower and higher than the real one and differ by as much as a factor of 3.
k= 5
presented in Fig. 19(a). The variation of the thickness, i.e.,
0 . o the width of autocorrelation at a given SH wavelength, which
80 40 0 40 80 300 350 400 500 ; ; indi
Delay [fs] SH wavelength [m] can be seen in Fig. 19(a), indicates the nonperfect pulse

J compression without the necessity to run the FROG inversion
© @ algorithm.

Fig. 17. The results of SHG FROG characterization of compressed pulsesFig_ 19(b) shows two autocorrelation traces derived from
(a) Experimental and (b) retrieved traces. (c) Temporal marginal (filled circle

and independently measured autocorrelation of 4.5-fs pulses (solid curve)ﬁﬂlsa spectrogram in Fig. 19(a) 6_“ two separate _Wavelengths.
Frequency marginal (filled circles) and autoconvolution of the fundamenthhe FWHM of the autocorrelation at 350 nm is merely 6

spectrum (solid curve). fs, which is indicative of anv4-fs pulse duration. However,
the autocorrelation at 470 nm is three times broader. Such a
difference clearly illustrates the effect of the spectral filtering
[34]. We found out that in the case of nearly bandwidthin the nonlinear crystal as well as SH detection on the autocor-
limited pulses, one can significantly increase the amount @flation width. This also underscores the importance of pulse
information available from the simple visual inspection ofharacterization by frequency-resolved (e.g., FROG) rather
the trace. In order to do so, every trace in the time domaihan nonfrequency-resolved (e.g., intensity autocorrelation)
at its corresponding SH wavelength should be normalizedethods if one deals with such broad-band pulses.
to unity. Effectively, this represents the FROG trace as aFinally, we note that the width of the autocorrelation traces,
series of normalized autocorrelations. In the case of the putsech as the ones shown in Fig. 19(a), can be directly related
with an arbitrary spectrum and the flat spectral phase, suchthe instrument response of a spectroscopic experiment.
representation of the SHG FROG trace would give a stregbkr instance, the temporal resolution of a kinetic trace in a
of uniform thickness around zero delay. The result of sudrequency-resolved pump-probe experiment [73], [74] detected
operation applied to the FROG trace of the 4.5-fs pulse & 950 nm will be~12 fs, albeit the weighted average pulse
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duration is 4.5 fs [75], [76]. Therefore, the frequency-resolvadakes it possible to design the adequate dielectric layer
measurement (as FROG) brings invaluable information eversifucture that in many cases almost perfectly follows the
the correct estimation of the pulsewidth could be achieved bgquired dispersion curve, measured by FROG. In general, the
other simpler means, such as the autocorrelation measuremghése distortion of nearly any complexity can be compensated
for by a mirror that is based on the gradient change of the
refractive index instead of the discrete dielectric layers, as
XIV. CONCLUSIONS AND THE OUTLOOK is the case with currently available chirped mirrors [72]. No

SHG FROG is a powerful and accurate pulse diagnostiggubt that with the growing interest in the intracavity [84],
technique that is ideally suited for the measurement of a v&8b] and extracavity broad-band dispersion control [11], [32],
variety of pulses. In particular, the instantaneous nonlinearify8l, [86], the possibility of manufacturing the gradient-index
high sensitivity, and broad-band response allow one to meas&t@ictures will shortly become available. Therefore, the phase
the shortest pulses available to date. The FROG measurenfgfgsurement of chirped pulses gains paramount importance.
of the pulses that are shorter than 5 fs is nowadays probably the
only available means to evaluate the pulse parameters and the
temporal resolution of a nonlinear spectroscopic experiment.

In this paper, we have developed the SHG FROG de-The authors are indebted to M. M. Murnane, H. C. Kapteyn,
scription that includes phase matching in the SHG cryst@ind R. Trebino for their support and encouragement. They
noncollinear beam geometry, and dispersion of the secordso thank K. W. DeLong, A. Rundquist, A. Gaeta, and V. V.
order nonlinearity. The derived master equation is valid dowfrasnikov for fruitful discussions. R. S#igs and K. Ferencz
to single-cycle pulses. Furthermore, the numerical simulatiofte specially acknowledged for the design and manufacturing
have shown that the conventional description of FROG #®f femtosecond optics used in these experiments.
the case of Type | phase matching can be readily used even
for the single-cycle regime upon spectral correction of the
FROG traces, provided the beam geometry, the finite crystal
thickness, and phase-matching bandwidth are chosen correctlij. J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov,

We have applied the developed theory to the SHG FROG REer:/hE}_”e‘:tidvg‘l'.g;'g"fg?os'f'%3?;5%%”;3996.25 fs laser pulgdisys.
measurement of 2.5-optical-cycle pulses with a central wavgz] c. J. Bardeen, Q. Wang, and C. V. Shank, “Selective excitation of
length around 800 nm. To the best of our knowledge, these vibrational wavepacket motion using chirped pulsé3iiys. Rev. Lett.
are the shortest pulses that have been completely characteriz d‘éc_’lkz,ﬁie?‘c"\,_ls\))_pﬁék%‘\l,llgz 331_13},3?%_51_ Krause, M. Messina, K. R.
to date. We have also successfully measured strongly chirped wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control

Weak-intensity pulses generated at the fiber output. These two ©f wave packet evolution with tailored femtosecond pulseiys. Rev.
. . . - Lett, vol. 74, no. 17, pp. 3360-3363, 1995.
key experiments that are required to design, test, and optimizg v v. vakoviev, C. J. Bardeen, J. Che, J. Cao, and K. R. Wilson,

the pulse compressor have both been performed without a “Chirped pulse enhancement of multiphoton absorption in molecular

- - ; iodine,” J. Chem. Physvol. 108, no. 6, pp. 2309-2313, 1998.
single change in the SHG FROG apparatus. Under give, M. Fetterman, D. Goswami, D. Keusters, J.-K. Rhee, X.-J. Zhang,

conditions, no other pulse-measuring technique allows similar’ and w.s. warren, “Generation of amplified shaped pulses for highly

versatility. adiabatic excitation,” inUltrafast Phenomena XIT. Elsaesser, J. G.
FROG characterization of chirped spectrally broadened Fuimoto, D. A. Wiersma, and W. Zinth, Eds. Berlin, Germany:

. . . Springer-Verlag, 1998, pp. 24-26.
pulses offers an important shortcut in the generation of thg] c. J. Bardeen, J. Che, K. R. Wilson, V. V. Yakovlev, P. Cong, B.

ever-shorter pulses via external compression. The direct phase Kohler, J. L. Krause, and M. Messina, “Quantum control of Nal

. photodissociation reaction product states by ultrafast tailored light
measurement of the output of glass fibers, as demonstrated pulses,”J. Phys. Chemvol. 101, no. 20, pp. 3815-3822, 1997.

in this paper, hollow waveguides [77], and parametriq7] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Keifer, V. Seyfried,
amplification [32], [78], [79] provides a rigorous target M. Strehle, and G. Gerber, “Automated coherent control of chemical

. . . reactions and pulse compression by an evolutionary algorithm with
function for the pUIse 'compressor . de3|gn. In partICU|ar' feedback,” inUltrafast Phenomena XIT. Elsaesser, J. G. Fujimoto, D.
we foresee clear benefits for two direct methods of pulse A. wiersma, and W. Zinth, Eds. Berlin, Germany: Springer-Verlag,
compression: adaptive dispersion control and all-mirror_ 1998, pp. 471-473.

. [8] G. Taft, A. Rundquist, M. M. Murnane, and H. C. Kapteyn, “Ultra-
Compress_'on- short optical waveform measurement using frequency-resolved optical
In the first case, the whole pulse compressor or one stage gating,” Opt. Lett, vol. 20, no. 7, pp. 743745, 1995.
fi nsi f th m r-controll intensi n h ] G. Taft, A. Rundquist, M M. Murnane, I. P. Christov, H. C. Kapteyn,
of it consists of the co putg controlled inte sity & d P .asg) K. W. DeLong, D. N. Fittinghoff, M. A. Krumliigel, J. Sweetser, and R.
masks [80] or an acoustooptical modulator [81]. The required Trenino, “Measurement of 10-fs pulsetEEE J. Select. Topics Quantum

phase pattern can be calculated and set to match the target Electron, vol. 2, pp. 575-585, May 1996.

P : oA 0] A. BaltuSka, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical
function measured by FROG. Such straightforward finding bulse compression 10 5 fs at a 1-MHz repetition ra@pt. Lett, vol.

the optimal conditions eliminates the time-consuming iterative 22 no. 2, pp. 102-104, 1997. _
search based on feedback [82] and guarantees a suitable plid$e?. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R.
correction Szipdcs, “All-solid-state cavity-dumped sub-5-fs lasefppl. Phys. B
’ . . . vol. 65, no. 2, pp. 175-188, 1997.
In the second case, in which no flexible control over thg2] M. Nisoli, S. D. Silvestri, R. Szipcs, K. Ferencz, C. Spielmann, S.
resulting dispersion of the pulse compressor is permitted, Sartania, and F. Krausz, “Compression of high-energy laser pulses below

. . . 5 fs,” Opt. Lett, vol. 22, no. 8, pp. 522-524, 1997.
the precise knOWIGdge of the target function is even moﬁﬁ%] M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng,

important. The well-developed theory of chirped mirrors [83 M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse
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