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BROOD SIZE MANIPULATIONS IN THE BARN OWL

EFFECT OF BROOD SIZE MANIPULATIONS ON PARENTS AND

OFFSPRING IN THE BARN OWL TYTO ALBA

ALEXANDRE ROULIN], ANNE-LYSE DUCRESTI & COR DIJKSTRN
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Roulin A, A-L. Ducrest & C. Dijkstra 1999. Effect of brood size manipulatious on
parents and offspring in the Barn Owl Tyto alba. Ardea 87: 91-100.

When the overall food demand of the young increases, parents can either increase
their effort to feed the brood, potentially reducing their residual reproductive value,
or alternatively maintain their effort, leading to offspring mortality. In long-lived
species where fitness is related to the number of breeding attempts, life-history the
ory suggests that parents should restrict any increase of reproductive effort in a cur-
rent brood so as not to compromise their survival prospects. We investigated this hy
pothesis in the Barn Owl Tyto alba by performing brood size manipulations. We en
larged or reduced broods by two nestlings to create some broods requiring more pa
rental investment and others requiring less. We monitored the effect on the parents
and the offspring. Total body mass gained by all nestmates from the 24th to the 25th
day after the first hatching, a measure correlated with parental feeding rate, was not
significantly different between enlarged and reduced broods. Body mass and body con
dition of male and female parents during the manipulation, renesting rate and their re
productive success measured the year after the manipulation were not significantly af
fected by the experiment. Nestling mortality was higher, and body mass of the surviv
ing male and female nestlings was lower in enlarged than reduced broods. In conclu
sion, we detected an effect of brood size manipulations on nestlings but not on parents.
In the Barn Owl, this suggests that when broods require extra parental effort, parents
do not jeopardize their future reproductive success, and brood reduction occurs.

Key words: Tyto alba - brood size manipulation - nestling survival- future reproduc
tive success
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E-mail: aroulin@esh.unibe.ch; 2Department of Zoology, University of Groningen,
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INTRODUCTION

In evolutionary terms, fitness of an individual is
defined as the number of genome copies passed
across generations (Stearns 1992). Fitness there
fore increases with the number of high quality
offspring produced during a lifetime. To achieve
the highest fitness, iteroparous parents have to op
timize the allocation of resources between all
breeding attempts, and between themselves and
the offspring. When a brood requires more invest
ment than parents are initially willing to devote,
for instance because the food availability de
clines, they either invest more energy in foraging
to maintain a constant feeding rate, or they main
tain foraging effort and deliver less food that

would be required for the entire brood to be rai
sed. Under the first strategy, the future reproduc
tive success of the parents will be reduced be
cause of the trade-off between reproductive in
vestment and parental body maintenance (Wil
liams 1966; Gustafsson & Part 1990; Daan et al.
1996). Under the second strategy, sibling competi
tion will negatively affect the quality of the off
spring because of the trade-off between number
and quality of the offspring, and as a consequence
brood reduction will occur (Smith et al. 1989), a
probable outcome in long-lived species for which
the value of a current brood is relatively small
compared to that of future broods (S::ether 1988;
Stearns 1992).

The medium-sized Bam Owl Tyto alba is
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Fig. 1. Frequency distribution of the age of 89 males
and 65 females breeding in the study area from 1988 to
1998. All birds have been ringed as nestling. For every
individual only age at last capture was considered.
Mean age is 2.9 for males and 2.3 for females.

long-lived (Fig. 1) and females are slightly larger
than males. Clutch size varies markedly com
pared with other owls and raptors, and second
clutches are frequent and larger than first
clutches. The 5 to 6 eggs (range: 2 to 18) hatch at
intervals of about 2.5 days resulting in an age
hierarchy among the siblings. During the rearing
period of two months, unpredictable bad weather
conditions often happen, and brood reduction and
cannibalism occur during these periods of de
creased prey availability (Baudvin 1978). Brood
reduction events affecting late-hatched young
happen more often in large than small broods, and
seem to be the result of starvation rather than sib
licide (Cramp & Simmons 1985; Taylor 1994).
This suggests that under an increased food de
mand by the offspring, parents do not increase
their foraging effort or at least not to a level that
prevents starvation of junior offspring. This out
come would be not surprising because as in other
owls (Korpimiiki 1992; Marti 1997; Brommer et
al. 1998) and the Sparrowhawk Accipiter nisus
(Newton 1989) fitness is more related to the num
ber than to the size of the broods produced during
a lifetime.
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To test experimentally whether parents in
crease their investment when the food require
ment of the brood is larger than the hatched
brood, we enlarged and reduced broods. We pre
dicted that an enlargement would not elicit an in
crease in hunting effort, and therefore that the to
tal body mass gained by all nestmates in a night, a
measure assumed to be correlated to parental
feeding rate (Srether et aI. 1995), should not be
statistically different between the two brood size
treatments. Thus, offspring mortality. should be
higher, and the mean body condition of the sur
viving nestlings lower in enlarged than reduced
broods. Furthermore, body mass, renesting rate
and future reproductive success should be similar
for parents producing an enlarged or a reduced
brood. Because a large number of enlarged
broods was required for reliable statistical testing,
we did not create a control group where some
nestlings are exchanged between nests without al
tering brood size. Our design is conservative be
cause if parents adjust reproductive effort to
brood size manipulations, parents of enlarged
broods should invest more effort than those of
control broods which in tum should invest more
than those of reduced broods. Therefore, if we
find no difference between enlarged and reduced
broods we should have found no difference be
tween enlarged and control broods.

METHODS

We carried out the study in 1996 and 1997 in a
study area of 190 km2 located in western Switzer
land (46°49'N, 06°56'E). Since 1987 we mounted
110 nestboxes on the wall of bams, and we regu
larly checked them to record laying date, clutch
size, hatching success, age of each nestling using
wing-length (Schonfeld & Girbig 1975), and num
ber of fledglings (55-day-old nestlings). Nestlings
are able to handle and eat prey items without the
help of the mother after they are two weeks old
(Cramp & Simmons 1985), and prey stores are of
ten partly or entirely consumed during daytime
(pers. observ.). When the older nestling was 24 or
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25 days old we weighed and determined these
prey remains (species, entire or decapitated),
Bam Owl parents were captured at the nest and
their age was determined by reading rings, or by
checking their moult pattern. Primaries and sec
ondaries of yearlings are not abraded, and second
year individuals renew the 6th primary only (Tay
lor 1994). We distinguished female from male
adults by the presence of a brood patch (Cramp &
Simmons 1985). We performed analyses with the
Systat statistical package (Wilkinson 1989). All
statistical procedures are two-tailed with a signif
icance level of 0.05. Means are followed by ± 1
SD.

Brood size manipulations
In 1996, we conducted an experiment with

combined partial cross-fostering and brood size
manipulation. We enlarged 28 broods and re
duced 28 others with two nestlings. We ex
changed three randomly chosen 0- to 5-day-old
nestlings of a reduced nest for one same-aged ran
domly chosen nestling of an enlarged nest (e.g.
Roulin et ai. 1998 for more details). In many ca
ses, this exchange was performed before all nest
lings hatched in a nest. A few days after the brood
size manipulation, parents abandoned four en
larged and two reduced broods for unknown rea
sons. Sample sizes were therefore 24 enlarged
and 26 reduced broods. We recognized the origin
of the nestlings by painting some feathers with
non-toxic drawing ink before ringing them.

Feeding rate
In 1996, we did not measure feeding rates. To

obtain an approximation of the feeding rates of
parents rearing enlarged and reduced broods, we
calculated a 'brood mass gain index' given by the
difference in brood mass between two successive
days (sum of the masses of all nestmates + 0.78 x
mass of surplus prey items; 0.78 is 'the digestive
efficiency' to convert vole to owl flesh, Barton &
Houston 1993). We weighed all nestlings and sur
plus prey items when the senior nestling was 24
and 25 days old (see S::ether et ai. 1995 for a simi
lar method). To evaluate if the 'brood mass gain
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Fig. 2. Relationship between brood mass gain index
(y) and feeding rate (x). Linear regression, y = -118 +
14.3 x, F1,25 =39.3, P < 0.001, R2 =0,61. Feeding rate
was measured when the oldest nestling was on average
35-day-old.

index' is representative for most part of the rear
ing period, in each brood we determined it several
times when the senior nestling was 14-39 days.
By randomly choosing one 'brood mass gain in
dex' per brood we show that it does not signifi
cantly vary along this period (brood size treat
ment as a factor and age as a covariate in AN
CaVA-analysis; age: F1,47 = 0.90, P = 0.35).
With an infra-red sensitive video camera, we
filmed parental feeding trips in 27 nests in 1997.
This demonstrated that the 'brood mass gain in
dex' was related to the combined number of prey
items brought by both parents to the nest in one
night (Fig. 2).

Effects of brood size manipulations on parents
To test potential short-term effects of brood

size manipulations on parents, we measured the
wing length of 35 randomly chosen females (15
in enlarged and 20 in reduced nests) and weighed
them at the 20th day of incubation and on average
18 ± 4 days after the manipulation of brood size,
and of 26 randomly chosen males (13 in enlarged
and 13 in reduced nests) on average 24 ± 8 days
after the manipulation of brood size. A condition
index was calculated as the ratio body mass/wing
length. No difference in laying date and clutch
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size was found between adults captured and not
captured for the analyses ofbody mass and body
condition (Mann-Whitney U-test, all P-values >
0.31).

To test for potential long-term effects, we
compared the proportion of adults from the two
experimental groups that produced a second
clutch in 1996, and that bred in 1997. For the re
nesting adults, we recorded laying date, clutch
size, and brood size at fledging in 1997. Because
most birds changed mate (82%), we considered
male and female parents of the same manipulated
brood separately. To assess potential effects of
brood size manipulations on the parental feeding
rates in 1997, we filmed a random sample of the
renesting adults (7 males and 7 females from en
larged broods, and 10 males and 6 females from
reduced broods) during two successive nights
when the oldest nestling of the brood was on av
erage 35 ± 6 days of age. Feeding rate was re
corded as the average number of feeding trips per
night.

Effects of brood size manipulations on off
spring

Nestling Barn Owls lose body mass prior
fledging, and thus brood size manipulations may
independently affect different components of the
body mass growth curve. A recent study con
ducted on captive Barn Owls showed that chicks
raised under restricted food conditions grew at
smaller rate, and achieved a lower maximal body
mass but fledged with the same body mass as
chicks raised under ad libitum food conditions
(Durant & Handrich 1998). Therefore, it seems
that body mass at fledging is not appropriate to
measure phenotypic quality. Since, however, the
effect of brood size manipulations on body mass
growth is as yet unknown, we individually weig
hed all nestlings during the period of maximal
growth rate (25 days) and at fledging (55 days)
(e.g. in a brood of three nestlings, we visited the
nest approximatively six times during daytime).
Enlarged broods were visited more often than re
duced broods, but since parents were most often
not in nestboxes adults from the two treatments

were probably equally disturbed. We checked if
dead nestlings were partially cannibalized by the
nestmates or the parents, and in the 1996 autumn
we sampled pellets in nestboxes to search for bo
nes of Barn Owls. Bones were determined by the
comparison with bones found in a pellet contain
ing the ring of a nestling Barn Owl.

Determination of the sex of the offspring
Blood samples were taken from all nestlings

which survived until 55 days in order to deter
mine their sex. Blood samples (50 f.!l) were taken
from the brachial vein and placed in 100 f.!l stor
age EDTA-buffer, and then stored at -20°C.
About 50 f.!l blood solution was digested with 0.8
rnl TES: 0.03M Tris-HCL pH 7.4, 5mM EDTA
pH 8.0, 0.1 M NaCI, 0.5% SDS, and incubated
with 50 f.!l proteinase K at 55°C for 15 hours. Ge
nomic DNA was extracted with phenol/chloro
form and recovered by ethanol precipitation. Af
ter drying, DNA was stored in 200 f.!11 TE at SOC.
The sex of the nestlings was determined by em
ploing PCR amplification of homologous sections
of the CHD-W and CHD-Z genes (Griffiths et al.
1996; Griffiths & Kom 1997), using the primers
P2 and P8 (Griffiths et al. 1998). PCR amplifica
tion was carried out in a total volume of 10 f.!l.
The reaction conditions were as follows: 50mM
KCL; lOmM Tris-HCL pH 9; 1.5 mM MgCI2;
0.1% Triton X-lOO; 200 f.!M of each dNTP; 100
ng of each primer and 0.15 units ofTAQ polyme
rase (Pharmacia). Between 50 and 250 ng of ge
nomic DNA was used as a template. The PCR
program was as follows: initial denaturing at
95°C for 2 min, followed by 40 cycles of 43°C for
15 s, noc for 30 sand 94°C for 30 s. The pro
gram was completed by a final run of 43°C for 1
min and noc for 5 min. The PCR products were
separated by gel electroforesis for 2 hours at 4V
cm-1 in a 2% agarose gel stained with ethidium
bromide. Males (ZZ) produced one band at 330
bp (CHD-Z). Females produced the same band
(CHD-Z) and in addition a second band at 350 bp
(CHD-W). We checked the accurateness of the
test by determining the sex of 74 nestlings by en
doscopy or by inspection of the gonads of ten
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birds later found dead. All were correctly sexed
by the DNA test. In addition, 46 breeding indivi
duals, sexed by breeding behaviour, revealed the
same sex by the DNA test.

For each nest, we calculated the mean body
mass of all male nestlings and all female nestlings
that successfully fledged. The mean rank number
(rank number 1 is assigned to senior nestlings) in
the age hierarchy of male and female nestlings
was not statistically different in enlarged broods
(U23,2l = 251, P = 0.83) and reduced broods
(U22,l9 =215, P =0.87).

RESULTS

Brood size manipulations
To study how parents and offspring are af

fected by brood size manipulations, four condi
tions have to be verified: 1) breeding pairs should
be randomly assigned among brood size treat
ments. There were no significant differences be
tween the two experimental groups in laying date
(U26,24 = 309, P = 0.95), clutch size (U26,24 = 372,
P = 0.23), number of hatchlings (Table 1), or age
of the breeding males (U26,24 =295, P =0.87) and
females (U2624 = 333, P =0.67); 2) just after ma
nipulation, the median brood size of reduced and
enlarged broods significantly differed (Table 1);
3) the size of the created broods should lay within
the natural range. Brood sizes ranged from 2 to 9
nestlings; 4) parents should not discriminate be
tween own and foster nestlings. Mortality was lo
wer for cross-fostered nestlings (11 out of 99

cross-fostered nestlings died, 11 %) than for non
cross-fostered ones (49 out of 165, 30%; Chi
square test: X2l = 12.1, P < 0.001). This may be
related to their lower mean rank number in the
age hierarchy just after the manipulation (cross
fostered nestlings: 2.6 ± 1.3; non-cross-fostered
nestlings: 3.1 ± 1.5; paired t-test: t49 = 2.3, P =
0.023). Indeed, the youngest nestlings of broods
usually suffer higher mortality rates (Taylor
1994). Body mass of the surviving cross-fostered
and non-cross-fostered nestlings was not signifi
cantly different (mean body mass at 25 and 55
days of age as repeated measures ANOVA: cross
fostered versus non-cross-fostered nestlings as a
factor: F l •88 =0.25, P =0.62), suggesting that the
quality of parental care provided to cross-fostered
and non-cross-fostered nestlings was similar.

Effects of brood size manipulations on parents
The mean 'brood mass gain index' was not

significantly lower in reduced (-1 ± 117 g) than
enlarged broods (30 ± 108 g) (Student t-test: t48 =
0.96, P = 0.34), although the median brood size
was significantly smaller (Table 1). This suggests
that parents did not adjust feeding rate to brood
size manipulations. This interpretation is further
supported by the fact that the quantity of prey
items stored during the day in nestboxes was not
significantly related to the brood size treatments.
The mean mass of the prey storage in reduced
broods was 60 ± 79 g and in enlarged broods 40 ±

56 g (t48= -1.0, P = 0.31), and the mean mass of
the entire prey items (i.e. not decapitated) was the
same in both treatments (40 g; t25 = 0.25, P =

Table 1. Median brood size in the two experimental treatments before and after the manipulation of brood sizes
and when the older nestling was 25 and 55 days of age.

Median brood size Statistics

Before manipulation
Just after manipulation
When the older nestling was 25 days of age
When the older nestling was 55 days of age

Reduced broods

5.5
3.5
3
3

Enlarged broods

5
7
5.5
5

U26.24 =375, P =0.21
U26.24 = 23, P < 0.001
U2624 =62, P < 0.001
U2;24 = l2l,P<0.001
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0.80). We found respectively 41 and 33 Common
Voles Microtus arvalis, 23 and 20 Water Voles Ar
vicola terrestris scherman, 27 and 7 field mice
Apodemus sp. and 1 and 0 Bank Vole Clethriono
mys glareolus.

The mean change in female body mass from
the 20th day of incubation to the 18th day after
the manipulation of brood size was not signifi
cantly different between reduced (-1.3 ± 0.8
g day-I) and enlarged broods (-1.5 ± 0.7 g day-I)
(t33 =-0.65, P =0.52). 18 days after the brood size
manipulation females from reduced and enlarged
broods did not significantly differ in body mass
(332 ± 18 g, resp. 331 ± 21 g; t33 =0.17, P =0.87)
and in condition-index (1.11 ± 0.07 g cm-I; 1.12 ±

0.06 g cm-I; t33 =-0.19, P =0.85). Males involved
in the rearing of a reduced brood had a similar
body mass and condition-index (274 ± 10 g, resp.
0.92 ± 0.03 g cm-I) as males rearing an enlarged
brood (277 ± 22 g, resp. 0.93 ± 0.08 g cm-I) (t24=

0.43, p =0.67, resp. t24 =0.17, P =0.87). Brood
size manipulations therefore had no detectable
short-term effects on feeding rate, if we assume
that the 'brood mass gain index' reflects it, and on
body mass and body condition of female and
male parents.

Potential effects of brood size manipulations
on future reproductive success were tested in
three ways. First, birds from the reduced group
tended to produce more second clutches in 1996
(3 out of 26 males and 4 out of 26 females) than
birds from the enlarged group (none of the 24 ma
les and 2 out of 24 females), but the small number
of double-brooded birds does not allow reliable

statistical analysis. Second, a similar number of
birds from the two treatments bred in 1997: from
reduced broods 19 out of 52 birds (37%) (12 ma
les and 7 females), and from enlarged broods 18
out of 48 birds (38%) (9 males and 9 females)
(males and females pooled: X2] = 0.01, P = 0.92).
And finally, laying date, clutch size, brood size at
fledging, and feeding rate of parents involved in
the rearing of an enlarged or a reduced brood in
1996 were not significantly different in 1997 (Ta
ble 2). This suggests that the residual reproduc
tive value of adults was not affected by the ma
nipulation of the size of their brood.

Effects of brood size manipulations on off
spring

The experiment conducted in 1996 did not in
crease overall mortality rates of nestlings. Six out
of 56 (11 %) experimental pairs failed to produce
any fledgling. This proportion is the same as that
found in unmanipulated pairs (data from 1990 to
1995, 29 failures out of 270 breeding attempts,
11%; X2] =0.00, P =1.0). The number of dead
nestlings per nest in experimental broods (1.2 ±
1.2, n = 50) was smaller, but not significantly than
in natural broods for which we know the number
of hatchlings (data from 1990 to 1995, 1.6 ± 1.5, n
=207 successful pairs; Student t-test: t254 =1.7, P
= 0.09).

Offspring mortality occurred in 21 out of 24
enlarged nests (88%) and in 10 out of 26 reduced
nests (38%) (x2] = 12.8, P < 0.001).45 (27%) of
169 hatchlings in enlarged broods died while in
reduced broods 15 (16%) of 95 hatchlings died

Table 2. The 1997 breeding parameters of parents that produced a reduced or an enlarged brood in 1996.

male female

reduced enlarged statistics reduced enlarged statistics

Mean laying date 25.4. 21.4. t19 =-0.59, P =0.56 20.4. 27.4. t14 =0.77, P =0.45
Median clutch size 5 5 U11.10 =37, P =0.14 5 5 U 7•9 =35, P =0.69
Median brood size

at fledging 4 4 U11.10 =59, P =0.76 5 4 U 7•9 =46, P =0.11
Feeding rate 6.6 ± 2.8 6.9 ± 5.6 t15 =0.15, P =0.90 2.8 ± 1.8 3.1 ± 3.3 t]] =0.16, P =0.88
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DISCUSSION

Before the present study brood size manipulations
had been conducted in three avian predators, the

Fig. 3. Mean body mass (± 1 SE) of female and male
nestlings at (a) 25 and (b) 55 days of age, raised in re
duced (light shaded bars) or enlarged broods (dark sha
ded bars). The numbers of nests available to calculate
mean body mass, are indicated above the bars.

Tengmalm Owl Aegolius funereus (Korpimaki
1988), the Common Kestrel Falco tinnunculus
(Dijkstra et al. 1990; Korpimaki & Rita 1996; To
lonen & Korpimaki 1996) and the American Kes
trel F. sparverius (Gard & Bird 1990, 1993). Re
sidual reproductive value of the parents decreased
as a consequence of an enlargement of the broods
in one out of three studies (Dijkstra et al. 1990 vs.
Korpimaki 1988; Korpimaki & Rita 1996) and off
spring appeared to always suffer in some way
(Dijkstra et al. 1990; Korpimaki 1988; Gard &
Bird 1993; Korpimaki & Rita 1996). Our res.ults in
the Bam Owl are in the same vein with a clear ef
fect of brood size manipulations on offspring but
not on parents. Nestling survival and body condi
tion of the survivors was lower in enlarged than
reduced broods. The 'brood mass gain index',
body condition and future reproductive success of
the parents did not significantly differ between
the two brood size treatments suggesting that par
ents allocated same effort for rearing enlarged as
reduced broods.

Parents that tended a reduced brood probably
did not allocate less effort than they were initially
willing to devote and hence produced a brood of
high quality nestlings. If they had decreased hunt
ing effort the production of lower quality young
would have probably not outweighed the margi
nal gain in parental residual reproductive value.
This is so because a large decrease in effort only
slightly improves parental reproductive value
while strongly reducing the condition of the off
spring (Steams 1992), since a reduction in feeding
rate affects the few nestlings. For instance, in the
Kestrel, Dijkstra et al (1990) showed that males
are more strongly involved in the feeding of the
young than females and did not decrease hunting
effort after the size of their brood was reduced.
Consequently, the food intake per nestling was
significantly higher in reduced than control
broods. This suggests that when the rearing con
ditions improve Kestrel and Bam Owl parents
maintain constant effort. This may explain why in
the Bam Owl prey remains are frequent and often
not eaten at all (pers. obs.).

Parents that tended an enlarged brood also

female male

reduced brood

enlarged brood

19

female male
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j =2.5, P =0.11). In 56 out of 60 cases, mortal

ity occurred before nestlings reached 25 days of
age, and with two exceptions the nestlings that died
were the youngest ones of the broods. We found 10
cannibalized nestlings (8 in enlarged and 2 in re
duced broods), 9 non-cannibalized cadavers in
nestboxes, and the circumstances of the disappear
ance of the 41 other dead nestlings were unclear.

Fledglings were more numerous in enlarged
than reduced broods (Table 1), but of poorer
physical condition as estimated by body mass
(mean body mass at 25 and 55 days of age as re
peated measures ANOVA with brood size treat
ment and sex as factors; treatment effect: F j 80 =

10.59, P = 0.002). Even if female nestlings ~ere

heavier (sex effect: Fj •80 =7.43, P =0.008), brood
size manipulations had a similar effect on the
body mass of birds of the two sexes (no interac
tion between sex and brood size treatment: F j •80 =
0.0001, P =0.99; Fig. 3).
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probably did not allocate more effort than they in
itially decided to devote or at least not to a suffi
ciently high level to have prevented nestling mor
tality and lowered their residual reproductive va
lue. Following life-history theory it can be very
costly in terms of future reproductive success to
slightly elevate effort above the normal rate (Ste
arns 1992). Field experiments have confirmed this
view as an increased parental investment meas
ured by feeding rate negatively affected parental
condition or residual reproductive value in five
out of six cases (Reid 1987; Dijkstra et al. 1990;

Kiillander & Smith 1990; Martin & Wright 1993;
Richner et al. 1995 vs. Orell et al. 1996). Assum
ing that owls tending unmanipulated broods are
not already hunting at maximum effort (Drent &
Daan 1980), they may have been reluctant to ad
just reproductive effort if the production of extra
young could not compensate for a loss in residual
reproductive value. In the Barn Owl late-hatched
nestlings have a relative low fitness value as they
are almost always in poorer condition than early
hatched siblings. Because this difference in con
dition accentuates with increasing brood size
(Wilson et al. 1987; Roulin 1998), when food sup
ply declines parents are probably selected to di
rect resources to themselves than to late-hatched
offspring, leading to brood reduction.

Most nestlings that died were the youngest
ones of the broods and brood reduction events
were more frequent in nests where the rearing
conditions were stressful (enlarged broods). This
pattern of mortality events fits the 'brood reduc
tion hypothesis' which states that poor quality
late-hatched young die when parents are no more
able to bring enough food to rear all young (Lack
1947). In other words, under unpredictable ad
verse periods the rare food items collected by par
ents would be shared among a larger number of
nestlings in nests where all nestlings survive com
pared to nests where partial losses of nestlings oc
cur; thus, if brood reduction does not occur young
may be in a so poor condition that all can rapidly
die or nevertheless fledge but will never be re
cruited in the breeding population. We are aware
of only one study that has tested experimentally

the brood reduction hypothesis. In the Magpie
Pica pica, Husby (1986) found that fledglings sur
vived less well when reared in nests where dead
chicks were replaced by chicks from other nests
compared with nests where dead chicks were not
replaced. Unfortunately, in that study feeding ra
tes, survival prospect and future reproductive suc
cess of the parents were not measured. Thus,
Husby could show that the brood reduction strat
egy increased reproductive success but could not
examine the possibility that it also allowed par
ents to avoid trading current against future repro
duction (O'Connor 1978; Stenning 1996). If brood
reduction is experimentally prevented, parents
may be forced to increase their investment in the
current brood at the expanse of future reproduc
tive success. Given that in the Barn Owl brood re
duction occurred more frequently in the enlarged
than reduced treatment and that the residual re
productive value of the parents was not affected
by the experiment, brood reduction may be the
potential mechanism that allowed parents to not
jeopardize their residual reproductive value.
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SAMENVATTING

Wanneer de totale voedselbehoefte van nestjongen gro
ter is dan verwacht, kunnen de oudervogels al dan niet
besluiten harder te gaan werken. Harder gaan werken
heeft mogelijk gevolgen voor het toekomstige repro
ductiesucces van de ouders, bijvoorbeeld door een ver
hoogde sterftekans. Niet harder gaan werken kan daar
entegen leiden tot de dood van een of meer jongen. Ais
de 'fitness' van soorten met een lange levensduur
vooral gerelateerd is aan het totale aantal broedpogin-

gen, zullen de ouders er goed aan doen hun toekomstig
reproductiesucces niet in de waagschaal te stellen en
niet harder gaan werken. Deze hypothese werd onder
zocht door de legselgrootte van Kerkuilen Tyto alba ex
perimenteel te manipuleren. Sommige legsels werden
met twee jongen verkleind, andere met twee jongen
vergroot. De gevolgen van deze manipulaties werden
zowel voor de ouders als voor de jongen bepaald. De
gewichtstoename van alle nestjongen samen, gemeten
op de 25ste dag na uitkomst van het het eerste ei, is ge
bruikt als maat voor de inspanning die de ouders lever
den. Deze maat bleek niet te verschillen tussen vergrote
en verkleinde legsels. Ook het gewicht en de conditie
van de ouders tijdens het experiment, het voorkomen
van een tweede legsel en het reproductiesucces in het
volgende jaar bleken niet te verschillen tussen de twee
experimentele behandelingen. Daarentegen was de
sterfte van de nestjongen in de vergrote legsels hoger
dan in de verkleinde legsels. Bovendien was het li
chaamsgewicht van de overlevende jongen in de ver
grote legsels lager. We kunnen dus concluderen dat de
manipulaties van de legselgrootte weI effect hebben ge
had op de jongen, maar niet op de ouders. Kerkuilen le
veren kennelijk niet de gevraagde extra inspanning en
stellen dus hun toekomstig reproductiesucces niet in de
waagschaal.
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