7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Effect of brood size manipulations on parents and offspring in the Barn owl, Tyto alba
Roulin, A; Ducrest, A.L; Dijkstra, C.

Published in:
Ardea

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Roulin, A., Ducrest, A. L., & Dijkstra, C. (1999). Effect of brood size manipulations on parents and offspring
in the Barn owl, Tyto alba. Ardea, 87(1), 91-100.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 02-06-2022


https://research.rug.nl/en/publications/af5d9be9-810a-49aa-b620-d8d422f90efb

BROOD SIZE MANIPULATIONS IN THE BARN OWL 91

EFFECT OF BROOD SIZE MANIPULATIONS ON PARENTS AND
OFFSPRING IN THE BARN OWL TYTO ALBA

ALEXANDRE ROULIN', ANNE-LYSE DUCREST! & COR DIJKSTRA?

Roulin A., A-L. Ducrest & C. Dijkstra 1999. Effect of brood size manipulations on
parents and oftspring in the Barn Owl Tyto alba. Ardea 87: 91-100.

When the overall food demand of the young increases, parents can either increase
their effort to feed the brood, potentially reducing their residual reproductive value,
or alternatively maintain their effort, leading to offspring mortality. In long-lived
species where fitness is related to the number of breeding attempts, life-history the-
ory suggests that parents should restrict any increase of reproductive effort in a cur-
rent brood so as not to compromise their survival prospects. We investigated this hy-
pothesis in the Barn Owl Tyto alba by performing brood size manipulations. We en-
larged or reduced broods by two nestlings to create some broods requiring more pa-
rental investment and others requiring less. We monitored the effect on the parents
and the offspring. Total body mass gained by all nestmates from the 24th to the 25th
day after the first hatching, a measure correlated with parental feeding rate, was not
significantly different between enlarged and reduced broods. Body mass and body con-
dition of male and female parents during the manipulation, renesting rate and their re-
productive success measured the year after the manipulation were not significantly af-
fected by the experiment. Nestling mortality was higher, and body mass of the surviv-
ing male and female nestlings was lower in enlarged than reduced broods. In conclu-
sion, we detected an effect of brood size manipulations on nestlings but not on parents.
In the Barn Owl, this suggests that when broods require extra parental effort, parents
do not jeopardize their future reproductive success, and brood reduction occurs.

Key words: Tyto alba - brood size manipulation - nestling survival - future reproduc-
tive success

1Zoology Department, University of Bern, CH-3032 Hinterkappelen, Switzerland,
E-mail: aroulin@esh.unibe.ch; Department of Zoology, University of Groningen,
PO Box 14, NL-9750 AA Haren, The Netherlands

INTRODUCTION

In evolutionary terms, fitness of an individual is
defined as the number of genome copies passed
across generations (Stearns 1992). Fitness there-
fore increases with the number of high quality
offspring produced during a lifetime. To achieve
the highest fitness, iteroparous parents have to op-
timize the allocation of resources between all
breeding attempts, and between themselves and
the offspring. When a brood requires more invest-
ment than parents are initially willing to devote,
for instance because the food availability de-
clines, they either invest more energy in foraging
to maintain a constant feeding rate, or they main-
tain foraging effort and deliver less food that

would be required for the entire brood to be rai-
sed. Under the first strategy, the future reproduc-
tive success of the parents will be reduced be-
cause of the trade-off between reproductive in-
vestment and parental body maintenance (Wil-
hams 1966; Gustafsson & Pirt 1990; Daan et al.
1996). Under the second strategy, sibling competi-
tion will negatively affect the quality of the off-
spring because of the trade-off between number
and quality of the offspring, and as a consequence
brood reduction will occur (Smith ef al. 1989), a
probable outcome in long-lived species for which
the value of a current brood is relatively small
compared to that of future broods (Szther 1988;
Stearns 1992).

The medium-sized Barn Owl Tyro alba is
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Fig. 1. Frequency distribution of the age of 89 males
and 65 females breeding in the study area from 1988 to
1998. All birds have been ringed as nestling. For every
individual only age at last capture was considered.
Mean age is 2.9 for males and 2.3 for females.

long-lived (Fig. 1) and females are slightly larger
than males. Clutch size varies markedly com-
pared with other owls and raptors, and second
clutches are frequent and larger than first
clutches. The 5 to 6 eggs (range: 2 to 18) hatch at
mntervals of about 2.5 days resulting in an age
hierarchy among the siblings. During the rearing
period of two months, unpredictable bad weather
conditions often happen, and brood reduction and
cannibalism occur during these periods of de-
creased prey availability (Baudvin 1978). Brood
reduction events affecting late-hatched young
happen more often in large than small broods, and
seem to be the result of starvation rather than sib-
licide (Cramp & Simmons 1985; Taylor 1994).
This suggests that under an increased food de-
mand by the offspring, parents do not increase
their foraging effort or at least not to a level that
prevents starvation of junior offspring. This out-
come would be not surprising because as in other
owls (Korpiméki 1992; Marti 1997; Brommer ez
al. 1998) and the Sparrowhawk Accipiter nisus
(Newton 1989) fitness is more related to the num-
ber than to the size of the broods produced during
a lifetime.

To test experimentally whether parents in-
crease their investment when the food require-
ment of the brood is larger than the hatched
brood, we enlarged and reduced broods. We pre-
dicted that an enlargement would not elicit an in-
crease in hunting effort, and therefore that the to-
tal body mass gained by all nestmates in a night, a
measure assumed to be correlated to parental
feeding rate (Sather et al. 1995), should not be
statistically different between the two brood size
treatments. Thus, offspring mortalitys should be
higher, and the mean body condition of the sur-
viving nestlings lower in enlarged than reduced
broods. Furthermore, body mass, renesting rate
and future reproductive success should be similar
for parents producing an enlarged or a reduced
brood. Because a large number of enlarged
broods was required for reliable statistical testing,
we did not create a control group where some
nestlings are exchanged between nests without al-
tering brood size. Our design is conservative be-
cause if parents adjust reproductive effort to
brood size manipulations, parents of enlarged
broods should invest more effort than those of
control broods which in turn should invest more
than those of reduced broods. Therefore, if we
find no difference between enlarged and reduced
broods we should have found no difference be-
tween enlarged and control broods.

METHODS

We carried out the study in 1996 and 1997 in a
study area of 190 km? located in western Switzer-
land (46°49'N, 06°56'E). Since 1987 we mounted
110 nestboxes on the wall of barns, and we regu-
larly checked them to record laying date, clutch
size, hatching success, age of each nestling using
wing-length (Schonfeld & Girbig 1975), and num-
ber of fledglings (55-day-old nestlings). Nestlings
are able to handle and eat prey items without the
help of the mother after they are two weeks old
(Cramp & Simmons 1985), and prey stores are of-
ten partly or entirely consumed during daytime
(pers. observ.). When the older nestling was 24 or
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25 days old we weighed and determined these
prey remains (species, entire or decapitated).
Barn Owl parents were captured at the nest and
their age was determined by reading rings, or by
checking their moult pattern. Primaries and sec-
ondaries of yearlings are not abraded, and second-
year individuals renew the 6th primary only (Tay-
lor 1994). We distinguished female from male
adults by the presence of a brood patch (Cramp &
Simmons 1985). We performed analyses with the
Systat statistical package (Wilkinson 1989). All
statistical procedures are two-tailed with a signif-
icance level of 0.05. Means are followed by + 1
SD.

Brood size manipulations

In 1996, we conducted an experiment with
combined partial cross-fostering and brood size
manipulation. We enlarged 28 broods and re-
duced 28 others with two nestlings. We ex-
changed three randomly chosen 0- to 5-day-old
nestlings of a reduced nest for one same-aged ran-
domly chosen nestling of an enlarged nest (e.g.
Roulin et al. 1998 for more details). In many ca-
ses, this exchange was performed before all nest-
lings hatched in a nest. A few days after the brood
size manipulation, parents abandoned four en-
larged and two reduced broods for unknown rea-
sons. Sample sizes were therefore 24 enlarged
and 26 reduced broods. We recognized the origin
of the nestlings by painting some feathers with
non-toxic drawing ink before ringing them.

Feeding rate

In 1996, we did not measure feeding rates. To
obtain an approximation of the feeding rates of
parents rearing enlarged and reduced broods, we
calculated a ‘brood mass gain index’ given by the
difference in brood mass between two successive
days (sum of the masses of all nestmates + 0.78 x
mass of surplus prey items; 0.78 is "the digestive
efficiency’ to convert vole to owl flesh, Barton &
Houston 1993). We weighed all nestlings and sur-
plus prey items when the senior nestling was 24
and 25 days old (see Szther et al. 1995 for a simi-
lar method). To evaluate if the ‘brood mass gain
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Fig. 2. Relationship between brood mass gain index
(y) and feeding rate (x). Linear regression, y = -118 +
143 x, F; ,5=39.3, P < 0.001, R? = 0.61. Feeding rate
was measured when the oldest nestling was on average
35-day-old.

index’ is representative for most part of the rear-
ing period, in each brood we determined it several
times when the senior nestling was 14-39 days.
By randomly choosing one ‘brood mass gain in-
dex’ per brood we show that it does not signifi-
cantly vary along this period (brood size treat-
ment as a factor and age as a covariate in AN-
COVA-analysis; age: F,,, = 090, P = 0.35).
With an infra-red sensitive video camera, we
filmed parental feeding trips in 27 nests in 1997.
This demonstrated that the ‘brood mass gain in-
dex’ was related to the combined number of prey
items brought by both parents to the nest in one
night (Fig. 2).

Eftfects of brood size manipulations on parents

To test potential short-term effects of brood
size manipulations on parents, we measured the
wing length of 35 randomly chosen females (15
in enlarged and 20 in reduced nests) and weighed
them at the 20th day of incubation and on average
18 + 4 days after the manipulation of brood size,
and of 26 randomly chosen males (13 in enlarged
and 13 in reduced nests) on average 24 + 8 days
after the manipulation of brood size. A condition-
index was calculated as the ratio body mass/wing
length. No difference in laying date and clutch
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size was found between adults captured and not
captured for the analyses of body mass and body
condition (Mann-Whitney U-test, all P-values >
0.31).

To test for potential long-term effects, we
compared the proportion of adults from the two
experimental groups that produced a second
clutch in 1996, and that bred in 1997. For the re-
nesting adults, we recorded laying date, clutch
size, and brood size at fledging in 1997. Because
most birds changed mate (82%), we considered
male and female parents of the same manipulated
brood separately. To assess potential effects of
brood size manipulations on the parental feeding
rates in 1997, we filmed a random sample of the
renesting adults (7 males and 7 females from en-
larged broods, and 10 males and 6 females from
reduced broods) during two successive nights
when the oldest nestling of the brood was on av-
erage 35 + 6 days of age. Feeding rate was re-
corded as the average number of feeding trips per
night.

Effects of brood size manipulations on off-
spring

Nestling Barn Owls lose body mass prior
fledging, and thus brood size manipulations may
independently affect different components of the
body mass growth curve. A recent study con-
ducted on captive Barn Owls showed that chicks
raised under restricted food conditions grew at
smaller rate, and achieved a lower maximal body
mass but fledged with the same body mass as
chicks raised under ad libitum food conditions
(Durant & Handrich 1998). Therefore, it seems
that body mass at fledging is not appropriate to
measure phenotypic quality. Since, however, the
effect of brood size manipulations on body mass
growth is as yet unknown, we individually weig-
hed all nestlings during the period of maximal
growth rate (25 days) and at fledging (55 days)
(e.g. in a brood of three nestlings, we visited the
nest approximatively six times during daytime).
Enlarged broods were visited more often than re-
duced broods, but since parents were most often
not in nestboxes adults from the two treatments

were probably equally disturbed. We checked if
dead nestlings were partially cannibalized by the
nestmates or the parents, and in the 1996 autumn
we sampled pellets in nestboxes to search for bo-
nes of Barn Owls. Bones were determined by the
comparison with bones found in a pellet contain-
ing the ring of a nestling Barn Owl.

Determination of the sex of the offspring
Blood samples were taken from all nestlings
which survived until 55 days in order to deter-
mine their sex. Blood samples (50 pl) were taken
from the brachial vein and placed in 100 pl stor-
age EDTA-buffer, and then stored at -20°C.
About 50 pl blood solution was digested with 0.8
ml TES: 0.03M Tris-HCL pH 7.4, 5SmM EDTA
pH 8.0, 0.1 M NaCl, 0.5% SDS, and incubated
with 50 pl proteinase K at 55°C for 15 hours. Ge-
nomic DNA was extracted with phenol/chloro-
form and recovered by ethanol precipitation. Af-
ter drying, DNA was stored in 200 ul 1 TE at 5°C.
The sex of the nestlings was determined by em-
ploing PCR amplification of homologous sections
of the CHD-W and CHD-Z genes (Griffiths et al.
1996; Griffiths & Korn 1997), using the primers
P2 and P8 (Griffiths e al. 1998). PCR amplifica-
tion was carried out in a total volume of 10 plL
The reaction conditions were as follows: 50mM
KCL; 10mM Tris-HCL pH 9; 1.5 mM MgCI2;
0.1% Triton X-100; 200 uM of each dNTP; 100
ng of each primer and 0.15 units of TAQ polyme-
rase (Pharmacia). Between 50 and 250 ng of ge-
nomic DNA was used as a template. The PCR
program was as follows: initial denaturing at
95°C for 2 min, followed by 40 cycles of 43°C for
15 s, 72°C for 30 s and 94°C for 30 s. The pro-
gram was completed by a final run of 43°C for 1
min and 72°C for 5 min. The PCR products were
separated by gel electroforesis for 2 hours at 4V
cm! in a 2% agarose gel stained with ethidium
bromide. Males (ZZ) produced one band at 330
bp (CHD-Z). Females produced the same band
(CHD-Z) and in addition a second band at 350 bp
(CHD-W). We checked the accurateness of the
test by determining the sex of 74 nestlings by en-
doscopy or by inspection of the gonads of ten
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birds later found dead. All were correctly sexed
by the DNA test. In addition, 46 breeding indivi-
duals, sexed by breeding behaviour, revealed the
same sex by the DNA test.

For each nest, we calculated the mean body
mass of all male nestlings and all female nestlings
that successfully fledged. The mean rank number
(rank number 1 is assigned to senior nestlings) in
the age hierarchy of male and female nestlings
was not statistically different in enlarged broods
(U2.3,21 = 251, P = 0.83) and reduced broods
(U, 1= 215, P =0.87).

RESULTS

Brood size manipulations

To study how parents and offspring are af-
fected by brood size manipulations, four condi-
tions have to be verified: 1) breeding pairs should
be randomly assigned among brood size treat-
ments. There were no significant differences be-
tween the two experimental groups in laying date
(Uyg.24 =309, P =0.95), clutch size (U, ,, = 372,
P =0.23), number of hatchlings (Table 1), or age
of the breeding males (U ,, =295, P =0.87) and
females (Upys,4=333,P= 0.67); 2) just after ma-
nipulation, the median brood size of reduced and
enlarged broods significantly differed (Table 1);
3) the size of the created broods should lay within
the natural range. Brood sizes ranged from 2 to 9
nestlings; 4) parents should not discriminate be-
tween own and foster nestlings. Mortality was lo-
wer for cross-fostered nestlings (11 out of 99

Table 1.
and when the older nestling was 25 and 55 days of age.

cross-fostered nestlings died, 11%) than for non-
cross-fostered ones (49 out of 165, 30%; Chi-
square test: x?;, = 12.1, P < 0.001). This may be
related to their lower mean rank number in the
age hierarchy just after the manipulation (cross-
fostered nestlings: 2.6 + 1.3; non-cross-fostered
nestlings: 3.1 + 1.5; paired rtest: f,5 = 2.3, P =
0.023). Indeed, the youngest nestlings of broods
usually suffer higher mortality rates (Taylor
1994). Body mass of the surviving cross-fostered
and non-cross-fostered nestlings was not signifi-
cantly different (mean body mass at 25 and 55
days of age as repeated measures ANOVA: cross-
fostered versus non-cross-fostered nestlings as a
factor: F, g3 = 0.25, P = 0.62), suggesting that the
quality of parental care provided to cross-fostered
and non-cross-fostered nestlings was similar.

Effects of brood size manipulations on parents

The mean ‘brood mass gain index’ was not
significantly lower in reduced (-1 + 117 g) than
enlarged broods (30 + 108 g) (Student #-test: £, =
0.96, P = 0.34), although the median brood size
was significantly smaller (Table 1). This suggests
that parents did not adjust feeding rate to brood
size manipulations. This interpretation is further
supported by the fact that the quantity of prey
items stored during the day in nestboxes was not
significantly related to the brood size treatments.
The mean mass of the prey storage in reduced
broods was 60 + 79 g and in enlarged broods 40 +
56 g (t,=-1.0, P = 0.31), and the mean mass of
the entire prey items (i.e. not decapitated) was the
same in both treatments (40 g; £,5= 0.25, P =

Median brood size in the two experimental treatments before and after the manipulation of brood sizes

Median brood size Statistics
Reduced broods Enlarged broods
Before manipulation 55 5 Usjsg=375,P=0.21
Just after manipulation 35 7 U4 =123, P<0.001
When the older nestling was 25 days of age 3 5.5 Uyg 04 =62, P <0.001
When the older nestling was 55 days of age 3 5 Uys 54 =121, P < 0.001
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0.80). We found respectively 41 and 33 Common
Voles Microtus arvalis, 23 and 20 Water Voles Ar-
vicola terrestris scherman, 27 and 7 field mice
Apodemus sp. and 1 and 0 Bank Vole Clethriono-
mys glareolus.

The mean change in female body mass from
the 20th day of incubation to the 18th day after
the manipulation of brood size was not signifi-
cantly different between reduced (-1.3 + 0.8
g day!) and enlarged broods (-1.5 + 0.7 g day™!)
(2;;=-0.65, P =0.52). 18 days after the brood size
manipulation females from reduced and enlarged
broods did not significantly differ in body mass
(332 £ 18 g, resp. 331 21 g; £,,=0.17, P=0.87)
and in condition-index (1.11 £ 0.07 gcm™; 1.12 +
0.06 gcm!; ¢, =-0.19, P = 0.85). Males involved
in the rearing of a reduced brood had a similar
body mass and condition-index (274 + 10 g, resp.
0.92 + 0.03 g cm!) as males rearing an enlarged
brood (277 + 22 g, resp. 0.93 + 0.08 g cm'!) (z,,=
0.43, p = 0.67, resp. t,,= 0.17, P = 0.87). Brood
size manipulations therefore had no detectable
short-term effects on feeding rate, if we assume
that the ‘brood mass gain index’ reflects it, and on
body mass and body condition of female and
male parents.

Potential effects of brood size manipulations
on future reproductive success were tested in
three ways. First, birds from the reduced group
tended to produce more second clutches in 1996
(3 out of 26 males and 4 out of 26 females) than
birds from the enlarged group (none of the 24 ma-
les and 2 out of 24 females), but the small number
of double-brooded birds does not allow reliable

statistical analysis. Second, a similar number of
birds from the two treatments bred in 1997: from
reduced broods 19 out of 52 birds (37%) (12 ma-
les and 7 females), and from enlarged broods 18
out of 48 birds (38%) (9 males and 9 females)
(males and females pooled: ¥, = 0.01, P = 0.92).
And finally, laying date, clutch size, brood size at
fledging, and feeding rate of parents involved in
the rearing of an enlarged or a reduced brood in
1996 were not significantly different in 1997 (Ta-
ble 2). This suggests that the residual reproduc-
tive value of adults was not affected by the ma-
nipulation of the size of their brood.

Effects of brood size manipulations on off-
spring

The experiment conducted in 1996 did not in-
crease overall mortality rates of nestlings. Six out
of 56 (11%) experimental pairs failed to produce
any fiedgling. This proportion is the same as that
found in unmanipulated pairs (data from 1990 to
1995, 29 failures out of 270 breeding attempts,
11%; x?; = 0.00, P = 1.0). The number of dead
nestlings per nest in experimental broods (1.2 +
1.2, n = 50) was smaller, but not significantly than
in natural broods for which we know the number
of hatchlings (data from 199010 1995,1.6 £ 1.5, n
=207 successful pairs; Student t-test: £,,,= 1.7, P
= 0.09).

Offspring mortality occurred in 21 out of 24
enlarged nests (88%) and in 10 out of 26 reduced
nests (38%) (x?; = 12.8, P < 0.001). 45 (27%) of
169 hatchlings in enlarged broods died while in
reduced broods 15 (16%) of 95 hatchlings died

Table 2. The 1997 breeding parameters of parents that produced a reduced or an enlarged brood in 1996.

male female
reduced enlarged statistics reduced enlarged statistics
Mean laying date 25.4. 21.4. t;g=-059,P=056 204 27.4. 1,,=077,P=045
Median clutch size 5 5 Ujy10=37,P=014 5 5 U,,=35P=0.69
Median brood size
at fledging 4 4 Ujyp=59,P=0.76 5 4 U,,=46,P=0.11
Feeding rate 66+28 6956 1,=015P=090 28+1.8 3.1%33 1¢,=0.16P=0.83
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Fig. 3. Mean body mass (x 1 SE) of female and male
nestlings at (a) 25 and (b) 55 days of age, raised in re-
duced (light shaded bars) or enlarged broods (dark sha-
ded bars). The numbers of nests available to calculate
mean body mass, are indicated above the bars,

(x*;=2.5, P=0.11). In 56 out of 60 cases, mortal-
ity occurred before nestlings reached 25 days of
age, and with two exceptions the nestlings that died
were the youngest ones of the broods. We found 10
cannibalized nestlings (8 in enlarged and 2 in re-
duced broods), 9 non-cannibalized cadavers in
nestboxes, and the circumstances of the disappear-
ance of the 41 other dead nestlings were unclear.

Fledglings were more numerous in enlarged
than reduced broods (Table 1), but of poorer
physical condition as estimated by body mass
(mean body mass at 25 and 55 days of age as re-
peated measures ANOVA with brood size treat-
ment and sex as factors; treatment effect: F7; 5, =
10.59, P = 0.002). Even if female nestlings were
heavier (sex effect: F; 4,=7.43, P = 0.008), brood
size manipulations had a similar effect on the
body mass of birds of the two sexes (no interac-
tion between sex and brood size treatment: F; 4, =
0.0001, P = 0.99; Fig. 3).

DISCUSSION

Before the present study brood size manipulations
had been conducted in three avian predators, the

Tengmalm Owl Aegolius funereus (Korpimiki
1988), the Common Kestrel Falco tinnunculus
(Dijkstra et al. 1990; Korpimiki & Rita 1996; To-
lonen & Korpiméki 1996) and the American Kes-
trel F. sparverius (Gard & Bird 1990, 1993). Re-
sidual reproductive value of the parents decreased
as a consequence of an enlargement of the broods
in one out of three studies (Dijkstra et al. 1990 vs.
Korpimaki 1988; Korpimiki & Rita 1996) and off-
spring appeared to always suffer in some way
(Dijkstra et al. 1990; Korpimiki 1988; Gard &
Bird 1993; Korpimiki & Rita 1996). Our results in
the Barn Owl are in the same vein with a clear ef-
fect of brood size manipulations on offspring but
not on parents. Nestling survival and body condi-
tion of the survivors was lower in enlarged than
reduced broods. The ‘brood mass gain index’,
body condition and future reproductive success of
the parents did not significantly differ between
the two brood size treatments suggesting that par-
ents allocated same effort for rearing enlarged as
reduced broods.

Parents that tended a reduced brood probably
did not allocate less effort than they were initially
willing to devote and hence produced a brood of
high quality nestlings. If they had decreased hunt-
ing effort the production of lower quality young
would have probably not outweighed the margi-
nal gain in parental residual reproductive value.
This is so because a large decrease in effort only
slightly improves parental reproductive value
while strongly reducing the condition of the off-
spring (Stearns 1992), since a reduction in feeding
rate affects the few nestlings. For instance, in the
Kestrel, Dijkstra et al (1990) showed that males
are more strongly involved in the feeding of the
young than females and did not decrease hunting
effort after the size of their brood was reduced.
Consequently, the food intake per nestling was
significantly higher in reduced than control
broods. This suggests that when the rearing con-
ditions improve Kestrel and Barn Owl parents
maintain constant effort. This may explain why in
the Barn Owl prey remains are frequent and often
not eaten at all (pers. obs.).

Parents that tended an enlarged brood also
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probably did not allocate more effort than they in-
itially decided to devote or at least not to a suffi-
ciently high level to have prevented nestling mor-
tality and lowered their residual reproductive va-
lue. Following life-history theory it can be very
costly in terms of future reproductive success to
slightly elevate effort above the normal rate (Ste-
arns 1992). Field experiments have confirmed this
view as an increased parental investment meas-
ured by feeding rate negatively affected parental
condition or residual reproductive value in five
out of six cases (Reid 1987; Dijkstra et al. 1990;
Killander & Smith 1990; Martin & Wright 1993;
Richner et al. 1995 vs. Orell et al. 1996). Assum-
ing that owls tending unmanipulated broods are
not already hunting at maximum effort (Drent &
Daan 1980), they may have been reluctant to ad-
Just reproductive effort if the production of extra
young could not compensate for a loss in residual
reproductive value. In the Barn Owl late-hatched
nestlings have a relative low fitness value as they
are almost always in poorer condition than early-
hatched siblings. Because this difference in con-
dition accentuates with increasing brood size
(Wilson et al. 1987; Roulin 1998), when food sup-
ply declines parents are probably selected to di-
rect resources to themselves than to late-hatched
offspring, leading to brood reduction.

Most nestlings that died were the youngest
ones of the broods and brood reduction events
were more frequent in nests where the rearing
conditions were stressful (enlarged broods). This
pattern of mortality events fits the ‘brood reduc-
tion hypothesis” which states that poor quality
late-hatched young die when parents are no more
able to bring enough food to rear all young (Lack
1947). In other words, under unpredictable ad-
verse periods the rare food items collected by par-
ents would be shared among a larger number of
nestlings in nests where all nestlings survive com-
pared to nests where partial losses of nestlings oc-
cur; thus, if brood reduction does not occur young
may be in a so poor condition that all can rapidly
die or nevertheless fledge but will never be re-
cruited in the breeding population. We are aware
of only one study that has tested experimentally

the brood reduction hypothesis. In the Magpie
Pica pica, Husby (1986) found that fledglings sur-
vived less well when reared in nests where dead
chicks were replaced by chicks from other nests
compared with nests where dead chicks were not
replaced. Unfortunately, in that study feeding ra-
tes, survival prospect and future reproductive suc-
cess of the parents were not measured. Thus,
Husby could show that the brood reduction strat-
egy increased reproductive success but could not
examine the possibility that it also allowed par-
ents to avoid trading current against future repro-
duction (O’ Connor 1978; Stenning 1996). If brood
reduction is experimentally prevented, parents
may be forced to increase their investment in the
current brood at the expanse of future reproduc-
tive success. Given that in the Barn Owl brood re-
duction occurred more frequently in the enlarged
than reduced treatment and that the residual re-
productive value of the parents was not affected
by the experiment, brood reduction may be the
potential mechanism that allowed parents to not
jeopardize their residual reproductive value.
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SAMENVATTING

Wanneer de totale voedselbehoefte van nestjongen gro-
ter is dan verwacht, kunnen de oudervogels al dan niet
besluiten harder te gaan werken. Harder gaan werken
heeft mogelijk gevolgen voor het toekomstige repro-
ductiesucces van de ouders, bijvoorbeeld door een ver-
hoogde sterftekans. Niet harder gaan werken kan daar-
entegen leiden tot de dood van een of meer jongen. Als
de ‘fitness’ van soorten met een lange levensduur
vooral gerelateerd is aan het totale aantal broedpogin-

gen, zullen de ouders er goed aan doen hun toekomstig
reproductiesucces niet in de waagschaal te stellen en
niet harder gaan werken. Deze hypothese werd onder-
zocht door de legselgrootte van Kerkuilen Tyto alba ex-
perimenteel te manipuleren. Sommige legsels werden
met twee jongen verkleind, andere met twee jongen
vergroot. De gevolgen van deze manipulaties werden
zowel voor de ouders als voor de jongen bepaald. De
gewichtstoename van alle nestjongen samen, gemeten
op de 25ste dag na uitkomst van het het eerste ei, is ge-
bruikt als maat voor de inspanning die de ouders lever-
den. Deze maat bleek niet te verschillen tussen vergrote
en verkleinde legsels. Ook het gewicht en de conditie
van de ouders tijdens het experiment, het voorkomen
van een tweede legsel en het reproductiesucces in het
volgende jaar bleken niet te verschillen tussen de twee
experimentele behandelingen. Daarentegen was de
sterfte van de nestjongen in de vergrote legsels hoger
dan in de verkleinde legsels. Bovendien was het li-
chaamsgewicht van de overlevende jongen in de ver-
grote legsels lager. We kunnen dus concluderen dat de
manipulaties van de legselgrootte wel effect hebben ge-
had op de jongen, maar niet op de ouders. Kerkuilen le-
veren kennelijk niet de gevraagde extra inspanning en
stellen dus hun toekomstig reproductiesucces niet in de
waagschaal.
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