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Birds on migration alternate between consuming fuel stores
during ¯ights and accumulating fuel stores during stopovers.
The optimal timing and length of ¯ights and stopovers for
successful migration depend heavily on the extra metabolic
power input (fuel use) required to carry the fuel stores during
¯ight1,2. The effect of large fuel loads on metabolic power input
has never been empirically determined. We measured the total
metabolic power input of a long-distance migrant, the red knot
(Calidris canutus), ¯ying for 6 to 10 h in a wind tunnel, using the
doubly labelled water technique3. Here we show that total meta-
bolic power input increased with fuel load, but proportionally less
than the predicted mechanical power output from the ¯ight
muscles. The most likely explanation is that the ef®ciency with
which metabolic power input is converted into mechanical output
by the ¯ight muscles increases with fuel load. This will in¯uence
current models of bird ¯ight and bird migration. It may also help
to explain why some shorebirds, despite the high metabolic power
input required to ¯y, routinely make nonstop ¯ights of 4,000 km
longer4.

Aerodynamic theory predicts that the mechanical power output
the ¯ight muscles must generate, to support the weight of the bird
and to overcome the drag of the body and wings, increases with fuel
load5±7. The available evidence indicates that the aerodynamic
models correctly describe the essential physical processes involved8.
The proposed parameter values, and hence the generated predic-
tions, are also reasonably realistic8. However, mechanical power
output accounts for only part of the total metabolic power input of a
¯ying bird5±8. When the ¯ight muscles contract, most of the
supplied fuel energy is lost as heat. Heat is also lost when respiration
and circulation deliver fuel and oxygen to the ¯ight muscles5,6 and in

metabolic functions not directly involved in the generation of
aerodynamic work. In current models of bird ¯ight, metabolic
power input is usually calculated from mechanical power output
predicted from aerodynamic theory5,6,8. The ¯ight muscles are
assumed to convert supplied fuel energy into work with a constant
ef®ciency, the basal metabolic rate is added on top, and a multi-
plication factor is applied to account for increased respiration and
circulation5,6,8. The greatest limitation to these models is the
uncertainty of the assumed muscle ef®ciency8.

We measured metabolic power input, using doubly labelled
water, in four red knots ¯ying at different body masses at 15 m s-1,
in a wind tunnel9. The average total metabolic power input during
28 ¯ights lasting between 6 and 10 h was 13.5 W at an average mass
of 128 g. The metabolic power input increased allometrically with
body mass within individuals with an exponent of 0.35 (95%
con®dence interval (CI) 0.08±0.62, Fig. 1). Flight muscle ef®ciency,
estimated from metabolic power input and predicted mechanical
power output, increased with fuel load (Fig. 2). The estimated level
of ¯ight muscle ef®ciency is uncertain because of uncertainties in
the assumptions that come into the calculation of mechanical
power8,10,11. However, the signi®cant change in ef®ciency with fuel
load is robust to these uncertainties in the assumptions.

Birds need to carry large fuel stores to perform long migratory
¯ights. The weight of these fuel stores increase the mechanical
power output required to ¯y. Power output from the ¯ight muscles
can be controlled by altering the strain rate (wingbeat frequency
or amplitude) or the proportion of muscle ®bres used8,12. Both of
these alternatives affect muscle ef®ciency8,12. If the ¯ight muscles are
optimized to give maximum ef®ciency at one mechanical power
output, ef®ciency will be reduced as power output changes away
from this optimum. Adjustment of ¯ight muscle size and the use of
intermittent ¯ight have been suggested to be adaptations for
maintaining maximum muscle ef®ciency as body mass varies
owing to build-up and use of fuel stores during migration6,12. Red
knots do not use intermittent ¯ight, but they do adjust ¯ight muscle
size to their current weight (measured by ultrasound in a parallel
study of the same birds)13. Great knots (Calidris tenuirostris), near
relatives of the red knots, reduce ¯ight muscle size during long
migratory ¯ights14. The larger ¯ight muscles at high weights do not
seem suf®ciently powerful to maintain manoeuvrability, as caged
knots are considerably easier to catch when heavy than when light.
Several studies have documented how take-off ability in birds is
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Figure 1 Total metabolic power input (Pin) in relation to average body mass (mb) in red

knots ¯ying at 15 m s-1. Different symbols denote different individuals. An analysis of

covariance (ANCOVA) with individual as factor and log10 mb as covariate revealed

signi®cant effects of log10 mb (F 1;23 � 7:00, P � 0:01) and individual (F 3;23 � 3:11,

P � 0:046) on log10 Pin. The interaction term was not signi®cant (that is, the slope

relating log10 Pin to log10 mb did not differ between individuals) and was excluded from the

model. The common slope relating log10 Pin to log10 mb, correcting for individual

differences in intercept, was 0.35 (95% CI 0.08±0.62). Individual intercepts were 0.41,

0.39, 0.41 and 0.35.
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hampered at high body weights15,16. This decrease in manoeu-
vrability, together with the observed increase in muscle ef®ciency
with body mass, suggests that there may be a trade-off between these
two aspects of ¯ight performance. Maintaining ¯ight muscles at a
size that gives maximum muscle ef®ciency in cruising ¯ight may be
incompatible with maintaining a large muscle spare capacity for
transient manoeuvres, such as sprints, steep climbs and rapid turns.
The advantage of maintaining a sizeable muscle spare capacity could
be more important when birds are resident in the area and ¯ights are
mostly short with a large proportion of transient manoeuvres, for
example at stopover sites, winter quarters and breeding quarters.
During long migratory ¯ights with heavy fuel loads, selection may
instead favour maximal muscle ef®ciency at the expense of a
reduced manoeuvrability. The change in muscle ef®ciency with
body mass may be a result of the birds regulating ¯ight muscle size
to maintain an optimal balance between different aspects of ¯ight
performance (of which muscle ef®ciency is one) under changing
ecological circumstances. Birds on migratory ¯ights are expected to
select an optimal ¯ight speed that changes with body mass17. During
our experiments, birds always ¯ew at one ®xed speed. If the ¯ight
muscles are adapted to operate ef®ciently when cruising at an
optimal ¯ight speed, part of the variation in muscle ef®ciency
that we observe may be explained by ¯ight speed deviating from
the optimal ¯ight speed as body mass changes. An increase in
ef®ciency with body mass implies that the value of a unit of fuel, in
potential ¯ight distance, decreases less with fuel load than is
assumed in current models of bird migration and ¯ight. The penalty
on ¯ying with heavy fuel loads will thus be considerably smaller
than previously thought. This signi®cantly alters predictions about
the optimal way in which birds organize their migratory journeys
and may explain why many shorebirds regularly carry heavy fuel
loads and divide their migratory journeys into only a few long
nonstop ¯ights measuring 4,000 km or more4. M

Methods
Animals and wind tunnel

Four red knots (Calidris canutus L.) caught as adults in the Dutch Wadden Sea in 1998
were trained to ¯y in a wind tunnel9. Holding conditions are described in ref. 13. Birds
were freely fed trout food pellets supplemented by mealworms (Tenebrio sp.) and variation
in body mass was due to natural endogenously controlled seasonal changes18. Safety
constructions in the test section included a net upstream, a nylon-covered polyurethane
foam ceiling and a net covering the top of the open section. All birds had intact ¯ight
feathers and ¯ew in a natural manner, well clear of test section walls during experiments

(Sept.±Dec. 1998, June 1999, Sept.±Dec. 1999 and May 2000). Equivalent air speed was
15 m s-1 (within the range for free-¯ying red knots on migration19,20), turbulence 1% of air
speed9, air density 1.22±1.30 (average: 1.25) kg m-3 and temperature 4.7±14.5 (average:
10.2) 8C.

Experiments

At 07:30 local time, after being without food for at least 12 h, the focal bird was injected
quantitatively (60.001 g, Mettler PM480 DeltaRange), subcutaneously, above the pectoral
muscles, with 0.4 ml (10 h ¯ights) or 0.3 ml (6, 7 and 8 h ¯ights) of doubly labelled water
(DLW) mixture. Background blood samples were collected before injection. The bird was
kept for one hour in a dark chamber (0:3 m 3 0:4 m 3 0:3 m) for equilibration of injected
isotopes with body water. After this, it was weighed (Mettler PM480 DeltaRange) and a
blood sample taken to determine initial enrichment. Flights, lasting 10 h (n � 17), 8 h
(n � 1), 7 h (n � 1) or 6 h (n � 9), started after a 15-min rest. After the ¯ight the bird was
weighed, a blood sample was taken to determine ®nal enrichment and the bird was
reinjected with 0.3 ml DLW mixture. After one hour in the small dark chamber, the bird
was again weighed and a last blood sample taken to investigate changes in the body water
pool during ¯ight on the basis of the principle of isotope dilution21. All blood samples were
taken by puncturing the brachial vein and collecting 15 ml of blood in each of 5 to 8
microcapillary tubes. The tubes were immediately sealed in a ¯ame and stored at 4 8C until
analysis. During the ®rst 20 ¯ights birds were weighed after 1, 2, 4, 6 and 8 h, a procedure
lasting less than 2 min. On four occasions ¯ights were interrupted for 4 to 21 min because
the bird decided to land. Air temperature, air density, interruptions, season or duration of
¯ight did not have a signi®cant effect on the DLW measurements. On average 96% of the
time and 99.6% of the energy covered by the DLW measurements was spent in ¯ight.
Average mass decrease during experimental ¯ights was 1.09 (standard deviation,
s:d: � 0:166) g h-1.

Isotope analysis

Isotope enrichments of blood samples and DLW mixtures for injections were determined
in quadruplicate at the Centre for Isotope Research, University of Groningen, The
Netherlands22. For every four blood samples, one internal enriched water standard was
analysed in quadruplicate to monitor the stability of the infrared mass spectrometer and
six gas standard samples for each isotope were used to monitor cross-contamination.

Fractional turnover for 2H and 18O and CO2 production were calculated according to
equations (3) and (5) in ref. 22, using the ®rst background isotope enrichment for each
bird in each season. Dilution spaces were determined separately for 2H and 18O, before and
after the experimental ¯ights, using the plateau method3,22,23. The proportion of water
ef¯ux through evaporative pathways is assumed to be 0.85 as determined for a red knot
¯own under similar circumstances (A.K., personal observations). The calculated CO2

production is not sensitive to the assumed proportion. A proportion of 0.5 will increase
the estimated CO2 production by 0.8%. Error analyses have revealed that the sensitivity of
the DLW method to analytical errors is strongly related to the difference between 18O and
2H turnover rates3. In birds, the fractional 18O turnover rate is typically about 1.2±1.6
times the 2H turnover rate3. However, for the red knots ¯ying in the wind tunnel this value
was on average 3.18 (s:d: � 0:269, n � 28). This phenomenon, in combination with the
long ¯ight duration, and quadruplicate isotope analyses, will have resulted in much better
precision levels for the experimental birds than usually reported in avian studies. Total
metabolic power input (Pin) is calculated using an energy equivalent of CO2 of 14.1
(kJ g-1)24 and correcting for energy expended during time not spent ¯ying assuming a
resting power of 1.5 times the basal metabolic rate (BMR). Basal metabolic rate was
derived from a study of red knots under similar holding conditions25.

Muscle ef®ciency and the value of fuel

Mechanical power output (Pout) is calculated6 using the average body mass (mb, in g) and
air density for each ¯ight and the wingspan and aspect ratio (a.r. in m2) for each bird13,
assuming an induced drag factor of 1.2 (ref. 6), a body drag coef®cient of 0.1 (ref. 10)
and a pro®le power ratio of (8.4/a.r.)11. Body frontal area (Sb, in m2) was taken as
0.00668 mb

0.606 (average for 22 red knots; B. Spaans, personal communication). Muscle
ef®ciency is calculated as Pout=�Pin=1:1 2 BMR�6 and was arcsine transformed before
statistical tests.
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Toll-like receptors (TLRs) are a family of innate immune-recogni-
tion receptors that recognize molecular patterns associated
with microbial pathogens, and induce antimicrobial immune
responses1,2. Double-stranded RNA (dsRNA) is a molecular pat-
tern associated with viral infection, because it is produced by most
viruses at some point during their replication3. Here we show that
mammalian TLR3 recognizes dsRNA, and that activation of the
receptor induces the activation of NF-kB and the production of
type I interferons (IFNs). TLR3-de®cient (TLR3-/-) mice showed
reduced responses to polyinosine±polycytidylic acid (poly(I:C)),
resistance to the lethal effect of poly(I:C) when sensitized with D-
galactosamine (D-GalN), and reduced production of in¯amma-
tory cytokines. MyD88 is an adaptor protein that is shared by all
the known TLRs1. When activated by poly(I:C), TLR3 induces
cytokine production through a signalling pathway dependent on

MyD88. Moreover, poly(I:C) can induce activation of NF-kB and
mitogen-activated protein (MAP) kinases independently of
MyD88, and cause dendritic cells to mature.

Viral infection of mammalian cells results in activation of an
innate immune response mediated by type I IFNs, IFN-a and IFN-
b, and other cytokines, including interleukin (IL)-6 and IL-12
(refs 4, 5). While IFNs inhibit virus replication, IL-6 and IL-12,
which are also induced by bacterial infections, elicit cytotoxic
responses needed for elimination of intracellular pathogens. Mam-
malian TLRs recognize lipopolysaccharide (LPS) and other micro-
bial products1,6±10. Whereas the receptors for LPS are expressed on
the cell surface, dsRNA is known to bind only intracellular targets,
including the dsRNA-dependent protein kinase (PKR)11. However,
cells derived from PKR-de®cient (PKR-/-) mice still respond to
poly(I:C), a synthetic dsRNA analogue, suggesting the existence of
another receptor, which recognizes dsRNA12,13.

To test whether dsRNA can be recognized by a TLR, 293T cells
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Figure 1 TLR3 speci®cally signals for NF-kB activation in response to poly(I:C). a, 293T

cells were transiently transfected with 50 ng of human TLR3, TLR2 or empty pcDNA3

vector together with an NF-kB luciferase reporter. Luciferase activity in cells treated

with 25 mg ml-1 poly(I:C) or 10 mg ml-1 PGN or untreated (media) cells was measured.

b, Luciferase activity in CaCo-2 cells transiently transfected with 500 ng of empty vector

or TLR3 DNA, together with 200 ng NF-kB luciferase reporter and stimulated with

25 mg ml-1 poly(I:C). c, 293T cells transiently transfected with expression vector for TLR3

or empty vector, together with NF-kB luciferase reporter and, where indicated, 1 mg of

dominant negative (DN) TLR3 or DN TLR2 DNAs. NF-kB-induced luciferase activity in cells

treated with 25 mg ml-1 poly(I:C) or untreated cells was measured. d, Transfection of RAW

264.7 macrophages with a NF-kB luciferase reporter. Luciferase activity in cells treated

with 20 mg ml-1 poly(I:C), poly(A:U), poly(C) or poly(dI:dC), or untreated cells.
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