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Cyber-Physical Systems theory is a new concept that is about to rev-

olutionize the way computers interact with the physical world by integrating

physical knowledge into the computing systems and tailoring such computing

systems in a way that is more compatible with the way processes happen in

the physical world. In this master’s thesis, Field Programmable Gate Arrays

(FPGA) are studied as a potential technological asset that may contribute to

the enablement of the Cyber-Physical paradigm. As an example application

that may benefit from cyber-physical system support, the Electro-Slag Remelt-

ing process - a process for remelting metals into better alloys - has been chosen

due to the maturity of its related physical models and controller designs. In

particular, the Particle Filter that estimates the state of the process is stud-

ied as a candidate for FPGA-based computing enhancements. In comparison

with CPUs, through the designs and experiments carried in relationship with

this study, the FPGA reveals itself as a serious contender in the arsenal of
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computing means for Cyber-Physical Systems, due to its capacity to mimic

the ubiquitous parallelism of physical processes.

Keywords: Cyber-Physical Systems, Particle Filter, Electro-Slag Remelt-

ing, FPGA, CPU, Sequential Monte-Carlo Methods, Pipelining, Bluespec.
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Chapter 1

Introduction

1.1 Research Context

1.1.1 Cyber-Physical Systems

The context of this research is the solution space exploration for the

implementation of algorithms used in cyber-physical systems. Cyber-physical

systems are the combination of control, information technology and commu-

nication. In such systems, timing is critical and processes evolve concurrently.

Examples of systems that will benefit from this technology, some of which

proposed by Lee [8], are:

Transportation

Automated shipyard management, advanced automotive systems, avion-

ics, air traffic control;

Medical

Robotic surgery, assisted living, patient monitoring systems;

Utilities and infrastructure

Electric power, environmental control, water resource management, com-

munications;

1



Physical virtuality

Telepresence, telemedicine;

Manufacturing

Process control, resource management;

Civil Engineering

Structure health monitoring, robotics assisted construction, smart struc-

tures.

1.1.2 Plant Model

The physical elements in a cyber-physical system may be modeled in

two parts: a physical model, f and a measurement model, h. The physical

model is a set of equations that describe the dynamics of the system, whereas

the measurement model is a set of equations that describe the link between

the system’s state and the sensor signals. In most complex (i.e. high-fidelity)

models these equations are often non-linear.

The physical model outputs a new state based on the command signals

and the current state. Usually, noise is present in the command signals. The

measurement model outputs a new observation vector from the new state from

the physical model. The observation vector also contains measurement noise.

The basic form of the plant model is demonstrated in Fig. 1.1 .

2
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Figure 1.1: Basic Form of a Manufacturing Process.

1.1.3 Specific Applications: Gas Metal Arc Welding and Electro-
Slag Remelting

As an example of a process that can benefit from the Cyber-Physical

Systems paradigm, our research group has selected the Gas Metal Arc Welding

(GMAW) process. This process is similar to a previously studied process called

Electroslag Remelting (ESR.) The study of the ESR was performed by Ahn for

his Ph.D. [1] . Although the speed of the GMAW process is much faster than

the ESR, it is assumed that the general forms of the control and observation

algorithms are similar. This research is therefore a follow-up of Ahn’s research.

3



1.1.4 State Estimation for the Electroslag Remelting Process

One particular issue that arises in plants such as the ESR is the pres-

ence of noise on both the control signals and the observation signals. This is

problematic for the purpose of controlling the process, since the state of the

system may be quite different from the raw observations. If these raw obser-

vations were to be used directly, this would lead to improper process control.

To resolve this problem, the state has to be inferred by a state estimator.

Due to the non-linear nature of the high-fidelity stochastic physical

and measurement models of the ESR process, one estimation algorithm un-

der investigation is the Particle Filter also known as Sequential Monte Carlo

Methods (SMC.) Ahn’s [1] study of estimation methods that inlcuded the Lin-

ear Kalman Filter, the Extended Kalman Filter and the Unscented Kalman

Filter and the particle filter, has shown that although Kalman Filters provide

good estimates in the Unscented Kalman Filter, the accuracy of these esti-

mates doesn’t match the accuracy of the Particle Filter for the ESR in terms

of root mean squared error. This is due to the fact that if well designed and if

the number of samples is large enough, the estimates tend toward the optimal

Bayesian estimate.

1.1.5 Particle Filtering Applied to Electroslag Remelting

Particle Filtering is also known as Sequential Monte Carlo Methods. A

detailed explanation of Particle Filtering would be beyond the scope of this

document.

4



1.1.5.1 Overview of Particle Filtering

To understand the concept behind Particle Filtering, one may see each

particle as a possible (or hypothetical) physical state of the plant. Additionally,

each particle has a weight that represents how likely the plant may be in that

state. The weights are normalized such that the sum of all the weights is equal

to one. The particles with the heaviest weights are the ones that are most likely

to be equal to the real plant state. After applying a certain command vector

to the plant, simulations are done using the particles as initial states. These

simulations provide new hypothetical states. The likelihood of each of these

simulated states is obtained by further simulating their measurements and

comparing their simulated measurements with the real measurements made

on the real plant. The most likely states (i.e. the heaviest particles) are

retained for the next round of simulations, hence the filtering. Ultimately,

after a couple rounds, the particles should converge to the real state of the

plant if the estimator is well designed.

1.1.5.2 Theoretical Background

The basic objective of Sequential Monte Carlo Methods is to estimate

recursively in time the posterior distribution of a random variable and the

expectations for some function of interest.

In the case of cyber-physical systems, the random variable that needs its

posterior to be estimated is the current state of the physical system. Knowing

the current state is necessary to command the system to the next step on the

5



trajectory that will lead the system into a desired final state. Typically, this

signal is not directly available. It needs to be inferred from sensors, that may

or may not directly sense the values that represent the state of the physical

system. Furthermore, these sensed values often include significant noise.

Formally posed, the problem is stated as follows: [5]

The unobserved signal {xt; t ∈ N}, xt ∈ χ, is modeled as a Markov

Process of prior distribution p(x0) and transition p(xt|xt−1). {yt; t ∈ N∗},

yt ∈ Υ is a set of independent observations of the process with marginal

distribution p(yt|xt).

If we define x0:t = {x0, . . . , xt} and y1:t = {y1, . . . , yt} being all the

signal values up to time t, Bayes’ theorem gives at any time t :

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)p(x0:t)dx0:t
(1.1)

This equation can be written in recursive form:

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|yt+1)
(1.2)

The marginal distribution, what we are looking for is obtained with

these two steps:

Prediction:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1.3)

Updating:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(1.4)

6



The probability density functions can be discretized.

For further details, the reader may refer to Sequential Monte Carlo

Methods in Practice by Arnaud Doucet, Nando De Freitas, Neil James Gordon,

Neil Gordon. [5] The following description comes from this source.

1.1.5.3 Sampling Importance Resampling - Presentation

As stated in [2] the key idea behind Carlo Methods is to represent the

posterior density function by a set of random samples with associated weights

which can then be used to compute estimates. In [2], the observation vector

y is called z. In the literature, we find both uses, although usually y stands

for the output, whereas z is the observation, which are often the same, but

not necessarily. For instance y could be the raw data coming out of sensors,

whereas z could be the interpreted value.

p(x0:k|z1:k) ≈
N∑

i=1

wi
kδ
(
x0:k − xi

0:k

)
(1.5)

where the weights wi
k are defined recursively as:

wi
k ∝ wi

k−1

p (zk|xi
k) p

(
xi

k|xi
k−1

)

q
(
xi

k|xi
k−1, zk

) (1.6)
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Figure 1.2: The Particle Filter: recursively improving the estimate of the
posterior distribution by selecting the most important particles for the next
iteration

The Sampling Importance Resampling (SIR) algorithm is the version

that is used to for the Electroslag Remelting estimator. As the name suggest,

it is composed of three steps:

Sampling This consist of drawing samples from the proposal distribution

x̃(i)
k ∼ q

(
x(i)

k |x(i)
k−1, zk

)

Importance This is the computation of the samples weight using equation

(1.6)

Resampling Which eliminates particles with small weights to concentrate on

the most important one in order to reduce the sample impoverishment

effect.
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At each step, n simulations are done by adding noise to to the physical

and measurement models. The likelihood of each observation is then

computed based on the real plant observation. The particles that gen-

erated the most likely observations are kept and replicated for the next

round of simulations. The number of replicates depends on the impor-

tance (high likelihood) of the particle.

1.1.5.4 Sampling Importance Resampling - Algorithm

As given in [2] and summarized in [1] the SIR particle filter algorithm

is as follows:
{
x(i)

k , w(i)
k

}N

i=1
= ParticleF ilter

[{
x(i)

k−1, w
(i)
k−1

}N

i=1
, zk

]

• For i = 1 : N

– Draw x̃(i)
k ∼ q

(
x(i)

k |x(i)
k−1, zk

)

– Evaluate w(i)
k = p

(
zk|x(i)

k−1

)
w(i)

k−1

• For i = 1 : N

– Normalize weights w̄(i)
k =

w
(i)
kP

j=1Nw(j)
k

• Calculate Neff = 1
P

i=1N
“
w(i)

k

”2

• If Neff < Nthr

–
{
x(i)

k , w(i)
k

}N

i=1
= Resample

[{
x(i)

k , w(i)
k

}N

i=1

]

9



• Else

–
{
x(i)

k , w(i)
k

}N

i=1
=
{

x(i)
k , w(i)

k

}N

i=1

1.2 Problem to Solve

The initial problem we set ourselves to solve was the problem faced

by Ahn. His implementation of the Particle Filter was unable to compute a

sufficient amount of simulations under the process control deadline. Without

studying the problem in detail, we opined that FPGA or ASIC would be a

potential answer to this computation speed problem.

1.3 Preliminary Study: Influence of the Quantity of
Particles on the Precision of the Estimate

An intuitive idea is that to improve the state estimates one only needs to

increase the number of simulations. As a preliminary study, the influence of the

number of particles on the precision of the estimates was studied in order to set

a performance goal for the ESR estimator. The result of this study is that there

is a limit to the maximum precision that can be achieved. In other words, that

mean that there is a threshold after which increasing the number of particles

has no effect on the precision of the estimates. Furthermore, a reassuring

result is that increasing the number of particles (with the given models) always

reduces the error of the estimate. While some state variable estimates are

poorly sensitive to the number of particles others steadily improve up to 200

10



particles. After 200 particles, the improvements in precision are negligible (for

this set of physical and measurement model.

1.3.1 Experiments, Analysis and Results

1.3.1.1 Evaluation Means

In order to evaluate the performance of the estimator, the root mean

squared error (RMSE) between the true state of the plant (which is directly

available from the plant model) and the estimated state is computed for each

state variable. The objective is to have the smallest RMSE possible.

RMSE =

√∑n
i=1(xtrue,i − xestimated,i)2

n
(1.7)

The estimator was tested in open loop configuration with no controller.

The process and measurement noise were from a gaussian distribution with

parameters that were measured by Ahn at the plant.

1.3.1.2 Experimental Setup

These results were computed using the C implementation. Using the

original implementation under Matlab would yield the same results.

Three types of resampling techniques were used.

• Systematic resampling

• Residual resampling

11



• Multinomial resampling

This simulation was run over 1000 seconds divided in 7500 steps and

repeated 10 times for statistical results.

The RMSE was computed for different numbers of particles for each

state variable.

1.3.1.3 Results

The results are found in figure (1.3) to (1.7)

12



Figure 1.3: RMSE ∆
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Figure 1.4: RMSE Ts
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Figure 1.5: RMSE d
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Figure 1.6: RMSE Xram
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Figure 1.7: RMSE Me

1.3.1.4 Conclusion

From these experiments it is concluded that 200 particles is the thresh-

old after which the estimates have reached their maximum precision.
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1.3.2 Summary of the Problem to Solve

Based on the preliminary experimental results and the fact that the

given sampling rate is 133 ms the goal to achieve is the computation of 200

particles under 133ms.

1.4 Thesis Statement

Based on the fact that the physical world is ubiquitously parallel, i.e.

processes occur concurrently, it seems that parallel computing devices would

be the best suited devices for real-time inline simulation of the physics of

a cyber-physical system. Supporting this argument is the fact that modern

estimation techniques, such as Particle Filtering, make use of independent

probabilistic sampling. Since the sampling is independent, it can be done

in parallel, bolstering the use of parallel devices, such as FPGAs. Although

modern CPUs are now multicore and work at Gigahertz frequencies, FPGAs

appear to be a better platform due to their intrinsic parallel architecture.

An FPGA based solution would take advantage of the fact that not

only the physical simulations done in Particle Filtering are independent and

can be done in parallel but also of the fact that the physical processes within

the plant occur concurrently themselves. As a result, a significant amount of

parallelization is possible, for which FPGAs are well suited.
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1.5 Objectives

The objective is to figure out how to evaluate the performance of com-

puting devices for the purpose of assisting the task of designing cyber systems

that provides adequate computing power for controlling a specific physical pro-

cess. We have identified and selected three types of computing devices that

differ in nature and present potential applicability to the domain of cyber-

physical systems. The first type is the Central Processing Unit (CPU) type,

the second is the Graphical processing Unit (GPU) type (not discussed in

this Master’s Thesis) and the last one is the Field Programmable Gate Array

(FPGA) type. These types may be characterized by the parallelism present in

their computing architecture. CPUs present the lowest order of parallelism.

Current CPUs on the market typically offer 4 or 8 fast cores that can be used

in parallel. In contrast, GPUs provide a higher number of parallel processing

units, in the order of the hundreds. On the other end of the spectrum, FPGAs

are inherently parallel devices which can be tailored to concurrently process a

large number of elementary operations.

1.6 Approach

Using a well known computer controlled manufacturing process, Electro-

slag Remelting (ESR), an application that is mature for experimentation, we

designed an FPGA based solution and compared its performance with that of a

reference CPU based implementation. From both implementation we derived

computation speed models that give a macro level view of the performance
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attainable on both platforms.
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Chapter 2

Study of the Particle Filtering Algorithm as
Applied to Electro-slag Remelting

In this chapter, the algorithm is described in the special case of the

Electroslag Remelting process. After this, the proposed method for acceler-

ating the algorithm through the use of parallelization is presented, followed

by a study of the data and data types and how this is a potential barrier to

implementation and speedup potential

2.1 Particle Filter Algorithm for the Electro-slag Remelt-
ing Process

In the previous chapter, the general form of the particle filter has been

introduced. However, this form is somewhat abstract. In fact, the question

is “how do we draw particles?” As said earlier, the particles are drawn from

a proposal distribution q (xk|xk−1, zk). Since this distribution is difficult to

obtain, the transition prior q (xk|xk−1) is chosen as a proposal distribution.

This distribution is only dependent on the previous state x. In many cases

this is acceptable.

We would like to be able to sample from the transition prior by run-
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ning a particle through the physical model and adding process noise to the

new state. The problem is that it is difficult to know the parameters of the

distribution of x since we cannot measure it directly by experiment. Instead,

particles are drawn by adding noise to the control vector, u, running those

noisy input values through the physical model and the measurement model,

and then adding the measurement noise. The resulting values are the particles.

x(i)
k ∼ q

(
x(i)

k |x(i)
k−1

)
∼ f

(
x(i)

k−1,uk + v(i)
k

)
(2.1)

where: x(i)
k is the particle ( i) at step k, f is the physical model, uk is

the command vector at step k and mk is the generated process noise vector

at step k for particle i. This noise may come from any distribution.

The next step is to evaluate the weights. This is done recursively by

multiplying the previous weights by the likelihood of each observation. The

likelihood function in the case of the ESR is a gaussian.

For each particle, the simulated observation is:

zk = h (xk) + nk (2.2)

where: h is the measurement model, xk is the drawn state and nk is

the measurement noise vector. The noise vector is random and different for

each particle. As can be seen from this equation, the observation is a direct

function of the state and the noise.
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The likelihood is then:

p
(
zk|x(i)

k

)
∝ e

„
− 1

2

“
zk−z

(i)
k

”t
Rr

“
zk−z

(i)
k

”«

(2.3)

Rr is the covariance matrix, zk is the observation from the plant at step

k, z(i)
k is the simulated observation for particle i.

w(i)
k = p

(
zk|x(i)

k

)
w(i)

k−i (2.4)

w(i)
k is the weight of particle i at step k, w(i)

k is the weight of particle i

at step k-1.

Once all the weights have been computed, they must be normalized so

that the sum of the weights is equal to 1.

The last part is the resampling of the particles. This part is not covered

in detail in this document in detail as it is not the target of this study. The

basic mechanism is that the particles that are the most important (highest

weights) are selected for the next step. The reader may consult [2] for further

reference.
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Figure 2.1: General Form of the Particle Filter Based Estimator.

2.2 Parallelization Potential

One specificity of the Particle Filter is that the sampling part can be

parallelized since each particle is drawn independently from another. It is sup-
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posed that the sampling part may be accelerated through parallelization on

an FPGA for example. Not only can the sampling of each particle be done in

parallel, many of the internal computations, which are the physical and mea-

surement models of the concurrent processes, can also be done in parallel. As

seen in the estimator diagram, the likelihood function can also be computed in

parallel. But the parallelization potential stops here, as the next step (normal-

ization) requires all the weights from all the particles. Finally, the resampling

may potentially benefit from internal parallelization, but this study has not

been done yet and it is believed at this point that the speed improvement from

this parallelization will not be as significant as the parallelization of the sam-

pling stage, the mechanism of which remains the same independently of the

physical and measurement models used. The equations for the models come

from Ahn’s Dissertation [1].
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Figure 2.2: Particle Filter with Multiple Sampling Stages in Parallel

2.2.1 Physical Model

The physical model is a set of differential equations that describe the

dynamics of the process. Here are the equations of the model for the Electro-

slag Remelting process.
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ẋ =





∆̇
Ṫs

ḋ
Ẋram

Ṁe




= f (x,u) =






C∆∆αr

∆ − C∆p

hm
pm,r(Ts)

1
ρsνsCs

{pin,r(Ts, d, Ic) − Qm(Ts) − Qs(Ts)}
Cs∆αr

∆ − Csp

hm
pm,r(Ts) + 1

a (Vram,c + Vram,b)
Vram,c + Vram,b

−ρAeṡ(∆, Ts)






(2.5)

where:




ṡ(∆, Ts) = −αrCs,∆

∆ + Csp pm,r(Ts)
hm

pm,r(Ts) = (1 + µr)
Qm(Ts)

Ae

Qm(Ts) = HeAe(Ts − Tm)
Qs(Ts) = Hs2πrihs0(Ts − Tss)
pin,r(Ts, d, Ic) = V olt(Ts, d, Ic)Ic

V olt(Ts, d, Ic) = R(Ts, d)Ic

R(Ts, d) = Rd(d)e( − Aelect(Ts − Ts∗)

Rd(d) =

{
R1 − m0d d < dinflection
R1 − m1d d ≥ dinflection

While it is important for the the design of these models to know what

all these names mean, for the problem of studying the computation what they

stand for is insignificant. It is however important to realize that all the values

that are not part of the state vector x or the command vector u are constants,

i.e. the state vectors contain all the variables of these equations. All other

values are parameters that can be pre-computed.

The discrete version is obtained by integrating f(x,u) over the sam-

pling period T.

xk+1 = xk + f (xk,uk) .T (2.6)
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Finally, the command noise mk is added to the command vector, yield-

ing:

xk+1 = xk + f (xk,uk + mk) .T (2.7)

2.2.2 Measurement Model

In the case of the electroslag remelting model, the measurement equa-

tions are rather simple. The output vector y contains the penetration depth

d, the ram position Xram, the current Ir, the weight read on the load cell LC

and the voltage Volt

y = h(x) =






d
Xram

Ic

LC
V olt






(2.8)

where:




R = Rde(−Aelect(Ts−Ts∗)

Rd =

{
R1 − m0d d < 0
R1 − m1d d > 0

LC =

{
Me − ρsAed d > 0

Me otherwise
V olt = RIc

Finally, the measurement noise nk is added to the command vector,

yielding:

yk = h (xk) + nk (2.9)
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2.2.3 Likelihood Function

The weights are finally computed through the use of the likelihood

function based on the simulated (drawn) observations. The likelihood function

is the following:

l = e−
1
2(yplant−yparticle)

T
Σ−1(yplant−yparticle) (2.10)
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Chapter 3

Implementation

A working version of the estimator for the ESR process has been written

under Matlab by Ahn. Both CPU and FPGA perform the same functions

as this Matlab code. In fact the Matlab results were used to validate both

implementations. The CPU implementation was done in C, whereas the FPGA

implementation was done using Bluespec System Verilog.

3.1 CPU implementation in C

As discussed in the introduction of this chapter, the CPU implemen-

tation was done in C. The primary reason for this choice is the fact that

many modern real-time control systems using CPUs use this language due to

its simplicity and its robustness. Although C doesn’t natively provide many

types (e.g. no fixed-point type, which can be useful for speeding up some of

the computation,) C natively supports double precision data types and comes

with many mathematical functions such as the exponential function, which is

required to compute the resistance values in the ESR’s models. In order to

verify that the C code performs the same tasks as the Matlab code, the Process

and Measurement noise have been stored in text files that are both accessible
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by Matlab and C code. In the end it was verified that the C implementation

provides the same results as the original Matlab code.

3.1.1 Code

Only the physical model, f, and the measurement models are included,

since we are only studying the sampling part.

vo id f (
/∗IN :∗/
double x [ SIZEOFX] ,
double u [ SIZEOFU] ,
double no i s e [ SIZEOFU] ,
double ts ,
/∗OUT:∗/
double newX[SIZEOFX] ,
double ∗ I
)

{
double tde l t a ,Rd,R, Volt ,P,Qm,pm, Qs ,Vram,
. . . Sdot , de l tadot , Tsdot , ddot , Xramdot , Medot ;

t d e l t a=t s ;

i f (X D<d I n f l e c t i o n )
Rd=R1−m0∗X D;

e l s e
Rd=R1−m1∗X D;

R=Rd∗exp(−Aelect ∗(X TS−Tsstar ) ) ;
∗ I=U IC+Ib+no i s e [ 0 ] ;
Volt=R∗ ∗ I+Voltb ;
P=Volt ∗ ∗ I ;
Qm=He∗Ae∗(X TS−Tm) ;
pm=(1+mur)∗Qm/Ae ;
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Qs=Hs∗2∗M PI∗ r i ∗hs0 ∗(X TS−Tss ) ;
Vram=UVRAMC+Vramb+no i s e [ 1 ] ;
Sdot=−alphar ∗Csd0/X DELTA+Csp∗pm/hm;

// ra t e equat ions
de l t adot = alphar ∗Cdd/X DELTA−Cdp∗pm/hm;
Tsdot = (P−Qm−Qs) / rhos /Vs/Cs0 ;
ddot = alphar ∗Csd0/X DELTA − Csp∗pm/hm + Vram/a ;
Xramdot = Vram;
Medot = −rhom∗Ae∗Sdot ;

//Output
newX [ 0 ] = X DELTA + de l tadot ∗ t d e l t a ;
newX [ 1 ] = X TS + Tsdot∗ t d e l t a ;
newX [ 2 ] = X D + ddot∗ t d e l t a ;
newX [ 3 ] = X XRAM + Xramdot∗ t d e l t a ;
newX [ 4 ] = X ME + Medot∗ t d e l t a ;

}

void h (
/∗IN :∗/
double x [ SIZEOFX] , double u [ SIZEOFU] ,
. . . double no i s e [ SIZEOFY] ,
/∗OUT∗/
double y [ SIZEOFY]
)

{
double Rd, Ir ,R, Volt ,LC;

i f (X D<0)
Rd = R1−m0∗X D;

e l s e
Rd = R1−m1∗X D;

I r = U IC + Ib ;
R = Rd∗exp(−Aelect ∗(X TS−Tsstar ) ) ;
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// est imated r e s i s t a n c e
Volt = R∗ I r + Voltb ;

i f (X D>0)
LC = X ME − rhos∗Ae∗X D;

e l s e
LC = X ME;

y [0 ]=X D+no i s e [ 0 ] ;
y [1 ]=X XRAM+no i s e [ 1 ] ;
y [2 ]= I r+no i s e [ 2 ] ;
y [3 ]=LC+no i s e [ 3 ] ;
y [4 ]= Volt+no i s e [ 4 ] ;

}

3.2 FPGA Implementation

3.2.1 FPGA technology

Field Programmable Gate Arrays (FPGA) are device that can be con-

figured to perform sequential logical functions. FPGAs are the bigger type

of logic devices in the programable device family. One of the advantages of

FPGA is that the logic architecture can be designed specifically for a certain

application, in particular, the architecture can be designed such that several

computations are made in parallel, which can create a significant speedup

in comparison with CPUs. One of the drawbacks is that an FPGA is more

complicated to program compared to a CPU.

In our case, we hope to achieve a significant speedup through the par-

allelization of the sampling process. As discussed earlier, the sampling part
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of the algorithm can be done in parallel due to the fact that the samples are

independent.

3.2.2 ESL tool: Bluespec System Verilog

Electronic System Level design. ESL design is the creation of hardware

from an algorithmic description. Bluespec has been identified as a tool that

has a level of abstraction that is close to the algorithmic description, whilst at

the same time being capable to give the designer control over the architecture

of the hardware. Bluespec is capable of generating Verilog code that is directly

usable in synthesis tools such as Xilinx ISE.

The first problem to consider when designing a system at the Electronic

System Level is the set of operators that are available. At its most basic level,

the FPGA is capable of performing logic operations on bits. On Xilinx FPGA

this is done through the use of 6 bit Look-up tables (LUT) . Xilinx FPGAs

also feature DSP48 multipliers which are 48 × 48 bit multipliers that return

a 48 bit result. The Bluespec language provides additional operators, mostly

for bits, or sets of bits such as integers.

The models, however, require rational numbers. Two options exist to

represent rational numbers: fixed-point or floating point representation. Two

points give fixed-point the advantage over floating-point. The first point is that

fixed-point operations usually require less hardware, therefore are faster and

require less physical resources. The second is that Bluespec already comes with

a synthesizable fixed-point library whereas it currently provides no support for
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IEEE 754 floating point natively.

The Bluespec fixed point library [3] handles additions, subtractions

and multiplications. It also provide function for bit field width extension or

truncation and a multiplication function that returns data with the proper bit

width. Unfortunately, the division and the exponential functions required for

the algorithm are missing. They need to be implemented. On the upside, this

allows for performance tradeoffs.

3.2.3 FPGA Implementation Techniques

For the FPGA implementation, it is convenient to have a flow graph

representation of the algorithm. The algorithm is separated in two parts: the

computation of the physical model F and the measurement model H. Both

models contain stages, which are separated by doted line in the diagrams.

Operators within the same stage function in parallel. Furthermore, the design

is made to operate in a pipelined fashion, therefore each stage is a stage of

the pipeline. One final important detail that is absent in the figures for the

sake of overcrowding the illustration are the memory queues between operators

separated by multiple stages. The depth of these queues are naturally to be

equal to the number of stages separating the operators minus one.

It is essential to note that the main operations natively provided are

logic operations (AND, OR, NOT...) and 48 bit multiplications (on the Xil-

inx Virtex V FPGA). Any other operation needs to be provided by libraries

or custom made. The first technique used is the pre-computation of parame-
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ters. Unlike C in which the compiler precomputes constant parameters (such

as constant resistance values) automatically, parameters in the FPGA mod-

ules should be precomputed to avoid using operators unnecessarily. Further-

more, a nice feature of performing the pre-computation of parameters is that

complicated operations such as divisions are avoided, saving many cycles and

hardware resources.

The second technique is the use of non native operations in the form of

modules. For the physical and measurement models of the ESR, two non native

operations are required: divisions and exponentiations. These operations can

be implemented in the form of modules. These modules may require several

cycles to complete their functions. When this is the case, the length of the

stage that contains such modules is equal to the length of the longest module

- or longest chain of modules - in terms of number of cycles.

3.2.4 Mixed control and data flow chart of the Algorithm

3.2.4.1 Physical Model (F)

The ESR’s physical model has been divided in ten stages. While eight of

these stages last only one cycle, two of them require multiple cycles due to the

use of non-native operations. These non-native operations are presented later.

The physical model computes the rates of variation of each state variable (i.e.

∆, Ts,d, Xram and Me) based on the current state and the command vector.

Additionally the command noise is added to the command vector within this

modules, although this could have alternatively been done externally.
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Figure 3.1: Physical Model Flow Chart

For the FPGA implementation it is interesting to decompose the phys-

ical model of the ESR plant into three parts: inversion, dynamics and integra-

tion. The reason for this separation from the rest of the physical equations is

that it takes many more steps to compute the inversion and during this time,

some of the computations can be done in parallel so that once the inversion

is complete the rest of the computations can be completed in a fully-pipeline

fashion, with a result at each cycle. In order to keep the pipeline full, the

number of copies of parallel inverters need to be equal to the number of step it

take to complete an inversion. For the sake of comprehension, we will call the

physical model without the inversion the dynamics model, for lack of a better
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Figure 3.2: Full Physical Model Flow Chart

The resulting dynamics model can be found in figure 3.3.
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Figure 3.3: Physical Model Flow Chart - Inversion Excluded

3.2.4.2 Measurement Model (H)

The measurement model is rather straightforward compared to the

physical model. The only non-native operation is an exponential used for

the computation of the ESR’s resistance. The observation vector is computed

from a state. Noise is added to the measurement in the model.

39



xx

--

-

x

exp

x

x

+

+

+ x

-

++

+

+

>0

Y[0] Y[1]Y[2] Y[3]Y[4]

>0

X_D X_XRAMX_TS Uic X_MEMN[4]MN[0] MN[1]MN[2] MN[3]

m0 m1

−Aelect

Ts
∗

R1 R1

ρsAe
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3.2.4.3 Whole Simulator

The whole simulator includes the physical and measurement models.

Figure 3.5 shows how they are connected.
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3.2.5 Customized Operators

As discussed in the previous section, division and exponentiation are

not natively supported by the Virtex 5 FPGA. Therefore, they have to be
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designed. This is a point on which performance may be gained (or lost if

poorly executed).

3.2.5.1 Division

According to [9] they are two categories of algorithms for division :

recurrence and convergence. Recurrence approaches are slow as they produce

one bit of the quotient per iteration, whereas convergence divisions produces

several bits of the final quotient at each iteration through approximation, but

require fast multipliers.

In this study, the recurrence approach has been chosen as a first ap-

proach, especially since only 1 division is present in the algorithm after factor-

izing. Were this approach too slow for other models, the convergence approach

may be further studied and implemented.

The base version of the algorithm is the paper and pencil method that

is common to most people. We are looking for Q = N
D through the use of the

recurrence equation [9] :

Pk+1 = rPk − qn−k−1D for k = 1, 2, . . . ,−1 (3.1)

where:

Pk is the partial remainder after the selection of the kth quotient

digit

P0 = N (subject to the constraint |P0| < |D|)
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r is the radix

qn−k−1 is the kth quotient to the right of the binary point

D is the divisor.

During this research it was observed that a mix between the restoring

and non restoring method could be implemented on an FPGA by making use

of parallelization. At each step, the partial remainder is shifted to the left and

the n-kth bit of the Numerator is concatenated to it. If the partial remainder is

positive, then the Numerator is effectively removed from the partial remainder

and the (n − k)th bit of Q is set to one. If not, the partial remainder stays

unchanged and the (n − k)th bit of Q is set to 0.

package DivFix ;

import FixedPoint : : ∗ ;

i n t e r f a c e Div IFC#(numeric type ai , numeric type af ,
numeric type bi , numeric type bf ,

numeric type c i , numeric type c f ) ;
method Action s t a r t (

FixedPoint#(ai , a f ) a , FixedPoint#(bi , bf ) b )
;

method FixedPoint#(c i , c f ) r e s u l t ( ) ;
method Action acknowledge ( ) ;

end in t e r f a c e

module mkDivFix ( Div IFC#(ai , af , bi , bf , c i , c f ) )
p r ov i s o s (

Arith#(FixedPoint : : FixedPoint#(c i , c f ) ) ,
B i twi se#(FixedPoint : : FixedPoint#(c i , c f ) ) ,
Add#(TAdd#(bi , bf ) , 1 , TAdd#(TAdd#(bi , bf ) , 1) ) ,
Add#(1 , a , TAdd#(ai , a f ) ) ,

43



Add#(1 , b , TAdd#(bi , bf ) ) ,
B i t s#(FixedPoint : : FixedPoint#(ai , a f ) , TAdd#(ai ,

a f ) )
) ;

I n t eg e r maxnum=valueOf ( a i )+valueOf ( a f )+valueOf (
c f ) ;

I n t e g e r maxa=valueOf ( a i )+valueOf ( a f ) ;
I n t e g e r maxb=valueOf ( b i )+valueOf ( bf ) ;
I n t e g e r maxc=valueOf ( c i )+valueOf ( c f ) ;
I n t eg e r s h i f t=valueOf ( a f )−valueOf ( bf ) ;

Reg#(Bool )
a v a i l a b l e <− mkReg(True ) ;

Reg#(Bit#(TAdd#(ai , a f ) ) )
n <− mkReg (0 ) ; //Numerator

Reg#(Bit#(TAdd#(TAdd#(bi , bf ) ,1 ) ) )
d <− mkReg (1 ) ; // D iv i so r

Reg#(Bit#(TAdd#(TAdd#(bi , bf ) ,1 ) ) )
r <− mkReg (0 ) ; // remainder

Reg#(Bit#(TAdd#(TAdd#(ai , bf ) , c f ) ) )
q <− mkReg (0 ) ;

Reg#(UInt#(TLog#(TAdd#(TAdd#(ai , a f ) , c i ) ) ) )
i <− mkReg (0 ) ; // cyc l e counter

Reg#(Bit #(1) )
s i gn s <− mkReg (? ) ;

r u l e cy c l e ( i<f romInteger (maxnum) && ( ava i l a b l e
==False ) ) ;

i f ( r>=d)
act i on

q [ f romInteger (maxnum)− i ]<=1;
i f ( i<f romInteger (maxa) ) r<={(r−d)

[ f romInteger (maxb) −2:0 ] , n [
f romInteger (maxa)−1− i ] } ;

e l s e r<=(r−d)<<1;
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endact ion
e l s e
ac t i on

q [ f romInteger (maxnum)− i ]<=0;
i f ( i<f romInteger (maxa) ) r<={r [

f romInteger (maxb) −2:0 ] , n [
f romInteger (maxa)−1− i ] } ;

e l s e r<=r<<1;
endact ion
i <= i +1;

endru le : c y c l e

method Action s t a r t ( FixedPoint#(ai , a f ) a ,
FixedPoint#(bi , bf ) b ) i f ( a v a i l a b l e ) ;

n <= pack ( abs ( a ) ) ;
d <= signExtend ( pack ( abs (b) ) ) ;
r<=zeroExtend (n [ f romInteger (maxa) −1]) ;
i <=1;
q<=0;
s igns <=(msb( pack ( a ) ) ) ˆ(msb( pack (b) ) ) ;
a v a i l a b l e <= False ;

endmethod

method FixedPoint#(c i , c f ) r e s u l t ( ) i f ( i >=
fromInteger (maxnum) ) ;

FixedPoint#(c i , c f ) r e s ;

i f ( s h i f t <0)
r e s=(unpack (q [ f romInteger (maxc)

−1:0 ] )<<−s h i f t ) ;
e l s e

r e s=(unpack (q [ f romInteger (maxc)
−1:0 ] )>>s h i f t ) ;

i f ( s i g n s==1)
return −r e s ;

e l s e
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re turn r e s ;
endmethod

method Action acknowledge ( ) i f ( ( i >=
fromInteger (maxnum) ) && ! a va i l a b l e ) ;

a v a i l a b l e <= True ;
endmethod

endmodule : mkDivFix

endpackage : DivFix

The division delay using this method is equal to the number of bits of

the numerator plus the number of bits in the fractional part of the result.

In the final version of the FPGA implementation, the division module

has actually not been used although originally motivated by requirements of

the ESR’s physical. Instead, the code was reused to develop and inversion

function, which is similar to a division, only with a numerator always equal

to one. In the end, this division module is now available for applications that

may require it.

3.2.5.2 Inversion

The inversion module was created based on the division module. The

motivation behind the creation and the use of this module is the fact that the

inversion is a division that has a numerator equal to one. As a consequence,

the number of steps required to complete an inversion is less than that of a

division given the same data types. Because the fixed part of the numerator

is just equal to one, there is no need to cycle over all the bit of the integer
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part, hence the sparing of a number of steps equal to the number of bits in the

integer part of the fixed point data type. Therefore there are 2f steps instead

of 2f + i, since only the fractional part has to be covered.

Naturally, divisions can be decomposed into an inversion and a multi-

plication:
N

D
= N × 1

D
(3.2)

where N is the numerator and D is the denominator.

3.2.5.3 Inversion Farm

When an inversion operation is requested, an inversion module takes

2f cycles to complete the inversion. If only one inversion module is present in

the FPGA, a new inversion can only start once the previous inversion has been

completed, that is after 2f cycles. This would create a serious bottleneck in

the flow. Multiple instances of these modules can be created and grouped into

a farm. This allows for handling several inversions (or other operations) at

the same time. If there are as many modules in the farm as it takes cycles to

complete one operation, the farm can handle a new request at each cycle. This

technique was used in the FPGA implementation to achieve full pipelining.

The inversion farm is illustrated in figure 3.6.

The following is a description of the farm and its behavior:

• The farm contains 2f inverters.

• Initially, all the inverters are available.
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• When an inversion is requested, the inversion is assigned to the next

available inverter.

• A flag associated with the inverter is set as busy.

• At the end of the inversion, the inversion result is queued and data in

the inverter is released and the inverters flag is set to available.

Since the inversion algorithm used has a constant number of steps, the

order of the results in the queue will naturally be in the same order as the

request order. There is no need for order management. If fast division was

used, order management will be required, since the number of cycles required

to complete the division may not be constant.
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Figure 3.6: Inversion Farm Module

3.2.5.4 Exponential

A detailed architecture with performance results can be found in [4].

Two options have been identified concerning the exponential function.

The first one is to store values that the exponential function would return in

memory. The other option is to use the Taylor series expansion, which was
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selected.

ex =
inf∑

n=o

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ . . . (3.3)

To compute the exponential with sufficient precision for the ESR esti-

mator, the order should be 15 given the range of the input [−2.6686; 2.1834].

Whereas, the factorial numbers can be set as constants, the powers need to

be computed. In order to do so in a pipelined fashion, the powers of x can

be computed through successive multiplications. The computation of all the

powers of x to the 16th power can be done in 4 stages as in figure (3.7).

To complete the exponential computation, the powers of x are multi-

plied by the inverse of the factorials at each stage. These inverse factorials

are pre-computed during compile-time and stored as constants. Multiplying

by the stored inverses avoids long divisions, and can be done in one cycle.
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Figure 3.7: Computing the powers of x for the Taylor series expansion of the
exponential function

3.2.6 FPGA Implementation Toolchain

In the course of designing and implementing the FPGA based design,

only two software suites are required. The first suite is Bluespec System Verilog

which includes the tools for defining and testing the functional architecture

of the design and the tools to generate hardware description language files,

namely Verilog files. The second is Xilinx ISE which can synthesis and place

and route the design for a specific FPGA target.

Bluespec include a compiler, bsc. BSC can generate simulations files

that are executable within Linux and can display the value of registers or
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variables during runtime of the simulations, which behave in the same fashion

as the printf() function is C. The same compiler can be used to generate Verilog

files. The compiler provides the option of generating Verilog 95 compliant code,

which excludes the display functions used for the simulation.

Xilinx ISE provides the rest of the tool chain to produce netlists and

FPGA programation files. The first step consists in creating a project. The

project has to be configured with the FPGA device number and the desired/re-

quired speed grade as well as design goal. The Verilog file that contains the

top module is then imported into the project as well as optional additional

Verilog files containing sub modules and the Bluespec provided libraries used

in the design. From there, the design needs to be synthesized, placed and

routed with optional constraint files.

3.2.6.1 Software Versions

• Bluespec System Verilog v.2008.11.C

• Xilinx ISE v.10.1
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Chapter 4

Implementation Results and Analysis

4.1 Implementation Results

In this section the speeds, in terms of particles per second, of the CPU

and the FPGA implementation are compared. For the CPU implementation,

the results are obtained by timing the computation of a given number of parti-

cles. For the FPGA implementation, the speed results are obtained by dividing

the maximum FPGA frequency given by the design tools after place/route by

the number of cycles that the computation of a given number of particles

computation would require, obtained through functional simulation.

4.1.1 CPU Results

For the given models, the approximate average speed of computation on

the given CPU-based configuration was 2.67M particles per second. Since the

CPU frequency is 2.6GHz, it can be deduced that each particle computation

requires around 1000 cycles.

4.1.2 FPGA Results

The FPGA that was used to evaluate the performance of the imple-

mentation is XC5VSX240T Virtex 5 from Xilinx. The XC5VSX240T has the
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following specifications found in table 4.1:

Table 4.1: FPGA Specifications

XC5VTXT240T
Resource Amount
Slices 37,440
Logic Cells 239,616
CLB Flip-Flops 149,760
Maximum Distributed RAM (Kbits) 4,200
Block RAM/FIFO w/ECC (36Kbits each) 516
Total Block RAM (Kbits) 18,576
DSP48E Slices 1,056

Under the FPGA design tool, Xilinx ISE 10.1, the FPGA has been

configured with the settings found in table 4.2.

Table 4.2: Xilinx ISE Project Configuration

Project Configuration
Parameter Value
Family Virtex 5
Device XC5VTXT240T
Package FF1738
Speed -2
Design Goal Balanced

The utilization results after synthesis and place and route are found in

table 4.3.
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Table 4.3: FPGA Resource Utilization

FPGA Resource Utilization
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 3,144 149,760 2%
Number used as Flip Flops 3,144
Number of Slice LUTs 8,223 149,760 5%
Number used as logic 7,508 149,760 5%
Number used as Memory 689 67,200 1%
Number used as Dual Port RAM 689
Number used as exclusive route-thru 26
Number of route-thrus 316 299,520 1%
Slice Logic Distribution Used Available Utilization
Number of occupied Slices 2,626 37,440 7%
Number of LUT Flip Flop pairs used 8,591
Number with an unused Flip Flop 5,447 8,591 63%
Number with an unused LUT 368 8,591 4%
Number of fully used LUT-FF pairs 2,776 8,591 32%
Number of unique control sets 176
Number of slice register sites lost to
control set restrictions

282 149,760 1%

Other Used Available Utilization
Number of DSP48Es 473 1,056 44%
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Minimum period achieved with speed grade -2: 24.529ns (Maximum

Frequency: 40.767MHz.)

The maximum speed is achieved with a full pipeline, that is when a

particle is produced at each clock cycle. Since the maximum frequency ob-

tained under the given configuration is 40.767MHz, the achieved speed was

40.767Mparticle.s−1.

The 44% utilization of the DSP48Es (which provide for the fixed point

multiplications) is the limiting factor as is it the resource that is the most

utilized. The FPGA still has the potential to hold a second copy of the mod-

ules, which would double the simulation speed while using 88% of the DSP48E

resources. Unfortunately, ISE runs out of memory while trying to place and

route such a design, probably due to the complexity of finding a solution with

so few resources left on the FPGA.

4.2 Analysis

4.2.1 Speed and Number of Devices

Based on these results and the knowledge of the architectures it is

possible to define models to figure out the speed of particle computation and

the number of device required to achieved a certain performance level. This

performance level is defined by a number of particles, P to compute within a

certain deadline tD.
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4.2.1.1 CPU Speed

For the purpose of real-time computing, that is to guaranty that all the

tasks of the system are computed before a certain deadline (which is important

when controlling a physical process), it is best to assume that the CPU will

compute the code in a worst case scenario. In that scenario, the code doesn’t

benefit from CPU optimizations such as branch prediction and is executed in

a constant worst time that is proportional to the CPU’s frequency. A CPU

may contain a set of cores, which are capable of computing one operation

at a time. One operation may take several clock cycles depending on the

architecture. The speed of computation therefore depends on the number of

CPUs, the number of cores per CPU, the number of cycle to compute one

particle and the CPU frequency with the following relationship:

RCPU = NCPU × Ncores ×
1

Ncycles
× FCPU (4.1)

where:

• RCPU is the particle computation rate on a CPU-based computation

system;

• NCPU is the number of CPUs in the computation system;

• Ncores is the number of cores per CPU;

• Ncycles is the number of cycles per particle computation; and
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• FCPU is the frequency of the CPUs (assuming that the CPUs each run

at the same frequency).

4.2.1.2 Number of CPUs Required for a Given Performance Level

As mentioned in the introduction, there is a relationship between the

number of particles, the required deadline to compute that number of particles

and the minimum number of devices required to achieve this performance. In

the case of CPUs this relationship is simple since the computing speed is

independent from the number of particles. From the rate equation (4.1), the

following device requirement equation is inferred:

NCPU ≥
⌈

P

Ncores × RCPU × td

⌉
(4.2)

4.2.1.3 FPGA Speed

Since the FPGA implementation uses pipelining, the FPGA speed de-

pends both on the number of particles per FPGA, which determines the

pipeline’s usage, and the FPGA frequency. The speed is the time it takes

to compute a number of particles. The number of cycles it takes to compute

P particles is P + L, where P is the number of particles and L is the la-

tency, that is the number of cycles it takes for the first particle computation

to be output by the system. The speed of computation for one FPGA-based

simulator is therefore equal to:

Rsimulator =
P

L + P
× FFPGA (4.3)
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where:

• Rsimulator is the particles computation rate for one FPGA-based simula-

tor in particles.s−1;

• P is the number of particles;

• L is the latency in cycles; and

• FFPGA is the FPGA frequency in cycles.s−1.

Further, an FPGA-based system can be comprised of multiple FPGA

devices, each containing multiple simulators operating in parallel. This results

in the following model:

RFPGA = NFPGA × Nsimulators ×
P

P + L
× FFPGA (4.4)

where:

• RFPGA is the particles computation rate for one FPGA-based simulator

inparticles.s−1 ;

• NFPGA is the number of FPGAs in the FPGA based system;

• Nsimulators is the number of simulators per FPGA;

• P is the number of particles;

• L is the latency in cycles; and

• FFPGA is the FPGA frequency in cycles.s−1.
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4.2.1.4 Number of FPGAs Required for a Given Performance Level

As in the CPU case, a minimum number of FPGAs can be determined.

Posing that for each FPGA device
⌈

P
NFPGA

⌉
is the number of particles per

device, we have:

L +

⌈
P

NFPGA
Nsimulators

⌉

FFPGA
≤ td (4.5)

=⇒ L +

⌈
P

NFPGA

Nsimulators

⌉
≤ tdF (4.6)

=⇒
⌈

P

NsimulatorsNFPGA

⌉
≤ tdF − L (4.7)

=⇒ NFPGA ≥
⌈⌈

P

Nsimulators

⌉
1

tdF − L

⌉
(4.8)

4.2.2 FPGA v. CPU performance outlook

Using the models presented in the previous sections, the performance

of CPUs and FPGAs can be forecasted and compared. Currently, we were able

to have only one simulator per FPGA and we only used one CPU core on one

CPU. In the near future, we can hope to increase the FPGA frequency and hold

multiple simulators per FPGA. On the CPU side, the use of 4 cores is currently

feasible. To get an idea of what lies ahead, we can plot the performance levels

given by the models.

4.2.2.1 Speeds

The following plots show the speed performance for the CPU and FPGA

implementations. The speed is measured in particles.s−1. For CPUs, the
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speed remains constant for a given number of CPUs. The reason for this is that

the CPU implementation is serial and therefore its speed is independent from

the number of particles. In contrast, the FPGA computation speed depends

on the number of particles. The speed increases as there are more particles to

fill the pipeline. The maximum theoretical speed for one FPGA configuration

is equal to the FPGA’s clock frequency since the pipelining has been done

in such a way that one particle computation result is produced on each cycle

after the first result is obtained. The maximum speed is achieved when the

input to output latency (i.e. the number of clock cycles it takes for the result

to be obtained once the input has been applied) is negligible compared to the

number of particles. In this implementation, this appears to happen around

15000 particles. From the performance plot it can be seen that the FPGA

based simulations are substantially faster on FPGAs if the number of particles

is greater than 10 in all cases. Since many applications are susceptible to

require many more particles, FPGAs appear to be the solution of choice for

future applications in terms of speed.
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4.2.2.2 Number of Devices

The following plots show the minimum numbers of CPUs or FPGAs

that are or would be necessary to compute a certain number of particles under

a given deadline. To better view the influence of deadline and particle the

required minimum number of devices has been plotted in 3D. In these 3D plots

it can be seen that the area where two CPUs are required is far away from

the area of operation of the ESR estimator. However, for other applications

such as the Gas Metal Arc Welding process which is a much quicker process,
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there may be a need for computing more particles under a shorter deadline.

If this is the case, then it appears again that FPGAs will be the device of

choice. The graphs show that many more CPUs will be needed as the number

of particles increases and the deadline to compute this number of particles

shortens compared to the number of FPGAs that will be necessary.
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Figure 4.3: Number of Devices Required; 4 Cores per CPU v. 1 Simulator per
FPGA
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4.2.2.3 Performance Analysis

The major speed advantage that the FPGA implementation features is

the use of pipelining. Pipelining the particle computation allows for intense

parallelization, which leads to a substantial speed increase. In terms of speed

and number of devices required, FPGAs provide the best performance at this

point in time as well as in the years to come. Whereas the CPU implementation

can only be improve through the use of multiple cores (the current working
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implementation uses only one single core), the FPGA implementation can still

receive more enhancements. In the current implementation, many additions

and multiplications are grouped together. Since the FPGA still has available

resources, these steps of the pipeline can be cut into smaller substeps in which

only one operation is performed. This will lead to two improvements: a shorter

maximum delay (faster clock) and more parallelization. Currently, the FPGA

implementation is limited by the number of DSP48 blocks used, which is 44%.

The design could be modified to use fewer multipliers by adding some steps

for instance.
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Chapter 5

Conclusion and Future Work

5.1 Analysis of Results

The project started with the objective to compute at least 100 particles

within 133ms for the ESR process given the Ahn’s models. As it turns out,

both technologies are capable of achieving this performance level with a large

margin. This opens the door to using particle filtering estimation online for

the Electro-Slag Remelting process with even further precision than before.

During the course of this performance study, we were able to determine

macro level performance models for CPUs and FPGAs that give an idea of the

capabilities of these two devices. These macro level performance models are

a real asset for the solution space exploration of the implementation problem.

For the process at hand, these models show that FPGA devices are capable

of achieving higher performance than CPUs. Furthermore, these models also

show that fewer FPGA devices would be required to achieve the same perfor-

mance level as CPU for this application. As the rate of required particles per

second increases, the number of CPUs required increases significantly faster

in contrast to the the number of FPGA to complete the same tasks. FPGAs

provide further performance that scales with complexity. In terms of costs,
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implementation complexity and predictability, FPGAs provide the best solu-

tion for systems with large state variables that require many particles to be

computed under a short period of time.

5.2 Conclusion

The experimental results show that an FPGA is capable of out-performing

a CPU in terms of speed for the specific application of estimating the state

of a particular process using Particle Filtering. The FPGA implementation

exploits the fact that the estimation technique uses processes that can be exe-

cuted in parallel, in this case the process of drawing of particles. The technique

further exploits the fact that the particles are run through physical models that

are also parallel due to the fact that processes occur in parallel in the physical

world.

On the down side, FPGAs are devices that are more complex to pro-

gram and may fail to provide fast performance in cases where the computing

requires further non trivial mathematical operations such as square roots or

logarithms. These operations are further burdened by the requirements of data

representation. For instance, if the application requires double precision float-

ing point data representation, the number of simultaneous operations that can

be done will be significantly lower than the number of operations that would

been done with only fixed point data representation. This is due to the fact

that floating point operations require more resources than their fixed point

equivalents.

68



The FPGA is exploiting a more efficient structure and parallelism to

get the same amount of work done than its CPU counterpart. Specifically the

FPGA runs at a much lower frequency than the CPU for the same amount of

work. From a broad perspective, lower frequency usually implies lower power

consumption. Although the manufacturing process requires substantially more

power than its controller (the controller’s power consumption is not an issue

for the application at hand), for other applications power may be an issue such

as in mobile applications. One example is mobile robotics, where for instance

particle filtering is used to determine a robot’s position based on physical

models and noisy observations. Other applications may include transportation

systems, portable medical devices or other systems in which there is also a

critical interaction with the physical world.

Lastly, these results show that more complex models can now be de-

veloped to even further reduce the root mean squared error of the estimate,

potentially yielding even better control signals, improving the quality of the

resulting material produced.

5.3 Future Work

The future of this work is to develop a tool chain to provide assistance

in the choice of a target device. This tool chain would use implementation

performance results and the sort of performance models that were put together

in this research to evaluate the speed and precision offered by each potential

target device.
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One additional future task would consist in evaluating the other tools

ESL that are commercially available such as: The Mathworks’ Filter Design

HDL Coder, AccelDSP from Xilinx, National Instrument’s Labview FPGA,

DK Design Suite from Agility DS, Cynthesizer from Forte.

Finally other computing devices such as GPUs and DSPs should be

studied for suitability. The GPU suitability research is in the process of eval-

uation within the research group.
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Appendix 1

Bluespec Implementation Code

1.1 Description

This appendix is the complete set of code that runs the physical and

measurement models. The code is decomposed in several Bluespec .bsv files

that contain modules. The code is given in order of dependency, that is that

later files require earlier files. The order is therefore: datatypes, parameters,

inversion and exponentiation, F and H separetely, F and FH together, multiple

F and H in parallel (the latter is provided eventhough the FPGA wasn’t able

to support more than one piped simulator) and finally some test benches.

1.2 Source Code

1.2.1 Types.bsv

/∗∗
∗ F i l e : Types . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :

This f i l e conta in s the datatypes that are used
f o r the s imu la t i ons .

Al l datatypes are o f the f i x edpo in t type from
the Bluespec Library .
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Fina l ly , i t was dec ided that a l l the data w i l l
be o f type

FixedPoint #(20 ,28) . This i s because o f the range
o f some data and the

s i z e o f the DSP48 mu l t i p l i e r s (48 b i t s )

I f r equ i red , d i f f e r e n t s i z e could be de f ined f o r
each va r i a b l e s . A l o t

o f the s imu la t i on models have been des igned to
accept d i f f e r e n t s i z e s .

Due to the p o s s i b i l i t y o f d i f f e r e n t data types
f o r the va r i a b l e s within

a same category ( state , command , observat ion ,
no i s e . . . ) the data i s

grouped in s t r u c t u r e s .
∗/

package Types ;

import FixedPoint : : ∗ ;

typede f 20 I s i z e ;
typede f 28 Fs i z e ;
typede f 48 DTsize ;

typede f FixedPoint#( I s i z e , F s i z e ) Datatype ; //
standard datatype f o r t h i s p r o j e c t

// State Vector data types
typede f Datatype X1type ;
typede f Datatype X2type ;
typede f Datatype X3type ;
typede f Datatype X4type ;
typede f Datatype X5type ;
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//U data types
typede f Datatype U1type ;
typede f Datatype U2type ;

//Measurment no i s e data types
typede f Datatype MN1type ;
typede f Datatype MN2type ;
typede f Datatype MN3type ;
typede f Datatype MN4type ;
typede f Datatype MN5type ;

// Process no i s e data types
typede f Datatype PN1type ;
typede f Datatype PN2type ;

//Observation vec to r datatypes
typede f Datatype Y1type ;
typede f Datatype Y2type ;
typede f Datatype Y3type ;
typede f Datatype Y4type ;
typede f Datatype Y5type ;

typede f s t r u c t {
X1type de l t a ;
X2type t s ;
X3type d ;
X4type xram ;
X5type me ;

} Xtype de r i v i ng ( Bi t s ) ;

typede f s t r u c t {
Y1type d ;
Y2type xram ;
Y3type i r ;
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Y4type l c ;
Y5type vo l t ;

} Ytype de r i v i ng ( Bi t s ) ;

typede f s t r u c t {
U1type i c ;
U2type vramc ;

} Utype de r i v i ng ( Bi t s ) ;

typede f s t r u c t {
MN1type d ;
MN2type xram ;
MN3type i r ;
MN4type l c ;
MN5type vo l t ;

} MeasNoisetype de r i v i ng ( Bit s ) ;

typede f s t r u c t {
PN1type i c ;
PN2type vramc ;

} ProcessNo i setype de r i v i ng ( Bit s ) ;

endpackage : Types

1.2.2 Params.bsv

/∗∗
∗ F i l e : Params . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :

Contains the precomputed parameters f o r the
phys i c a l and measurment

models .
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For the d e t a i l s about the va lue s o f the se
parameters , consu l t Ahn ’ s

d i s s e r t a t i o n .
∗/

package Params ;
import FixedPoint : : ∗ ;
import Types : : ∗ ;
typede f Datatype Param ;
//Param p R1 = 6.0000000000e−03;
//Param p R1e = 6.5000000000e−03;
//Param p k1 = 1.3000000000e+03;
Param p De = 2.0320000000e+01;
Param p re = 1.0160000000e+01;
Param p Di = 2.5400000000e+01;
Param p r i = 1.2700000000e+01;
Param p Aelect = 1.2130000000e−03;
Param p m0 = 1.4285714286e−02;
Param p m1 = 7.6923076923e−04;
Param p Tsstar = 2.2000000000e+03;
Param p Tr = 3.0000000000e+02;
Param p rhor = 7.8300000000e+00;
Param p Cr = 4.3400000000e−01;
Param p Kroom = 6.3900000000e−01;
Param p a lphar = 1.8803962074e−01;
Param p Tm = 1.7830000000e+03;
Param p rhom = 7.4000000000e+00;
Param p Cm = 1.1680000000e+00;
Param p Km = 3.1300000000e−01;
Param p alpham = 3.6213439467e−02;
Param p hm = 8.9287129300e+03;
Param p Tsup = 1.8830000000e+03;
Param p L = 2.7196000000e+02;
Param p hsup = 1.1543287930e+04;
Param p Cs0 = 1.4700000000e+00;
Param p rhos = 2.5500000000e+00;
Param p Ks = 4.1800000000e−02;
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Param p Tss = 1.7730000000e+03;
Param p Ms = 5.6750000000e+04;
Param p Vs = 2.2254901961e+04;
Param p Ae = 3.2429278662e+02;
Param p Ai = 5.0670747910e+02;
Param p betam = −8.0741590882e−01;
Param p lambda = 3.4149767859e+00;
Param p a0 = 3.6000000000e−01;
Param p den = 2.1244930358e+01;
Param p Cdd = 1.0746632253e+01;
Param p Cdp = 5.1437804365e+00;
Param p Csd0 = 2.0781252910e+00;
Param p Csp = 1.7681745250e+00;
Param p mu = 5.5000000000e−01;
Param p mdot0 = 5.0000000000e+01;
Param p Pm0 = 7.7995188716e+04;
Param p P0 = 1.4180943403e+05;
Param p pm0 = 2.4050855256e+02;
Param p Ts0 = 2.2000000000e+03;
Param p d0 = 0.0000000000e+00;
Param p hs0 = 4.3920610764e+01;
Param p He = 5.7675911885e−01;
Param p Hs = 4.2642023223e−02;
Param p R0 = 5.0000000000e−03;
Param p I0 = 5.3255879305e+03;
Param p V0 = 2.6627939653e+01;
Param p de l t a0 = 1.4584705609e+01;
Param p Sdot0 = 2.0835359390e−02;
Param p Vram0 = 7.5007293803e−03;
Param p mur0 = 0.0000000000e+00;
Param p sigmadV = 5.0000000000e−02;
Param p sigmaPos = 3.0000000000e−01;
Param p sigmaImeas = 2.0000000000e+02;
Param p sigmaLC = 5.0000000000e+02;
Param p sigmaV = 1.0000000000e−01;
Param p sigmaI = 1.8420000000e+02;
Param p sigmaVram = 1.0000000000e−02;
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Param p sigmamur = 5.0000000000e−04;
Param p sigmaa = 3.6000000000e−03;
Param p sigmaIb = 2.6627939653e+00;
Param p sigmaVramb = 7.5007293803e−04;
Param p sigmaVoltb = 1.3313969826e−02;
Param p k0 = 7.0000000000e+01;
Param p k1 = 1.3000000000e+03;
Param p R1 = 6.0000000000e−03;
Param p R1e = 6.5000000000e−03;
Param p d In f l e c t i o n = 0.0000000000e+00;
Param p SlagTemperatureTimeConstant = 1.0000000000e+01;
Param p KTs = 1.0000000000e−01;
Param p DepthControlTimeConstant = 1.0000000000e+00;
Param p Kd = 1.0000000000e+00;

Param p Pi = 3.14159265358979323846;
endpackage

1.2.3 inverse.bsv

/∗∗
∗ F i l e : i nve r s e . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ Computes the i nve r s e value o f a f i x ed po int

value in a p ip e l i n ed f a sh i on .
∗
∗ The algor i thm used i s the slow d i v i s i o n .
∗ The number o f s t eps i t takes i s 2∗ f s i z e , where

f s i z e i s the s i z e
∗ o f the f r a c t i o n a l part .
∗
∗ Note : S ince t h i s a lgor i thm was adapted from the

d i v i s i o n algor i thm

78



∗ most o f the va r i ab l e names r e f e r to names that
would be used f o r d i v i s i o n s

∗/

package i nve r s e ;

import FixedPoint : : ∗ ;

/∗∗
abs t ra c t i n t e r f a c e Div IFC

parameters :
i : number o f b i t s f o r the i n t e r g e r part
f : number o f b i t s f o r the f r a c t i o n a l

part
s t a r t : f e ed value to be inve r t ed in to the

p i p e l i n e
r e s u l t : r e tu rns the inve r t ed value
acknowledge : removes the value from the p i p e l i n e

.
∗/
i n t e r f a c e Div IFC#(numeric type i , numeric type f ) ;

method Action s t a r t ( FixedPoint#(i , f )
den ) ;

method Maybe#(FixedPoint#(i , f ) ) r e s u l t ( ) ;
method Action acknowledge ( ) ;

end in t e r f a c e

module mkInverse ( Div IFC#(i , f ) )
p r ov i s o s (

Bi t s#(FixedPoint : : FixedPoint#(i , f ) ,
TAdd#(i , f ) ) ,

Add#(TAdd#(i , f ) , f , TAdd#(TAdd#(i , f ) ,
f ) ) ,

Add#(1 , a , TAdd#(i , f ) )
) ;

I n t e g e r i s i z e=valueOf ( i ) ;
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I n t e g e r f s i z e=valueOf ( f ) ;
I n t e g e r f p s i z e=i s i z e+f s i z e ;

Reg#(Bit#(TAdd#(i , f ) ) ) d
<− mkReg (0 ) ;

Reg#(Bit#(TAdd#(i , f ) ) ) r
<− mkReg (0 ) ;

Reg#(Bit#(TAdd#(i , f ) ) ) q
<− mkReg (0 ) ;

Reg#(Bit#(TAdd#(TLog#(TAdd#(f , f ) ) ,1 ) ) ) count
<− mkReg (0 ) ;

Reg#(Bool ) a va i l a b l e
<− mkReg(True ) ;

Reg#(Bit #(1) ) s i gn
<− mkReg (? ) ;

Reg#(Bool ) outOfRange
<− mkReg( Fa l se ) ;

r u l e cyc l e ( ( ! a v a i l a b l e ) && ( count<=fromInteger
(2∗ f s i z e ) ) ) ;

i f ( r<d)
ac t i on

// $d i sp l ay (” r<d\n”) ;
r<=r<<1;
q<=q<<1;

endact ion
e l s e

ac t i on
// $d i sp l ay (” r>=d\n”) ;
r<={(r−d)<<1};
q<=(q<<1)+1;

endact ion
i f ( q [ f p s i z e −2]==1)outOfRange<=True ; //−2

because msb i s 1 a f t e r s h i f t need to
add : && count<f romInteger (2∗ f s i z e )
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count<=count+1;
/∗
$d i sp l ay (” cyc l e=============\n”) ;
$d i sp l ay (” cyc l e : d = %b : ” , d ) ;
$d i sp l ay (” cyc l e : r = %b : ” , r ) ;
$d i sp l ay (” cyc l e : q = %b : ” , q ) ;
∗/

endru le

method Action s t a r t ( FixedPoint#(i , f ) den ) i f
( a v a i l a b l e ) ;

FixedPoint#(i , f ) one=1;
d <= {pack ( abs ( den ) ) , ’ 0} ;
r <=1;
q <=0;
count <= 0 ;
a va i l a b l e <=False ;
s ign<=msb( pack ( den ) ) ;
outOfRange <= False ;
/∗

$d i sp l ay (” count = %d \n” , count ) ;
$d i sp l ay (” i s i z e = %d \n” , i s i z e ) ;
$d i sp l ay (” f s i z e = %d \n” , f s i z e ) ;
$d i sp l ay (” f p s i z e = %d \n” , f p s i z e ) ;
∗/

$d i sp l ay (”INV START = %d \n” , count ) ;
endmethod

method Maybe#(FixedPoint#(i , f ) ) r e s u l t ( ) i f (
count>f romInteger (2∗ f s i z e ) && ! a v a i l a b l e ) ;

i f ( outOfRange==False )
i f ( s i gn==1)

return Valid (−unpack (q ) )
;

e l s e
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return Valid ( unpack (q ) )
;

e l s e
re turn Inva l i d ;

endmethod

method Action acknowledge ( ) i f ( count>=
fromInteger (2∗ f s i z e ) && ! a v a i l a b l e ) ;

a v a i l a b l e <=True ;
endmethod

endmodule : mkInverse

endpackage : i nve r s e

1.2.4 invFarm.bsv

/∗∗
∗ F i l e : invFarm . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ The inve r s e farm i s a s e t o f i n v e r t e r s that can

accomodate a new
inve r s i on r eques t a each cyc le , whi l e cont inu ing

the i n v e r s i o n s that
are a l ready under way .
To do th i s , the number o f i n v e r t e r s in the s e t

must be equal to the
number o f c y c l e s i t takes to compute an

inve r s i on (2∗ f ) .
At each new request , an i nve r s i on i s a s s i gned to

an ava i l a b l e i n v e r t e r
and t h i s i n v e r t e r i s f l a g g ed as busy un t i l the

r e s u l t has been removed
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from i t .

S ince each i nve r s i on r e qu i r e s the same number o f
cyc l e s , the r e s u l t s

are provided in the same order as the r eque s t s .
∗/

package invFarm ;

import FixedPoint : : ∗ ;
import i nve r s e : : ∗ ;
import FIFO : : ∗ ;

/∗∗
i n t e r f a c e InvFarm IFC

Parameters :
i : number o f b i t s o f the i n t e g e r part
f : number o f b i t s o f the f r a c t i o n a l part
nbinv : number o f i n v e r t e r s ( suggested 2 f )

Methods :
submit : submit a value to be inve r t ed
r e s u l t : r e turn the next a va i l a b l e r e s u l t in the

other the i t was requested
acknowledge : remove the cur r ent r e s u l t from the

i n v e r t e r and s e t s the
next i n v e r t e r from which the next r e s u l t

should be read from .
∗/
i n t e r f a c e InvFarm IFC#(numeric type i , numeric type f ,

numeric type nbinv ) ;
method Action submit (

FixedPoint#(i , f ) i nva l ) ;
method Maybe#(FixedPoint#(i , f ) ) r e s u l t ( ) ;
method Action acknowledge ( ) ;
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end in t e r f a c e

module mkInvFarm( InvFarm IFC#(i , f , nbinv ) )
p r ov i s o s (

Bi t s#(FixedPoint : : FixedPoint#(i , f ) , TAdd#(i , f )
) ,

Add#(TAdd#(i , f ) , f , TAdd#(TAdd#(i , f ) , f ) ) ,
Add#(1 , a , TAdd#(i , f ) )

) ;
I n t e g e r i s i z e=valueOf ( i ) ;
I n t e g e r f s i z e=valueOf ( f ) ;
I n t e g e r f p s i z e=i s i z e+f s i z e ;
I n t eg e r n=valueOf ( nbinv ) ;

//Reg#(Bool ) busy [ n ] ;

Reg#(UInt#(TAdd#(TLog#(nbinv ) ,1 ) ) )
next Inve r t e r <−mkReg (0 ) ; // Index o f the
next a v a i l a b l e i n v e r t e r

Reg#(UInt#(TAdd#(TLog#(nbinv ) ,1 ) ) )
nextResult <−mkReg (0 ) ; // Index o f the
next r e s u l t

FIFO#(FixedPoint#(i , f ) ) in <− mkLFIFO ;
FIFO#(Maybe#(FixedPoint#(i , f ) ) ) out <− mkLFIFO ;

// c r ea t e n i n v e r t e r s
Div IFC#(i , f ) i n v e r t e r [ n ] ;
f o r ( I n t e g e r i =0; i<n ; i=i +1)

i n v e r t e r [ i ] <− mkInverse ;

f o r ( I n t e g e r i =0; i<n ; i=i +1)
begin

Reg#(Bool ) busy i<− mkReg( Fa l se ) ;
r u l e s t a r t i ( ( ! busy i ) && ( next Inve r t e r

==fromInteger ( i ) ) ) ; // s t a r t
i nv e r s i on on the next a va i l a b l e
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i n v e r t e r .
i n v e r t e r [ i ] . s t a r t ( in . f i r s t ( ) ) ;
in . deq ( ) ;
busy i<=True ;
i f ( i>=fromInteger (n−1) )

next Inve r t e r <= 0 ;
e l s e

next Invert e r <=
fromInteger ( i )+1;

// $d i sp l ay (”START %d” , i ) ;
endru le

ru l e end i ( busy i && ( nextResult==
fromInteger ( i ) ) ) ; //Once the
i n v e r t e r f o r which a r e s u l t i s
expected i s done , get the r e s u l t and
f r e e the i n v e r t e r .

out . enq ( i n v e r t e r [ i ] . r e s u l t ( ) ) ;
i n v e r t e r [ i ] . acknowledge ;
// $d i sp l ay (”END %d” , i ) ;
busy i<=False ;
i f ( i>=fromInteger (n−1) )

nextResult <= 0 ;
e l s e

nextResult<=fromInteger (
i )+1;

endru le
end

/∗
r u l e d i s p l a y va l u e s ;

// $d i sp l ay (” next Inver t e r= %d” ,
next Inve r t e r ) ;

// $d i sp l ay (” nextResult= %d” , nextResult ) ;
// $d i sp l ay (” busy [ next Inve r t e r ]= %d” , busy

[ next Inve r t e r ] ) ;
endru le
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∗/
method Action submit (

FixedPoint#(i , f ) i nva l ) ;
// $d i sp l ay (”SUBMIT”) ;
in . enq ( i nva l ) ;

endmethod

method Maybe#(FixedPoint#(i , f ) ) r e s u l t ( ) ;
r e turn out . f i r s t ( ) ;

endmethod

method Action acknowledge ( ) ;
out . deq ( ) ;

endmethod

endmodule

endpackage : invFarm

1.2.5 ExponFix.bsv

/∗∗
∗ F i l e : ExponFix . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ Computes the exponent i a l f o r the ESR by us ing a

Taylor
∗ s e r i e s expanssion up to the 15 th order .
∗ The implementation i s a 4 s tage p i p e l i n e .
∗ The i n t e r f a c e i s abs t ra c t . S ince the module i s

intended
∗ f o r f i x ed po int values , the i n t e g e r and

f r a c t i o n a l s i z e s

86



∗ must be provided .
∗
∗ Stage0 : compute xˆ2 ,
∗ Stage1 : compute xˆ3 and xˆ4
∗ Stage2 : compute xˆ5 , xˆ6 , xˆ7 and xˆ8
∗ Stage3 : compute xˆ9 , xˆ10 , xˆ11 , xˆ12 , x ˆ13 , x

ˆ14 , xˆ15 , xˆ16
∗/

package ExponFix ;

import FIFO : : ∗ ;
import FixedPoint : : ∗ ;

f unc t i on In t e g e r f a c t o r i a l ( I n t e g e r n) = (n<=1 ? 1 : n ∗
f a c t o r i a l (n−1) ) ;

/∗∗
I n t e r f a c e Exp IFC
Desc r ip t i on :

va lue s :
a i : s i z e o f the i n t e g e r part
a f : s i z e o f the f a c t i o n a l part
a : data to be exponent iated

methods :
f e ed : f e ed s value in to the

p i p e l i n e
f e t ch : r e tu rns exponent i a l (

w i l l not be c a l l e d i f
the r e i s no r e s u l t in

the p i p e l i n e )
removeresu l t : removes the data in the

l a s t s tage

∗/
i n t e r f a c e Exp IFC#(numeric type ai , numeric type a f ) ;

method Action f eed ( FixedPoint#(ai , a f ) a ) ;
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method FixedPoint#(ai , a f ) f e t ch ( ) ;
method Action removeresu l t ( ) ;

e nd in t e r f a c e

module mkExponFix (Exp IFC#(ai , a f ) )
p r ov i s o s (

// Bitwise#(FixedPoint : : FixedPoint#(ai , a f ) ) ,
Rea lL i t e r a l#(FixedPoint : : FixedPoint#(ai , a f ) ) ,
Arith#(FixedPoint : : FixedPoint#(ai , a f ) ) ,
Add#(ai , af , TAdd#(ai , a f ) ) ,
Add#(1 , a , a i )
) ;
FIFO#(FixedPoint#(ai , a f ) ) a1 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a1p <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a2 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a2p <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a3 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a3p <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a4 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a5 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a6 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a7 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a8 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a9 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a10 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a11 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a12 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a13 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a14 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a15 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) a16 <− mkLFIFO( ) ;

FIFO#(FixedPoint#(ai , a f ) ) expval0 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) expval1 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) expval2 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) expval3 <− mkLFIFO( ) ;
FIFO#(FixedPoint#(ai , a f ) ) expval4 <− mkLFIFO( ) ;
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r u l e stage0 ;
a2 . enq ( a1 . f i r s t ( ) ∗a1 . f i r s t ( ) ) ;
a1p . enq ( a1 . f i r s t ( ) ) ;
expval1 . enq ( expval0 . f i r s t ( )+a1 . f i r s t ( ) ) ;
a1 . deq ( ) ;
expval0 . deq ( ) ;
$wr i t e ( ” s tage 0 expval0 i s ” ) ;

fxptWrite ( 10 , expval0 . f i r s t ( ) ) ;
endru le

r u l e stage1 ;
a2p . enq ( a2 . f i r s t ( ) ) ;
a3 . enq ( a2 . f i r s t ( ) ∗a1p . f i r s t ( ) ) ;
a4 . enq ( a2 . f i r s t ( ) ∗a2 . f i r s t ( ) ) ;
expval2 . enq ( expval1 . f i r s t ( )+a2 . f i r s t ( ) ∗

f romRational (1 , f a c t o r i a l ( 2 ) ) ) ;
a1p . deq ( ) ;
a2 . deq ( ) ;
expval1 . deq ( ) ;
$wr i t e ( ” s tage 1 expval1 i s ” ) ;

fxptWrite ( 10 , expval1 . f i r s t ( ) ) ;
endru le

r u l e stage2 ;
a3p . enq ( a3 . f i r s t ( ) ) ;
a5 . enq ( a2p . f i r s t ( ) ∗a3 . f i r s t ( ) ) ;
a6 . enq ( a3 . f i r s t ( ) ∗a3 . f i r s t ( ) ) ;
a7 . enq ( a3 . f i r s t ( ) ∗a4 . f i r s t ( ) ) ;
a8 . enq ( a4 . f i r s t ( ) ∗a4 . f i r s t ( ) ) ;
expval3 . enq ( expval2 . f i r s t ( )+a3 . f i r s t ( ) ∗

f romRational (1 , f a c t o r i a l ( 3 ) )+a4 . f i r s t
( ) ∗ f romRational (1 , f a c t o r i a l ( 4 ) ) ) ;

a2p . deq ( ) ;
a3 . deq ( ) ;
a4 . deq ( ) ;
expval2 . deq ( ) ;

89



$wr i t e ( ” s tage 2 expval0 i s ” ) ;
fxptWrite ( 10 , expval2 . f i r s t ( ) ) ;

endru le

r u l e stage3 ;
a9 . enq ( a6 . f i r s t ( ) ∗a3p . f i r s t ( ) ) ;
a10 . enq ( a5 . f i r s t ( ) ∗a5 . f i r s t ( ) ) ;
a11 . enq ( a5 . f i r s t ( ) ∗a6 . f i r s t ( ) ) ;
a12 . enq ( a6 . f i r s t ( ) ∗a6 . f i r s t ( ) ) ;
a13 . enq ( a6 . f i r s t ( ) ∗a7 . f i r s t ( ) ) ;
a14 . enq ( a7 . f i r s t ( ) ∗a7 . f i r s t ( ) ) ;
a15 . enq ( a8 . f i r s t ( ) ∗a7 . f i r s t ( ) ) ;
a16 . enq ( a8 . f i r s t ( ) ∗a8 . f i r s t ( ) ) ;
expval4 . enq ( expval3 . f i r s t ( )+a5 . f i r s t ( ) ∗

f romRational (1 , f a c t o r i a l ( 5 ) )+a6 . f i r s t
( ) ∗ f romRational (1 , f a c t o r i a l ( 6 ) )+a7 .
f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l ( 7 ) )
+ a8 . f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l
( 8 ) ) ) ;

a3p . deq ( ) ;
a5 . deq ( ) ;
a6 . deq ( ) ;
a7 . deq ( ) ;
a8 . deq ( ) ;
expval3 . deq ( ) ;
$wr i t e ( ” s tage 3 expval3 i s ” ) ;

fxptWrite ( 10 , expval3 . f i r s t ( ) ) ;
endru le

method Action f eed ( FixedPoint#(ai , a f ) a ) ;
a1 . enq ( a ) ;
expval0 . enq (1 ) ;

endmethod

method FixedPoint#(ai , a f ) f e t ch ( ) ;
r e turn expval4 . f i r s t ( )+a9 . f i r s t ( ) ∗

f romRational (1 , f a c t o r i a l ( 9 ) )+a10 .
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f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l (10) )
+a11 . f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l
(11) )+a12 . f i r s t ( ) ∗ f romRational (1 ,
f a c t o r i a l (12) )+a13 . f i r s t ( ) ∗
f romRational (1 , f a c t o r i a l (13) )+a14 .
f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l (14) )
+a15 . f i r s t ( ) ∗ f romRational (1 , f a c t o r i a l
(15) )+a16 . f i r s t ( ) ∗ f romRational (1 ,
f a c t o r i a l (16) ) ;

endmethod

method Action removeresu l t ( ) ;
a9 . deq ( ) ;
a10 . deq ( ) ;
a11 . deq ( ) ;
a12 . deq ( ) ;
a13 . deq ( ) ;
a14 . deq ( ) ;
a15 . deq ( ) ;
a16 . deq ( ) ;
expval4 . deq ( ) ;

endmethod

endmodule : mkExponFix

endpackage : ExponFix

1.2.6 HBRAM.bsv

/∗∗
∗ F i l e : HBRAM. bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
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∗ Computes the ESR’ s measurment model in a
p ip e l i n ed f a sh i on

∗
∗/

package HBRAM;
import Types : : ∗ ;
import FixedPoint : : ∗ ;
import ExponFix : : ∗ ;
import FIFO : : ∗ ;
import BRAMFIFO : : ∗ ;
import Params : : ∗ ;
// in i tParamete r s ( ) ;

/∗∗
i n t e r f a c e H IFC
Desc r ip t i on :

i n t e r f a c e f o r the measurement module

measure : f e ed the state , the command vec to r and
no i s e in to the p i p e l i n e

fetchMeasurement : r eturn the value o f the
s imulated measurement

removeMeasurement : remove the measurement value
from the p i p e l i n e

∗/
i n t e r f a c e H IFC ;

method Action measure (Xtype x ,Utype u ,
MeasNoisetype n) ;

method Ytype fetchMeasurement ( ) ;
method Action removeMeasurement ( ) ;

end in t e r f a c e

module mkH(H IFC) ;
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//NOTE: The minimum s i z e f o r the these f i r s t
FIFOS has not been determined

//They were s e t to 20 f o r now .
FIFO#(Xtype ) x <− mkSizedBRAMFIFO(20) ;
FIFO#(Utype ) u <− mkSizedBRAMFIFO(20) ;
FIFO#(MeasNoisetype ) n <− mkSizedBRAMFIFO(20) ;

FIFO#(Ytype ) y <− mkSizedBRAMFIFO(20) ;

FIFO#(Datatype ) r <− mkSizedBRAMFIFO(20) ;
FIFO#(Datatype ) ubvolt <− mkSizedBRAMFIFO(20) ;

// unbiased vo l t age in s tage 7
FIFO#(Datatype ) vo l t <− mkSizedBRAMFIFO(20) ;

// stage1
FIFO#(Datatype ) d4no i se <−

mkSizedBRAMFIFO(11) ;
FIFO#(Datatype ) xram4noise <−

mkSizedBRAMFIFO(11) ;
FIFO#(Datatype ) dStage3 <−

mkSizedBRAMFIFO(3) ;
FIFO#(Datatype ) meStage2 <− mkLFIFO( ) ;
FIFO#(Datatype ) meStage3 <−

mkSizedBRAMFIFO(3) ;
FIFO#(Datatype ) i r <−

mkSizedBRAMFIFO(9) ;
FIFO#(Datatype ) i r 4 n o i s e <−

mkSizedBRAMFIFO(11) ;
FIFO#(Datatype ) m0Xd <− mkLFIFO( ) ;
FIFO#(Datatype ) m1Xd <−

mkLFIFO( ) ;
FIFO#(Datatype ) aeXrhosXd <− mkLFIFO( ) ;
FIFO#(Datatype ) t sMtsstar <−

mkLFIFO( ) ;
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// stage2
FIFO#(Datatype ) negDepthR <−mkLFIFO( ) ;
FIFO#(Datatype ) posDepthR <−mkLFIFO( ) ;
FIFO#(Datatype ) exponent <−mkLFIFO( ) ;
FIFO#(Datatype ) posDepthMass <−mkLFIFO( ) ;

// stage3
FIFO#(Datatype ) rd <−mkSizedBRAMFIFO(6) ;
FIFO#(Datatype ) l c <−

mkSizedBRAMFIFO(9) ;

Exp IFC#( I s i z e , F s i ze ) exponent ia tor <−
mkExponFix ( ) ;

Datatype ib =0;
Datatype vo l tb =0;

r u l e stage1 ;
//Utype uu ;
//uu=u . f i r s t ( ) ;

m0Xd. enq (x . f i r s t ( ) . d∗p m0) ;
m1Xd. enq (x . f i r s t ( ) . d∗p m1) ;
aeXrhosXd . enq (x . f i r s t ( ) . d∗p Ae∗p rhos ) ;
xram4noise . enq (x . f i r s t ( ) . xram) ;
t sMtsstar . enq (x . f i r s t ( ) . ts−p Tsstar ) ;
i r . enq ( ib+u . f i r s t ( ) . i c ) ;
i r 4 n o i s e . enq ( ib+u . f i r s t ( ) . i c ) ;
d4no i se . enq (x . f i r s t ( ) . d ) ;
meStage2 . enq (x . f i r s t ( ) .me) ;
meStage3 . enq (x . f i r s t ( ) .me) ;
dStage3 . enq (x . f i r s t ( ) . d ) ;

x . deq ( ) ;
u . deq ( ) ;
$d i sp l ay (”H: Stage1\n”) ;

endru le
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r u l e stage2 ;
negDepthR . enq (p R1−m0Xd. f i r s t ( ) ) ;
posDepthR . enq (p R1−m1Xd. f i r s t ( ) ) ;
exponent . enq ( t sMtsstar . f i r s t ( )∗−p Aelect

) ;
posDepthMass . enq ( meStage2 . f i r s t ( )−

aeXrhosXd . f i r s t ( ) ) ;

m0Xd. deq ( ) ;
m1Xd. deq ( ) ;
t sMtsstar . deq ( ) ;
meStage2 . deq ( ) ;
aeXrhosXd . deq ( ) ;
$d i sp l ay (”H: Stage2\n”) ;

endru le

r u l e stage3 ;
i f ( dStage3 . f i r s t ( ) >0)
ac t i on

rd . enq ( posDepthR . f i r s t ( ) ) ;
l c . enq ( posDepthMass . f i r s t ( ) ) ;

endact ion
e l s e
ac t i on

rd . enq ( negDepthR . f i r s t ( ) ) ;
l c . enq ( meStage3 . f i r s t ( ) ) ;

endact ion
exponent ia tor . f e ed ( unpack ( pack ( exponent .

f i r s t ( ) ) ) ) ;

dStage3 . deq ( ) ;
posDepthR . deq ( ) ;
posDepthMass . deq ( ) ;
negDepthR . deq ( ) ;
meStage3 . deq ( ) ;
exponent . deq ( ) ;

95



$d i sp l ay (”H: Stage3\n”) ;
endru le

r u l e computeR ;
r . enq ( rd . f i r s t ( ) ∗ exponent iator . f e t ch ( ) ) ;

rd . deq ( ) ;
exponent iator . removeresu l t ( ) ;
$d i sp l ay (”H: computeR\n”) ;

endru le

r u l e computeUbVolt ;
ubvolt . enq ( r . f i r s t ( ) ∗ i r . f i r s t ( ) ) ;

r . deq ( ) ;
i r . deq ( ) ;
$d i sp l ay (”H: computeUbVolt\n”) ;

endru le

r u l e computeVolt ;
vo l t . enq ( ubvolt . f i r s t ( )+vo l tb ) ;

ubvolt . deq ( ) ;
$d i sp l ay (”H: computeVolt\n”) ;

endru le

r u l e addnoise ;
Ytype measurement ;
MeasNoisetype no i s e ;

no i s e=n . f i r s t ( ) ;

measurement . d=d4no i se . f i r s t ( )+no i s e . d ;
measurement . xram=xram4noise . f i r s t ( )+

no i s e . xram ;
measurement . i r=i r 4 n o i s e . f i r s t ( )+no i s e . i r

;
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measurement . l c=l c . f i r s t ( )+no i s e . l c ;
measurement . vo l t=vo l t . f i r s t ( )+no i s e . vo l t

;
y . enq ( measurement ) ;

d4no i se . deq ( ) ;
xram4noise . deq ( ) ;
i r 4 n o i s e . deq ( ) ;
l c . deq ( ) ;
vo l t . deq ( ) ;
n . deq ( ) ;
$d i sp l ay (”H: addnoise \n”) ;

endru le
/∗
r u l e d i s p l a y s t u f f ;
$wr i te ( ” r e s u l t i s ” ) ; fxptWrite ( 10 , i r . f i r s t

( ) ) ; $d i sp l ay (””) ;
endru le
∗/

method Action measure (Xtype xin ,Utype uin ,
MeasNoisetype nin ) ;

x . enq ( xin ) ;
u . enq ( uin ) ;
n . enq ( nin ) ;
// $d i sp l ay (”method measure ”) ;

endmethod

method Ytype fetchMeasurement ( ) ;
r e turn y . f i r s t ( ) ;

endmethod

method Action removeMeasurement ( ) ;
y . deq ( ) ;

endmethod

endmodule
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endpackage : HBRAM

1.2.7 Fpiped.bsv

/∗∗
∗ F i l e : Fpiped . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ Computes the ESR’ s phy s i c a l model in a p ip e l i n ed

f a sh i on
∗
∗ The i n v e r s e s o f d e l t a s are computed through an

inve r s i on farm
∗ Noise i s added to the inputs
∗ The dynamics are computed
∗ The dynamics are i n t e g r a t ed in the s t a t e ve c t o r s

(= p a r t i c l e s )
∗/

package Fpiped ;

import FixedPoint : : ∗ ;
import ExponFix : : ∗ ;
import FIFO : : ∗ ;
import BRAMFIFO : : ∗ ;
import Params : : ∗ ;
import Vector : : ∗ ;
import Types : : ∗ ;
import invFarm : : ∗ ;

/∗∗
abs t ra c t i n t e r f a c e F IFC
Desc r ip t i on :

98



nbpa r t i c l e s i s the number o f p a r t i c l e s that need
to be generated

( a l s o the number o f s t a t e s to f e t ch /update )

i n i t : s e t the i n i t i a l s t a t e o f the
system ( only done once )

evo lve : ask to compute a l l the new
s t a t e s f o r a new command vector ,

app l i ed dur ing t s seconds .
fetchNewState : Get the value o f a new s t a t e
removeNewStateL : remove the new s t a t e value from

the p i p e l i n e to make room
f o r another value .

∗/
i n t e r f a c e F IFC#(numeric type nbpa r t i c l e s ) ;

method Action i n i t (Xtype xvect ) ;
method Action evo lve (Utype u , Datatype t s ) ;
method Xtype fetchNewState ( ) ;
method Action removeNewState ( ) ;

end in t e r f a c e

/∗∗
i n t e r f a c e Dyn IFC
Desc r ip t i on :

has two sepe ra t e input methods so that va lue s
can be preloaded

in to the p i p e l i n e be f o r e the i n v e r s e s o f Delta
are fed , s i n c e t h e i r

computation takes many cy c l e s . This saves a few
cy c l e s .

f eedRest should be used un t i l the p i p e l i n e i s
f u l l . I t b lock automat i ca l l y .

f eedInvDel ta should be used to f e ed the i n v e r s e s
o f Delta in to the p i p e l i n e .

f eedInvDel ta : f e ed a new inver t ed de l t a
feedRest : f e ed a l l the other inputs
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f e tchRates : r e turn the computed r a t e s
acknowledge : remove the computed r a t e s from

the p i p e l i n e to make room
f o r the next r a t e s .

∗/
i n t e r f a c e Dyn IFC ;

method Action feedInvDel ta ( X1type invDel ta ) ;
method Action feedRest ( X2type x Ts , X3type x D

,Utype u , ProcessNo i setype nvect ) ;
method Xtype fetchRates ( ) ;
method Action acknowledge ( ) ;

end in t e r f a c e

/∗∗
f unc t i on integrateOverTime
Desc r ip t i on :

Updates the s t a t e by adding the chamges f o r t h i s
s tep

∗/
funct i on Xtype integrateOverTime (Xtype xvect , Datatype

ts , Xtype r a t e s ) ;
Xtype newX;

newX. de l t a=xvect . d e l t a+ra t e s . d e l t a ∗ t s ;
newX . t s=xvect . t s+ra t e s . t s ∗ t s ;
newX . d=xvect . d+ra t e s . d∗ t s ;
newX . xram=xvect . xram+ra t e s . xram∗ t s ;
newX .me=xvect .me+ra t e s .me∗ t s ;

r e turn newX;
endfunct ion : integrateOverTime

/∗∗
module mkDyn
Desc r ip t i on :
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Computes the r a t e s o f change o f the s t a t e
v a r i a b l e s in a p ip e l i n ed f a sh i on

∗/
module mkDyn(Dyn IFC) ;

//Precomputed constants
Datatype c1 =0.003083633189672;
Datatype c2 =1.980324083561251e−04;
Datatype c3 =5.760942788541822e−04;
Datatype c4 =1.198717372411520e−05;
Datatype c5 =2.777777777777778;

// b ia s
In t e g e r vramb=0;
In t e g e r vo l tb =0;
In t e g e r ib =0;

Reg#(Bool ) a va i l a b l e <− mkReg(True ) ;
Reg#(Utype ) uReg <− mkReg (? ) ;

//FIFOS
FIFO#(ProcessNo i setype ) f i f o N o i s e

<− mkSizedBRAMFIFO(9) ;
FIFO#(X1type ) f i f o I n vD e l t a

<− mkSizedBRAMFIFO(9) ;
FIFO#(X2type ) fifo Ts4computeQMandQS

<− mkSizedBRAMFIFO(9) ;
FIFO#(X2type ) f i fo Ts4computeExponent

<− mkSizedBRAMFIFO(9) ;
FIFO#(X3type ) f i f o D

<− mkSizedBRAMFIFO(9) ;
FIFO#(Datatype ) f i fo Qm

<− mkLFIFO( ) ;
FIFO#(Datatype ) f i f o Q s

<− mkLFIFO( ) ;
FIFO#(Datatype ) f i f o Rd

<− mkSizedBRAMFIFO(7) ;
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FIFO#(Datatype ) f i f o Exponent
<− mkLFIFO( ) ;

FIFO#(Datatype ) fifo QmQs
<− mkSizedBRAMFIFO(3) ;

FIFO#(Datatype ) f i fo Pm
<− mkSizedBRAMFIFO(9) ;

FIFO#(Datatype ) f i f o R
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o I 4 V o l t
<− mkSizedBRAMFIFO(5) ;

FIFO#(Datatype ) f i f o I 4P
<− mkSizedBRAMFIFO(5) ;

FIFO#(Datatype ) f i f o Vram
<− mkSizedBRAMFIFO(5) ;

FIFO#(Datatype ) f i f o V o l t
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o P
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o S d o t
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o d d o t
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o Medot
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o Xramdot
<− mkSizedBRAMFIFO(5) ; // mkSizedFIFO ( valueOf (
nbpa r t i c l e s )+3) ;

FIFO#(Datatype ) f i f o T sdo t
<− mkLFIFO( ) ;

FIFO#(Datatype ) f i f o D e l t a d o t
<− mkSizedBRAMFIFO(3) ;

// I n s t a n c i a t e modules
Exp IFC#( I s i z e , F s i ze ) exponent ia tor <−

mkExponFix ( ) ;

r u l e addnoise ;
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ProcessNo i setype no i s e=f i f o N o i s e . f i r s t ;

Datatype i=uReg . i c+no i s e . i c+f romInteger (
ib ) ;

Datatype vram=uReg . vramc+no i s e . vramc+
fromInteger (vramb ) ;

f i f o Vram . enq (vram) ;
f i f o Xramdot . enq (vram) ;
f i f o I 4 V o l t . enq ( i ) ;
f i f o I 4P . enq ( i ) ;
f i f o N o i s e . deq ;

$d i sp l ay (” addnoise \n”) ;
endru le

r u l e computeQMandQS ;
X2type x t s=fifo Ts4computeQMandQS . f i r s t

;

f i fo Qm . enq ( ( x ts−p Tm) ∗p Ae∗p He ) ;
f i f o Q s . enq ( p Hs∗2∗p Pi∗ p r i ∗p hs0 ∗( x t s

−p Tss ) ) ;
fifo Ts4computeQMandQS . deq ( ) ;

$d i sp l ay (”computeQMandQS\n”) ;
endru le

r u l e computeRd ;
X3type x D=f i f o D . f i r s t ;
i f ( x D<p d I n f l e c t i o n )

f i f o Rd . enq (p R1−p m0∗x D) ;
e l s e

f i f o Rd . enq (p R1−p m1∗x D) ;
f i f o D . deq ( ) ;
$d i sp l ay (” computeRd\n”) ;

endru le
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r u l e computeExponent ;
X2type x t s=fi fo Ts4computeExponent .

f i r s t ;

f i f o Exponent . enq ( ( x ts−p Tsstar )∗−
p Aelect ) ;

f i fo Ts4computeExponent . deq ( ) ;
$d i sp l ay (” computeExponent\n”) ;

endru le

r u l e l oadexponent i a l ;
exponent iator . f e ed ( f i f o Exponent . f i r s t ( )

) ;
f i f o Exponent . deq ( ) ;
$d i sp l ay (” l oadexponent i a l \n”) ;

endru le

r u l e computePmAndQmplusQs ;
f i fo Pm . enq ( f i fo Qm . f i r s t ( ) ∗ c1 ) ; //mur

=0;
fifo QmQs . enq ( f i fo Qm . f i r s t ( )+f i f o Q s .

f i r s t ( ) ) ;

f i fo Qm . deq ( ) ;
f i f o Q s . deq ( ) ;
$d i sp l ay (”computePmAndQmplusQs\n”) ;

endru le

r u l e computeR ;
f i f o R . enq ( f i f o Rd . f i r s t ( ) ∗ exponent iator

. f e t ch ( ) ) ;

f i f o Rd . deq ( ) ;
exponent iator . removeresu l t ( ) ;
$d i sp l ay (”computeR\n”) ;

endru le
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r u l e computeVolt ;
f i f o V o l t . enq ( f i f o R . f i r s t ( ) ∗ f i f o I 4 V o l t

. f i r s t ( )+f romInteger ( vo l tb ) ) ;

f i f o R . deq ( ) ;
f i f o I 4 V o l t . deq ( ) ;
$d i sp l ay (” computeVolt\n”) ;

endru le

r u l e computeP ;
f i f o P . enq ( f i f o V o l t . f i r s t ( ) ∗ f i f o I 4P .

f i r s t ( ) ) ;

f i f o V o l t . deq ( ) ;
f i f o I 4P . deq ( ) ;
$d i sp l ay (” computeP\n”) ;

endru le

r u l e computeTsdot ;
f i f o T sdo t . enq ( ( f i f o P . f i r s t ( )−fifo QmQs

. f i r s t ( ) ) ∗c4 ) ;

f i f o P . deq ( ) ;
fifo QmQs . deq ( ) ;
$d i sp l ay (” computeTsdot\n”) ;

endru le

r u l e computeSdotandDeltadot ;
X1type invDel ta=f i f o I n vD e l t a . f i r s t ( ) ;
f i f o S d o t . enq ( f i fo Pm . f i r s t ( ) ∗ c2+

fxptTruncate ( invDel ta ) ∗p a lphar ∗
p Csd0 ) ;

f i f o D e l t a d o t . enq ( f i fo Pm . f i r s t ( ) ∗ c3+
fxptTruncate ( invDel ta ) ∗p a lphar ∗p Cdd
) ;
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f i fo Pm . deq ( ) ;
f i f o I n vD e l t a . deq ( ) ;
$d i sp l ay (” computeSdotandDeltadot\n”) ;

endru le

r u l e computeMedotandddot ;
f i f o Medot . enq ( f i f o S d o t . f i r s t ( )∗−p rhom

∗p Ae ) ;
f i f o d d o t . enq ( f i f o Vram . f i r s t ( ) ∗c5−

f i f o S d o t . f i r s t ( ) ) ;

f i f o S d o t . deq ( ) ;
f i f o Vram . deq ( ) ;
$d i sp l ay (” computeMedotandddot \n”) ;

endru le

method Action feedInvDel ta ( X1type invDel ta ) ;
f i f o I n vD e l t a . enq ( invDel ta ) ;

endmethod

method Action feedRest ( X2type x Ts , X3type x D
,Utype u , ProcessNo i setype nvect ) ;

fifo Ts4computeQMandQS . enq ( x Ts ) ;
f i fo Ts4computeExponent . enq ( x Ts ) ;
f i f o D . enq (x D) ;
uReg <=u ;
f i f o N o i s e . enq ( nvect ) ;

endmethod

method Xtype fetchRates ( ) ;
Xtype r a t e s= Xtype {

de l t a : f i f o D e l t a d o t . f i r s t ,
t s : f i f o T sdo t . f i r s t ,
d : f i f o d d o t . f i r s t ,
xram : f i f o Xramdot . f i r s t ,
me : f i f o Medot . f i r s t

} ;
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re turn r a t e s ;
endmethod

method Action acknowledge ( ) ;
f i f o D e l t a d o t . deq ( ) ;
f i f o T sdo t . deq ( ) ;
f i f o d d o t . deq ( ) ;
f i f o Xramdot . deq ( ) ;
f i f o Medot . deq ( ) ;

endmethod

endmodule

/∗∗
module mkFpiped

Desc r ip t i on :
l i n k s to gether the pa r t s o f the phys i c a l model :

The i n v e r t e r farm
The dynamics module
The i n t e g r a t i o n module

∗/
module mkFpiped (F IFC#(nbpa r t i c l e s ) ) ;

Reg#(Bool ) a va i l a b l e <−mkReg(True ) ;
Xtype xde fau l t = Xtype
{

de l t a : p de l ta0 ,
t s : p Ts0 ,
d : p d0 ,
xram : 0 ,
me : 100000

} ;

ProcessNo i setype pn = ProcessNo i setype
{

i c : 0 ,
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vramc : 0
} ;

Reg#(Vector#(nbpa r t i c l e s , Xtype ) )
xvectReg <− mkReg( r e p l i c a t e ( xde f au l t ) )
;

Reg#(Vector#(nbpa r t i c l e s , ProcessNo i setype ) )
pnvectReg <− mkReg( r e p l i c a t e (pn) ) ;

Reg#(Utype ) uReg
<− mkReg (? ) ;

Reg#(Datatype ) tsReg
<− mkReg (0 ) ;

Reg#(UInt#(TAdd#(TLog#(nbpa r t i c l e s ) ,1 ) ) )
invCount <−mkReg (0 ) ;

Reg#(UInt#(TAdd#(TLog#(nbpa r t i c l e s ) ,1 ) ) )
dynCount <−mkReg (0 ) ;

Reg#(UInt#(TAdd#(TLog#(nbpa r t i c l e s ) ,1 ) ) )
intCount <−mkReg (0 ) ;

//Reg#(UInt#(TLog#(nbpa r t i c l e s ) ) )
noiseCount <−mkReg (0 ) ;

//SUBMODULES
InvFarm IFC#( I s i z e , Fs ize ,TAdd#(TMul#(Fsize , 2 ) ,4 )

) invFarm <− mkInvFarm ;
Dyn IFC dynamics <− mkDyn;

FIFO#(Xtype ) f i f o newX
<− mkLFIFO( ) ;

r u l e feedInvFarm ( invCount<f romInteger ( valueOf (
nbpa r t i c l e s ) )&&! a v a i l a b l e ) ;

invFarm . submit ( xvectReg [ invCount ] . d e l t a )
;

invCount<=invCount+1;
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// $d i sp l ay (”mkFpiped : feedInvFarm ”) ;
endru le

r u l e feedDyn ( ! a v a i l a b l e && (dynCount<
f romInteger ( valueOf ( nbpa r t i c l e s ) ) ) ) ;

Xtype xtemp=xvectReg [ dynCount ] ;

dynamics . f eedRest ( xtemp . ts , xtemp . d , uReg ,
pnvectReg [ dynCount ] ) ;

dynCount<=dynCount+1;
// $d i sp l ay (”mkFpiped : feedDyn ”) ;

endru le

r u l e feedInvDeltaIntoDyn ( ! a v a i l a b l e ) ;
Maybe#(X1type ) rawres=invFarm . r e s u l t ( ) ;
X1type r e s=fromMaybe ( unpack ( ’ 1 ) , rawres ) ;

invFarm . acknowledge ( ) ;
i f ( i sVa l i d ( rawres ) )
a c t i on

dynamics . f eedInvDel ta (− r e s ) ;
// $d i sp l ay (” Result = %b” ,

r e s ) ;
// $wr i te ( ”mkFpiped : Result i s ”

) ; fxptWrite ( 7 , r e s ) ;
$d i sp l ay (”” ) ;

endact ion
e l s e

// $d i sp l ay (”mkFpiped : INVALID
DIVISION”) ;

endru le

r u l e i n t e g r a t e ( ! a v a i l a b l e && ( intCount<
f romInteger ( valueOf ( nbpa r t i c l e s ) ) ) ) ;

Xtype r a t e s=dynamics . f e tchRates ( ) ;
f i f o newX . enq ( integrateOverTime ( xvectReg

[ intCount ] , tsReg , r a t e s ) ) ;
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intCount<=intCount +1;
dynamics . acknowledge ( ) ;
// $d i sp l ay (”mkFpiped : i n t e g r a t e ”) ;

// $wr i te ( ”mkFpiped integrate : xvect .
d e l t a i s ” ) ; fxptWrite ( 7 , r a t e s .
d e l t a ) ; $d i sp l ay (”” ) ;

// $wr i te ( ”mkFpiped integrate : xvect . t s
i s ” ) ; fxptWrite ( 7 , r a t e s . t s ) ;
$d i sp l ay (”” ) ;

// $wr i te ( ”mkFpiped integrate : xvect . d
i s ” ) ; fxptWrite ( 7 , r a t e s . d ) ;
$d i sp l ay (”” ) ;

// $wr i te ( ”mkFpiped integrate : xvect .
xram i s ” ) ; fxptWrite ( 7 , r a t e s .
xram ) ; $d i sp l ay (”” ) ;

// $wr i te ( ”mkFpiped integrate : xvect .me
i s ” ) ; fxptWrite ( 7 , r a t e s .me ) ;
$d i sp l ay (”” ) ;

endru le

r u l e makeAvailable ( ! a v a i l a b l e && ( intCount>=
fromInteger ( valueOf ( nbpa r t i c l e s ) ) ) ) ;

a va i l ab l e<=True ;
endru le

method Action i n i t (Xtype xvect ) ;
xvectReg <= r e p l i c a t e ( xvect ) ;

endmethod

method Action evo lve (Utype u , Datatype t s ) i f (
a v a i l a b l e ) ;

a v a i l a b l e <=False ;
uReg <=u ;
tsReg <=ts ;

invCount <=0;
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dynCount<=0;
intCount <=0;

endmethod

method Xtype fetchNewState ( ) ;
r e turn f i fo newX . f i r s t ( ) ;

endmethod

method Action removeNewState ( ) ;
f i f o newX . deq ( ) ;

endmethod
endmodule

endpackage : Fpiped

1.2.8 FHpiped.bsv

/∗∗
∗ F i l e : FHpiped . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ Computes the ESR’ s phy s i c a l (F) and measurement

(H) models in a
p ip e l i n ed f a sh i on . F and H are connected through

a ru l e that
s t a t e s that when a r e s u l t i s a v a i l a b l e form F,

t h i s r e s u l t
i s taken and fed in to H.

Upon i n s t a n c i a t i o n o f the FHpiped module , a
number o f c op i e s
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i s provided . This w i l l c r e a t e p a r a l l e l c op i e s o f
FH computation

hardware and r u l e s to connect F and H in each
copy

∗/

package FHpiped ;
import FixedPoint : : ∗ ;
import Vector : : ∗ ;
import Types : : ∗ ;
import HBRAM : : ∗ ;
import Fpiped : : ∗ ;
import Params : : ∗ ;

/∗∗
i n t e r f a c e FHpiped IFC
Parameters :

nc : number o f FH cop i e s ( w i l l i n s t a n c i a t e the
hardware nc t imes )

np : number o f p a r t i c l e s per cop i e s
Methods :

i n i t : s e t the i n i t i a l s t a t e o f the ESR
( should only be used once )

startNewStep : ask to compute a l l the p a r t i c l e s
with a new command

vec to r and f o r t h i s s tep o f
l ength t s .

fetchMeasurements : r e tu rns a vec to r
conta in ing a l l the s imu la t i on r e s u l t s

in the p i p e l i n e f o r each
copy

removeMeasurement : removes the cur r ent
r e s u l t s from the p i p e l i n e o f each copy

( only executed i f a l l
the output FIFOs are
not empty )

∗/
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i n t e r f a c e FHpiped IFC#(numeric type nc , numeric type np)
;

method Action i n i t (Xtype x i n i t ) ;
method Action startNewStep (Utype uin ,

Datatype t s ) ;
method Vector#(nc , Ytype )

fetchMeasurements ( ) ;
method Action removeMeasurement ( ) ;

end in t e r f a c e

module mkFHpiped (FHpiped IFC#(nc , np ) ) ;
I n t e g e r nb cop i e s=valueOf ( nc ) ;
I n t e g e r nb pa r t i c l e s=valueOf (np) ;
// i n i t i a l s t a t e
Xtype xde fau l t = Xtype
{

de l t a : p de l ta0 ,
t s : p Ts0 ,
d : p d0 ,
xram : 0 ,
me : 100000

} ;

// proce s s no i s e
ProcessNo i setype pn = ProcessNo i setype
{

i c : 0 ,
vramc : 0

} ;

//measurement no i s e
MeasNoisetype mn = MeasNoisetype
{

d : 0 ,
xram : 0 ,
i r : 0 ,

113



l c : 0 ,
v o l t : 0

} ;

Reg#(Utype ) uReg <− mkReg
(Utype{ i c : 0 , vramc : 0} ) ;

Reg#(MeasNoisetype ) mnvectReg <− mkReg
(mn) ;

F IFC#(np) f [ nb cop i e s ] ;
H IFC h [ nb cop i e s ] ;

f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

f [ i ] <− mkFpiped ;
h [ i ] <− mkH;

end

f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

ru l e feedNewStateIntoHandRemoveFromF i ;
f [ i ] . removeNewState ( ) ;
h [ i ] . measure ( f [ i ] . fetchNewState

( ) , uReg ,mnvectReg ) ;
$d i sp l ay (”

feedNewStateIntoHandRemoveFromF
\n”) ;

$wr i te ( ”
feedNewStateIntoHandRemoveFromF i : f [
i ] . fetchNewState ( ) . d e l t a i s ” ) ;
fxptWrite ( 7 , f [ i ] . fetchNewState ( ) .
d e l t a ) ; $d i sp l ay (”” ) ;

$wr i te ( ”
feedNewStateIntoHandRemoveFromF i : f [
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i ] . fetchNewState ( ) . t s i s ” ) ;
fxptWrite ( 7 , f [ i ] . fetchNewState ( ) . t s
) ; $d i sp l ay (”” ) ;

$wr i te ( ”
feedNewStateIntoHandRemoveFromF i : f [
i ] . fetchNewState ( ) . d i s ” ) ;
fxptWrite ( 7 , f [ i ] . fetchNewState ( ) . d
) ; $d i sp l ay (”” ) ;

$wr i te ( ”
feedNewStateIntoHandRemoveFromF i : f [
i ] . fetchNewState ( ) . xram i s ” ) ;
fxptWrite ( 7 , f [ i ] . fetchNewState ( ) .
xram ) ; $d i sp l ay (”” ) ;

$wr i te ( ”
feedNewStateIntoHandRemoveFromF i : f [
i ] . fetchNewState ( ) .me i s ” ) ;
fxptWrite ( 7 , f [ i ] . fetchNewState ( ) .me
) ; $d i sp l ay (”” ) ;

endru le
end
/∗
r u l e getMeasurement ; //whenever a measurement i s

ava i b l e
h . removeMeasurement ( ) ;
$wr i te ( ”xram r e s u l t i s ” ) ; fxptWrite (

10 , h . fetchMeasurement ( ) . xram ) ;
$d i sp l ay (”\n”) ;

$d i sp l ay (”FHTest : getMeasurement\n”) ;
endru le
∗/

method Action i n i t (Xtype x i n i t ) ;
f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

f [ i ] . i n i t ( x i n i t ) ;
end
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/∗ xvectReg <= r e p l i c a t e ( x i n i t ) ;
xvectReg2 <= r e p l i c a t e ( x i n i t ) ; ∗/
// i n i t i a l i z e d <=True ;

endmethod

method Action startNewStep (Utype uin , Datatype
t s ) ; // i f ( i n i t i a l i z e d ) ;

f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

f [ i ] . evo lve ( uin , t s ) ;
end
uReg<=uin ;

endmethod

method Vector#(nc , Ytype )
fetchMeasurements ( ) ; //When both measurements
are a v a i l a b l e

Vector#(nc , Ytype ) vect ;
f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

vect [ i ]=h [ i ] . fetchMeasurement ( ) ;
end
return vect ;

endmethod

method Action removeMeasurement ( ) ;
f o r ( I n t e g e r i =0; i<nb cop i e s ; i=i +1)
begin

h [ i ] . removeMeasurement ( ) ;
end

endmethod
endmodule : mkFHpiped

endpackage : FHpiped
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1.2.9 FHpipedTb.bsv

package FHpipedTb ;

import FixedPoint : : ∗ ;
import Vector : : ∗ ;
import Types : : ∗ ;
import FHpiped : : ∗ ;
import Params : : ∗ ;

typede f 50 NbPart i c l e s ;
typede f 1 NbCopies ;

module mkFHpipedTb (Empty) ;
Utype u ;
Reg#(Vector#(NbPart ic les , Vector#(NbCopies , Ytype )

) ) yvectReg <− mkReg (? ) ;

I n t eg e r np=va lueo f ( NbPart i c l e s ) ;
I n t eg e r nc=va lueo f ( NbCopies ) ;

I n t eg e r nbSteps =3;

Datatype t s=fromRational ( 2 , 15 ) ; // sampling time
//command vec to r
u . i c =200;
u . vramc=20;

// i n i t s t a t e
Xtype x i n i t = Xtype
{

de l t a : p de l ta0 ,
t s : p Ts0 ,
d : p d0 ,
xram : 0 ,
me : 100000
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} ;

FHpiped IFC#(NbCopies , NbPart i c l e s ) fh <−
mkFHpiped ( ) ;

Reg#(Utype ) uReg <− mkReg(u) ;

Reg#(UInt#(50) ) simCount <− mkReg (0 ) ;
Reg#(UInt#(50) ) fetchCount <− mkReg (0 ) ;
Reg#(UInt#(20) ) count <− mkReg (0 ) ;

r u l e i n i t ( count==0) ;
fh . i n i t ( x i n i t ) ;

endru le

r u l e feedNewU ( simCount<f romInteger ( nbSteps ) ) ;
fh . startNewStep (uReg , t s ) ;
simCount<=simCount+1;
$d i sp l ay (”mkFHpipedTb : feedNewU” ) ;

endru le

r u l e f e tchAndDisp layS imulat ions ; / / ( simCount<
f romInteger ( np) ) ;

Vector#(NbCopies , Ytype ) measurements=fh .
fetchMeasurements ( ) ;

yvectReg [ fetchCount ]<=measurements ;
fh . removeMeasurement ( ) ;
$d i sp l ay (”mkFHpipedTb : FETCH” ) ;
fetchCount<=fetchCount +1;

f o r ( I n t e g e r j =0; j<f romInteger ( nc ) ; j=j +1)
begin

$wr i te ( ”yvectReg [ s tep :
%d ] [ copy : %d ] . d= ” ,
fetchCount , j ) ;
fxptWrite ( 10 ,
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measurements [ j ] . d ) ;
$d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [ s tep :
%d ] [ copy : %d ] . xram=
” , fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . xram
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [ s tep :
%d ] [ copy : %d ] . i r= ” ,
fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . i r )
; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [ s tep :
%d ] [ copy : %d ] . l c= ” ,
fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . l c )
; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [ s tep :
%d ] [ copy : %d ] . vo l t=
” , fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . v o l t
) ; $d i sp l ay (”\n”) ;

end
endru le

/∗ r u l e d i sp l ayS imu la t i on s ( fetchCount>=fromInteger (
nc ) ) ;

f o r ( I n t e g e r j =0; j<f romInteger ( nc ) ; j=j +1)
begin

f o r ( I n t e g e r i =0; i<f romInteger ( np
) ; i=i +1)

ac t i on
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$wr i te ( ”yvectReg[%d ] . d=
” , i ) ; fxptWrite (

10 , yvectReg [ i ] [ j ] . d
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] .
xram= ” , i ) ;
fxptWrite ( 10 ,
yvectReg [ i ] [ j ] . xram )

; $d i sp l ay (”\n”) ;
$wr i te ( ”yvectReg[%d ] . i r

= ” , i ) ; fxptWrite (
10 , yvectReg [ i ] [ j ] . i r
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] . l c
= ” , i ) ; fxptWrite (
10 , yvectReg [ i ] [ j ] . l c
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] .
vo l t= ” , i ) ;
fxptWrite ( 10 ,
yvectReg [ i ] [ j ] . v o l t )

; $d i sp l ay (”\n”) ;
endact ion

end
endru le ∗/

ru l e cycleCount ;
count <= count+1;
$d i sp l ay (”mkFHpipedTb : −−−−−−−−−−−−−

Count = %d −−−−−−−−−−−\n” , count ) ;
endru le

r u l e stop ( count >350) ;
$ f i n i s h (0 ) ;

endru le

endmodule : mkFHpipedTb
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endpackage : FHpipedTb

1.2.10 MultipleFH.bsv

/∗∗
∗ F i l e : MultipleFH . bsv
∗ Date c r ea t ed : not sure
∗ Last update : June 09
∗ Author : Thomas Lauzon
∗ Desc r ip t i on :
∗ This i s the Top module .

Al l i t does i s i n s t a n c i a t i n g the FHpiped module
with a given number o f p a r a l l e l c op i e s

and a nuber o f p a r t i c l e s and prov ide s an
i n t e r f a c e to s t a r t the computations and f e t ch

the r e s u l t s .
∗/
package MultipleFH ;

import FixedPoint : : ∗ ;
import Vector : : ∗ ;
import Types : : ∗ ;
import FHpiped : : ∗ ;
import Params : : ∗ ;

typede f 150 NbPart i c l e s ;
typede f 2 NbCopies ;

/∗∗
i n t e r f a c e MultFHpiped IFC
methods :

i n i t : s e t an i n i t i a l s t a t e ( should only be used
once , at the beginning

startNewStep : r eques t a s imu la t i on f o r a g iven
command ( uin ) app l i ed f o r t s seconds
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fetchMeasurments : r e tu rns a l l the obse rva t i ons
in the output FIFOs o f a l l s imu la to r s

removeMeasurement : removes a l l the obse rva t i ons
in the output FIFOs o f a l l s imu la to r s

∗/
i n t e r f a c e MultFHpiped IFC ;

method Action i n i t (Xtype x i n i t ) ;
method Action startNewStep (Utype uin ,

Datatype t s ) ;
method Vector#(NbCopies , Ytype )

fetchMeasurements ( ) ;
method Action removeMeasurement ( ) ;

end in t e r f a c e

(∗ s yn the s i z e ∗)
module mkMultipleFH( MultFHpiped IFC ) ;

FHpiped IFC#(NbCopies , NbPart i c l e s ) fh <−
mkFHpiped ( ) ;

method Action i n i t (Xtype x i n i t ) ;
fh . i n i t ( x i n i t ) ;

endmethod

method Action startNewStep (Utype uin , Datatype
t s ) ;

fh . startNewStep ( uin , t s ) ;
endmethod

method Vector#(NbCopies , Ytype )
fetchMeasurements ( ) ; //When both measurements
are a v a i l a b l e

return fh . fetchMeasurements ( ) ;
endmethod

122



method Action removeMeasurement ( ) ;
fh . removeMeasurement ( ) ;

endmethod
endmodule
endpackage : MultipleFH

1.2.11 MultipleFHTb.bsv

package MultipleFHTb ;

import FixedPoint : : ∗ ;
import Vector : : ∗ ;
import Types : : ∗ ;
import MultipleFH : : ∗ ;
import Params : : ∗ ;

// typede f 3 NbPart i c l e s ;
// typede f 3 NbCopies ;

module mkMultipleFHTb (Empty) ;
Utype u ;
//Reg#(Vector#(NbPart ic les , Vector#(NbCopies ,

Ytype ) ) ) yvectReg <− mkReg (? ) ;
//Reg#(Vector#(NbCopies , Ytype ) ) yvectReg <−

mkReg (? ) ;

I n t eg e r np=va lueo f ( NbPart i c l e s ) ;
I n t eg e r nc=va lueo f ( NbCopies ) ;

I n t eg e r nbSteps =3;

Datatype t s=fromRational ( 2 , 15 ) ; // sampling time
//command vec to r
u . i c =200;
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u . vramc=20;

// i n i t s t a t e
Xtype x i n i t = Xtype
{

de l t a : p de l ta0 ,
t s : p Ts0 ,
d : p d0 ,
xram : 0 ,
me : 100000

} ;

MultFHpiped IFC fh <−mkMultipleFH ( ) ;

Reg#(Utype ) uReg <− mkReg(u) ;

Reg#(UInt#(50) ) simCount <− mkReg (0 ) ;
Reg#(UInt#(50) ) fetchCount <− mkReg (0 ) ;
Reg#(UInt#(20) ) count <− mkReg (0 ) ;

r u l e i n i t ( count==0) ;
fh . i n i t ( x i n i t ) ;

endru le

r u l e feedNewU ( simCount<f romInteger ( nbSteps ) ) ;
fh . startNewStep (uReg , t s ) ;
simCount<=simCount+1;
$d i sp l ay (”mkMultipleFHTb : feedNewU” ) ;

endru le

r u l e removeAndDisplaySimulationResults ; / / (
simCount<f romInteger (np ) ) ;

Vector#(NbCopies , Ytype ) measurements=fh .
fetchMeasurements ( ) ;

//yvectReg [ fetchCount ]<=measurements ;
//yvectReg<=measurements ;
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fh . removeMeasurement ( ) ;
$d i sp l ay (”mkMultipleFHTb : FETCH” ) ;
fetchCount<=fetchCount +1;

f o r ( I n t e g e r j =0; j<f romInteger ( nc ) ; j=j +1)
begin

$wr i te ( ”yvectReg [
fetchCount : %d ] [ copy :
%d ] . d= ” , fetchCount ,

j ) ; fxptWrite ( 10 ,
measurements [ j ] . d ) ;
$d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [
fetchCount : %d ] [ copy :
%d ] . xram= ” ,

fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . xram
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [
fetchCount : %d ] [ copy :
%d ] . i r= ” , fetchCount
, j ) ; fxptWrite ( 10 ,
measurements [ j ] . i r )
; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [
fetchCount : %d ] [ copy :
%d ] . l c= ” , fetchCount
, j ) ; fxptWrite ( 10 ,
measurements [ j ] . l c )
; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg [
fetchCount : %d ] [ copy :
%d ] . vo l t= ” ,

fetchCount , j ) ;
fxptWrite ( 10 ,
measurements [ j ] . v o l t
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) ; $d i sp l ay (”\n”) ;
end

endru le

/∗ r u l e d i sp l ayS imu la t i on s ( fetchCount>=fromInteger (
nc ) ) ;

f o r ( I n t e g e r j =0; j<f romInteger ( nc ) ; j=j +1)
begin

f o r ( I n t e g e r i =0; i<f romInteger ( np
) ; i=i +1)

ac t i on
$wr i te ( ”yvectReg[%d ] . d=

” , i ) ; fxptWrite (
10 , yvectReg [ i ] [ j ] . d
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] .
xram= ” , i ) ;
fxptWrite ( 10 ,
yvectReg [ i ] [ j ] . xram )

; $d i sp l ay (”\n”) ;
$wr i te ( ”yvectReg[%d ] . i r

= ” , i ) ; fxptWrite (
10 , yvectReg [ i ] [ j ] . i r
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] . l c
= ” , i ) ; fxptWrite (
10 , yvectReg [ i ] [ j ] . l c
) ; $d i sp l ay (”\n”) ;

$wr i te ( ”yvectReg[%d ] .
vo l t= ” , i ) ;
fxptWrite ( 10 ,
yvectReg [ i ] [ j ] . v o l t )

; $d i sp l ay (”\n”) ;
endact ion

end
endru le ∗/
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r u l e cycleCount ;
count <= count+1;
$d i sp l ay (”mkMultipleFHTb : −−−−−−−−−−−−−

Count = %d −−−−−−−−−−−\n” , count ) ;
endru le

r u l e stop ( count >600) ;
$ f i n i s h (0 ) ;

endru le

endmodule : mkMultipleFHTb

endpackage : MultipleFHTb
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