
 

 

 

 

 

 

 

 

 

Copyright 

by 

Jacob Jason Rosales 

2009 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5185247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Report Committee for Jacob Jason Rosales 

Certifies that this is the approved version of the following report: 

 

 

Mobile Computing in a 

Clouded Environment 

 

 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 

Christine Julien 

William Bard 

Supervisor: 



Mobile Computing in a 

Clouded Environment 

 

 

by 

Jacob Jason Rosales, B.S. 

 

 

Report 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Engineering 

 

 

The University of Texas at Austin 

December, 2009 



Dedication 

 

I dedicated this report to Dionna, Alyssa, and Angelyna for their love, support, 

inspiration, and understanding. I love you all and thank you for standing by me these last 

couple of years. It was your belief and encouragement in me that allowed me to complete 

this report.



 

v 

 

Acknowledgements 

 

I would like to thank Professor Christine Julian and Professor William Bard for their 

guidance and constructive criticism they provided for this report. Without their domain 

expertise and influence this paper would not have been possible.  

 

I would like to thank my friend and mentor Sandra Ellet-Salmoran, IBM Second Line 

Manager, for encouraging me to continue my education and apply to the Executive 

Master’s Program at the University of Texas at Austin. Her encouragement has allowed 

me to increase my educational background and bring new and innovative ideas to IBM. A 

special thanks to my employer, IBM, for providing the financial support for my Masters 

education. 

 

I would also like to thank my friend Margie Carrillo for her assistance in reading each 

revision of this report and providing valuable feedback and suggestions. 

 

Last but not least, I would like to thank my family for believing in me and giving me 

inspiration to continue with my graduate education. Without their support, this would not 

have been possible. Thank you all for your love and support. 

 

 

 

 



 

vi 

 

 

 

 

 

 

 

 

 

 

Abstract 

 

Mobile Computing in a 

Clouded Environment 

 

 

 

 

Jacob Jason Rosales, M.S.E. 

The University of Texas at Austin, 2009 

 

Supervisor:  Christine Julien 

 



 

vii 

 

Cloud Computing has started to become a viable option for computing centers and 

mobile consumers seeking to reduce cost overhead, power consumption, and increase 

software services available within their platform. For instance distributed memory 

constrained mobile devices can expand their ability to share real time data by utilizing 

virtual memory located within the cloud. Cloud memory services can be configured to 

restrict read and write access to the shared memory pool on a partner by partner basis. 

Utilization of such resources in turn reduces hardware requirements on mobile devices 

while lessening power consumption for each physical resource.  

Within the Cloud Computing paradigm, computing resources are provisioned to 

consumers on demand and guaranteed through service level agreements. Although the 

idea of a computing utility is not new, its realization has come to pass as researchers and 

corporate companies embark on a journey of implementing highly scalable cloud 

environments. As new solutions and architectures are proposed, additional use cases and 

consumer concerns have been revealed. These issues range from consumer security, 

adequate service level agreements and vendor interoperability, to cloud technology 

standardizations. Further, the current state of the art does not adequately address these 

needs for mobile consumers, where services need to be guaranteed even as consumers 

dynamically change locations. 

Due to the rapid adoption of virtualization stacks and the dramatic increase of 

mobile computing devices, cloud providers must be able to handle logical and physical 

mobility of consumers. As consumers move throughout geographical regions, there exists 

the probability that a consumer’s new locale may hinder a producer’s ability to uphold 

service level agreements. This inability is due to the fact that a producer may not have 

physical resources located relatively close to a mobile consumer’s new locale. As a 
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consequence, producers must either continue to provide degraded resource consumption 

or migrate workloads to third party producers in order to ensure service level agreements 

are maintained.  

The goal of this report is to research existing architectures that provide the ability 

to adequately uphold service level agreements as mobile consumers move from locale to 

locale. Further we propose an architecture that can be implemented along with existing 

solutions in order to ensure consumers receive adequate service levels regardless of 

locality. We believe this architecture will lead to increased cloud interoperability and 

decreased consumer to producer platform coupling. 
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1.0 Introduction 

Cloud Computing is neither a new idea nor a new technology; rather it is a 

combination of existing technologies applied in a specific environment to provide remote 

services to consumers. However, the current state of the art can be considered in its 

infancy as new requirements and concerns have emerged and consumers begin to 

investigate the value of remote resource consumption. If Cloud Computing is indeed, as 

we believe, a viable option for consumers to migrate physical resources to remote cloud 

environments, then legacy and emerging software stacks must be able to adapt to these 

ever-evolving requirements. We believe that one of the most notable constraints placed 

on cloud vendors is the non functional requirement that cloud producers shall provide a 

defined amount of resources throughout a given time interval, without degrading 

consumer performance. In existing software stacks, this requirement can easily be 

achieved as consumers maintain and manage the physical resources required by 

workloads. In a clouded environment, consumer resources are managed by cloud 

producers and can be provisioned across thousands of physical computing resources. As 

producers attempt to balance workload requests from multiple consumers without 

exceeding performance and resource thresholds as defined within the consumer service 

level agreement (SLA), periods may exist in which producers cannot satisfy SLA 

agreements. Further, these environments should not assume that the physical fabric 

between consumer and producer is static due to the increasing ability for consumers to 

dynamically change locales. Changes within the underlying fabric and location of a 

consumer directly impact and influence a producer’s ability to remain within a given set 

of boundaries as defined within an SLA 



 

2 

 

Today, consumers are no longer restricted to a single geographical location due to 

increased usage of physical and logical mobile technologies [9, 17]. Mobile Computing 

has introduced new technologies that have dramatically changed the way existing 

infrastructures are designed and managed.  Mobile devices can be expected to migrate in 

and out of network coverage areas, as well as dynamically appear without warning in 

different regions of the world. This type of mobility is commonly categorized as physical 

mobility. Logical mobility describes the movement of logical computing resources and 

software workloads to new physical environments. This category of mobility has 

increased as numerous virtualization stacks have evolved to provide consumers the 

ability to migrate workloads to new geographical regions with almost zero application 

downtime. As consumers continue to adapt virtualization stacks and increase usage of 

mobile devices, producers should extend cloud environments to dynamically relocate 

consumer workloads to physical computing resources that are located in a relatively close 

proximity to consumers. Doing so may increase the likelihood that a producer will be 

able to maintain the terms of the SLA. 

It is our belief that Cloud environments should be flexible enough to transparently 

migrate Cloud workloads to either producer or third party resources located relatively 

close to a consumer’s locale. As research within Cloud computing has begun to take off, 

we believe that the issue of Cloud interoperability can increase the likelihood that a 

producer does not violate an SLA, while also increasing the number of options mobile 

consumers have available to host workloads. The remainder of this paper has the 

following structure: in Section 2 we provide motivating examples supporting why cloud 

environments must become consumer locale aware. In Section 3 we discuss existing 

architectures that can be harnessed to support consumer mobility. In Section 4 we take a 
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look at the current state of the art of Cloud Computing. In Section 5 we investigate the 

current state of the art for mobile technologies. In Section 6 we provide an in-depth look 

at uses cases for mobility within cloud environments. In Section 7 we propose an 

architecture that can be implemented in order to decrease the probability that cloud 

producers will violate SLA agreements. 
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2.0 Motivation 

Technology has increased the amount of resources and services consumers 

previously were unable to utilize. Today, it is common for these consumers to request 

services within one region and then migrate to a new region while still intending to utilize 

the same service(s) with almost no degradation. Mobile technologies and Cloud 

Computing can be utilized to decrease the probability of drastically degraded services. 

This section provides a motivating example to help illustrate the need for cloud producers 

to become consumer mobility aware, in order to continue providing highly available 

resources regardless of consumer locality. 

Consider a mobile device that provides users the ability to practice Telemedicine 

in urban and remote regions. The device could provide services that allow for the 

uploading of real time emergency field data to a service provider’s local repository, 

which in turn is retrieved by emergency technicians to process and assess. After an 

assessment, a mobile device would receive real time responses and act accordingly. As 

the device moves in and out of network range, it can be expected that the time it takes to 

transmit and receive data will degrade, depending on the relative distance to an access 

point. As depicted within Figure 1, when consumers move out of service range, network 

connectivity is lost, which could have drastic ramifications depending on the type of 

emergency. On the other hand, when consumers remain within range of a producer’s 

coverage area, then services will continue to be provided accordingly. This model has 

two drawbacks. First, consumers are restricted to a limited range before losing services, 

and secondly consumers do not have the ability to switch service producers in cases 

where it may potentially be conceivable to do so. 
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One plausible solution to this problem is depicted in Figure 2. Consumers would 

utilize application and storage services provided by cloud producers to send and receive 

real time medical data. Physical mobility would allow the device to report information as 

it moves into new contexts that can be utilized by cloud providers to initiate a logical 

migration of the consumer’s resources. A migration could either be initiated to an 

additional cloud owned by the cloud producer or to a third party cloud environment, 

depending on the availability of producers within the region. In the event that a migration 

is initiated to a third party cloud, the mobile consumer should not be impacted due to the 

underlying infrastructure utilized by the new producer. It should still be technically 

feasible to maintain the same semantics as previously used with an initial producer, thus 

decreasing consumer to producer platform coupling [5]. Further a consumer’s logical 

resources within the cloud may be dependent on external clouds, thus a migration may in 

fact cause degradation of these resources. To address this, resources can be replicated 

across a federation of clouds or mirrored in order to ensure real time synchronization to 

resources. Regardless of the methodology employed, autonomic procedures should be 

implemented to reduce the amount of internal and external resource degradation caused 

by the relocation of a consumer.   

Although a plurality of solutions exists for scenarios such as this, the above 

embodiment depicts how Cloud and Mobile technologies can be harnessed to maintain 

service level agreements for mobile consumers. In the remainder of this paper we discuss 

the current state of the art and describe an architecture that can be implemented within 

cloud environments with minimal impact to mobile consumers. 
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3.0 Related Work 

The current state of the art has provided valuable research in areas ranging from 

distributed computing, mobility, and resource provisioning. As Cloud Computing is a 

collection of existing and new technologies, within this section we discuss some of the 

relevant and innovative strategies that may be extended in order to implement the 

architecture defined within Section 7.0.  

Within [7], the authors describe Cloud Computing as the 5th utility. The concept 

stems from the notion that users request the use of services through an on-demand basis 

and only be charged for the resources that they consumed and the duration of their use. 

This follows how current utility providers operate today. Consumers request the use of 

water or electricity, and in most cases do not know where the resources are being 

delivered or generated from. The computing utility idea operates in a similar manner, as 

consumers utilize cloud services to gain access to computing resources. The authors 

propose an approach to create a market-based cloud environment where multiple cloud 

venders can compete for consumer contracts by bidding on service requests. In order to 

create a market oriented cloud architecture, the authors rely on three critical actors, 

consumer, broker, and vendor. Consumers request compute resources. Brokers act as the 

middle man and attempt to locate the requested resources within the given constraints 

specified by the consumer. Vendors provide services and bid for jobs from both brokers 

and consumers. The architecture utilizes a SLA Resource Allocator to facilitate the 

communication between the consumer/broker and the cloud vendor(s).  With this model, 

consumers are able to gain access to large amounts of resources for a fraction of the cost 

it would require for them to own and maintain the computing resources within their data 

center. Brokers are able to bring in income by negotiating lower utility prices from 
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vendors and providing this to consumers of a slightly higher cost. Vendors are able to 

generate income by leasing out resources within their cloud to brokers and consumers.  

The MetaCDN project proposes to build a single namespace or point of entry for 

consumers to utilize Software-as-a-Service interfaces from within cloud networks [6]. 

Specifically, MetaCDN provides an interface that allows content owners to publish 

documents to cloud storage producers. This interface allows consumers to develop 

applications that are able to communicate through one interface, yet; have access to 

numerous supported cloud services. MetaCDN does this by providing connectors that 

utilize proprietary protocols to transfer content to and from the storage clouds. Further 

MetaCDN proposes to provide the ability to manage QoS for consumers wishing to stay 

within a specific price range and ensure they are receiving the amount of service as 

specified within their SLA. Consumers submit a URL to the MetaCDN gateway, which 

in turn attempts to locate a best match for the URL based on the current location of the 

consumer and the closest cloud producer. MetaCDN will then return the data back to the 

consumer where they can put/get information from the current cloud they are connected 

to. Although MetaCDN provides a mechanism where consumers are not highly coupled 

to specific cloud producers, it still introduces a single point of failure for clients and 

currently does not have any failover or disaster recovery mechanisms in place.   

The authors of [11] propose Community Cloud Computing (C3). In order to 

create a community oriented environment, the underlying architecture utilizes concepts 

from Grid computing, EcoSystem computing, and Green computing. To minimize vendor 

lock-in, the authors propose C3 which allows for the public community to participate in 

creating a social compute cloud. To address the issues regarding green computing, the 

authors argue that although utilizing cloud resources does allow consumers to gain access 
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to large compute resources; it however does not minimize the cloud’s carbon footprint. 

As adoption of cloud computing technologies increases, so will the amount of physical 

resources required by cloud producers, which will in turn increase the carbon footprint. 

C3 would allow for a reduction in the carbon footprint by allowing the cloud to 

dynamically grow and shrink as needed in order to provide adequate resources to 

accommodate consumer demands. In order to provide for such elasticity, the authors 

propose the idea of a community currency. As nodes provide resources, they are 

compensated by the community. When nodes require personal compute resources, they 

can then redeem the currency by requesting for the community to process their requests. 

The authors of Mobile Service Clouds (MSC) propose the use of overlay 

networks in order to provide adequate services for mobile consumers [15]. Nodes within 

an overlay network can dynamically reconfigure and instantiate new services with 

minimal or no impact to consumers. Such networks provide the ability to locate the 

current fastest path to a given resource by using nodes within the network to identify the 

total time each known path will take to get data from the mobile consumer, through the 

network, and finally to the cloud resources. This same process is handled when the cloud 

provider is sending information back. Further the network implements high availability 

by requiring redundant adjacent nodes in cases of node outages. As disruptions are 

identified, the network dynamically instantiates new nodes to replace lost nodes. 

Although the benefits of an overlay network can potentially decrease SLA violations, the 

underlying infrastructure must be supported in all areas a consumer can migrate too. In 

most scenarios, such a requirement is not practical. 

The Eucalyptus project is a Cloud Computing architecture implemented to give 

researchers and the community access to an open source cloud environment [13]. 
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Eucalyptus is modeled after Amazon’s EC2 [1] offering. Due to this dependency, the 

project currently offers only IaaS cloud services.  One of the driving requirements for the 

project is to decrease vendor lock in, however, as researchers and enterprises deploy 

Eucalyptus within their data center, they in turn are potentially coupling their platforms 

and technology to a single cloud provider 

The RESERVOIR project proposes an architecture that enables communication 

between heterogeneous clouds [14]. The authors believe that cloud federations provide 

more efficient use of resources and have the ability to ensure customer SLAs are not 

violated. This is achieved by offloading current consumer workloads to neighbor clouds. 

Further this decreases vendor lock in since a consumers workload can be deployed to 

heterogeneous clouds and still receive the required resources needed to satisfy their initial 

SLAs. RESEVOIR addresses these issues by proposing a three tiered architecture where 

each tier is loosely coupled to the others and the native technologies supporting the cloud 

environment. This loose coupling allows for workloads to be migrated and scaled 

transparently to local or remote nodes within the federated cloud.   

 Within [5], the authors discuss the notion of allowing clouds to be self 

manageable, provide a solution for resource submission, and finally discuss the ability for 

service negotiation bootstrapping. The authors propose the use of an Autonomic Manger 

that is the main entity within the architecture that allows for self management within a 

cloud. Within this component, a closed loop of control is implemented using monitoring, 

analysis, planning, and execution functions (MAPE). Each function is used to sense and 

identify changes within the cloud environment in order to successfully react adequately to 

change. Within the architecture the authors define a lifecycle used to ensure a self 

manageable cloud. The lifecycle starts with Meta-Negotiation, which consists of 



 

11 

 

negotiating with consumers the services and SLAs that need to be agreed upon before 

jobs can be submitted. Once SLAs have been agreed to, the execution phase can be 

initiated. Within the execution phase, the cloud processes requests for new submissions 

and potentially migrates existing jobs to other resources in order to ensure SLAs are not 

impacted due to the new job additions. The last phase is the post process phase. This 

phase takes care of restoring resources to the pool. Further the authors provide the idea of 

negotiation bootstrapping. This concept involves consumers submitting job requests to a 

central repository in order to locate providers that can host their applications within the 

specified constraints. As all consumer terminology cannot be expected to be similar, the 

central repository is used to analyze job requests. During the analysis phase, the 

component attempts to map the consumer’s job request language to the provider’s 

language. If the mapping is successful, a new document is returned to the user indicating 

the interfaces that are necessary in order to utilize the provider’s service. This approach 

allows for consumers to have the ability to deploy workloads on different clouds without 

having to worry about vendor lock in. However, if the consumer is not fluent with 

regards to the set of returned interfaces, then resource utilization is prevented. 

This SAGA project attempts to provide a set of interfaces that can be used to 

increase application interoperability between clouds and grids [12]. SAGA is a 

programming model that provides a rich set of abstract APIs that allow applications to 

interoperate with different clouds and grid environments. The goal is to allow 

applications to run unchanged regardless of which environment the application is 

deployed on. This is done by providing adapters at the back end of the API interfaces that 

are context aware of the current runtime environment. These adapters provide the 

required resources needed in order to function with the native stacks. Overall this 
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approach allows for applications to interoperate with various clouds that are currently 

supported. 

Although these technologies and projects provide a basis for our goals regarding 

cloud interoperability, autonomous resource management, mobile awareness, and 

platform decoupling; to the best of our knowledge there currently does not exist a 

cohesive platform that implements these core requirements. Further, the presented 

innovative solutions do not take into consideration the ability for cloud producers to 

autonomously analyze and migrate mobile consumer workloads without violating SLA 

guarantees. 
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4.0 Cloud Technologies 

As with all new paradigms in their infancy, Cloud Computing is currently in an 

evolving stage where research institutes and corporate vendors continuously attempt to 

define a globally accepted definition of Cloud Computing and what constitutes cloud 

environments [16]. Rather than provide a globally accepted definition, we propose that 

cloud computing describes the utilization of heterogeneous remote resources provisioned 

and guaranteed through the use of SLAs by third party cloud producers. The Cloud model 

utilizes existing concepts and technologies used within Grid and Utility computing, 

however, the application and guarantees provided by producers distinguishes Cloud 

Computing from existing paradigms.  

Within Grid Computing, shared resources are provisioned and apportioned across 

a cluster of heterogeneous distributed systems to be utilized by specific compute-rich 

scientific applications [10].  Each node within the grid is allocated small portions of the 

global problem space. As nodes complete tasks, results are collectively combined to 

structure an overall solution for the given problem. Once acceptable results are obtained, 

the Grid can be reorganized and resources redistributed as needed.  

Utility Computing describes the ability for consumers to purchase or lease 

computing resources on a pay-as-needed basis. For instance, a company may purchase a 

virtual server configured with 16 processors and 16 GB of memory, while only paying 

for 4 processors and 8 GB of memory. As workload demands increase, consumers have 

the ability to purchase a time based license which will enable additional computing 

resources on demand. As peak times subside, resource usage can be relinquished or 

revoked due to the terms of a lease. This model allows companies to provision smaller 

resources during off-peak hours and increase workload resource utilization during peak 
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usage times dynamically. The effect of this allows companies to reduce technology costs 

by decreasing compute resource waste and increasing workload scalability.  

As workloads and consumer requirements rapidly change, there exists the need 

for an environment that provides the ability to quickly deploy and provide scalable 

computing resources on demand. Cloud computing provides such an environment with 

the use of service and virtualization stacks. Similar to the Grid computing paradigm, 

resources within a Cloud are shared across a set of computing environments. 

Management of these resources is performed by logically provisioning physical resources 

to one or more virtual environments running within the Cloud. As resource demand is 

increased, a resource monitor attempts to locate and allocate additional physical resources 

that can temporarily be utilized by a consumer. Once resources are no longer needed, the 

resource monitor returns the physical resources back to the available resource pool. 

Services within the cloud allow consumers to utilize a plurality of compute services, on a 

pay-as-needed basis. This provides the ability for compute utilities to finally become 

available to consumers regardless of their locale. These services range from low level 

storage services to large application infrastructure services. Regardless of the type of 

service, consumers are guaranteed of the reliability and availability of services. 

Throughout the remainder of this section, the three main concepts currently available 

within Cloud environments will be discussed. 

  

4.1 Infrastructure as a Service 

Infrastructure as a Service (IaaS) describes the ability to utilize remote hardware 

resources on a pay-as-needed basis. The resources can either be physical resources or 
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logical resources provided by the cloud’s virtualization stack. Consumers build operating 

system image instances preconfigured with specific software stacks needed to host 

scalable applications. Once image construction has completed, consumers can deploy one 

or more virtual instances which will utilize the physical or virtual resources provided 

within the SLA. A common scenario involves virtual machines being created and 

deployed within a cloud. For example, Amazon’s Elastic Compute Cloud (EC2)[1] 

provides infrastructure services to consumers. Within this cloud, consumers can quickly 

deploy virtual servers based on template or customized software stacks. Once an image is 

created, consumers can easily configure and scale the number of running virtual OS 

instances as needed. IaaS provides consumers the ability to quickly deploy and test 

solutions without having to purchase physical resources. Consumers seeking to test new 

ideas or concepts can do so with minimal upfront resource costs.  
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Figure 3 depicts a typical cloud stack hierarchy. The lower down the stack a service 

resides, the more flexibility it provides to consumers. However, along with flexibility, 

there exists the need to provide more consumer management of resources.  For instance, 

with IaaS services, consumers are responsible for scaling images up or down as needed. 

Although this management can be automated, currently it is responsibility of the 

consumer to implement.  

 

Software Services 

Platform Services 

Infrastructure Services 

Remote Application(s) 

Cloud Virtualization 

Native Interfaces 

Figure 3: Typical Cloud Software Stack Hierarchy 
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4.2 Platform as a Service 

Platform as a Service (PaaS) describes the ability for consumers to develop and 

deploy dynamically scalable software workloads from within a well-defined cloud 

compute container. Applications created within this paradigm can take advantage of a 

rich set of well-defined internal services such as storage access, distributed database 

access, autonomic scalability, load balancing, fault tolerance, and security. Consumers 

perform all configuration, operation, and management tasks within the tools provided by 

the cloud. From a consumer’s perspective, each application is self-contained through the 

use of virtual boundaries. These boundaries allow each workload to run within their 

sandbox simultaneously along with hundreds of other virtualized sandboxes. As depicted 

in Figure 3, PaaS components are architected on top of virtualization stacks which 

provide the ability to securely segregate virtual OS instances and increase resource 

utilization. 

One of the most notable PaaS platforms is Google’s AppEngine [3]. AppEngine 

provides consumers the ability to utilize Google’s Web Services and internal SDKs. Load 

balancing and scalability are automatically handled by Google’s infrastructure, and 

consumers are only billed for the amount of resources each application consumes.  

 

4.3 Software as a Service 

Software as a Service (SaaS) describes the ability to deliver software solutions 

over a remote interconnect to consumers [8]. Within this new paradigm, consumers are 

no longer required to purchase “shrink-wrapped” software packages; rather they can 

incorporate remote software solutions into client side applications through the use of 
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standardized communication protocols or utilize full-fledged applications through a web 

browser. Typically the former solutions are architected based on Service Oriented 

Architectures (SOA), which allow producers to provide a semantic interface that 

consumers are able to use to integrate within client side applications. The latter provides 

consumers the ability to access applications without regard to geographic locations, as 

long as there exists an available interconnect to the application. When SaaS solutions are 

incorporated within a cloud environment, consumers benefit from the same scalability, 

load balancing, and fault tolerant features as provided within PaaS services.  

Due to the popularity and benefits of SOA architecture, SaaS solutions pre-date 

the current Cloud paradigm. SaaS inclusion within Cloud environments allows for a 

logical evolution of the current state of the art to make available software solutions on a 

broader scale. Producers can deploy custom services within a third party cloud to take 

advantage of cloud benefits, while at the same time increasing its commercial exposure. 

Companies such as IBM, Google, and Salesforce.com, have begun to transition existing 

“shrink-wrapped” solutions and services into their respective cloud service counterpart. 

As mobile device technology continues to increase, usage of these services will increase  

as many only require a minimal set of resources in order to run efficiently. 
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5.0 Mobile Technologies 

We believe mobile technologies will fuel the adoption, evolution, and 

advancement of Cloud Computing. Currently there exist two types of mobile 

technologies, physical device mobility and logical resource mobility. Both technologies 

have advanced to a state where the needs for physical resources are no longer a concern 

in order to provide adequate compute capabilities for consumers.  As each technology 

continues to mature, new requirements and constraints will necessitate new 

advancements for cloud producers. Most notably is the ability for a physical and logical 

compute resource to rapidly change physical locations at any given instance of time. 

Advantages in the physical mobility context allow consumers to roam freely across 

regions and communicate over ad-hoc networks. On the other hand, logical mobility 

provides the logical movement of software stacks at a fine grained level. In the remainder 

of this section we discuss these two concepts and their impacts on Cloud Computing 

 

5.1 Physical Mobility 

Physical device mobility describes the ability for computing devices to roam   

unconstrained throughout geographical regions. Although devices have the ability to 

roam while in an unpowered state, we only focus on “live” physical mobility. This type 

of mobility entails the consumption of computing resources while physical entities still 

contain sufficient power to adequately provide services to consumers. As mobile 

consumers roam throughout regions, the probability for communication latency to 

diminish or enhance, increase or decrease depends on the proximity to local access 

points. As devices move out of range, remote compute resources become unavailable 
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until a device is able to reengage network communication. Further there exists the 

possibility devices may communicate through several access points at one time. This 

ability provides potential for a best path route to be defined in order to improve 

communication latency and remote resource access. Much work has been performed 

within the area of best-path communications within mobile networks; however to our 

knowledge no research currently exists in determining the best cloud service provider 

given a mobile device’s current contextual information.  

As device and sensor technology continue to advance, so do the software stacks 

that are deployed on them. Today, it is common for mobile devices to have GPS tracking, 

accelerometers, audio recorders, etc. In the near future, it is conceivable that these 

capabilities can be utilized to harvest contextual information regarding a consumer’s 

current locale, which in turn can be transparently submitted to one or more cloud 

producers. The context granularity may range from latitude and longitude coordinates to 

the sounds of a thunderstorm on the horizon. Regardless of the amount of data being 

captured, the information can be analyzed by cloud producers to determine if migration 

of resources to a new cloud closer in proximity to a consumer’s current location is 

beneficial for both parties. 
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A) Dipicts a mobile consumer accessing the same cloud resources from three 

sperate providers. 

B) Depicts a mobile consumer accessing the same migrating cloud resource 

permiting it is in an intransiant state for some α time interval 

 

Within Figure 4, a mobile device is within range of three different cloud providers 

at three different time intervals. As a device moves in and out of range of each provider, 

there exists the possibility that overall resource downtime is decreased in the event that 

workloads can be transparently migrated to each node along the path, or access to the 

resources is available through one or more providers. In its simplest case, a cloud 

producer can maintain SLAs with mobile consumers only if each device can utilize 

communication services from third party clouds along the path. This follows the more 

traditional solution of reconnecting to existing infrastructures to continue remote resource 

ti-1                 ti                                                              ti+1                                                          ti+2              . . .             ti+n                    

ti-1                 ti+ α                                                              ti+1+ α                                                          ti+2+ α   . . .   ti+n+ α                    

Migrated Cloud Resource(s) 

B) 

A) 

Figure 4: Cloud Consumer Scenarios 
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usage.  However, in most cases, assumptions are made regarding the network fabric that 

all networks are created equal. In practice this assumption is not always true and may 

cause network latency degradation. When a mobile device does not become transient, 

there may exist periods where movement of an entire workload or resource to a third 

party cloud may increase network latency. In Section 6.0, we provide further details of 

motivating use cases for the need to increase mobile consumer awareness within clouds. 

 

5.2 Logical Mobility 

Logical mobility describes the utilization of technologies that support and provide 

the ability of logical computing resources to be transparently migrated to new physical 

computing environments. These logical resources can be either entire workloads or fine-

grained portions of a workload that can perceivably increase the benefit for consumers by 

being executed on an external host system [17]. Today, logical mobility of operating 

systems and workload applications has seen a dramatic increase in usage and benefit as 

companies continue to adopt virtualization stacks. This adoption is due to the ability to 

migrate resources to new physical hosts when there is a need for a scheduled maintenance 

on the source host. Rather then force an outage for all consumers, the logical resources 

can be migrated with almost zero downtime without diminishing the workload’s 

availability. In most scenarios, consumers are unaware of this process and continue on 

without having to restart applications consuming resources from the workloads. 

Within the mobile context, mobile code allows for resources to almost leap off a 

device onto passing devices or latch onto remote servers for processing, while eventually 

migrating back to the original mobile device. Upon return, the application that spawned 
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the mobile code can extract computation results and incorporate them into the system as 

needed. This ability allows for highly intense computational software to be executed in a 

cloud to decrease the amount of processing time required to compute and retrieve large 

amounts of data. 

Whether migrating monolithic workloads or finely grained mobile agents, cloud 

producers must be able to handle logical mobility of these consumers as they rapidly 

change locations. Unlike mobile devices, logical resources have the ability to move vast 

distances within short timeframes. OS instances and workloads can be moved either 

within a datacenter or to cross country datacenters depending on the needs of the 

consumers. Mobile code fragments can potentially move miles away from their mobile 

counterpart by quickly hopping from node to node within a distributed environment. As 

each resource moves, context data should be obtained and sent back to cloud producers 

for analysis on how cloud resources should be apportioned. Within these scenarios, cloud 

resources and workloads should be migrated to neighbor clouds within the federation in 

order to satisfy all parties. 
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6.0 Use Case Analysis 

As Cloud Computing continues to evolve, new use cases and requirements will 

arise from consumers. Influence from the enterprise to mobile consumers will have a 

dramatic effect on how producers architect and implement cloud environments. Mobile 

Computing device usage and advancement will continue to grow, while they in turn will 

require efficient, secure, and scalable platforms to provide services for mobile consumers. 

Within the enterprise, corporations will begin to adopt Cloud technologies in order to 

reduce IT costs and improve resource utilization.  

Within the near future, it is conceivable to imagine mobile device deployment 

will become such a norm that you can actually purchase aerosol canisters containing 

micro devices which can literally be sprayed into any environment [18]. Although small 

in stature, these devices will still require the ability to transmit data to central repositories 

so that data can be analyzed. On the other spectrum, consumer consumption of smart 

phones will increase traffic congestion within wireless networks due to lack of 

infrastructure. The speed at which mobile deice adoption is occurring is outpacing the 

enterprise’s ability to support such demand.  Today, mobile devices utilizing web enabled 

operating systems such as Google’s Android [2] or Palm’s WebOS [4], are now pushing 

workloads to the cloud instead of remaining located on the physical device. As these 

devices push and pull more data from the network, communication traffic begins to 

become congested. In these scenarios, if there exists the ability to transfer such workloads 

to other clouds based on a consumer’s locale, then such measures should be enacted. As 

we believe enterprises and mobile devices will be the primary influences on the 

advancement of Cloud Computing, the remainder of this section we expand on our 

Telemedicine scenario and provide some key requirements that cloud environments must 
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implement within their architectures in order to increase SLA guarantees for mobile 

consumers. 

 

6.1 Telemedicine  

Revisiting our telemedicine scenario as described in Section 2.0, the utilization of 

mobile devices is a key enabler in order for this technology to become prevalent across 

the globe. Whether it is a mobile robot or smart device, these entities allow for the 

administration of medical practices to be performed on patients in remote regions. 

Consumers of these devices require the ability to send and receive real time data in order 

to adequately perform examinations or surgical procedures. Random drops in wireless 

network communication are unacceptable and could have drastic repercussions. Further, 

as time is a critical component within the administration process, it is imperative that the 

data being transmitted be analyzed efficiently and satisfactory responses be provided to 

the mobile consumer as quickly as possible. In the event that patients require 

transportation, the mobile consumer will likely be required to accompany them. As the 

consumer changes locales, remote resources should not degrade; rather they should 

continue to be highly available.  

Although the movement of cloud resources may be a data intensive operation, the 

potential for continued service level guarantees regarding remote resources being highly 

available and reliable has higher precedence. As consumers move closer to the outer 

regions of a cloud provider’s coverage area, and there exists an alternative cloud within 

range, then remote resources should either be migrated to the new cloud, or 

communication through the new cloud should enable continued resource access. 
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Consumers should not be required to make radical changes in order to utilize resources 

due to these types of events. If a standard protocol is being employed over the transport, 

then continuation of remote resource consumption requires only the change in access 

points. In the event the third party cloud does not understand the semantics of the new 

cloud provider’s service protocol, then a protocol correlation mapping between what the 

consumer and producer comprehend should be utilized in order for the producer to learn 

the consumer’s service language [6]. If the semantic mapping of the consumer language 

is successful, then remote resources should be accessible without any protocol alterations 

within the consumer’s platform. The cloud producer should then execute a negotiation 

protocol with the consumer to verify resource relocation is acceptable. Once agreed, 

security primitives should be exchanged so that the consumer can access the resources 

from the new cloud. If either the semantic mapping or negotiation process fails, then the 

cloud producer should continue to provide resource access. 

As with mobile devices, the same scenario can be applied to logical devices 

migrating around the globe. Within our Telemedicine example, an EMS technician, 

doctor, or data analysis application is consuming data provided by the mobile device, 

which is stored on shared cloud resource. In order to access this data, the application 

must harvest data from the cloud, analyze it, and then provide a response. In the event a 

technician is unable to supply a sufficient analysis, the technician’s application may be 

migrated across the country and made available to an expert for investigation. Within this 

scenario, a checkpoint of the application is initiated where no further modification of the 

programs state is allowed. The next step is to migrate the application’s logical resources, 

such as memory or CPU state, over the network to the destination physical compute 

resource. Due to the movement of these logical resources, communication latency may 
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degrade depending on the relative distance between the cloud resources and the logical 

resource’s new location. To decrease the amount of degradation, cloud resources should 

either be migrated or replicated across clouds. In the latter approach, techniques should 

be implemented that allow for all clouds to converge to a satisfactory synchronized state 

where the same data can be retrieved from either cloud. Regardless of the approach, the 

mobile consumer should have the ability to inform the producer at the start and end of a 

migration operation. This will enable producers to begin orchestrating resource 

provisioning and cloud negotiation in an attempt to reduce SLA violations. 

From this use case, we propose that the following key requirements be architected 

as core functionality within a cloud provider’s implementation: 

 Mobile Consumer Awareness – Cloud producers shall request and analyze 

consumer contextual information in order to identify potential cloud resource 

migration candidates. 

 Semantic Protocol Mapping – Cloud producers shall perform a protocol 

mapping in order to provide resources to new mobile consumers. 

 Cloud Interoperability - Cloud producers shall use a standard protocol that 

allows for federated cloud communication in order to negotiate resource 

migration. 

 Secure Consumer-to-Producer Resource Migration Negotiation – Cloud 

producers shall provide a secure negotiation protocol when consumer resources 

are migrated. 

We believe having these key requirements as core functionality within a cloud can 

increase SLA guarantees, decrease consumer to producer coupling, and increase cloud 

interoperability.    
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7.0 Architecture 

In order to provide consumer location awareness within clouds, producer 

infrastructures should be architected with core consumer context aware services. As new 

location context metadata is received and analyzed, producers should outsource 

workloads to neighbor clouds with the consensus of consumers. In order to reduce 

platform coupling while increasing consumer infrastructure interoperability, cloud 

infrastructures should provide protocol semantic mappings in order to ensure 

continuation of services once migration operations have completed. Figure 5 provides an 

architecture blueprint that can be implemented to provide such services on along with 

existing cloud environments. 
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Figure 5:  Core Cloud Architecture 
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Whether workloads are outsourced due to consumer context or cloud workload 

rebalancing, target producers benefit by either charging consumers or source producers 

for resource consumption. In essence a cloud economy is formalized as small and large 

cloud vendors accept and refer consumers to new resource outlets [11, 14].  In the 

remainder of this section conceptual design points regarding the extended service set are 

provided. 

 

7.1 Context Analyzer 

The context analyzer component is responsible for requesting, receiving and 

analyzing consumer context information. Receive and request transactions allow the 

component to maintain an up-to-date context repository for all consumers currently 

utilizing resources. Analysis capabilities allow the component to make real time 

migration decisions as needed in order to maintain consumer SLA agreements.   

 Metadata harvesting can be performed either proactively or reactively. In the 

former approach it is the responsibility of the component to begin issuing context 

discovery requests to consumers. As each response is received, the component updates its 

metadata repositories. In the latter approach, consumers push context data to the cloud to 

provide assistance in ensuring SLA violations are minimized, as it is also in a consumer’s 

best interest to reduce resource outages as much as possible. Due to consumer platform 

heterogeneity, utilization of standard semantic information or description languages such 

as XML or OWL should be employed in order to increase the cloud’s consumer base and 

vocabulary. As new consumers are encountered, the context component can learn new 
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vocabularies and automatically perform resource migration operations as needed based 

on this new data.  

Within the analysis phase, the component either periodically or instantaneously 

performs analysis on the content repository. The former methodology is required as it 

allows for the component to periodically scan the content repositories in search of 

potential consumer workloads to be migrated. Instantaneous analysis is performed in the 

event alerts are fired when SLA agreements are in jeopardy of being breached, a 

consumer has moved to a closer distance to a neighbor cloud, or the cloud is currently 

experiencing high stress volumes. As analysis is performed, each consumer is placed 

within a tier to indicate its potential for resource migration. Workloads that have been 

starved or require immediate migration are placed into high priority tiers. Medium tiers 

contain workloads owned by consumers who have moved further from the cloud. Low 

priority tiers are used to house workloads not in high violation risk or currently being 

deployed within the cloud.  

As workloads are placed within the high priority tiers, the component will begin 

interacting with the migration layer in order to identify potential neighbor clouds that can 

accommodate new workloads as specified by a consumer’s SLA. To prevent consumers 

from causing migration thunderstorms, each consumer is assigned a set of last service 

timestamps within the repository. If a consumer has been seen to routinely be migrating 

in and out frequently within the cloud, then the workload is moved to a lower tier in order 

to minimize overutilization of physical resources. Such scenarios allow for a first line of 

defense from preventing workloads to cause havoc within the cloud such as Denial-of-

Service attacks.  
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Finally, each consumer is given a reputation profile that is stored within the cloud 

repository. Within this profile, the consumer is assigned a reputation level along with a 

list of past cloud violations. The analyzer will utilize this information along with context 

metadata when placing each workload in its respective tier. Consumers placed within 

high priority tiers but assigned a poor reputation may still be migrated; however they will 

be placed at the tail of a migration queue. As a consumer’s reputation increases, tier 

placement and migration placement may be relaxed to allow the workloads to migrate 

frequently. 

 

7.2 Semantic Mapper 

As workloads become candidates to migrate to and from legacy or third party 

clouds, the service protocols utilized from the consumer’s platform should not be 

required to change. Such constraints not only prohibit mobile consumers from 

discovering new cloud environments to deploy workloads within, but also increase 

consumer-to-producer platform coupling. In order to provide for a loose coupling, a 

semantic mapping between the consumer’s SLA [5] and current protocol service 

interfaces is required. This ability allows for consumers to utilize resources without 

requiring infrastructure domain knowledge for the new cloud. The semantic mapping 

component provides such capabilities. 

When a consumer initially establishes connection with a cloud, a snapshot of the 

service interfaces utilized is taken and saved within the cloud repository. In order to 

increase the potential that a consumer’s workload can be moved to a new cloud without 

hindering the total number of services available, the interface description should be saved 
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in a semantic or descriptive markup language. This structuring of data in this format 

allows for both the source and target neighbor cloud to exchange domain interface 

knowledge. Knowledge repositories managed either on both clouds or an external broker 

can be leveraged in order to increase the chances that such a mapping can be successful.   

In order to provide consumers continued resource utilization even in a limited 

fashion, the results of the semantic mapping will be sent to consumers for consensus. If 

consumers are in agreement with the amount of services that can be accessed within the 

destination cloud, then an acknowledgment response will be sent. At this point the 

component will inform the migration layer to initiate workload check pointing. In the 

event the consumer does not consent to the migration, a new neighbor cloud is searched 

for that can provide a larger set of services. If all discovery options have been exhausted,   

the cloud will continue providing resources and periodically attempt to locate a new 

optimal host for the consumer’s workload. 

 

7.3 Migration Services 

In order for consumer resources to have the ability to migrate to neighbor clouds, 

each cloud involved in the migration must understand the same migration protocols.  As 

commercial clouds utilize proprietary virtualization technologies, the odds of migrating 

workloads between heterogeneous neighbor clouds quickly diminish. The RESERVOIR 

project provides an architecture that can be harnessed in order to overcome these 

challenges by providing a layer of abstraction on top the native cloud infrastructures [14]. 

We propose to extend the technology used within RESERVOIR, to allow mobile 

consumers to securely reinitiate the use of resources once they have been migrated to a 
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new host.  In order to prevent resources from being reserved for prolonged periods of 

time, the migration reservation service should relinquish resources when mobile 

consumers fail to initiate service requests. Further, after a migration has been completed, 

resources should only be exported to authorized consumers.  

Due to the heterogeneous nature of cloud environments, a common security 

methodology should be employed to allow for authentication and authorization amongst 

disparate systems. To address these issues, we propose to include a set of security 

primitives contained within a manifest file that will allow consumers and producers to 

authenticate one another in order to successfully reengage resource consumption.   

Within RESERVOIR, cloud workloads and infrastructures are deployed within 

the virtual environments with all resources and constraints defined within the service 

manifest document. The document contains key information such as virtual resource 

requirements, elasticity constraints, etc. As this document is used for all configuration 

and deployment within the cloud, we propose to extend the manifest document to contain 

a security primitive section that can be used authenticate and authorize mobile consumers 

before resources are provided. The key elements to the security portion could potentially 

be the following: 

 

 Source Consumer Session Identifier – Identifier assigned to a consumer after a 

successful authentication and authorization process. 

 Source Cloud Producer Identifier – Unique identifier of the source cloud 

provider 

 Destination Cloud Producer Identifier – Unique identifier of the destination 

cloud provider. 
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 Migration Temporal Consumer Token – Unique temporal identifier generated 

for a consumer for the duration of a migration process. The generation of the 

token uses input from both source and destination cloud producers.  

 

Once a mobile consumer initiates service requests, it is issued a session identifier. This 

identifier is used to allow the consumer to continue utilizing services for a predefined 

period of time before being requested to re-authenticate. When a consumer’s workload is 

eligible for migration, the migration component will begin negotiation deliberations with 

the destination cloud. Once it has been determined that migration should be initiated, the 

source cloud will store the source consumer session identifier within the manifest file. 

This token should be generated in such a manner as the destination producer can identify 

where it originated from. To assist in this process, the source cloud producer’s public 

identifier is stored within the document. The source cloud producer will also store the 

destination cloud identifier so that the consumer can extract the information in order to 

verify it is communicating with the correct cloud provider after a migration. The last 

primitive is used to provide a migration temporal token. This token is used to indicate the 

maximum duration the destination cloud will reserve the resource before releasing them 

in the event the consumer fails to initiate service requests within this time interval. Once 

the manifest document has been persisted, two versions should be digitally signed and 

encrypted by the source cloud. Each version will be secured in a fashion where each 

respective recipient is able to decipher the manifest document. 

When a consumer begins to request resources from the new cloud, both parties 

should verify they are communicating with the intended entities by verifying information 

contained in their versions of the manifest file. On a successful verification, the 
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consumer’s resources are made available. In the event a consumer fails to initiate service 

requests, the destination cloud producer should notify the original source cloud of the 

timeout. This notification allows for resources within the source cloud to become 

available in scenarios where the mobile consumer has moved out of range of the 

destination cloud and back within range of the source cloud. 
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8.0 Conclusion 

As Cloud and Mobile technologies continue to evolve, so do the requirements 

elicited from consumers.  In order to account for dynamic changes, cloud environments 

must provide a rich set of core functional features that can be utilized by mobile 

consumers. Today, the ability for consumers to physically or logically move throughout 

different geographical regions, places new constraints on cloud producers to ensure 

service level agreements are maintained. Since service levels provide guarantees that 

resources will be presented as reliable and highly available, it is in the best interest of 

cloud producers to interoperate with neighbor clouds. This interoperability allows the 

formation of a federation where new cloud economies can thrive, generating more 

revenue and attracting new consumers.  

The current state of the art provides promising avenues in the fields of 

virtualization and mobility. However, existing cloud environments have not been 

architected with consumer mobility as a key requirement. As the number of mobile 

devices continues to increase, it is conceivable that clouds will become overburdened and 

begin to violate SLA agreements. To minimize violations, cloud interoperability allows 

for workloads to be migrated on demand or based on contextual information harvested 

from consumers. As workloads are migrated, consumers and producers should have the 

ability they to verify they are communicating to the expected entity irrespective of the 

protocol being utilized. This is accomplished through the exchange of security primitives 

each entity authenticates before resources are authorized and consumed. In order to 

minimize platform coupling, the use of semantic protocol mappings can be implemented 

to increase consumer interoperability while decreasing coupling. By incorporating these 
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key elements within the architecture, cloud providers increase consumer exposure, 

minimize SLA violations, and reduce platform coupling. 
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