

Copyright

by

Jacob Jason Rosales

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5185247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Jacob Jason Rosales

Certifies that this is the approved version of the following report:

Mobile Computing in a

Clouded Environment

APPROVED BY

SUPERVISING COMMITTEE:

Christine Julien

William Bard

Supervisor:

Mobile Computing in a

Clouded Environment

by

Jacob Jason Rosales, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December, 2009

Dedication

I dedicated this report to Dionna, Alyssa, and Angelyna for their love, support,

inspiration, and understanding. I love you all and thank you for standing by me these last

couple of years. It was your belief and encouragement in me that allowed me to complete

this report.

v

Acknowledgements

I would like to thank Professor Christine Julian and Professor William Bard for their

guidance and constructive criticism they provided for this report. Without their domain

expertise and influence this paper would not have been possible.

I would like to thank my friend and mentor Sandra Ellet-Salmoran, IBM Second Line

Manager, for encouraging me to continue my education and apply to the Executive

Master’s Program at the University of Texas at Austin. Her encouragement has allowed

me to increase my educational background and bring new and innovative ideas to IBM. A

special thanks to my employer, IBM, for providing the financial support for my Masters

education.

I would also like to thank my friend Margie Carrillo for her assistance in reading each

revision of this report and providing valuable feedback and suggestions.

Last but not least, I would like to thank my family for believing in me and giving me

inspiration to continue with my graduate education. Without their support, this would not

have been possible. Thank you all for your love and support.

vi

Abstract

Mobile Computing in a

Clouded Environment

Jacob Jason Rosales, M.S.E.

The University of Texas at Austin, 2009

Supervisor: Christine Julien

vii

Cloud Computing has started to become a viable option for computing centers and

mobile consumers seeking to reduce cost overhead, power consumption, and increase

software services available within their platform. For instance distributed memory

constrained mobile devices can expand their ability to share real time data by utilizing

virtual memory located within the cloud. Cloud memory services can be configured to

restrict read and write access to the shared memory pool on a partner by partner basis.

Utilization of such resources in turn reduces hardware requirements on mobile devices

while lessening power consumption for each physical resource.

Within the Cloud Computing paradigm, computing resources are provisioned to

consumers on demand and guaranteed through service level agreements. Although the

idea of a computing utility is not new, its realization has come to pass as researchers and

corporate companies embark on a journey of implementing highly scalable cloud

environments. As new solutions and architectures are proposed, additional use cases and

consumer concerns have been revealed. These issues range from consumer security,

adequate service level agreements and vendor interoperability, to cloud technology

standardizations. Further, the current state of the art does not adequately address these

needs for mobile consumers, where services need to be guaranteed even as consumers

dynamically change locations.

Due to the rapid adoption of virtualization stacks and the dramatic increase of

mobile computing devices, cloud providers must be able to handle logical and physical

mobility of consumers. As consumers move throughout geographical regions, there exists

the probability that a consumer’s new locale may hinder a producer’s ability to uphold

service level agreements. This inability is due to the fact that a producer may not have

physical resources located relatively close to a mobile consumer’s new locale. As a

viii

consequence, producers must either continue to provide degraded resource consumption

or migrate workloads to third party producers in order to ensure service level agreements

are maintained.

The goal of this report is to research existing architectures that provide the ability

to adequately uphold service level agreements as mobile consumers move from locale to

locale. Further we propose an architecture that can be implemented along with existing

solutions in order to ensure consumers receive adequate service levels regardless of

locality. We believe this architecture will lead to increased cloud interoperability and

decreased consumer to producer platform coupling.

ix

Table of Contents

LIST OF FIGURES ... X

1.0 INTRODUCTION .. 1

2.0 MOTIVATION ... 4

3.0 RELATED WORK.. 7

4.0 CLOUD TECHNOLOGIES .. 13

 4.1 INFRASTRUCTURE AS A SERVICE .. 14

 4.2 PLATFORM AS A SERVICE ... 17

 4.3 SOFTWARE AS A SERVICE ... 17

5.0 MOBILE TECHNOLOGIES .. 19

 5.1 PHYSICAL MOBILITY ... 19

 5.2 LOGICAL MOBILITY ... 22

6.0 USE CASE ANALYSIS ... 24

 6.1 TELEMEDICINE ... 25

7.0 ARCHITECTURE ... 28

 7.1 CONTEXT ANALYZER ... 29

 7.2 SEMANTIC MAPPER ... 31

 7.3 MIGRATION SERVICES ... 32

8.0 CONCLUSION ... 36

REFERENCES ... 38

VITA ... 40

x

List of Figures

Figure 1: Traditional Infrastructure ... 5

Figure 2: Desired Infrastructure .. 5

Figure 3: Typical Cloud Software Stack Hierarchy ... 16

Figure 4: Cloud Consumer Scenarios .. 21

Figure 5: Core Cloud Architecture .. 28

1

1.0 Introduction

Cloud Computing is neither a new idea nor a new technology; rather it is a

combination of existing technologies applied in a specific environment to provide remote

services to consumers. However, the current state of the art can be considered in its

infancy as new requirements and concerns have emerged and consumers begin to

investigate the value of remote resource consumption. If Cloud Computing is indeed, as

we believe, a viable option for consumers to migrate physical resources to remote cloud

environments, then legacy and emerging software stacks must be able to adapt to these

ever-evolving requirements. We believe that one of the most notable constraints placed

on cloud vendors is the non functional requirement that cloud producers shall provide a

defined amount of resources throughout a given time interval, without degrading

consumer performance. In existing software stacks, this requirement can easily be

achieved as consumers maintain and manage the physical resources required by

workloads. In a clouded environment, consumer resources are managed by cloud

producers and can be provisioned across thousands of physical computing resources. As

producers attempt to balance workload requests from multiple consumers without

exceeding performance and resource thresholds as defined within the consumer service

level agreement (SLA), periods may exist in which producers cannot satisfy SLA

agreements. Further, these environments should not assume that the physical fabric

between consumer and producer is static due to the increasing ability for consumers to

dynamically change locales. Changes within the underlying fabric and location of a

consumer directly impact and influence a producer’s ability to remain within a given set

of boundaries as defined within an SLA

2

Today, consumers are no longer restricted to a single geographical location due to

increased usage of physical and logical mobile technologies [9, 17]. Mobile Computing

has introduced new technologies that have dramatically changed the way existing

infrastructures are designed and managed. Mobile devices can be expected to migrate in

and out of network coverage areas, as well as dynamically appear without warning in

different regions of the world. This type of mobility is commonly categorized as physical

mobility. Logical mobility describes the movement of logical computing resources and

software workloads to new physical environments. This category of mobility has

increased as numerous virtualization stacks have evolved to provide consumers the

ability to migrate workloads to new geographical regions with almost zero application

downtime. As consumers continue to adapt virtualization stacks and increase usage of

mobile devices, producers should extend cloud environments to dynamically relocate

consumer workloads to physical computing resources that are located in a relatively close

proximity to consumers. Doing so may increase the likelihood that a producer will be

able to maintain the terms of the SLA.

It is our belief that Cloud environments should be flexible enough to transparently

migrate Cloud workloads to either producer or third party resources located relatively

close to a consumer’s locale. As research within Cloud computing has begun to take off,

we believe that the issue of Cloud interoperability can increase the likelihood that a

producer does not violate an SLA, while also increasing the number of options mobile

consumers have available to host workloads. The remainder of this paper has the

following structure: in Section 2 we provide motivating examples supporting why cloud

environments must become consumer locale aware. In Section 3 we discuss existing

architectures that can be harnessed to support consumer mobility. In Section 4 we take a

3

look at the current state of the art of Cloud Computing. In Section 5 we investigate the

current state of the art for mobile technologies. In Section 6 we provide an in-depth look

at uses cases for mobility within cloud environments. In Section 7 we propose an

architecture that can be implemented in order to decrease the probability that cloud

producers will violate SLA agreements.

4

2.0 Motivation

Technology has increased the amount of resources and services consumers

previously were unable to utilize. Today, it is common for these consumers to request

services within one region and then migrate to a new region while still intending to utilize

the same service(s) with almost no degradation. Mobile technologies and Cloud

Computing can be utilized to decrease the probability of drastically degraded services.

This section provides a motivating example to help illustrate the need for cloud producers

to become consumer mobility aware, in order to continue providing highly available

resources regardless of consumer locality.

Consider a mobile device that provides users the ability to practice Telemedicine

in urban and remote regions. The device could provide services that allow for the

uploading of real time emergency field data to a service provider’s local repository,

which in turn is retrieved by emergency technicians to process and assess. After an

assessment, a mobile device would receive real time responses and act accordingly. As

the device moves in and out of network range, it can be expected that the time it takes to

transmit and receive data will degrade, depending on the relative distance to an access

point. As depicted within Figure 1, when consumers move out of service range, network

connectivity is lost, which could have drastic ramifications depending on the type of

emergency. On the other hand, when consumers remain within range of a producer’s

coverage area, then services will continue to be provided accordingly. This model has

two drawbacks. First, consumers are restricted to a limited range before losing services,

and secondly consumers do not have the ability to switch service producers in cases

where it may potentially be conceivable to do so.

5

Physical

connection

Wireless

connection

Shared Storage

Provider 2

Coverage Area

Provider 1

Coverage Area

EMS

Tech

Mobile

Device

Physical

connection

Wireless

connection

Shared Storage

Provider 2

Coverage Area

Provider 1

Coverage Area

EMS

Tech

Mobile

Device

Post

Wireless

connection

Replicated

Storage

Shared Storage

Post Physical

connection

Figure 2: Desired Infrastructure

Figure 1: Traditional Infrastructure

6

One plausible solution to this problem is depicted in Figure 2. Consumers would

utilize application and storage services provided by cloud producers to send and receive

real time medical data. Physical mobility would allow the device to report information as

it moves into new contexts that can be utilized by cloud providers to initiate a logical

migration of the consumer’s resources. A migration could either be initiated to an

additional cloud owned by the cloud producer or to a third party cloud environment,

depending on the availability of producers within the region. In the event that a migration

is initiated to a third party cloud, the mobile consumer should not be impacted due to the

underlying infrastructure utilized by the new producer. It should still be technically

feasible to maintain the same semantics as previously used with an initial producer, thus

decreasing consumer to producer platform coupling [5]. Further a consumer’s logical

resources within the cloud may be dependent on external clouds, thus a migration may in

fact cause degradation of these resources. To address this, resources can be replicated

across a federation of clouds or mirrored in order to ensure real time synchronization to

resources. Regardless of the methodology employed, autonomic procedures should be

implemented to reduce the amount of internal and external resource degradation caused

by the relocation of a consumer.

Although a plurality of solutions exists for scenarios such as this, the above

embodiment depicts how Cloud and Mobile technologies can be harnessed to maintain

service level agreements for mobile consumers. In the remainder of this paper we discuss

the current state of the art and describe an architecture that can be implemented within

cloud environments with minimal impact to mobile consumers.

7

3.0 Related Work

The current state of the art has provided valuable research in areas ranging from

distributed computing, mobility, and resource provisioning. As Cloud Computing is a

collection of existing and new technologies, within this section we discuss some of the

relevant and innovative strategies that may be extended in order to implement the

architecture defined within Section 7.0.

Within [7], the authors describe Cloud Computing as the 5th utility. The concept

stems from the notion that users request the use of services through an on-demand basis

and only be charged for the resources that they consumed and the duration of their use.

This follows how current utility providers operate today. Consumers request the use of

water or electricity, and in most cases do not know where the resources are being

delivered or generated from. The computing utility idea operates in a similar manner, as

consumers utilize cloud services to gain access to computing resources. The authors

propose an approach to create a market-based cloud environment where multiple cloud

venders can compete for consumer contracts by bidding on service requests. In order to

create a market oriented cloud architecture, the authors rely on three critical actors,

consumer, broker, and vendor. Consumers request compute resources. Brokers act as the

middle man and attempt to locate the requested resources within the given constraints

specified by the consumer. Vendors provide services and bid for jobs from both brokers

and consumers. The architecture utilizes a SLA Resource Allocator to facilitate the

communication between the consumer/broker and the cloud vendor(s). With this model,

consumers are able to gain access to large amounts of resources for a fraction of the cost

it would require for them to own and maintain the computing resources within their data

center. Brokers are able to bring in income by negotiating lower utility prices from

8

vendors and providing this to consumers of a slightly higher cost. Vendors are able to

generate income by leasing out resources within their cloud to brokers and consumers.

The MetaCDN project proposes to build a single namespace or point of entry for

consumers to utilize Software-as-a-Service interfaces from within cloud networks [6].

Specifically, MetaCDN provides an interface that allows content owners to publish

documents to cloud storage producers. This interface allows consumers to develop

applications that are able to communicate through one interface, yet; have access to

numerous supported cloud services. MetaCDN does this by providing connectors that

utilize proprietary protocols to transfer content to and from the storage clouds. Further

MetaCDN proposes to provide the ability to manage QoS for consumers wishing to stay

within a specific price range and ensure they are receiving the amount of service as

specified within their SLA. Consumers submit a URL to the MetaCDN gateway, which

in turn attempts to locate a best match for the URL based on the current location of the

consumer and the closest cloud producer. MetaCDN will then return the data back to the

consumer where they can put/get information from the current cloud they are connected

to. Although MetaCDN provides a mechanism where consumers are not highly coupled

to specific cloud producers, it still introduces a single point of failure for clients and

currently does not have any failover or disaster recovery mechanisms in place.

The authors of [11] propose Community Cloud Computing (C3). In order to

create a community oriented environment, the underlying architecture utilizes concepts

from Grid computing, EcoSystem computing, and Green computing. To minimize vendor

lock-in, the authors propose C3 which allows for the public community to participate in

creating a social compute cloud. To address the issues regarding green computing, the

authors argue that although utilizing cloud resources does allow consumers to gain access

9

to large compute resources; it however does not minimize the cloud’s carbon footprint.

As adoption of cloud computing technologies increases, so will the amount of physical

resources required by cloud producers, which will in turn increase the carbon footprint.

C3 would allow for a reduction in the carbon footprint by allowing the cloud to

dynamically grow and shrink as needed in order to provide adequate resources to

accommodate consumer demands. In order to provide for such elasticity, the authors

propose the idea of a community currency. As nodes provide resources, they are

compensated by the community. When nodes require personal compute resources, they

can then redeem the currency by requesting for the community to process their requests.

The authors of Mobile Service Clouds (MSC) propose the use of overlay

networks in order to provide adequate services for mobile consumers [15]. Nodes within

an overlay network can dynamically reconfigure and instantiate new services with

minimal or no impact to consumers. Such networks provide the ability to locate the

current fastest path to a given resource by using nodes within the network to identify the

total time each known path will take to get data from the mobile consumer, through the

network, and finally to the cloud resources. This same process is handled when the cloud

provider is sending information back. Further the network implements high availability

by requiring redundant adjacent nodes in cases of node outages. As disruptions are

identified, the network dynamically instantiates new nodes to replace lost nodes.

Although the benefits of an overlay network can potentially decrease SLA violations, the

underlying infrastructure must be supported in all areas a consumer can migrate too. In

most scenarios, such a requirement is not practical.

The Eucalyptus project is a Cloud Computing architecture implemented to give

researchers and the community access to an open source cloud environment [13].

10

Eucalyptus is modeled after Amazon’s EC2 [1] offering. Due to this dependency, the

project currently offers only IaaS cloud services. One of the driving requirements for the

project is to decrease vendor lock in, however, as researchers and enterprises deploy

Eucalyptus within their data center, they in turn are potentially coupling their platforms

and technology to a single cloud provider

The RESERVOIR project proposes an architecture that enables communication

between heterogeneous clouds [14]. The authors believe that cloud federations provide

more efficient use of resources and have the ability to ensure customer SLAs are not

violated. This is achieved by offloading current consumer workloads to neighbor clouds.

Further this decreases vendor lock in since a consumers workload can be deployed to

heterogeneous clouds and still receive the required resources needed to satisfy their initial

SLAs. RESEVOIR addresses these issues by proposing a three tiered architecture where

each tier is loosely coupled to the others and the native technologies supporting the cloud

environment. This loose coupling allows for workloads to be migrated and scaled

transparently to local or remote nodes within the federated cloud.

 Within [5], the authors discuss the notion of allowing clouds to be self

manageable, provide a solution for resource submission, and finally discuss the ability for

service negotiation bootstrapping. The authors propose the use of an Autonomic Manger

that is the main entity within the architecture that allows for self management within a

cloud. Within this component, a closed loop of control is implemented using monitoring,

analysis, planning, and execution functions (MAPE). Each function is used to sense and

identify changes within the cloud environment in order to successfully react adequately to

change. Within the architecture the authors define a lifecycle used to ensure a self

manageable cloud. The lifecycle starts with Meta-Negotiation, which consists of

11

negotiating with consumers the services and SLAs that need to be agreed upon before

jobs can be submitted. Once SLAs have been agreed to, the execution phase can be

initiated. Within the execution phase, the cloud processes requests for new submissions

and potentially migrates existing jobs to other resources in order to ensure SLAs are not

impacted due to the new job additions. The last phase is the post process phase. This

phase takes care of restoring resources to the pool. Further the authors provide the idea of

negotiation bootstrapping. This concept involves consumers submitting job requests to a

central repository in order to locate providers that can host their applications within the

specified constraints. As all consumer terminology cannot be expected to be similar, the

central repository is used to analyze job requests. During the analysis phase, the

component attempts to map the consumer’s job request language to the provider’s

language. If the mapping is successful, a new document is returned to the user indicating

the interfaces that are necessary in order to utilize the provider’s service. This approach

allows for consumers to have the ability to deploy workloads on different clouds without

having to worry about vendor lock in. However, if the consumer is not fluent with

regards to the set of returned interfaces, then resource utilization is prevented.

This SAGA project attempts to provide a set of interfaces that can be used to

increase application interoperability between clouds and grids [12]. SAGA is a

programming model that provides a rich set of abstract APIs that allow applications to

interoperate with different clouds and grid environments. The goal is to allow

applications to run unchanged regardless of which environment the application is

deployed on. This is done by providing adapters at the back end of the API interfaces that

are context aware of the current runtime environment. These adapters provide the

required resources needed in order to function with the native stacks. Overall this

12

approach allows for applications to interoperate with various clouds that are currently

supported.

Although these technologies and projects provide a basis for our goals regarding

cloud interoperability, autonomous resource management, mobile awareness, and

platform decoupling; to the best of our knowledge there currently does not exist a

cohesive platform that implements these core requirements. Further, the presented

innovative solutions do not take into consideration the ability for cloud producers to

autonomously analyze and migrate mobile consumer workloads without violating SLA

guarantees.

13

4.0 Cloud Technologies

As with all new paradigms in their infancy, Cloud Computing is currently in an

evolving stage where research institutes and corporate vendors continuously attempt to

define a globally accepted definition of Cloud Computing and what constitutes cloud

environments [16]. Rather than provide a globally accepted definition, we propose that

cloud computing describes the utilization of heterogeneous remote resources provisioned

and guaranteed through the use of SLAs by third party cloud producers. The Cloud model

utilizes existing concepts and technologies used within Grid and Utility computing,

however, the application and guarantees provided by producers distinguishes Cloud

Computing from existing paradigms.

Within Grid Computing, shared resources are provisioned and apportioned across

a cluster of heterogeneous distributed systems to be utilized by specific compute-rich

scientific applications [10]. Each node within the grid is allocated small portions of the

global problem space. As nodes complete tasks, results are collectively combined to

structure an overall solution for the given problem. Once acceptable results are obtained,

the Grid can be reorganized and resources redistributed as needed.

Utility Computing describes the ability for consumers to purchase or lease

computing resources on a pay-as-needed basis. For instance, a company may purchase a

virtual server configured with 16 processors and 16 GB of memory, while only paying

for 4 processors and 8 GB of memory. As workload demands increase, consumers have

the ability to purchase a time based license which will enable additional computing

resources on demand. As peak times subside, resource usage can be relinquished or

revoked due to the terms of a lease. This model allows companies to provision smaller

resources during off-peak hours and increase workload resource utilization during peak

14

usage times dynamically. The effect of this allows companies to reduce technology costs

by decreasing compute resource waste and increasing workload scalability.

As workloads and consumer requirements rapidly change, there exists the need

for an environment that provides the ability to quickly deploy and provide scalable

computing resources on demand. Cloud computing provides such an environment with

the use of service and virtualization stacks. Similar to the Grid computing paradigm,

resources within a Cloud are shared across a set of computing environments.

Management of these resources is performed by logically provisioning physical resources

to one or more virtual environments running within the Cloud. As resource demand is

increased, a resource monitor attempts to locate and allocate additional physical resources

that can temporarily be utilized by a consumer. Once resources are no longer needed, the

resource monitor returns the physical resources back to the available resource pool.

Services within the cloud allow consumers to utilize a plurality of compute services, on a

pay-as-needed basis. This provides the ability for compute utilities to finally become

available to consumers regardless of their locale. These services range from low level

storage services to large application infrastructure services. Regardless of the type of

service, consumers are guaranteed of the reliability and availability of services.

Throughout the remainder of this section, the three main concepts currently available

within Cloud environments will be discussed.

4.1 Infrastructure as a Service

Infrastructure as a Service (IaaS) describes the ability to utilize remote hardware

resources on a pay-as-needed basis. The resources can either be physical resources or

15

logical resources provided by the cloud’s virtualization stack. Consumers build operating

system image instances preconfigured with specific software stacks needed to host

scalable applications. Once image construction has completed, consumers can deploy one

or more virtual instances which will utilize the physical or virtual resources provided

within the SLA. A common scenario involves virtual machines being created and

deployed within a cloud. For example, Amazon’s Elastic Compute Cloud (EC2)[1]

provides infrastructure services to consumers. Within this cloud, consumers can quickly

deploy virtual servers based on template or customized software stacks. Once an image is

created, consumers can easily configure and scale the number of running virtual OS

instances as needed. IaaS provides consumers the ability to quickly deploy and test

solutions without having to purchase physical resources. Consumers seeking to test new

ideas or concepts can do so with minimal upfront resource costs.

16

V

Figure 3 depicts a typical cloud stack hierarchy. The lower down the stack a service

resides, the more flexibility it provides to consumers. However, along with flexibility,

there exists the need to provide more consumer management of resources. For instance,

with IaaS services, consumers are responsible for scaling images up or down as needed.

Although this management can be automated, currently it is responsibility of the

consumer to implement.

Software Services

Platform Services

Infrastructure Services

Remote Application(s)

Cloud Virtualization

Native Interfaces

Figure 3: Typical Cloud Software Stack Hierarchy

17

4.2 Platform as a Service

Platform as a Service (PaaS) describes the ability for consumers to develop and

deploy dynamically scalable software workloads from within a well-defined cloud

compute container. Applications created within this paradigm can take advantage of a

rich set of well-defined internal services such as storage access, distributed database

access, autonomic scalability, load balancing, fault tolerance, and security. Consumers

perform all configuration, operation, and management tasks within the tools provided by

the cloud. From a consumer’s perspective, each application is self-contained through the

use of virtual boundaries. These boundaries allow each workload to run within their

sandbox simultaneously along with hundreds of other virtualized sandboxes. As depicted

in Figure 3, PaaS components are architected on top of virtualization stacks which

provide the ability to securely segregate virtual OS instances and increase resource

utilization.

One of the most notable PaaS platforms is Google’s AppEngine [3]. AppEngine

provides consumers the ability to utilize Google’s Web Services and internal SDKs. Load

balancing and scalability are automatically handled by Google’s infrastructure, and

consumers are only billed for the amount of resources each application consumes.

4.3 Software as a Service

Software as a Service (SaaS) describes the ability to deliver software solutions

over a remote interconnect to consumers [8]. Within this new paradigm, consumers are

no longer required to purchase “shrink-wrapped” software packages; rather they can

incorporate remote software solutions into client side applications through the use of

18

standardized communication protocols or utilize full-fledged applications through a web

browser. Typically the former solutions are architected based on Service Oriented

Architectures (SOA), which allow producers to provide a semantic interface that

consumers are able to use to integrate within client side applications. The latter provides

consumers the ability to access applications without regard to geographic locations, as

long as there exists an available interconnect to the application. When SaaS solutions are

incorporated within a cloud environment, consumers benefit from the same scalability,

load balancing, and fault tolerant features as provided within PaaS services.

Due to the popularity and benefits of SOA architecture, SaaS solutions pre-date

the current Cloud paradigm. SaaS inclusion within Cloud environments allows for a

logical evolution of the current state of the art to make available software solutions on a

broader scale. Producers can deploy custom services within a third party cloud to take

advantage of cloud benefits, while at the same time increasing its commercial exposure.

Companies such as IBM, Google, and Salesforce.com, have begun to transition existing

“shrink-wrapped” solutions and services into their respective cloud service counterpart.

As mobile device technology continues to increase, usage of these services will increase

as many only require a minimal set of resources in order to run efficiently.

19

5.0 Mobile Technologies

We believe mobile technologies will fuel the adoption, evolution, and

advancement of Cloud Computing. Currently there exist two types of mobile

technologies, physical device mobility and logical resource mobility. Both technologies

have advanced to a state where the needs for physical resources are no longer a concern

in order to provide adequate compute capabilities for consumers. As each technology

continues to mature, new requirements and constraints will necessitate new

advancements for cloud producers. Most notably is the ability for a physical and logical

compute resource to rapidly change physical locations at any given instance of time.

Advantages in the physical mobility context allow consumers to roam freely across

regions and communicate over ad-hoc networks. On the other hand, logical mobility

provides the logical movement of software stacks at a fine grained level. In the remainder

of this section we discuss these two concepts and their impacts on Cloud Computing

5.1 Physical Mobility

Physical device mobility describes the ability for computing devices to roam

unconstrained throughout geographical regions. Although devices have the ability to

roam while in an unpowered state, we only focus on “live” physical mobility. This type

of mobility entails the consumption of computing resources while physical entities still

contain sufficient power to adequately provide services to consumers. As mobile

consumers roam throughout regions, the probability for communication latency to

diminish or enhance, increase or decrease depends on the proximity to local access

points. As devices move out of range, remote compute resources become unavailable

20

until a device is able to reengage network communication. Further there exists the

possibility devices may communicate through several access points at one time. This

ability provides potential for a best path route to be defined in order to improve

communication latency and remote resource access. Much work has been performed

within the area of best-path communications within mobile networks; however to our

knowledge no research currently exists in determining the best cloud service provider

given a mobile device’s current contextual information.

As device and sensor technology continue to advance, so do the software stacks

that are deployed on them. Today, it is common for mobile devices to have GPS tracking,

accelerometers, audio recorders, etc. In the near future, it is conceivable that these

capabilities can be utilized to harvest contextual information regarding a consumer’s

current locale, which in turn can be transparently submitted to one or more cloud

producers. The context granularity may range from latitude and longitude coordinates to

the sounds of a thunderstorm on the horizon. Regardless of the amount of data being

captured, the information can be analyzed by cloud producers to determine if migration

of resources to a new cloud closer in proximity to a consumer’s current location is

beneficial for both parties.

21

A) Dipicts a mobile consumer accessing the same cloud resources from three

sperate providers.

B) Depicts a mobile consumer accessing the same migrating cloud resource

permiting it is in an intransiant state for some α time interval

Within Figure 4, a mobile device is within range of three different cloud providers

at three different time intervals. As a device moves in and out of range of each provider,

there exists the possibility that overall resource downtime is decreased in the event that

workloads can be transparently migrated to each node along the path, or access to the

resources is available through one or more providers. In its simplest case, a cloud

producer can maintain SLAs with mobile consumers only if each device can utilize

communication services from third party clouds along the path. This follows the more

traditional solution of reconnecting to existing infrastructures to continue remote resource

ti-1 ti ti+1 ti+2 . . . ti+n

ti-1 ti+ α ti+1+ α ti+2+ α . . . ti+n+ α

Migrated Cloud Resource(s)

B)

A)

Figure 4: Cloud Consumer Scenarios

22

usage. However, in most cases, assumptions are made regarding the network fabric that

all networks are created equal. In practice this assumption is not always true and may

cause network latency degradation. When a mobile device does not become transient,

there may exist periods where movement of an entire workload or resource to a third

party cloud may increase network latency. In Section 6.0, we provide further details of

motivating use cases for the need to increase mobile consumer awareness within clouds.

5.2 Logical Mobility

Logical mobility describes the utilization of technologies that support and provide

the ability of logical computing resources to be transparently migrated to new physical

computing environments. These logical resources can be either entire workloads or fine-

grained portions of a workload that can perceivably increase the benefit for consumers by

being executed on an external host system [17]. Today, logical mobility of operating

systems and workload applications has seen a dramatic increase in usage and benefit as

companies continue to adopt virtualization stacks. This adoption is due to the ability to

migrate resources to new physical hosts when there is a need for a scheduled maintenance

on the source host. Rather then force an outage for all consumers, the logical resources

can be migrated with almost zero downtime without diminishing the workload’s

availability. In most scenarios, consumers are unaware of this process and continue on

without having to restart applications consuming resources from the workloads.

Within the mobile context, mobile code allows for resources to almost leap off a

device onto passing devices or latch onto remote servers for processing, while eventually

migrating back to the original mobile device. Upon return, the application that spawned

23

the mobile code can extract computation results and incorporate them into the system as

needed. This ability allows for highly intense computational software to be executed in a

cloud to decrease the amount of processing time required to compute and retrieve large

amounts of data.

Whether migrating monolithic workloads or finely grained mobile agents, cloud

producers must be able to handle logical mobility of these consumers as they rapidly

change locations. Unlike mobile devices, logical resources have the ability to move vast

distances within short timeframes. OS instances and workloads can be moved either

within a datacenter or to cross country datacenters depending on the needs of the

consumers. Mobile code fragments can potentially move miles away from their mobile

counterpart by quickly hopping from node to node within a distributed environment. As

each resource moves, context data should be obtained and sent back to cloud producers

for analysis on how cloud resources should be apportioned. Within these scenarios, cloud

resources and workloads should be migrated to neighbor clouds within the federation in

order to satisfy all parties.

24

6.0 Use Case Analysis

As Cloud Computing continues to evolve, new use cases and requirements will

arise from consumers. Influence from the enterprise to mobile consumers will have a

dramatic effect on how producers architect and implement cloud environments. Mobile

Computing device usage and advancement will continue to grow, while they in turn will

require efficient, secure, and scalable platforms to provide services for mobile consumers.

Within the enterprise, corporations will begin to adopt Cloud technologies in order to

reduce IT costs and improve resource utilization.

Within the near future, it is conceivable to imagine mobile device deployment

will become such a norm that you can actually purchase aerosol canisters containing

micro devices which can literally be sprayed into any environment [18]. Although small

in stature, these devices will still require the ability to transmit data to central repositories

so that data can be analyzed. On the other spectrum, consumer consumption of smart

phones will increase traffic congestion within wireless networks due to lack of

infrastructure. The speed at which mobile deice adoption is occurring is outpacing the

enterprise’s ability to support such demand. Today, mobile devices utilizing web enabled

operating systems such as Google’s Android [2] or Palm’s WebOS [4], are now pushing

workloads to the cloud instead of remaining located on the physical device. As these

devices push and pull more data from the network, communication traffic begins to

become congested. In these scenarios, if there exists the ability to transfer such workloads

to other clouds based on a consumer’s locale, then such measures should be enacted. As

we believe enterprises and mobile devices will be the primary influences on the

advancement of Cloud Computing, the remainder of this section we expand on our

Telemedicine scenario and provide some key requirements that cloud environments must

25

implement within their architectures in order to increase SLA guarantees for mobile

consumers.

6.1 Telemedicine

Revisiting our telemedicine scenario as described in Section 2.0, the utilization of

mobile devices is a key enabler in order for this technology to become prevalent across

the globe. Whether it is a mobile robot or smart device, these entities allow for the

administration of medical practices to be performed on patients in remote regions.

Consumers of these devices require the ability to send and receive real time data in order

to adequately perform examinations or surgical procedures. Random drops in wireless

network communication are unacceptable and could have drastic repercussions. Further,

as time is a critical component within the administration process, it is imperative that the

data being transmitted be analyzed efficiently and satisfactory responses be provided to

the mobile consumer as quickly as possible. In the event that patients require

transportation, the mobile consumer will likely be required to accompany them. As the

consumer changes locales, remote resources should not degrade; rather they should

continue to be highly available.

Although the movement of cloud resources may be a data intensive operation, the

potential for continued service level guarantees regarding remote resources being highly

available and reliable has higher precedence. As consumers move closer to the outer

regions of a cloud provider’s coverage area, and there exists an alternative cloud within

range, then remote resources should either be migrated to the new cloud, or

communication through the new cloud should enable continued resource access.

26

Consumers should not be required to make radical changes in order to utilize resources

due to these types of events. If a standard protocol is being employed over the transport,

then continuation of remote resource consumption requires only the change in access

points. In the event the third party cloud does not understand the semantics of the new

cloud provider’s service protocol, then a protocol correlation mapping between what the

consumer and producer comprehend should be utilized in order for the producer to learn

the consumer’s service language [6]. If the semantic mapping of the consumer language

is successful, then remote resources should be accessible without any protocol alterations

within the consumer’s platform. The cloud producer should then execute a negotiation

protocol with the consumer to verify resource relocation is acceptable. Once agreed,

security primitives should be exchanged so that the consumer can access the resources

from the new cloud. If either the semantic mapping or negotiation process fails, then the

cloud producer should continue to provide resource access.

As with mobile devices, the same scenario can be applied to logical devices

migrating around the globe. Within our Telemedicine example, an EMS technician,

doctor, or data analysis application is consuming data provided by the mobile device,

which is stored on shared cloud resource. In order to access this data, the application

must harvest data from the cloud, analyze it, and then provide a response. In the event a

technician is unable to supply a sufficient analysis, the technician’s application may be

migrated across the country and made available to an expert for investigation. Within this

scenario, a checkpoint of the application is initiated where no further modification of the

programs state is allowed. The next step is to migrate the application’s logical resources,

such as memory or CPU state, over the network to the destination physical compute

resource. Due to the movement of these logical resources, communication latency may

27

degrade depending on the relative distance between the cloud resources and the logical

resource’s new location. To decrease the amount of degradation, cloud resources should

either be migrated or replicated across clouds. In the latter approach, techniques should

be implemented that allow for all clouds to converge to a satisfactory synchronized state

where the same data can be retrieved from either cloud. Regardless of the approach, the

mobile consumer should have the ability to inform the producer at the start and end of a

migration operation. This will enable producers to begin orchestrating resource

provisioning and cloud negotiation in an attempt to reduce SLA violations.

From this use case, we propose that the following key requirements be architected

as core functionality within a cloud provider’s implementation:

 Mobile Consumer Awareness – Cloud producers shall request and analyze

consumer contextual information in order to identify potential cloud resource

migration candidates.

 Semantic Protocol Mapping – Cloud producers shall perform a protocol

mapping in order to provide resources to new mobile consumers.

 Cloud Interoperability - Cloud producers shall use a standard protocol that

allows for federated cloud communication in order to negotiate resource

migration.

 Secure Consumer-to-Producer Resource Migration Negotiation – Cloud

producers shall provide a secure negotiation protocol when consumer resources

are migrated.

We believe having these key requirements as core functionality within a cloud can

increase SLA guarantees, decrease consumer to producer coupling, and increase cloud

interoperability.

28

7.0 Architecture

In order to provide consumer location awareness within clouds, producer

infrastructures should be architected with core consumer context aware services. As new

location context metadata is received and analyzed, producers should outsource

workloads to neighbor clouds with the consensus of consumers. In order to reduce

platform coupling while increasing consumer infrastructure interoperability, cloud

infrastructures should provide protocol semantic mappings in order to ensure

continuation of services once migration operations have completed. Figure 5 provides an

architecture blueprint that can be implemented to provide such services on along with

existing cloud environments.

Native Cloud Infrastructure

SaaS

PaaS

IaaS

Semantic Mapper

Context

Analyzer

Migration

Services

Figure 5: Core Cloud Architecture

29

Whether workloads are outsourced due to consumer context or cloud workload

rebalancing, target producers benefit by either charging consumers or source producers

for resource consumption. In essence a cloud economy is formalized as small and large

cloud vendors accept and refer consumers to new resource outlets [11, 14]. In the

remainder of this section conceptual design points regarding the extended service set are

provided.

7.1 Context Analyzer

The context analyzer component is responsible for requesting, receiving and

analyzing consumer context information. Receive and request transactions allow the

component to maintain an up-to-date context repository for all consumers currently

utilizing resources. Analysis capabilities allow the component to make real time

migration decisions as needed in order to maintain consumer SLA agreements.

 Metadata harvesting can be performed either proactively or reactively. In the

former approach it is the responsibility of the component to begin issuing context

discovery requests to consumers. As each response is received, the component updates its

metadata repositories. In the latter approach, consumers push context data to the cloud to

provide assistance in ensuring SLA violations are minimized, as it is also in a consumer’s

best interest to reduce resource outages as much as possible. Due to consumer platform

heterogeneity, utilization of standard semantic information or description languages such

as XML or OWL should be employed in order to increase the cloud’s consumer base and

vocabulary. As new consumers are encountered, the context component can learn new

30

vocabularies and automatically perform resource migration operations as needed based

on this new data.

Within the analysis phase, the component either periodically or instantaneously

performs analysis on the content repository. The former methodology is required as it

allows for the component to periodically scan the content repositories in search of

potential consumer workloads to be migrated. Instantaneous analysis is performed in the

event alerts are fired when SLA agreements are in jeopardy of being breached, a

consumer has moved to a closer distance to a neighbor cloud, or the cloud is currently

experiencing high stress volumes. As analysis is performed, each consumer is placed

within a tier to indicate its potential for resource migration. Workloads that have been

starved or require immediate migration are placed into high priority tiers. Medium tiers

contain workloads owned by consumers who have moved further from the cloud. Low

priority tiers are used to house workloads not in high violation risk or currently being

deployed within the cloud.

As workloads are placed within the high priority tiers, the component will begin

interacting with the migration layer in order to identify potential neighbor clouds that can

accommodate new workloads as specified by a consumer’s SLA. To prevent consumers

from causing migration thunderstorms, each consumer is assigned a set of last service

timestamps within the repository. If a consumer has been seen to routinely be migrating

in and out frequently within the cloud, then the workload is moved to a lower tier in order

to minimize overutilization of physical resources. Such scenarios allow for a first line of

defense from preventing workloads to cause havoc within the cloud such as Denial-of-

Service attacks.

31

Finally, each consumer is given a reputation profile that is stored within the cloud

repository. Within this profile, the consumer is assigned a reputation level along with a

list of past cloud violations. The analyzer will utilize this information along with context

metadata when placing each workload in its respective tier. Consumers placed within

high priority tiers but assigned a poor reputation may still be migrated; however they will

be placed at the tail of a migration queue. As a consumer’s reputation increases, tier

placement and migration placement may be relaxed to allow the workloads to migrate

frequently.

7.2 Semantic Mapper

As workloads become candidates to migrate to and from legacy or third party

clouds, the service protocols utilized from the consumer’s platform should not be

required to change. Such constraints not only prohibit mobile consumers from

discovering new cloud environments to deploy workloads within, but also increase

consumer-to-producer platform coupling. In order to provide for a loose coupling, a

semantic mapping between the consumer’s SLA [5] and current protocol service

interfaces is required. This ability allows for consumers to utilize resources without

requiring infrastructure domain knowledge for the new cloud. The semantic mapping

component provides such capabilities.

When a consumer initially establishes connection with a cloud, a snapshot of the

service interfaces utilized is taken and saved within the cloud repository. In order to

increase the potential that a consumer’s workload can be moved to a new cloud without

hindering the total number of services available, the interface description should be saved

32

in a semantic or descriptive markup language. This structuring of data in this format

allows for both the source and target neighbor cloud to exchange domain interface

knowledge. Knowledge repositories managed either on both clouds or an external broker

can be leveraged in order to increase the chances that such a mapping can be successful.

In order to provide consumers continued resource utilization even in a limited

fashion, the results of the semantic mapping will be sent to consumers for consensus. If

consumers are in agreement with the amount of services that can be accessed within the

destination cloud, then an acknowledgment response will be sent. At this point the

component will inform the migration layer to initiate workload check pointing. In the

event the consumer does not consent to the migration, a new neighbor cloud is searched

for that can provide a larger set of services. If all discovery options have been exhausted,

the cloud will continue providing resources and periodically attempt to locate a new

optimal host for the consumer’s workload.

7.3 Migration Services

In order for consumer resources to have the ability to migrate to neighbor clouds,

each cloud involved in the migration must understand the same migration protocols. As

commercial clouds utilize proprietary virtualization technologies, the odds of migrating

workloads between heterogeneous neighbor clouds quickly diminish. The RESERVOIR

project provides an architecture that can be harnessed in order to overcome these

challenges by providing a layer of abstraction on top the native cloud infrastructures [14].

We propose to extend the technology used within RESERVOIR, to allow mobile

consumers to securely reinitiate the use of resources once they have been migrated to a

33

new host. In order to prevent resources from being reserved for prolonged periods of

time, the migration reservation service should relinquish resources when mobile

consumers fail to initiate service requests. Further, after a migration has been completed,

resources should only be exported to authorized consumers.

Due to the heterogeneous nature of cloud environments, a common security

methodology should be employed to allow for authentication and authorization amongst

disparate systems. To address these issues, we propose to include a set of security

primitives contained within a manifest file that will allow consumers and producers to

authenticate one another in order to successfully reengage resource consumption.

Within RESERVOIR, cloud workloads and infrastructures are deployed within

the virtual environments with all resources and constraints defined within the service

manifest document. The document contains key information such as virtual resource

requirements, elasticity constraints, etc. As this document is used for all configuration

and deployment within the cloud, we propose to extend the manifest document to contain

a security primitive section that can be used authenticate and authorize mobile consumers

before resources are provided. The key elements to the security portion could potentially

be the following:

 Source Consumer Session Identifier – Identifier assigned to a consumer after a

successful authentication and authorization process.

 Source Cloud Producer Identifier – Unique identifier of the source cloud

provider

 Destination Cloud Producer Identifier – Unique identifier of the destination

cloud provider.

34

 Migration Temporal Consumer Token – Unique temporal identifier generated

for a consumer for the duration of a migration process. The generation of the

token uses input from both source and destination cloud producers.

Once a mobile consumer initiates service requests, it is issued a session identifier. This

identifier is used to allow the consumer to continue utilizing services for a predefined

period of time before being requested to re-authenticate. When a consumer’s workload is

eligible for migration, the migration component will begin negotiation deliberations with

the destination cloud. Once it has been determined that migration should be initiated, the

source cloud will store the source consumer session identifier within the manifest file.

This token should be generated in such a manner as the destination producer can identify

where it originated from. To assist in this process, the source cloud producer’s public

identifier is stored within the document. The source cloud producer will also store the

destination cloud identifier so that the consumer can extract the information in order to

verify it is communicating with the correct cloud provider after a migration. The last

primitive is used to provide a migration temporal token. This token is used to indicate the

maximum duration the destination cloud will reserve the resource before releasing them

in the event the consumer fails to initiate service requests within this time interval. Once

the manifest document has been persisted, two versions should be digitally signed and

encrypted by the source cloud. Each version will be secured in a fashion where each

respective recipient is able to decipher the manifest document.

When a consumer begins to request resources from the new cloud, both parties

should verify they are communicating with the intended entities by verifying information

contained in their versions of the manifest file. On a successful verification, the

35

consumer’s resources are made available. In the event a consumer fails to initiate service

requests, the destination cloud producer should notify the original source cloud of the

timeout. This notification allows for resources within the source cloud to become

available in scenarios where the mobile consumer has moved out of range of the

destination cloud and back within range of the source cloud.

36

8.0 Conclusion

As Cloud and Mobile technologies continue to evolve, so do the requirements

elicited from consumers. In order to account for dynamic changes, cloud environments

must provide a rich set of core functional features that can be utilized by mobile

consumers. Today, the ability for consumers to physically or logically move throughout

different geographical regions, places new constraints on cloud producers to ensure

service level agreements are maintained. Since service levels provide guarantees that

resources will be presented as reliable and highly available, it is in the best interest of

cloud producers to interoperate with neighbor clouds. This interoperability allows the

formation of a federation where new cloud economies can thrive, generating more

revenue and attracting new consumers.

The current state of the art provides promising avenues in the fields of

virtualization and mobility. However, existing cloud environments have not been

architected with consumer mobility as a key requirement. As the number of mobile

devices continues to increase, it is conceivable that clouds will become overburdened and

begin to violate SLA agreements. To minimize violations, cloud interoperability allows

for workloads to be migrated on demand or based on contextual information harvested

from consumers. As workloads are migrated, consumers and producers should have the

ability they to verify they are communicating to the expected entity irrespective of the

protocol being utilized. This is accomplished through the exchange of security primitives

each entity authenticates before resources are authorized and consumed. In order to

minimize platform coupling, the use of semantic protocol mappings can be implemented

to increase consumer interoperability while decreasing coupling. By incorporating these

37

key elements within the architecture, cloud providers increase consumer exposure,

minimize SLA violations, and reduce platform coupling.

38

References

[1] Amazon elastic compute cloud. URL http://aws.amazon.com/ec2/.

[2] Android. URL http://developer.android.com/index.html.

[3] Google app engine. URL http://code.google.com/appengine/.

[4] webosdev. URL http://developer.palm.com/.

[5] I. Brandic and A. Vienna. Towards Self-manageable Cloud Services.

[6] J. Broberg, R. Buyya, and Z. Tari. MetaCDN: Harnessing ‘Storage Clouds’ for

 high performance content delivery. Journal of Network and Computer

 Applications, 2009.

[7] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing

 and emerging IT platforms: Vision, hype, and reality for delivering computing as

 the 5th utility. Future Generation Computer Systems, 25 (6): 599–616, 2009.

[8] A. Dubey and D. Wagle. Delivering software as a service. The McKinsey

 Quarterly, pages 1–12, 2007.

[9] L. Johnson, A. Levine, R. Smith, and T. Smythe. The 2009 Horizon Report: K.

 Austin, Texas: The New Media Consortium. Cover photograph:“Chapped Lips”

 by Vox_Efx on Flickr (http://www. flickr. com/photos/vox_efx/3186014896/).

 Creative Commons, page 3, 2009.

[10] N. Kaushik. Distributed resource usage: Lightpath allocation, Advance

 reservations with guarantees, and Co-alloca-tion waiting-time. PhD thesis, Santa

 Clara University, 2009.

[11] A. Marinos and G. Briscoe. Community Cloud Computing. Arxiv preprint

 arXiv:0907.2485, 2009.

[12] A. Merzky, K. Stamou, and S. Jha. Application Level Interoperability between

 Clouds and Grids.

http://aws.amazon.com/ec2/
http://developer.android.com/index.html
http://code.google.com/appengine/
http://developer.palm.com/

39

[13] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

 D. Zagorodnov. The eucalyptus open-source cloud-computing system.

 Proceedings of Cloud Computing and Its Applications, 2008.

[14] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,

 R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, et al. The reservoir model and

 architecture for open federated cloud computing. IBM Systems Journal. Submitted

 for publication.

[15] F. Samimi, P. McKinley, and S. Sadjadi. Mobile service clouds: A self-managing

 infrastructure for autonomic mobile computing services. Lecture Notes in

 Computer Science, 3996: 130, 2006.

[16] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the

 clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39 (1):

 50–55, 2009. ISSN 0146-4833. doi:

 http://doi.acm.org/10.1145/1496091.1496100.

[17] S. Zachariadis, C. Mascolo, and W. Emmerich. Satin: A component model for

 mobile self organisation. LECTURE NOTES IN COMPUTER SCIENCE, pages

 1303–1321, 2004.

[18] F. Zambonelli, M. Gleizes, M. Mamei, and R. Tolksdorf. Spray computers:

 Explorations in self-organization. Pervasive and Mobile Computing, 1 (1): 1–20,

 2005.

http://dx.doi.org/http:/doi.acm.org/10.1145/1496091.1496100

40

Vita

Jacob Rosales was born in El Paso, Texas, son of Jose Rosales III and Georgia

Rosales. He received a Bachelor of Science in Computer Science from the University of

Texas at El Paso in 2006. After graduation Jacob joined IBM Corporation in Austin,

Texas as a Software Engineer. At IBM he designs and implements software for IBM’s

Advanced POWER Virtualization software solution.

This report was typed by Jacob Jason Rosales.

