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Phylogenetics is the study of evolutionary relationships. It is a scientific

endeavour to discover history, and it is not easy. Massive amounts of data to-

gether with computationally difficult optimization problems mean that heuristics

are prevalent, and ever better techniques are sought. New approaches are valuable

if they are more accurate, but are considered even more so if they are faster than

pre-existing methods. Improvements to existing algorithms, whether in terms of

space requirements, or faster running times, are also worthwhile. This dissertation

explores three new techniques, each of which is valuable according to the previous

definitions.

The first contribution is TASPI, a system for storing collections of phylo-

genetic trees, and performing post-tree analyses. TASPI stores collections of trees

more compactly than the previous method, and this compact structure lends itself to
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post-tree analyses. This results in the ability to compute strict and majority consen-

sus trees faster than common alternatives. As an added benefit, TASPI is written in

ACL2, which allows properties of the algorithms and data structures to be formally

verified.

The second contribution is an improved method to generate phylogenetic

trees. A common methodology involves two steps, first estimating a Multiple Se-

quence Alignment (MSA), and then estimating a tree using that MSA. This method

changes the way in which the MSA is estimated, and this leads to improved accu-

racy of the resultant trees. Also, in some cases, the time required is also reduced.

The third contribution is BLuTGEN, a method by which a phylogenetic

tree is estimated from sequence data, but without ever generating an MSA for the

full dataset. BLuTGEN is as accurate as one of the best published tree estimation

techniques (SATé), but takes a novel approach which allows it to be applied to much

larger datasets.
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Chapter 1

Introduction

Phylogenetics is the study of evolutionary relationships. These relationships

are often represented as a phylogenetic tree, or phylogeny. Biological phylogenies

represent the evolutionary relationships of a set of organisms (taxa) and are used

to answer a variety of questions ranging from specific hypothesis (e.g. Did wings,

flippers and arms all evolve from the same structure in some ancient organism?) to

more general queries (e.g. Why does Columbia have more species of birds than any

other country?).

Phylogenetic trees are also used to answer questions in fields other than

biology. For example, phylogenetics have been used in forensics to determine the

sources of infection from HIV [37], and to predict gene function, which can be used

for drug discovery [84]. Phylogenetic trees are also used in security applications

(such as artificial immune systems for computers) and historical linguistics (seeking

to understand how languages have evolved) [17].

The process of creating a phylogeny is complex, from several perspectives.

A biologist must procure appropriate data, and choose some analysis to perform;

a computer scientist develops the analyses to be performed; a mathematician tries

to understand the theoretical guarantees provided by each of the possible analyses.
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Each contributes to the process of building a phylogeny. As a computer scientist,

in this dissertation I will focus on the challenges inherent in designing accurate and

efficient algorithms for use in phylogenetic analyses.

To begin, let us consider the high-level steps that are usually performed in

generating a phylogeny. First, representative data are collected for each of the taxa

being studied. These data can take many forms, although the most common include

sequence data, gene order data, and historically, morphological data. Second, these

data are aligned to ensure that comparable information is considered as input to

the tree producing step. The third step is to produce one or more candidate trees.

There are many techniques for creating these trees, some of which return a single

tree, such as Neighbor-Joining [76] and other distance based-methods, and other

methods that potentially return several trees, such as heuristic search methods at-

tempting to optimize a maximum parsimony or maximum likelihood criteria. In

each case, the accuracy of the tree(s) returned must be assessed. More recently,

Bayesian MCMC sampling methods have been used to jointly estimate phylogeny

and assess confidence in the tree produced.

When using a heuristic search method, and also in a Bayesian context, there

are potentially many trees to be considered. Many programs for phylogenetic infer-

ence (e.g. PAUP [94], GARLI [102]) recommend saving more than one tree during

their search for an optimal solution. A commonly used program for Bayesian infer-

ence, MrBayes [40], saves hundreds and more often thousands of trees to a file as it

considers various trees as potential phylogenies.

In order to glean useful information from these possibly large collections of
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trees, post-tree analyses are performed. These include consensus analyses which

seek to summarize the information in the trees, other techniques to determine the

common elements of the collection (e.g. MAST, MCT, clustering methods) and var-

ious filtering methods (e.g. investigating which trees agree with a pre-determined

constraint).

Recently, this usual pipeline has been modified to group the alignment and

tree generation steps [28,54,71,98]. Remember, this process first estimates an align-

ment and then uses this fixed alignment to estimate a tree. But this fixed alignment

likely has errors, and so we are compounding errors when we use it as input to the

tree producing algorithms. Instead, methods have been developed that attempt to

reconstruct the alignment and phylogeny simultaneously. Of course, this is a much

more computationally intensive endeavour since computing an alignment and a tree

on that alignment are each in and of themselves hard problems.

Which brings us to just how hard this process is: very. Although sequencing

advances have helped biologists gather data, this means there is an explosion of

sequence data available for processing. And the algorithms in phylogenetics have

not kept up. New techniques are required to manage this plethora of data and to

boost our current techniques to handle the data effectively. New methods that work

in entirely new ways are also needed.

This dissertation contributes to the process of discovering relationships in

three ways. First, TASPI (described in Chapter 3) is a new method for handling

large collections of trees. Second, Chapter 4 describes a boosting method for gen-

erating better alignments for use in reconstructing trees using existing tools. The
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third contribution is BLuTGEN, a new method for constructing phylogenies which

works by dividing the dataset into subproblems in novel ways (described in Chap-

ters 5 – 9). Chapter 2 introduces a number of concepts that will be used throughout

the rest of this dissertation, and Chapter 10 wraps up with a discussion of future

work.
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Chapter 2

Background

This chapter covers the terminology and concepts used throughout the rest

of this dissertation.

2.1 Definitions
2.1.1 Trees

Phylogenetic Tree A phylogeny, or phylogenetic tree, is a representation of the

evolutionary relationships amoung the group of taxa contained in the tree. This

representation takes the form of an acyclic graph, where the nodes indicate a partic-

ular taxon, and the edges indicate evolutionary history. Terminal nodes, or leaves,

usually represent extant species, whereas internal nodes represent ancestral species.

A rooted tree has a special node that is marked as the root. This root allows us to

associate time with the tree, such that if a node A has a path to the root through

another node B in the tree, then A is considered a descendant of B. Unrooted trees

have no such time axis. See Figure 2.1 for examples.

While rooted trees are more intuitive, placing the root on a tree is a difficult

problem. Thus, I will usually test my algorithms on unrooted trees, since much

useful information can still be gleaned from an understanding of the relationships
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Figure 2.1: Rooted and unrooted trees. Figure 2.1(a) shows ancestral nodes A
and B, where A is a descendant of B, as are sequences S3, S4 and S5. Figure 2.1(b)
shows an unrooted tree.

as presented by an unrooted tree.

Clade Defined for a rooted tree, a clade is the full set of taxa which share a most

recent common ancestor that is not shared by any other taxon in the tree. For

example, in Figure 2.1(a) sequences S1 and S2 form a clade, while S3 and S5 do

not.

Edge (Bipartition) An edge, or branch, in the tree separates the taxa at the leaves

into two sets. Each of these pairs of sets, one for each edge in the tree, is referred to

as a bipartition (since it partitions the leaves into two sets). A bipartition of a tree

is denoted by x|y, where x ∪ y is the complete leaf set of the tree. An edge is an

internal edge if it connects two internal nodes, that is, neither of its endpoints is a

leaf.

Compatibility and Conflict A collection of bipartitions is considered compatible

if it is possible for a tree to have each and every bipartition in the set simultane-

ously. That is, if there is a single tree which contains each of the edges indicated by
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a collection of bipartitions, the collection is said to be compatible. A set of com-

patible bipartitions uniquely defines a tree. Two bipartitions are said to conflict if

they are not compatible, that is, they cannot both be present in a tree. Consider the

bipartitions x|y and u|v, both with the same leaf set. If x ⊂ u or x ⊂ v the two

bipartitions are compatible.

Resolution Let T be a tree with n leaves and m internal edges. The resolution of T

is the proportion of internal edges present in T compared to the number of possible

internal edges. There are at most n− 3 internal branches in T , so the resolution of

T is
m

n− 3

expressed as a percentage.

2.1.2 Alignments

Multiple Sequence Alignment An alignment is also a representation of related-

ness, but on a finer scale. This representation takes the form of a matrix, where each

row contains information for a particular taxon, and each column indicates shared

history. I will be focusing on alignments of nucleotide data, so each row will be

the sequence of DNA characters (i.e. strings over the alphabet “A,C,T,G”) together

with a gap character, “-”. The DNA characters make up the raw data collected by

the scientists. By adding gaps in appropriate positions, a multiple sequence align-

ment puts the DNA characters into columns such that all nucleotides in a column

are hypothesized to share a common ancestor. Note that the order of the DNA char-

acters cannot be modified, so the only operation allowed going from raw sequences
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AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA

(a) Raw/Unaligned Sequences

-AGGCTATCACCTGACCTCCA
TAG-CTATCAC--GACCGC--
TAG-CT-------GACCGC--
-------TCAC--GACCGACA

(b) Aligned Sequences

Figure 2.2: Raw (unaligned) and aligned sequences. Using Figure 2.2(a) shows
four unaligned sequences, and Figure 2.2(b) shows the same sequences aligned.

to an alignment is the addition of gaps. See Figure 2.2 for an example.

An induced alignment is a restriction of a multiple sequence alignment to

a limited number of rows. If any of the columns in this restricted alignment are

entirely gapped, they are disregarded.

Gappiness Gappiness is one measure of the amount of evolution in a multiple se-

quence alignment, where higher gappiness indicates higher rates of evolution. Set-

wise gappiness is the percentage of the multiple sequence alignment matrix occu-

pied by gaps. Edgewise gappiness is defined in terms of the edges in the tree to-

gether with sequences at every node. Then, for an edge, the gappiness is the percent

of the pairwise alignment that is gapped. I will usually refer to the average edge-

wise gappiness of an alignment, which is the average of the edgewise gappinesses

for each edge in the tree.

Normalized Hamming Distance Hamming Distance is another measure of the

amount of evolution in an multiple sequence alignment. Given a pairwise align-

ment, the classical Hamming Distance [36] is simply the number of positions in

the alignment which are different. I will be using a modified version where I only
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consider positions in the alignment where neither sequence has a gap. Using this

definition of Hamming Distance, the normalized Hamming Distance (NHD) is the

Hamming Distance, divided by the length of the sequence (not counting gapped po-

sitions). Thus, the NHD could be computed by first removing all gapped positions

in the alignment. Then, using this restricted alignment as input, the NHD is the

number of positions that are different divided by the length of the alignment. As

with gappiness, the NHD can be computed for every edge in the tree when there are

sequences at internal nodes. Taking the average of all of these edgewise NHD’s re-

sults in the edgewise ANHD. The setwise ANHD is computed by instead averaging

the NHD for all pairwise induced alignments from a multiple sequence alignment.

Note that the setwise ANHD is calculated using only the sequences from the leaf

taxa, while the edgewise ANHD requires sequences at internal nodes. Finally, the

setwise maximum NHD for a multiple sequence alignment is the maximum NHD

for any induced pairwise alignment.

2.2 The Phylogenetic Process

The traditional way of producing a phylogeny for a set of taxa involves four

major steps:

1. Gather comparable data for the taxa of interest (for our purposes, DNA se-

quences).

2. Create an alignment for the sequences gathered.

3. Generate trees from the alignment.
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4. Post-process the data in some way.

I will not elaborate on the techniques used to gather the source (raw) data,

but some background on multiple sequence alignment techniques and tree genera-

tion will be useful. Also, consensus methods are amoung the most common post-

processing techniques, and the type on which I will focus.

2.2.1 Multiple Sequence Alignment Estimation

Computing a multiple sequence alignment is a difficult problem. At times

accomplished manually, where a biologist makes a best guess for positional ho-

mology, more objective criteria have also been developed. However, even the best

criteria are not guaranteed to prefer the evolutionarily correct alignment.

First defined for pairwise alignments, the Sum-of-Pairs criterion is one of

the most commonly used criteria for choosing between alternate alignments. Framed

as an optimization problem, the best alignment for a pair of sequences is the align-

ment that optimizes the Sum-of-Pairs score (SOP-score). This score is defined in

terms of the paired positions in the alignment, where matches improve the score,

and mismatches degrade the score. Gaps can also contribute to the score, with sev-

eral different models of gap treatment having been developed. With a linear gap

penalty, any gap character in the alignment degrades the score equally. Alterna-

tively, with an affine gap penalty, gaps are considered as a function of their length,

with separate “gap open” and “gap extend” penalties.

Happily, given the parameters to the SOP-score, it is possible to efficiently
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compute an optimal alignment for a pair of sequences using an algorithm first de-

veloped by Needleman and Wunsch [64] and refined by many others (for example,

Sankoff improved the algorithm for gap treatment [80] and Hirschberg improved the

space requirement of the algorithm [39]). Unhappily, extending these algorithms to

multiple sequence alignment does not preserve the efficiency of the algorithms. In

fact, multiple sequence alignment has been shown to be NP-hard [99] [46].

So instead of trying to solve this sort of optimization problem exactly, heuris-

tics are used. Many of the heuristics seek to find a multiple sequence alignment that

optimizes the total SOP-score (which is the sum of the scores for each of the induced

pairs of sequences), though there are many other approaches as well. Heuristics

tend to fall into two categories (though some methods use both, or neither): pro-

gressive and iterative. A progressive method uses an estimate of the relationships

between the sequences (a guide tree) to inform the order in which sequences are

added to the alignment (see Chapter 4 for further details). In a progressive method,

once a sequence is part of the alignment, the induced pairwise alignments already

present do not change. An iterative method is similar to a progressive method,

but relaxes the restriction that the induced pairwise alignments may not change.

Instead, as sequences are added, the partial multiple sequence alignment can be re-

fined using the information added by subsequent sequences. Progressive methods

are the most widely used approach since they are faster than the alternatives.
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2.2.2 Tree Estimation

Even before sequence data was available, scientists attempted to estimate

what the phylogenetic tree for a set of taxa should be. Over the years, many tech-

niques for tree estimation have been developed including distance-based methods

such as UPGMA [86] and NJ [76], score optimization methods such as Maxi-

mum Parsimony and Maximum Likelihood, and more recently, Bayesian meth-

ods [26] [38]. In this dissertation I will mostly focus on Maximum Parsimony

and Maximum Likelihood.

Maximum Parsimony (MP) defines the parsimony score of a tree with se-

quences at the leaves, and seeks to find the tree that minimizes this score. The

parsimony score is a measure of the minimum amount of change necessary over

the tree to produce the sequences at the leaves. While determining the score of a

tree is not difficult (it can be accomplished in linear time [81]), finding a tree that

minimizes this score is NP-hard [18].

Maximum Likelihood (ML) also defines a score of a tree with sequences at

the leaves. The likelihood score of a tree, given a model of evolution and lengths on

the branches, is the probability of the sequences given the tree and the model. While

finding the MP score of a tree is not difficult, even just scoring a given tree under ML

is computationally intensive since branch lengths must first be optimized. Again,

finding a tree that maximizes the likelihood score is an NP-hard problem [14].

Given that these optimization problems are unlikely to be solved exactly

in reasonable amounts of time, heuristics have been developed. These tend to be

12



hill-climbing searches, where instead of considering every possible tree, a subset of

trees with successively improved scores are considered until no better scoring tree

can be found (using the transitions allowed by the search method). These methods

are prone to local optima and tree islands, defined by David Maddison as a set

of trees “all less than a specified length, each tree connected to every other tree

in the island through a series of trees, and each one differing from the next by a

single rearrangement of branches” [58]. In an attempt to find a globally optimal tree

instead of a sub-optimal one, techniques such as using randomization in building an

initial tree from which to begin the search, and methods designed to move a search

away from a local optimum have been developed. Since we are unable to know

for certain that we have found the optimal solution, many times a phylogeneticist

will keep several of the best trees for further comparison and exploration. This is

especially true when the search to find the best trees has required considerable time

(weeks and months).

Thus, these techniques rarely result in a single optimal tree. Instead, there

are often many trees that a phylogeneticist would like to save for further processing.

These post-tree analyses take many forms, but consensus analysis, which is used to

summarize a collections of trees, is one of the most common.

2.2.3 Consensus

Consensus trees are defined by Felsenstein as “trees that summarize, as

nearly as possible, the information contained in a set of trees whose tips are all

the same species” [26]. There are many different kinds of consensus, each stressing
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a different commonality or difference between the input trees.

Consensus methods return a single tree, or an indication that no tree meeting

the requirement of the method is possible. A consensus tree is created from the input

trees based upon some criterion. Two of the most common types of consensus trees

are strict and majority [59]. Both of these decide which edges in the input trees to

keep, and then build a tree from the resulting edges.

Strict consensus requires that every edge in the consensus tree be an edge

in every input tree. Majority consensus is less rigid, only requiring that every edge

in the consensus tree appear in a majority of the input trees. Originally defined in

terms of the usual sense of majority (i.e. where majority means more than 50%),

it is also possible to define majority consensus in terms of a threshold parameter

which indicates the required amount of agreement for inclusion. As long as this

threshold is set above 50%, the majority consensus tree is well defined. Note that

strict consensus is a special case of majority consensus; that is, it is a majority con-

sensus with a threshold of 100%. Strict and majority consensus algorithms always

return a tree (again, when the threshold is set above 50%), and can be computed ef-

ficiently. Strict consensus has an optimal O(kn) algorithm as described by Day [19]

while majority consensus has an expected O(kn) randomized algorithm as described

by Amenta et al. [2] (where k is the number of trees and n is the number of taxa).

It is important to note that all consensus methods, though they may return

a tree, rarely return a tree that is most parsimonious, nor does the returned tree

achieve the best likelihood score. Thus, there has been some debate about using

consensus methods to infer phylogenies [11]. However, as long as the merits and
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limitations of each consensus method remain in perspective, the trees produced by

consensus methods can be very useful.

2.3 Simulation Studies

Though my goal is to create algorithms that perform well (i.e. accurately

and quickly) for datasets that are collected from real biological organisms, it is

essentially impossible to have perfect real data, where both the historical alignment

is known, as well as the actual branching pattern of all sequences under study. Even

if we have sequences collected in a wet lab over a period of time where a scientist

has carefully controlled the environment (i.e. experimental evolution, for example

with E. coli [7]), this still only gives partial information; the exact progression of

changes to the sequences remain unknown. In the absence of these perfect real data,

we instead make use of simulation studies, where the true alignment and phylogeny

are known so that we can compare the results of our algorithms to truth to determine

how well they work.

The simulation studies I perform usually have four steps:

1. Generate a model tree.

2. Generate sequences on the model tree.

3. Estimate alignments and trees from raw sequences.

4. Compare estimates of alignments and trees to true alignment and true tree.
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In this dissertation, I use several variations of this basic process, so I will

detail the specifics for each experiment in the appropriate chapter. The utility of

simulation studies lies in the fact that because I create the data, there is a known

true alignment and true tree with which to compare. Of course, simulation studies

are also limited in usefulness since the models used to generate the data are imper-

fect. Thus, even if a method performs extremely well in simulation, this does not

guarantee that the method will perform equally well for biological data. However, a

method that works well in simulation is at least a good candidate for working with

biological data. To assess the accuracy of the estimation techniques I develop, I

need a way to compare the estimated alignments and trees to the known true tree

and true alignment.

2.3.1 Assessing Alignment Methods

To measure alignment accuracy, I use the SP (sum-of-pairs) error rate (the

complement of the SP accuracy measure, and denoted SPFN ), which I now define.

Let S = {s1, s2, . . . , sn}, and let each si be a string over some alphabet Σ (e.g.,

Σ = {A,C, T,G} for nucleotide sequences). An alignment on S inserts spaces

within the sequences in S so as to create a matrix, in which each entry of the matrix

contains either a dash or an element of Σ. Let sij indicate the jth letter in the

sequence si. We identify the alignment A with the set Pairs(A) containing all

pairs (sij, si′j′) for which some column in A contains sij and si′j′ . Let A∗ be the

reference alignment, and let Â be the estimated alignment. Then,

SPFN =
|Pairs(A∗)− Pairs(Â)|

|Pairs(A∗)|
,
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expressed as a percentage; thus SPFN is the percentage of the pairs of homologous

nucleotides in the reference alignment that are unpaired in the estimated alignment.

Note that because pairs in the reference alignment that include a nucleotide and

a gap character are not considered, it is possible for SPFN to be 0, and yet have

differences between the reference and estimated alignments.

The analogous SPFP is similarly defined, and is the percentage of the pairs

of nucleotides that are paired in the estimated alignment, but are unpaired in the

reference alignment. I will tend to only consider SPFN , since SPFP favours align-

ments that are highly gapped.

2.3.2 Assessing Tree Reconstruction Methods

To measure tree accuracy, I will most often use the missing edge rate, which

is the percentage of the edges of the reference tree that are missing in the estimated

tree (we assume both trees have the same leaf set). This is also known as the false

negative rate, and will thus be denoted by FN. To be precise, let r be the number of

internal edges in the reference tree, and let j be the number of edges in the reference

tree not found in the estimated tree. Then

FN =
j

r

expressed as a percentage.

As with alignments, there is also an analogous false positive rate (FP), which

is the percentage of edges in the estimated tree that are missing in the reference tree.

Again, to be precise, let m be the number of internal edges in the estimated tree,
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and let i be the number of edges in the estimated tree not present in the reference

tree. Then

FP =
i

m

expressed as a percentage.

Notice that if both trees are binary, that is, fully resolved, then m = r

and i = j, so FN = FP . However, in simulation, the reference tree is the “poten-

tially inferable model tree” (PIMT), which is obtained by contracting the zero-event

edges in the model tree. An edge is a “zero-event” edge if the sequences at each

end of the edge are identical. In this case, there are no data which will support this

edge, and therefore I do not expect any algorithm to be able to reconstruct such an

edge.

As with alignment error, I will focus my attention on the FN rate, because

a tree with no internal edges will always have a zero FP, and thus FP favours trees

with low resolution.
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Chapter 3

Storing Collections of Trees

As available sequence data increases, the complexity of storing these data,

as well as storing the results of their analyses, also increases. With Warren Hunt and

Bob Boyer, I have developed a new method for storing and retrieving phylogenetic

tree data, and using this method we have implemented a consensus algorithm. Our

approach permits very large data sets to be compactly stored and retrieved without

any loss of precision. Also, our implementation of a post-processing technique

(strict and majority consensus) provides greatly increased performance as compared

to PAUP [94] and TNT [31]. The material in this chapter was first published in two

conference publications [9] [45].

Our software is called the Tree Analysis System for Phylogenetic Inference

(TASPI), and it is an experimental system, written from scratch. It is a stand alone

tool for a few kinds of phylogenetic data manipulation. TASPI is written in the

ACL2 [50] formal logic, where all operations are represented as pure functions.

Using ACL2’s associated mechanical theorem prover, I have proved a variety of

assertions about the TASPI system.

This chapter is organized as follows: I first explain how collections of trees

might arise, and then describe our representation of phylogenetic trees, and how
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this format reduces the storage requirement for a collection of trees. I also note

a variety of properties that I have defined for trees in the system, and show an al-

ternate representation of trees that is less storage efficient, but useful for proving

properties of the algorithms. I next consider computing strict and majority consen-

sus trees, and show our algorithm that exhibits improved performance as compared

to currently available software. Finally, I describe an empirical study exploring the

storage requirements for collections of trees, and the time requirements to compute

consensus trees.

3.1 Collections of Trees

In Section 2.2.2 I described a few ways in which collections of trees are

produced from a single data set, from a single heuristic search. I also mentioned

Bayesian methods, where a Markov chain Monte Carlo method is used to simulate a

random walk through tree space. Using this method, trees are visited in proportion

to their posterior probabilities. By considering the trees visited, inferences about

phylogeny can be made. But this requires saving all (or some sampling) of the

trees. In order to give accurate information about the phylogeny, the size of the set

of trees saved can be quite large (tens to hundreds of thousands of trees).

Collections of trees can also arise from multiple data sets. For example, if

a biologist is studying a group of organisms, they may consider multiple genes. A

phylogenetic study using one gene may imply one phylogeny for the species, while

basing the study on a different gene may give different results. Each study may

result in a collection of trees, or the results from each study may be combined into
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a collection.

In each of these cases, collections of trees with the same set of taxa are

produced, and sometimes these collections are extremely large (particularly in the

Bayesian context, but sometimes there are very large tree islands as well). A phy-

logeneticist would like to save all of these trees for further analysis, as well as to

preserve their scientific method. Unfortunately, the traditional method for storing

these trees is extremely large text files.

Indeed, the need for a database system for such collections of trees has

been recognized for some time [78]. However, while databases for collections of

sequence data have been well developed (e.g. GenBank [6]), limited work has been

done for trees. TreeBASE [79, 97] is a first attempt at storing trees, but has been

designed to store published trees, most often only an individual tree or perhaps a

few, and never the entire set generated.

While saving all trees generated during an analysis is important, it is only

half of the issue. Once the trees are generated, post-processing is required in order

to glean information from the collection of trees. There are a variety of operations

used to accomplish this task. The most often used of these are consensus methods

(see Section 2.2.3), which summarize the collection of trees with a single tree on

the full leaf set, but there are many others as well, such as Maximum Agreement

Subtree, which instead finds the subtree common to all trees in the collection with

the largest number of a taxa.
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3.2 Representation

Newick format [25] is the standard way of storing a collection of phyloge-

netic trees. Adopted in 1986, Newick is a notation that uses commas to separate

sibling subtrees, parentheses to indicate children, and a semicolon to conclude a

tree. Newick outlines each tree in its entirety whether storing one tree, or a collec-

tion of trees.

On the other hand, TASPI capitalizes on common structure within a collec-

tion of trees. TASPI stores a common subtree once, and then each further time the

common subtree is mentioned, TASPI references the first occurrence. This saves

considerable space since potentially large common subtrees are only stored once,

and the references are much smaller (for empirical results see Section 3.4.3).

There are two layers to the TASPI representation of trees. At a high-level,

trees are represented as Lisp lists, similar in appearance to Newick, but without

commas and semicolons. This is the format presented to the user of TASPI and on

which user functions operate. At a low-level, the data are instead represented in

a form that uses hash-consing [32] to achieve decreased storage requirements and

improved accessing speeds. This representation makes use of Lisp-style expres-

sion identification and allows circular graphs to be built. For ease of reference in

Section 3.4.3, I call this the Boyer-Hunt compression.

Consider the following set of rooted trees in Newick format:

(A,((B,(C,D)),E));
(A,((E,(C,D)),B));
(A,(B,(E,(C,D))));
((A,B),(E,(C,D)));
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The format of these trees presented to the user of TASPI is straightforward:

(A ((B (C D)) E))
(A ((E (C D)) B))
(A (B (E (C D))))
((A B) (E (C D)))

Notice that storing this set of trees involves restoring the subtree containing

taxa C and D once for every tree. The Boyer-Hunt compression instead stores the

C-D clade once, the first time it is encountered. If, subsequently, the C-D clade

is encountered again, the first time is marked with “#n=” for the current value of a

counter n that is incremented each time it is used. Then, instead of re-storing the

C-D clade, a reference in the form “#n#” is stored in its place. This compression

has parallels to the Lempel-Ziv data compression which is based only on characters

seen so far [101]. The compressed version of the trees above is given below:

((A ((B #1=(C D )) E ))
(A (#2=(E #1#) B))
(A (B #2#))
((A B)#2#))

We use a technique sometimes called hash-consing, which ensures that no

object is ever stored twice. In the context of phylogenetic trees, an object is a

subtree, and consing is a tree constructor that joins subtrees. Hashing, put simply,

is a technique that creates a table that allows for fast searches. In this case, hashing

is used to quickly determine if a subtree was previously encountered. The format,

using “#n=” and “#n#”, is a standard read dispatch macro from Lisp programming

[91].
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BA

F

G E

D

C

Figure 3.1: An unrooted tree. Each unrooted tree has many Newick representa-
tions.

Two subtleties remain to be addressed. First, though we will be present-

ing rooted trees, not all trees are rooted. In fact, most tree searching algorithms

return unrooted trees since determining the root of a tree may itself be difficult

[26]. Newick format does not distinguish between rooted and unrooted trees ex-

cept through the use of auxiliary flags. By placing [&R] and [&U] just before the

beginning of a tree, rooted and unrooted trees, respectively, are indicated. Without

these flags, the onus is on the user to interpret the trees appropriately.

Second, Newick does not give a unique representation for a tree. Consider

the tree in Figure 3.1. There are many representations for this tree in both Newick

and TASPI. Possible TASPI representations include:

((F G) ((A B) (C (D E)))) and

((C (E D)) ((B A) (G F))).

To ensure a unique answer in our computations, we order the output with respect to

an ordering on the taxa. As far as we can tell, PAUP also does this. Thus, given an

alphabetical ordering, we would order the tree above as:

(A B ((C (D E)) (F G))).
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(defun taspip (flg tree)
(if flg

(if (atom tree)
(or (and (symbolp tree)

(not (equal tree nil)))
(integerp tree))

(taspip nil tree))
(if (atom tree)

(null tree)
(and (taspip t (car tree))

(taspip nil (cdr tree))))))

Figure 3.2: ACL2 definition of taspip.

3.2.1 Properties of Trees

Since TASPI is built within ACL2, I have written predicates that together

recognize well-formed trees. First, taspip (see Figure 3.2) checks that a tree is

made up of symbols and integers for leaves (though nil is not a valid taxa name),

and that any time there are sibling subtrees, they are part of a true-listp. Sec-

ond, ordered-taspi (Figure 3.3) checks that a tree follows a specified ordering.

Any sibling taxa are to be in the order given, and sibling subtrees must have the first

taxa in each of their representations in the correct order.

I use these predicates throughout my code to ensure that the trees within

the system are in a valid and consistent state. I also use these as hypotheses for

theorems about algorithms which take trees as input.
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(defun first-taxon (term)
(if (atom term)

term
(first-taxon (car term))))

(defun ordered-taspi (tree order)
(if (consp tree)

(if (consp (cdr tree))
(and (< (cdr

(assoc-equal
(first-taxon tree)
order))

(cdr
(assoc-equal

(first-taxon
(cdr tree))

order)))
(ordered-taspi (car tree)

order)
(ordered-taspi (cdr tree)

order))
(ordered-taspi (car tree) order))

t))

Figure 3.3: ACL2 definition of ordered-taspi.
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3.2.2 Alternate Representation of Trees

Lisp programmers can easily see how the parenthetical notation given above

is intuitive for representing trees. However, for several algorithms using trees as in-

put, having a representation more directly related to the edges of the tree is useful.

Biologists recognized this fact as well, and for this purpose use a “bipartition rep-

resentation” of trees, which is simply a listing of the set of bipartitions in the tree.

For example, the tree in Figure 3.1 can be represented as:

AB | CDEFG
ABFG | CDE
ABCDE | FG
ABCFG | DE

Notice that this gives us an unrooted tree. If we want a rooted tree we must

specify a given partition as indicating the root. Also, trivial bipartitions, a single

taxon versus the rest of the taxa, are not usually written, since every tree containing

that taxon has that bipartition.

At times, we use bipartitions in TASPI, but we represent them slightly dif-

ferently. Instead of writing down both sides of the bipartition, we only write one,

since we can infer the other side from a single taxa-list. A valid bipartition is recog-

nized by good-partp (Figure 3.4), which checks that there are no duplicate taxon

names, that the taxon names are either a symbol or integer, and that there are at least

two taxon names in the bipartition. In order to move between a bipartition repre-

sentation of trees and the parenthetical notation, we have functions that transform

one representation into the other: fringes (Figure 3.5) and partstotaspi

(Figure 3.6).
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(defun good-partp (x)
(and (int-symlist x)

(no-duplicatesp-equal x)
(< 1 (len x))))

Figure 3.4: ACL2 definition of good-partp.

(defun fringes (flg tree order)
(if flg

(if (consp tree)
(cons

(ofringe t tree order)
(append

(fringes
t (car tree) order)

(fringes
nil (cdr tree) order)))

nil)
(if (consp tree)

(append (fringes
t (car tree) order)

(fringes
nil (cdr tree) order))

nil)))

Figure 3.5: ACL2 definition of fringes.
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(defun partstotaspi (top under order)
(if (consp under)

(orderly-cons
(partstotaspi

(car under)
(get-subsets (car under)

(cdr under))
order)

(partstotaspi
(difference top (car under))
(get-non-subsets (car under)

(cdr under))
order)

order)
top))

Figure 3.6: ACL2 definition of partstotaspi.
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Fringes takes a tree in parenthetical notation, and produces a list of bi-

partitions where each bipartition has been ordered according to the given order (the

function ofringe creates an ordered bipartition). If given a non-nil flag, the first

element of the list is not a bipartition, but instead an ordered list of the taxa in

the tree. partstotaspi takes a list giving all taxa in the tree (top), the list

of bipartitions (under) and an ordering in which to create the parenthetical nota-

tion. By recursing through the list of bipartitions specified with get-subsets

and get-non-subsets we achieve the invariant that each of the bipartitions in

under is a subset of top.

These functions are not tail-recursive, and as such are not the most efficient

implementation. However, these simplified definitions allow us to prove the theo-

rem shown in Figure 3.7. This theorem says that if given a good ordering of taxa in

the tree, and a tree that is in a good form and appropriately ordered, then applying

partstotaspi to the result of fringes gives back the original tree.

3.3 Our Consensus Algorithm

To compute a strict or majority consensus tree, our algorithm proceeds by:

1. Producing a replete association list of all of the subtrees in the original input,

2. Counting the frequencies of the non-tip subtrees,

3. Collecting the subtrees that appear as often as the designated majority thresh-

old, and finally,
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(defthm fringes-partstotaspi-inverse
(implies

(and (ordered-taspi x order)
(good-order-list order)
(not (and flg

(not (consp x))))
(no-duplicatesp-equal
(strip-cdrs order))

(no-duplicatesp-equal (mytips x))
(subset (mytips x)

(get-taxa-from-order order))
(taspip flg x))

(if flg
(equal (partstotaspi

(car (fringes flg x order))
(cdr (fringes flg x order))
order)

x)
(equal (partstotaspi

(ofringe flg x order)
(fringes flg x order)
order)

x)))
:rule-classes :nil)

Figure 3.7: ACL2 definition of fringes-partstotaspi-inverse.
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4. Constructing the consensus tree.

Step one is accomplished by our function replete-trees-list-top,

step two by fringe-frequencies, step three with a simple recursion through

the result of fringe-frequencies, and finally the consensus answer is com-

puted by build-term-top.

Function replete-trees-list-top converts the original input list of

trees into a replete association list (database). This replete database is a mapping

from subtrees to every parent (sub-)tree containing the subtree. More precisely, this

function takes as input a list lst of non-tip trees no member of which is a proper

subtree of another, such as a list of trees all with the same set of taxa (non-tip

simply means that there are at least two taxa). The function then returns a replete

association list db such that:

1. x is a member of the domain of db if and only if x is a member of lst or is

a non-tip proper subtree of a member of l and

2. If x is in the domain of db, then db(x) is an integer if and only if x is a

member of lst and db(x) is the number of times x occurs in lst.

For an example execution of replete-trees-list-top, see Subsection 3.3.1.

Now, the function fringe-frequencies expects input of the form that

replete-trees-list-top produces. This function counts the frequencies of

every subtree fringe (that is, leaf set) in the replete database by iterating through

the replete database. It then returns a minimal length association list that pairs each
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fringe of some subtree in the list that created the replete database with the number

of times that fringe occurred in the input.

By scanning through the resulting association list, we just pick out the

fringes that appear as often as the desired threshold. We have no need to store

the actual number of times any specific fringe appears; we simply collect the de-

sired fringes into a list. Notice that these fringes map to bipartitions, and thus define

the edges in a tree.

The function build-term-top takes two arguments. The first argument

is a sorted list of fringes. This list is sorted using a lexicographic (normalization)

order that is based both on the taxa names and the number of the elements in each

fringe. The second argument is a normalization taxa list tx, that is used by our lexi-

cographic ordering function so we can produce a unique representation. Remember,

we represent each subtree as a list of subtrees, so to make the representation unique

we sort members of each subtree. build-term-top constructs a consensus an-

swer tree recursively by first building an answer based on the first non-full fringe

of the input list (if the input set was a valid set for consensus, the first fringe will be

for the complete set of taxa, which was common to all trees). Once the first answer

subtree is computed for the first element in the list, any (sub-)subtrees required to

build the first subtree are “crossed out” from the list that remain to be processed,

and we continue with the next remaining element until no entries remain.
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A B C D E F G A B C D E F G

AA AB B BC CD DE EF FG GE F GC D

(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G)) ((A (B C)) ((D E F) G))

((A (B C)) ((D E) (F G)))(((A B) C) ((D E) (F G)))

Figure 3.8: A collection of trees together with their TASPI representations.

3.3.1 Example

Consider the five trees in Figure 3.8. The TASPI representation of these

trees is the input to the function replete-trees-list-top. This function

returns the association list in Figure 3.9, where keys are given in boldface.

A subtree is the key for each element of the list, and the remainder of each

entry (the values) is either:

1. trees or subtrees in which the key appears, or

2. an integer representing the number of times this top level tree occurs in the

input collection.

Thus, this is a replete association list. This association list is now the input to the

function fringe-frequencies, which produces the list in Figure 3.10.

This frequency list has each fringe from our replete association list, together

with an integer. Remember, a fringe is simply the leaf set of a (sub-)tree, so we do

not distinguish between the fringe from (A (B C)) and the fringe from ((A B)

C). The integer gives the number of trees that have a subtree with this fringe.
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((A B)((A B) C))
((((A B) C) ((D E) (F G))) . 1)
((D E)((D E) F G)

((D E) (F G)))
(((D E) F G) ((A B) C) ((D E) F G)))
((((A B) C) ((D E) F G)) . 1)
(((A B) C)(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G))
(((A B) C) ((D E) (F G))))

((F G) (E (F G))
((D E) (F G)))

((E (F G)) (D (E (F G))))
((D (E (F G))) (((A B) C) (D (E (F G)))))
((((A B) C) (D (E (F G)))) . 1)
((B C) (A (B C)))
((D E F) ((D E F) G))
(((D E F) G) ((A (B C)) ((D E F) G)))
(((A (B C)) ((D E F) G)) . 1)
((A (B C))((A (B C)) ((D E) (F G)))

((A (B C)) ((D E F) G)))
(((D E) (F G))((A (B C)) ((D E) (F G)))

(((A B) C) ((D E) (F G))))
(((A (B C)) ((D E) (F G))) . 1)

Figure 3.9: Example replete database.
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((A B) . 3)
((D E) . 3)
((F G) . 3)
((E F G) . 1)
((B C) . 2)
((D E F). 1)
((A B C) . 5)
((D E F G) . 5)
((A B C D E F G) . 5)

Figure 3.10: Example fringe frequency list.

We are now prepared to sweep through this list and record the fringes that

occur at least as often as the threshold for both a strict and majority consensus. In

this example, for the strict majority we collect those fringes that occur five times,

and for the majority, we collect those that occur at least three times. This gives us:

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)

and

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)
((F G) . 3)
((D E) . 3)
((A B) . 3)

Finally, the function build-term-top uses either the strict or majority

fringes together with a normalization list such as (A B C D E F G) to create

the strict and majority consensus trees. In this case we create ((A B C) (D E

F G)) and (((A B) C) ((D E) (F G))).
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3.4 Experiments
3.4.1 Data Sets

I first obtained collections of phylogenetic trees from Dr. Usman Roshan

and Dr. Tiffani Williams. These trees were created by PAUP and TNT performing

maximum parsimony searches using bio-molecular data sets. We have analyzed

hundreds of these collections though we only present the results from ten collec-

tions. The results presented are representative of the full set. I also generated sets

of trees using MrBayes [40] that had more taxa than either PAUP or TNT can even

read.

Table 3.1 gives characteristic information for each collection we present,

namely, the numbers of taxa per tree, the number of trees in the collection, and the

source of the collection.

3.4.2 Methods

The files we obtained often contained comments about how the trees were

generated, parsimony scores, or other output from their production. TASPI does

not store this information, so we began by creating files that contained only the

topological tree information so that we could accurately assess our compression.

Next, we created a suite of Perl scripts that take these original files and

generate appropriate input files for PAUP and TNT. In each case, the taxon list is

created from the first tree in the file, and the trees themselves are collected. Then,

for PAUP, a Nexus file is produced with the taxa list, the trees, and a PAUP block

containing the commands to compute consensus. Similarly for TNT, an appropriate
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Data Set Data Set Number of Number of
Number Name Taxa Trees Source

1 Dom 2org 8506 47 Roshan
2 sRNA mito 2587 369 Roshan
3 Will Euk 2000 537 Roshan
4 Three567 567 2505 Williams
5 Actino 4583 301 Roshan
6 Ocho854 854 2505 Williams
7 John921 921 2505 Williams
8 t10000 500 10000 Roshan
9 Will2000 2000 2505 Williams

10 Mari2594 2594 2505 Williams
11 20000seqs 20000 1001 Nelesen
12 50000seqs 50000 1001 Nelesen

Table 3.1: Data set statistics. For each dataset, the number of trees in the collection
and the number of taxa per tree are given.

input file is created with the taxa list, trees, and commands to compute consensus.

TASPI reads the source files directly. As with PAUP and TNT, TASPI can

be run both interactively, where we submit one command at a time, or using an

input file containing all commands needed for the desired computation.

Using PAUP, TNT and TASPI, we measured the time it took the software

to read each collection, and the time needed to compute both a strict and majority

consensus tree. For PAUP, we produced a strict consensus tree using its majority

consensus command with percent set to 100 since the PAUP strict consensus

command took considerably longer to do the same calculation. Also, by default,

TNT does not include branches that are not well supported by the data used to cre-

ate trees. However, we were not including any initial data other than the trees them-
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Figure 3.11: Storage requirements. The amount of disk space to store each col-
lection of trees in a variety of formats is shown.

selves, so we turned this feature off using the command collapse notemp.

Our experiments, where we were able to compare PAUP, TNT and TASPI,

were all performed on an Intel Pentium 4 CPU 3.4 Ghz computer. However, for the

two largest data sets, we used an AMD Opteron CPU 2.4 Ghz computer, which has

similar computational performance, but more physical memory. Either computer

produces the same compressed files. The largest files are too large to be read by

either PAUP or TNT due to internal limitations on the number of taxa allowed in a

tree.

3.4.3 Results

The first major contribution of TASPI is the condensed format in which trees

can be stored, while maintaining structural information. Figure 3.11 shows four sets
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of sizes for each of our benchmark data sets. The Newick data represents the size of

the trees as they were given to us, after removing information that TASPI does not

currently store (e.g. comments and branch lengths) and Newick.bz2 illustrates the

size of the file after compression using the algorithm implemented in bzip2 [85].

TASPI.bhz displays the size of the file after compression using the Boyer-Hunt

method. Notice that this file is still in ASCII, but with redundancies removed.

Unlike most compression methods, all the information present in the original files is

still immediately accessible, without a decompression step. Finally, TASPI.bhz.bz2

shows the size of the file if it is compressed using the Boyer-Hunt method and then

bzip2 is applied.

Using the compressed TASPI format saves considerable memory space. For

the data sets we present, the storage requirement for the TASPI format ranges from

2% of the storage requirement of Newick for the t10000 (data set 8) collection, up

to 26% for the Dom 2org (data set 1) collection. Over all data sets, the compressed

TASPI format uses just 5% of the storage requirement of the Newick format.

The amount of storage space saved is dependent on the amount of similar-

ity between input trees. The more similarity between input trees (i.e. the greater

the number of common subtrees) the more effective the compression. Further, the

greater the number of trees in the collection, the more likely there will be common

structure.

It is readily apparent that bzip2 produces smaller files than the Boyer-Hunt

compression on the smaller collections of trees, but for the very large data sets,

the Boyer-Hunt compression produces smaller files than bzip2. Further, the Boyer-
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Figure 3.12: Read and consensus times. Time to read a collection of trees and
compute strict and majority consensus trees with each of PAUP, TNT and TASPI
(using both previously compressed [TASPI.bhz] and not previously compressed
[TASPI] trees for TASPI). The total height of each bar is the end-to-end time, while
the dark region of each bar is the portion of time spent reading the input for the
calculation.

Hunt files are ASCII, and thus are ready to be used as input to analysis, such as

consensus. If the data are not currently required as input to a post-tree analysis,

compressed TASPI is even more useful. Boyer-Hunt files can be further compressed

using bzip2 to produce even smaller files than those produced by using bzip2 on the

original Newick files for sharing and transmission purposes. For our data sets, using

the Boyer-Hunt compression together with bzip2 produces files that require 1% of

the storage space of Newick.
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The second major contribution of TASPI is its ability to read collections of

trees quickly. In Figure 3.12, the darkly colored bars show average read times in

seconds for each of our benchmark collections of trees. Notice that while reading

trees with TNT or PAUP requires comparable times, reading the Boyer-Hunt com-

pressed trees with TASPI is by far the fastest time for any collection. In fact, neither

PAUP nor TNT is able to read the last two data sets. For the data sets which PAUP

and TNT can read, reading the compressed TASPI format takes just 2% of the time

to read the Newick files with PAUP. This means that loading these files takes more

than 48 times longer when read with PAUP or TNT rather than using TASPI to read

their compressed counterpart. Even reading the source files is faster in TASPI than

it is in either PAUP or TNT – using TASPI to read the Newick files takes just 16%

of the time needed to read the same files with PAUP or TNT.

The third major contribution of TASPI is a consensus implementation with

improved performance. In Figure 3.12, the lightly colored portion of each bar indi-

cates the time to compute consensus with each of TASPI, TNT and PAUP. In each

case, both a strict consensus tree and a majority consensus tree are computed. No-

tice that the time to compute consensus includes the time to read the collection of

trees since the trees are the input to a consensus calculation. Thus, the total height

of the bar is the time to both read the input, and then perform the calculation. For

TASPI, I show both the time to compute consensus when reading compressed trees

and also the time when reading Newick trees.

In all cases, the result TASPI produces is identical to that produced by PAUP

(when PAUP is able to read the input), but TASPI is faster. For the data sets PAUP
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and TNT can process that we present, using TASPI to compute consensus with input

trees in compressed TASPI format requires 5% of the time it takes PAUP to compute

consensus with input trees in Newick format. If we factor out the improved reading

time, TASPI computes these consensus trees in about 10% of the time it takes PAUP

to do the same computation.

3.5 Building blocks

Several of the functions optimized for strict and majority consensus are eas-

ily reused in other operations, in particular those functions that transform a tree into

a set of bipartitions and the functions that build a tree from a set of bipartitions.

Using these and other basic functions that are part of TASPI, we have imple-

mentations of several other forms of consensus including greedy [11], combinable

component (otherwise known as loose or semi-strict) [10], and multipolar consen-

sus [8]. Though a thorough exploration of the performance of these algorithms has

not been conducted, their implementations are simple, and in early testing perform

well. As an example, an implementation of multipolar consensus was created using

the functionality already present in TASPI in the course of an afternoon, and the

resulting code was forty times faster than the time mentioned in the explanatory

paper.

We have also implemented several functions that are not consensus meth-

ods. These include functions to compute a Maximum Agreement Subtree [90], to

determine if a set of trees is compatible [30, 35], and to compute the symmetric

difference and Robinson-Foulds [72] distance rates between trees.
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3.6 Conclusions

In phylogenetics, the ability to store large numbers of trees is increasingly

important. Bayesian methods are considering more trees than previous methods,

and are growing in popularity. Biologists are also choosing to retain additional

trees visited during a search. We have shown that our format provides decreased

storage requirements, while maintaining data accessibility for further processing.

Further, our format together with techniques like memoization allows for improved

performance in post-tree analysis. We showed this using strict and majority con-

sensus.

As phylogeneticists continue in their quest to understand the evolutionary

relationships between organisms and build the Tree of Life, they need tools to han-

dle large collections of trees, and cull information from those trees. We have intro-

duced our system, TASPI, for phylogenetic tree storage and manipulation. Though

a prototype system we have shown that TASPI has useful properties, and good per-

formance.
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Chapter 4

The Effect of Guide Trees

In building a multiple sequence alignment, the most popular methodology

uses dynamic programming to perform a progressive alignment. In this technique,

an estimate of the topology of the tree for the sequences is used as input to the

alignment algorithm. This input tree is referred to as a “guide tree”. This guide

tree determines the order in which sequences are added to the alignment. Two se-

quences which are siblings in the guide tree are first aligned using a pairwise align-

ment algorithm. Again, using the relationships from the guide tree, sequences are

added to this alignment using pairwise techniques when adding a single sequence,

and merging alignments when more than two sequences have already been aligned

Much of the popular alignment software available today makes use of a guide tree

(e.g. ClustalW [96] or one of the newer alignment methods such as MAFFT [47],

ProbCons [20] or Muscle [21]).

However, since we use an alignment as input to the tree reconstruction step,

there is a circularity to this methodology. In this chapter I explore the effect the

guide tree has on the resulting alignment, specifically in the context of reconstruct-

ing a phylogeny. To this end, I performed a simulation study using four multiple

sequence alignment tools that make use of a guide tree, and considered four dif-
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ferent guide trees. Much of the material in this chapter was first published at the

Pacific Symposium of Biocomputing [65].

4.1 Related Work

Progressive alignment was first proposed by Feng and Doolittle [27]. Tra-

ditional approaches computed pairwise alignments, and then shifted the sequences

around by eye in order to create a multiple sequence alignment. Feng and Doolittle

instead used the heuristic “once a gap, always a gap”, and only ever added gaps to

a set of sequences already aligned, choosing to add sequences in the order of their

similarity. They found that this method helped to produce more accurate alignments

as compare to the traditional approaches.

Much work has been done considering the effect of various techniques,

models and data on tree estimation techniques given a fixed alignment [33, 88] and

similarly robust studies have considered the accuracy of alignment tools [20,22,23,

47]. Though not quite as extensive, there is also work that looks at the impact of

alignment tools when tree estimation is the eventual goal [13,34,53,57,61,68,100].

However, there has been relatively little work that looks carefully at the

impact of guide trees. For example, in his explanation of how Muscle computes a

guide tree [22], Edgar simply states:

Distance matrices are clustered using UPGMA, which we
find to give slightly improved results over neighbor-joining
despite the expectation that neighbor-joining will give a
more reliable estimate of the evolutionary tree.

A limited study by Roshan et al. [74] looked at improving maximum parsimony
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trees by iteratively improving the guide trees used in the alignment step. Compared

to other techniques though, they showed little improvement.

4.2 Experimental Methodology

Although there are many phylogeny estimation methods, several studies

[24, 29, 41, 42, 51] suggest that maximum likelihood analyses of aligned sequences

produce the most accurate phylogenies (in particular, as compared to maximum

parsimony). Of the various software programs for maximum likelihood analysis,

RAxML [88] and GARLI [102] are the two fastest and most accurate methods [88].

I used RAxML for my analyses.

Of the many available MSA methods, I used ClustalW, ProbCons, MAFFT

and Muscle. ClustalW tends to be the one most frequently used by systematists,

although several new methods have been developed that have been shown to out-

perform ClustalW with respect to alignment accuracy. ProbCons and MAFFT have

been shown to perform well, and Muscle is included because it is very fast. Ver-

sion information, as well as the commands used for each program are available in

Appendix 1.

I performed a simulation study to evaluate the performance of the different

MSA methods on each of several guide trees. In this experiment, I evolved DNA se-

quence datasets using the ROSE [92] software (because it produces sequences that

evolve with site substitutions and also indels) under 16 different model conditions,

half for 100 taxon trees and half for 25 taxon trees. For each model condition, I

generated 20 different random datasets, and analyzed each using a variety of tech-
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niques. I then compared the estimated alignments and trees to the true alignments

and trees, recording the alignment error as measured by SP-error and missing edge

rates (that is, false negative tree error).

4.2.1 Data Generation

In order to understand the robustness of my results, I generated data with

varying characteristics. Parameters I kept constant are as follows:

• To create model trees, I generated birth-death trees of height 1.0 using the

program r8s [77] with 100 and 25 taxa.

• I modified branch lengths to deviate each model tree moderately from ultra-

metricity, using the technique used by Moret et al. [60] with deviation factor

c set to 2.0.

• I generated a random DNA sequence of length 1000 for the root of each model

tree, and then evolved sequences down the tree according to the K2P+Indel+Γ

model of sequence evolution. For each model tree, I set the transition/transversion

ratio to 2.0, and all sites evolved at the same rate.

To obtain model coverage, I varied the remaining parameters for ROSE:

• I varied the mean substitution rate to achieve edgewise average normalized

Hamming distances between (approximately) 2% and 7%.

• I used two single-gap-event length distributions, both geometric with finite

tails. The “short” single-gap-event length distribution had average gap length
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2.00 and a standard deviation of 1.16. The “long” single-gap-event length

distribution had average gap event length 9.18 and a standard deviation of

7.19.

• I set insertion and deletion probabilities so as to produce different degrees of

gappiness (S-Gap in the table).

This results in 16 model conditions (8 for 100 taxa, and 8 for 25 taxa).

Table 4.1 shows the parameter settings for each model condition, and the resultant

statistics.

4.2.2 Estimating Multiple Sequence Alignments and Trees

As previously mentioned, I used four multiple sequence alignment programs

to create alignments from raw sequences: ClustalW, Muscle, MAFFT, and Prob-

Cons, each of which is publicly available. I ran each of program using its default

guide tree as well with guide trees that I provided. Muscle and ClustalW have op-

tions which allow the user to supply a guide tree. A member of my lab (Kevin

Liu) modified ProbCons to allow it to use an input guide tree, and the authors of

MAFFT provided us with a version that accepts guide trees as input. MAFFT has

multiple alignment strategies built in, and I used each of L-INS-i, FFT-NS-i and

FFT-NS-2. However, when there were difference between variants of MAFFT in

these experiments, FFT-NS-2 usually (though not always) performed best, so I only

show results using this variant.
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Model Condition Parameters True Alignment Statistics
MC Taxa P(gap) P(sub) Gaps S-MNHD E-ANHD S-Gap E-Gap

1 100 0.0001 0.005 long 37.5 (.2) 1.9 (.02) 40.8 (.3) .72 (.01)
2 100 0.0001 0.01 long 56.9 (.3) 3.2 (.04) 43.7 (.6) .69 (.01)
3 100 0.0005 0.005 long 38.0 (.3) 2.4 (.04) 81.9 (.3) 4.1 (.07)
4 100 0.0005 0.01 long 57.4 (.4) 4.9 (.03) 83.0 (.1) 4.9 (.04)
5 100 0.0005 0.005 short 36.9 (.2) 1.9 (.04) 42.6 (.6) .76 (.01)
6 100 0.0005 0.01 short 56.7 (.2) 4.1 (.04) 46.4 (.2) .86 (.01)
7 100 0.0025 0.005 short 38.6 (.3) 2.2 (.04) 81.4 (.2) 4.2 (.07)
8 100 0.0025 0.01 short 56.3 (.2) 4.6 (.07) 82.4 (.2) 4.6 (.07)
9 25 0.0001 0.004 long 32.2 (.2) 2.9 (.05) 22.8 (.3) 1.2 (.02)

10 25 0.0001 0.008 long 51.3 (.2) 5.9 (.09) 25.0 (.4) 1.4 (.02)
11 25 0.0005 0.004 long 31.3 (.2) 2.2 (.03) 55.1 (.5) 4.7 (.10)
12 25 0.0005 0.008 long 50.2 (.3) 5.2 (.08) 61.3 (.5) 5.9 (.12)
13 25 0.0005 0.004 short 30.0 (.1) 2.6 (.08) 26.1 (.4) 1.4 (.04)
14 25 0.0005 0.008 short 50.0 (.1) 6.4 (.07) 28.5 (.2) 1.7 (.02)
15 25 0.0025 0.004 short 31.1 (.4) 3.2 (.06) 66.7 (.4) 7.7 (.14)
16 25 0.0025 0.008 short 50.2 (.5) 5.2 (.07) 62.4 (.4) 6.6 (.08)

Table 4.1: Model parameters and true alignment statistics. “P(gap)” is gap
probability, “P(sub)” is substitution probability, “Gaps” is gap distribution type,
“MNHD” is maximum normalized Hamming distance, “E-ANHD” is average nor-
malized Hamming distance on the edges, “S-Gap” is percent of the true alignment
matrix occupied by gaps, and “E-Gap” is average gappiness per edge; the standard
error is given parenthetically.

50



I considered four user-input guide trees: the true tree, and three other guide

trees that I computed. The first two of the computed guide trees are UPGMA [86]

trees based upon different distance matrices. For the first UPGMA guide tree (“up-

gma1”), I computed a distance matrix based upon optimal pairwise alignments be-

tween all pairs of sequences, using the affine gap penalty with gap-open = 0, gap-

extend = 1 and mismatch = 1. For the second (“upgma2”), I computed the distance

matrix based upon optimal pairwise alignments between all pairs of sequences for

the affine gap penalty with gap-open = 2, gap-extend = 0.5 and mismatch = 1. In

both cases, I used custom code based on the Needleman-Wunsch algorithm with the

specified gap penalty to compute the distance matrices and PAUP* [94] to compute

the UPGMA trees. The third guide tree (“probtree”) was obtained as follows: I used

the upgma1 guide tree as input to ProbCons to estimate an alignment that was then

used to estimate a tree using RAxML. To keep the tree estimation step consistent, I

used RAxML in its default setting.

4.3 Results

For ease of discussion, the graphs presented here have values that have been

averaged over all model conditions and replicates (for the given number of taxa).

The relative performance of the methods shown in the averages holds (with few

exceptions) for each model condition. However, the magnitudes of the actual errors

and amount of improvement based on a given guide tree vary.

To begin, let us consider the topological accuracy of the guide trees I will

pass to each method. Figure 4.1 shows the accuracy of each of the guide trees.
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Figure 4.1: Guide tree missing edge rates. Tree error rates are averaged over all
model conditions and replicates. (1) ClustalW default, (2) ProbCons default, (3)
Muscle default, (4) upgma1, (5) upgma2, and (6) probtree.

Clearly, the accuracy differs significantly, with the ProbCons default tree generally

the least accurate, and the “probtree” guide tree the most accurate; the two UPGMA

guide trees have very similar accuracy levels.

Next, Figure 4.2 shows the accuracy of the alignments using different MSA

methods on these guide trees. Surprisingly, despite the large differences in topo-

logical accuracy of the guide trees, alignment accuracy (measured using SPFN ,

here referred to as “SP-error”) for a particular alignment method varies relatively

little between alignments estimated from different guide trees. For example, two

ClustalW alignments or two Muscle alignments will have essentially the same ac-

curacy scores, independent of the guide tree. The biggest factor impacting the

SP-error of the alignment is the MSA method. Generally, ProbCons is the most
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Figure 4.2: SP-error rates of alignments. M(guide tree) indicates multiple se-
quence alignment generated using the indicated guide tree.

accurate and ClustalW is the least.

This is consistent with previous work which showed that guide trees have

relatively little impact on the accuracy of the alignment produced [22], in part be-

cause current progressive methods attempt to limit the errors introduced by an in-

accurate guide tree through the use of iteration [20, 48, 67].

But the primary purpose of this study is to consider the impact of changes

in guide tree on the accuracy of the resultant RAxML-based phylogeny. Figure 4.3

shows this comparison. Not surprisingly, regardless of alignment method, the most

accurate trees are obtained when the true tree is used as a guide tree. However, it is

not always the case that using more accurate guide trees create alignments that re-

sult in more accurate estimated trees. For example, Muscle responded very little to

improvements in the guide tree, possibly because it computes a new guide tree after

the initial alignment on the input guide tree. ClustalW also responds only weakly

to improvement in guide tree accuracy. In particular, using the more accurate prob-
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Figure 4.3: Missing edge rate of estimated trees. R(M(guide tree) indicates
RAxML run on the alignment generated by the multiple sequence alignment
method using the guide tree indicated. R(true-aln) indicates the tree generated by
RAxML when given the true alignment.

tree guide tree often results in worse performance as compared to using other guide

trees. On the other hand, ProbCons responds positively and significantly to im-

provements in guide trees. This is quite interesting, since the alignments did not

improve in terms of their SP-error rates! Furthermore, ProbCons improves quite

dramatically as compared to its performance in its default setting.

4.4 Discussion

MSA accuracy (as measured using SP-error) is not strongly correlated with

guide tree accuracy. Further, for most of these MSA methods, phylogenetic ac-

curacy is not directly predicted by the accuracy of the guide tree. Although it is

common to evaluate alignments purely in terms of criteria like SP, these experi-

ments provide clear evidence that not all errors are of equal importance, at least in

terms of phylogenetic consequences. Again, this is not completely surprising, since
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when Ogden and Rosenberg [68] studied the influence of tree shape on alignment

and tree reconstruction accuracy they too found that alignment error did not always

have a large impact on tree accuracy. Finally, it is important to realize that although

alignments may have similar SP-error rates as compared to a true alignment, they

can still be very different from each other.

Changes in the guide tree generally do not impact the accuracy of the esti-

mated alignments, as measured by SP-error. However, some RAxML-based phy-

logenies, obtained using alignments estimated on more accurate guide trees, were

much more accurate than phylogenies obtained using MSA methods on their default

guide trees. Muscle and ClustalW were impacted the least by the choice of guide

tree, and ProbCons was impacted the most. The improvement produced for Prob-

Cons is particularly relevant to systematists, since it is one of the two best MSA

methods currently available.

The experiments show clearly that tree estimation can be improved through

the use of improved guide trees, though only some alignment methods seem to be

able to take advantage of these improved guide trees. It is also clear that these

improvements require some additional computational effort. However, as Table 4.2

shows, the increase in running time for ProbCons is not substantial, and likely worth

the effort given the greatly improved performance.

4.5 Implications for Prank

Given my experiments with ProbCons, Muscle and MAFFT, when initial

experiments within the lab assessing the accuracy of Prank [56] showed less than
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Step 25 taxa 100 taxa
Compute UPGMA guide tree 0:01:36 0:23:49
Align with ProbCons 0:07:20 1:52:03
Run RAxML on ProbCons alignment 0:00:42 0:15:05

Table 4.2: Running time. Average running times across all models and replicates,
given in hours:minutes:seconds. Experiments were run using a distributed system
of heterogeneous machines via Condor [52].

ideal performance, we applied what we had learned from the experiment just de-

scribed. Prank is an alignment tool that produces not just an alignment over the

leaves, but also estimates ancestral sequences (that is, sequences for every node of

the tree). Prank is different from the other software studied in that it uses insertions

and deletions as phylogenetic information, and thus is noted to possibly be “very

sensitive to the given topology” [55].

For the experiments with Prank, we used a wide range of model conditions

covering 100, 500 and 1000 taxa. The details for the 100 taxon model conditions

are given in Table 4.3. As a guide tree, we used the tree estimated by RAxML given

a MAFFT alignment.

Figure 4.4 shows the dramatic improvement in the accuracy of trees es-

timated using Prank alignments where we have used the non-default guide tree.

While it is not often the case that the tree estimated using the Prank alignment is

more accurate than the RAxML(MAFFT) guide tree, it is important to remember

that we are gaining additional information (i.e. ancestral sequences) by utilizing

Prank. Also, by passing a guide tree to Prank, the time required by Prank to create

an alignment has also been significantly reduced (see Table 4.4, but note that these
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Edgewise Statistics Setwise Statistics
MC Model ANHD (%) % Gap MNHD (%) ANHD (%) Avg. Gap Len % Gap

0 100L-1 2.72 (0.08) 0.21 (0.00) 32.54 (0.20) 22.19 (0.34) 10.16 (0.28) 26.55 (0.92)
1 100L-2 2.36 (0.04) 0.34 (0.01) 32.64 (0.27) 21.93 (0.30) 9.75 (0.21) 36.08 (0.89)
2 100L-3 4.64 (0.13) 0.38 (0.01) 45.15 (0.28) 33.83 (0.36) 10.09 (0.26) 37.61 (1.11)
3 100L-4 4.33 (0.15) 0.74 (0.02) 44.37 (0.33) 32.24 (0.45) 11.41 (0.22) 53.63 (1.04)
4 100L-5 19.89 (0.37) 0.36 (0.01) 71.12 (0.19) 62.28 (0.22) 10.17 (0.25) 37.47 (0.83)
5 100L-6 20.51 (0.42) 0.84 (0.04) 70.97 (0.14) 62.30 (0.19) 11.17 (0.29) 56.41 (1.32)
6 100L-7 20.82 (0.31) 1.48 (0.04) 70.75 (0.20) 62.29 (0.25) 13.70 (0.22) 69.69 (0.65)
7 100L-8 24.08 (0.46) 0.37 (0.01) 72.81 (0.19) 65.28 (0.22) 10.01 (0.25) 38.06 (1.15)
8 100L-9 24.40 (0.44) 0.78 (0.02) 72.77 (0.18) 64.97 (0.18) 11.09 (0.24) 55.24 (0.98)
9 100L-10 24.51 (0.33) 1.63 (0.05) 72.87 (0.19) 64.92 (0.18) 14.24 (0.20) 71.48 (0.55)
10 100M-1 2.50 (0.06) 0.11 (0.00) 32.45 (0.21) 22.03 (0.33) 5.21 (0.16) 15.38 (0.74)
11 100M-2 2.43 (0.07) 0.22 (0.01) 32.33 (0.28) 22.02 (0.26) 5.33 (0.10) 24.72 (1.07)
12 100M-3 4.73 (0.10) 0.21 (0.00) 44.96 (0.23) 33.50 (0.34) 5.36 (0.16) 24.77 (0.89)
13 100M-4 4.68 (0.15) 0.45 (0.02) 44.90 (0.25) 33.67 (0.32) 6.17 (0.13) 40.13 (1.22)
14 100M-5 8.00 (0.25) 0.21 (0.01) 56.61 (0.19) 44.69 (0.40) 5.33 (0.12) 23.71 (1.03)
15 100M-6 8.13 (0.17) 0.43 (0.01) 56.41 (0.27) 44.97 (0.38) 5.89 (0.14) 38.90 (1.07)
16 100M-7 20.31 (0.43) 0.20 (0.00) 71.12 (0.24) 62.50 (0.29) 5.25 (0.13) 23.35 (0.84)
17 100M-8 19.68 (0.49) 0.48 (0.02) 71.29 (0.21) 62.06 (0.28) 6.34 (0.10) 41.41 (1.22)
18 100S-1 2.45 (0.07) 0.05 (0.00) 32.13 (0.31) 21.58 (0.38) 2.05 (0.05) 6.34 (0.36)
19 100S-2 2.44 (0.06) 0.10 (0.00) 32.49 (0.27) 21.87 (0.25) 2.20 (0.04) 11.70 (0.44)
20 100S-3 4.69 (0.11) 0.22 (0.00) 44.90 (0.28) 33.05 (0.38) 2.42 (0.03) 21.42 (0.62)
21 100S-4 4.56 (0.14) 1.14 (0.04) 43.56 (0.23) 31.95 (0.32) 4.57 (0.12) 57.24 (1.11)
22 100S-5 9.53 (0.26) 0.21 (0.00) 59.45 (0.20) 48.16 (0.50) 2.36 (0.03) 20.38 (0.75)
23 100S-6 9.77 (0.25) 1.14 (0.03) 58.74 (0.31) 47.54 (0.46) 4.50 (0.10) 57.31 (0.85)
24 100S-7 9.32 (0.28) 2.85 (0.09) 56.76 (0.20) 45.64 (0.26) 9.30 (0.30) 76.98 (0.63)
25 100S-8 15.75 (0.40) 0.21 (0.00) 67.62 (0.15) 58.23 (0.25) 2.32 (0.03) 20.41 (0.68)
26 100S-9 15.64 (0.47) 1.39 (0.05) 67.25 (0.14) 57.04 (0.40) 5.19 (0.14) 61.82 (0.98)
27 100S-10 15.31 (0.40) 2.83 (0.10) 66.11 (0.23) 55.58 (0.42) 9.07 (0.30) 76.91 (0.69)

Table 4.3: True alignment statistics for Prank datasets. Each dataset has 100
taxa. “ANHD” is the average normalized Hamming distance, given both edgewise
and setwise. Edgewise “% Gap” is the average gappiness per edge. “MNHD” is the
maximum normalized Hamming distance for the alignment. “Avg. Gap Len” is the
average length of gaps in the alignment, and setwise “% Gap” is the percentage of
the alignment matrix occupied by indels. Standard errors are shown in parentheses.
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Figure 4.4: Missing edge rate of estimated trees on Prank datasets. Model con-
ditions have been ordered by increasing missing edge rate of RAxML(TrueAln).
Note that the y-axis for the easier model conditions (Figure 4.4(a)) has a range of
0-15% while the y-axis for the more difficult model conditions (Figure 4.4(b)) has
a range of 0-100%.
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No. of sequences Prank+GT Default Prank
100 ≈ .5 hours ≈ 2 hours
500 ≈ 2.5 hours ≈ 28 hours

1000 ≈ 5 hours ≈ 4 days

Table 4.4: Comparison of running time for Prank+GT and Default Prank. All
experiments to record running time were performed on a standard desktop computer
with 2 GB RAM. “Prank+GT” refers to Prank run on the RAxML(MAFFT) guide
tree. The running time reported does not include the time required to compute the
guide tree.

times do not include the time to estimate the guide tree).

Throughout our exploration of Prank we were in communication with the

authors, who have since changed the default behaviour to include estimating the

alignment twice, the second time with an improved guide tree estimated from the

first alignment.

4.6 Conclusions

Taking the extra time to explicitly produce a guide tree instead of simply

using the default is worthwhile. In particular, by quickly generating a UPGMA

guide tree, the alignments produced by ProbCons are markedly improved for sub-

sequent tree estimation, and the extra time required is not substantial. Similarly,

by using a RAxML tree estimated from a MAFFT alignment as a guide tree, Prank

alignments are dramatically improved. Though not all programs are equally im-

pacted (for example, in these experiments trees generated from Muscle alignments

do not improve) a careful consideration of the impact of the guide tree used for each
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program is warranted.

Further, it is interesting to see that the standard measure of alignment accu-

racy, SPFN or SP-error, is not indicative of subsequent phylogenetic tree estimation

accuracy. Clearly new alignment metrics, which better predict their utility for tree

estimation are needed.
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Chapter 5

Introduction to BLuTGEN

The Assembling the Tree of Life Project (AToL) [3] is a national initiative

to build a phylogenetic tree that encompasses all of life on earth, or in the projects

words, “reconstruct the evolutionary origins of all living things.” Thus far, however,

the techniques available for this endeavour scale to at most a few thousand taxa,

instead of the millions of taxa that will be required if we are to reach the ambitious

goal set forth by AToL.

Advances are being made though. New alignment techniques, such as those

available in MAFFT [47], can scale to many thousands of taxa, and tree estimation

techniques, such as RAxML [88], are also being improved to handle ever larger

datasets. But eventually these techniques fail to produce phylogenies, due to chal-

lenges such as the necessary computation time or the machine memory required for

the computation.

To address these issues, I have developed a method, BLuTGEN, that attacks

the problem of estimating a phylogenetic tree from sequence data in a new way.

This approach has three steps:

1. Divide the sequences into overlapping subsets

2. Estimate a tree for each subset
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3. Assemble a tree for the entire dataset using the subset trees as input

Thus, instead of estimating an alignment for the full dataset, BLuTGEN estimates

a tree from overlapping subtrees.

In many ways, this is an obvious approach, but it has never been tried be-

fore, in particular for a single gene region as opposed to combining multiple mark-

ers. Step 2 has been the focus of research for years, and technology is now to the

point that for moderately large datasets, it is often possible to estimate a tree with

good accuracy. For step 3, a new supertree method, SuperFine [93], has recently

been shown to quickly and accurately reconstruct phylogenies from overlapping

subproblem trees. The key then lies in how the overlapping subproblems are gener-

ated.

BLuTGEN uses two methods of generating overlapping subproblems. The

first, a method I call BLF (“BLAST-based Fast”), uses the raw sequences together

with BLAST (an algorithm that quickly finds similar sequences in a database) to

generate the overlapping subproblems. The second method, a padded recursive

DCM3 decomposition (pRecDCM3), uses a guide tree to generate the subproblems.

The pRecDCM3 method is unpublished, and was developed by Li-San Wang and

Tandy Warnow. This second method can also be used iteratively, where the result

of one iteration is the input guide tree to the next. BLuTGEN uses the BLF decom-

position to generate an initial estimate of the tree, and then uses the pRecDCM3

method to improve this initial estimate.

Since BLuTGEN never estimates an alignment on the full dataset, and uses
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a fast supertree method to generate the full tree, this method is able to avoid some of

the memory issues from which the usual two-phase approaches to tree estimation

suffer. Further, although there may be many subproblems which need to be ana-

lyzed, through the use of parallelization BLuTGEN can also help reduce the time

required to estimate the full phylogeny.

Most importantly though, this method produces accurate trees for hard datasets.

I have used both simulated and biological data to assess BLuTGEN (see Chapter 6

for further details about these data). I begin by showing results where I use only one

application of pRecDCM3, and then also show a few results where I have further

improved the BLuTGEN result by iterating with pRecDCM3.

To begin, Figure 5.1 shows the accuracy of BLuTGEN (using only one ap-

plication of the second phase) as compared to the RAxML(MAFFT) tree (one of

the best two-phase methods), the SATé tree found by Liu et al. [54], and the tree

estimated by RAxML given the true alignment for 140 simulated datasets (7 model

conditions, 20 replicates per model condition), each with 1000 taxa. For the 6 dif-

ficult model conditions shown (where a model condition is considered difficult if

the missing edge rate of the RAxML(MAFFT) tree is more than 10%), BLuTGEN

is more accurate than SATé for four of the model conditions, and within a tenth of

a percent for a fifth model condition. On the final difficult model condition BLuT-

GEN is only worse than SATé by 0.7%. Considering all seven model conditions, the

greatest improvement in accuracy is for 1000L3, where BLuTGEN is 2.7% more

accurate than SATé, and for the dataset where the tree returned by BLuTGEN is

worse than SATé (1000L1), the difference in accuracy is less than a percent.
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Figure 5.1: Accuracy of BLuTGEN compared to alternative methods for ROS-
Esim datasets. The missing edge rate for each of RAxML(MAFFT), SATé,
RAxML(TrueAln), and BLuTGEN is shown for seven simulated model conditions.
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Figure 5.2: Accuracy of BLuTGEN compared to alternative methods for Gutell
datasets. The missing edge rate for each of RAxML(MAFFT), SATé (where
available), and BLuTGEN is shown for the Gutell datasets. 16S.M has 901 taxa,
16S.M.aa ag has 1028 taxa, 16S.3 has 6263 taxa and 16S.T has 7350 taxa.In gener-
ating the RAxML(MAFFT) tree, MAFFT was run using the linsi option for 16S.M
and 16S.M.aa ag and using the parttree option for 16S.3 and 16S.T.

In Figure 5.2 I show the accuracy of four biological datasets as compared

to an estimated reference tree (see Chapter 6 for further details of the reference tree

generation). Again, these results use a single iteration of the pRecDCM3 technique.

For three of the four datasets, the result of BLuTGEN is more accurate than the

alternative, and for the one dataset where BLuTGEN is less accurate, it is only

worse by 1.1 percent. Note that for 16S.3 and 16S.T, SATé results are not available.

I also used the second phase of BLuTGEN, the pRecDCM3 decomposi-
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tion technique, iteratively for a few of the most difficult model conditions. Fig-

ure 5.3 shows the final tree that results after four iterations for two ROSEsim

datasets, and Figure 5.4 shows the results for the two Gutell datasets with more

than 5000 taxa, again, as compared to the best two-phase method available (that is,

RAxML(MAFFT) using the linsi option for the ROSEsim datasets, and the parttree

option for the Gutell datasets). In the case of the ROSEsim datasets, I also give the

SATé results. Notice that iterations generally improve the resulting tree accuracy,

though minor degradations also occur (see Section 7.2 for further details).

In the next few chapters I will present the development of BLuTGEN. Chap-

ter 6 gives background for each of the pieces involved in BLuTGEN, as well as

details for the simulated and curated data on which I evaluate the performance of

BLuTGEN. Chapter 7 explores the possibility of improving an existing tree, while

Chapter 8 considers several early variants of BLAST-based decompositions. Fi-

nally, Chapter 9 examines some alternative versions of BLuTGEN, in particular

looking at other possibilities for how to run SuperFine, as opposed to the default, to

allow BLuTGEN to be applied to even larger datasets.
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Figure 5.3: Accuracy of BLuTGEN using iteration compared to alterna-
tive methods for two ROSEsim datasets. The missing edge rate for each of
RAxML(MAFFT), SATé, and BLuTGEN using five applications of pRecDCM3
(that is, four iterations) is shown for the 1000M1 and 1000S1 datasets. In gen-
erating the RAxML(MAFFT) tree, MAFFT was run using the most accurate linsi
option.
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Figure 5.4: Accuracy of BLuTGEN using iteration compared to alternative
methods for Gutell datasets. The missing edge rate for RAxML(MAFFT) and
BLuTGEN using four applications (that is, three iterations) of pRecDCM3 is shown
for the two Gutell datasets with 6263 (16S.3) and 7350 (16S.T) taxa. In generating
the RAxML(MAFFT) tree, MAFFT was run using the parttree option.
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Chapter 6

Background and Data for BLuTGEN

As briefly described in Chapter 5, BLuTGEN makes use of several pre-

existing techniques in each of its three steps. In this chapter I give the relevant

background for each step, and then give details for the data I use to explore the

performance of BLuTGEN.

6.1 Background
6.1.1 Step 1: Division into subproblems

For division into subproblems, I use two approaches, one based on BLAST,

and another based on a disk-covering method (DCM3). I now give some back-

ground on each of these techniques.

6.1.1.1 BLAST

BLAST is an acronym for “Basic Local Alignment Search Tool”. From

the NCBI website: “BLAST finds regions of local similarity between sequences.

The program compares nucleotide or protein sequences to sequence databases and

calculates the statistical significance of matches” [63].

BLAST was designed to enable researchers to find sequences in a database

69



that were similar to a reference sequence very quickly. Originally designed in

1990 [1], there are now many different variations of BLAST searches. The fun-

damental idea though, is to compare sequences not in their entirety, but instead to

only consider portions of the reference sequence. To speed the computation even

further, heuristics are used to do the comparisons.

In my experiments, I use the blastn algorithm (available from the stan-

dard blastall command), which uses a database of nucleotide sequences and

a nucleotide reference sequence. I create a database for each set of sequences us-

ing the command formatdb. I use several variations of BLAST-based clustering

techniques, and give the details for each in Chapter 8.

6.1.1.2 Disk-Covering Methods

Disk-covering methods (DCMs) are a suite of tree estimation algorithms

based on a divide-and-conquer approach. In each instance, the input data are di-

vided into subsets, a tree estimation analysis is performed on each subset, and the

results of each subset analysis are merged (and perhaps subsequently refined) to

create a solution for the entirety of the data. The first DCM [43] was designed for

use with distance-based tree reconstruction methods, while a second, DCM2 [44],

was designed for use in reconstructing maximum parsimony trees.

A third decomposition method, DCM3 [75], was also first designed for re-

constructing maximum parsimony trees. However, DCM3 has the beneficial prop-

erty that there is a heuristic to this decomposition that makes it very fast, with

smaller subproblem sizes than DCM2. I will be using this heuristic DCM3 decom-
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position, which determines subsets on the basis of a user input guide tree.

I need two concepts to explain the decomposition: centroid edge and short

subtree. The centroid edge of a tree is the edge that, when removed, roughly di-

vides the leaf set of the tree into two sets of equal size. The short subtree is defined

in terms of a particular edge in the tree. Given a tree T and an edge e, consider

the (usually four) rooted subtrees that result from removing e and its pendant edges

from the tree. Compute the distance (given by the edge lengths on the tree, or as-

suming that every edge has unit length) from each taxon to the root of its respective

subtree. Now, for each subtree, attach to e the closest taxon (taxa in the case of ties)

from each subtree in the place of the original subtree. This constructed tree is the

short subtree of T on e.

The DCM3 decomposition then works as follows:

1. Determine the centroid edge of the guide tree, and set the subtrees determined

by removing the centroid edge and the edges connected to the centroid edge

to be A, B, C and D.

2. Set X to be the short subtree around the centroid edge.

3. Use as subsets the leaf sets of A ∪X,B ∪X,C ∪X and D ∪X .

For my purposes, I need a fair amount of overlap between subsets, but

DCM3 only has an overlap in the leaf set ofX , which is usually very small (just four

taxa). Padded DCM3 (“pDCM3”) overcomes this limitation by adding extra taxa

to X . Padded DCM3 is unpublished work by Li-San Wang and Tandy Warnow, but
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an executable written by Li-San Wang is available. In a padded DCM3, the num-

ber of additional taxa is dependent on the padding factor p. Instead of only taking

the closest taxon from each subtree, p of the next closest taxa are also added to X .

Thus, when there are no ties, the size of the overlap is p ∗ 4.

Depending on the size of the guide tree, these subsets can still be quite large.

However, the algorithm can be applied recursively (an approach first successfully

applied to DCM2 decompositions by Tang et al. [95], and also used for DCM3

[75]) until all subsets are smaller than a user-specified maximum subset size. This

version is usually referred to as “RecDCM3”. Combining this recursive version

with padding is then referred to as “pRecDCM3”.

6.1.2 Step 2: Estimate a tree for each subset

After subsets have been defined, I apply standard methods to generate a tree

for each subset. In these experiments, I use MAFFT (using the most accurate op-

tion, linsi) to generate an alignment, and then estimate a tree from this alignment

using RAxML (I refer to this tree as RAxML(MAFFT)). I chose this technique since

RAxML(MAFFT) is one of the most accurate two-phase methods [54]. Note that

when estimating trees using RAxML, I use the GTRCAT model as opposed to the

GTRGAMMA since GTRCAT requires less memory and is considerably faster than

GTRGAMMA (GTRCAT and GTRGAMMA usually return the same tree topol-

ogy, though GTRCAT does not return branch lengths whereas GTRGAMMA does).

Further, since the supertree method I use to assemble the full tree does not require

branch lengths (see Section 6.1.3), using GTRCAT is not an impediment. In some
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cases, when using simulated data, I also used RAxML to estimate a tree on the true

alignment (which I refer to as RAxML(TrueAln)). The commands used are listed

in Appendix 1.

6.1.3 Step 3: Assemble a tree for the full dataset

To combine the trees from each subset, I use a supertree method. Supertree

methods take as input a set of trees on overlapping sets of taxa, and use these

“source” trees to build a single tree that contains each of the taxa in some source

tree. I use the supertree method SuperFine [93] to construct a full tree from the

subtrees.

SuperFine has two phases, and has an option to report the tree at the end of

each phase. The first phase constructs a strict consensus merger (SCM) tree, which

the second phase then refines. I use the Matrix Representation with Parsimony

(MRP) [4, 5, 70] option of SuperFine to resolve polytomies. For more complete

details of SuperFine, see Swenson’s dissertation [93].

As I developed BLuTGEN, I discovered that the default behaviour of Su-

perFine needed to be modified for very large datasets, particularly when the source

trees used result in SCM trees with large polytomies. Thus, as a result of my exper-

iments, modifications have been made to SuperFine which allow variable behaviour

when resolving using MRP. I consider several of these alternatives, which include

changing the number of ratchet iterations in the MRP search (default is 100), using

a random result tree instead of the default greedy consensus, and limiting the time

allowed for each iteration of the search.
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6.2 Data

In each of the next chapters I will assess the ability of several methods of

building phylogenies to accurately reconstruct a tree. I will use both simulated and

biological datasets for this purpose, and will compare the methods I develop to

existing techniques.

The data I present falls into three categories. The first, RNAsim [16], was

generated by Junhyong Kim’s lab as part of the CIPRES project [15]. These are

large datasets (8192 and 16394 taxa) simulated using secondary structure informa-

tion. Interestingly, these RNA datasets turn out to be very easy to analyze, perhaps

because of their short gap lengths. The second, ROSEsim, was generated using

the software package ROSE [92] for the introductory paper on SATé [54, 82, 83].

These datasets have 1000 taxa, and most have been found to be difficult for existing

software. The third, Gutell Data, are curated empirical rRNA datasets from Robin

Gutell’s comparative RNA database [12]. Though there are many such datasets, I

use just four, which have many taxa (ranging from 901 to 7350) and have proved

difficult for existing tools (the two smallest of these were also analyzed in the SATé

paper [54]). I now give further details for each set.

6.2.0.1 RNAsim

To create these datasets, a simulation was done using, for each dataset, the

same starting/root RNA sequence with secondary structure, but on trees with dif-

ferent number of taxa. These trees were random-sampled subtrees of a 1-million-

taxon binary tree, which resembles real phylogenetic trees and was created by Tracy
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Dataset Taxa Sites MNHD ANHD Gap Avg Gap
(%) (%) (%) Len

8192 8192 2420.3 40.7 20.0 36.6 1.03
16384 16384 2805.8 42.4 20.9 45.3 1.03

Table 6.1: RNAsim data statistics. The number of taxa, number of sites, average
normalized hamming distance (ANHD), percentage of the matrix which is a gap
character (Gap), and average gap length (Avg Gap Len) are shown.

Heath at Hillis/Bull lab in UTexas at Austin. The simulation parameters that gen-

erated these data were tuned such that the simulated sequences resemble real small

subunit rRNA (ssu rRNA) sequences in terms of sequence identity, number of in-

dels, the ratio between substitution and indels, etc. The resulting dataset statistics

are given in Table 6.1.

I used the trees/datasets with 8192 and 16384 sequences (20 replicates each).

For each of these model trees and associated datasets, I generated a potentially in-

ferable model tree (PIMT) as discussed in Section 2.3.2 to use as a reference tree,

as well as an unaligned set of sequences (by removing all gaps).

6.2.0.2 ROSEsim

These data were generated in two steps. Step 1 generated model trees with

r8s [77] and then Step 2 generated sequence data using ROSE [92]. These datasets

were first created by Kevin Liu and used to test the effectiveness of SATé [54].

Though there are many more such datasets, I chose the model conditions with 1000

taxa, and that had proved most difficult for existing two-phase methods. I also

included one model condition which was relatively easy as a comparison point.
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Step 1: Generation of model trees using r8s

We used r8s to generate random birth-death model trees with 1000 taxa

using the following script:
begin rates;
simulate diversemodel=bdback seed=<integer random seed>
ntaxa=<1000> T=0;
describe tree=0 plot=tree description;
end;

We then used a custom program (a modified version of tds2, unpublished,

but available from the SATé program website [82]) that deviated the r8s trees from

ultrametricity using the technique described in [62] with deviation factor c equal to

2.0. Next, we scaled all branches on a model tree by a variable factor which we call

“tree height”. Finally, as ROSE cannot handle fractional branch lengths for its GTR

simulation, we scaled all the branches in the model tree by a factor of 100 to ensure

that the branch lengths were generally greater than 1.

Step 2: Simulation of sequences using ROSE

We simulated evolution using ROSE to evolve sequences with indels and

substitutions on the model trees. For each model, we generated 20 different model

trees (replicates), and for each model tree, we simulated one dataset, starting with a

root DNA sequence of 1000 sites.

• Model of evolution - We used the GTR+Gamma model [73] for site evolution

with parameters (frequency of nucleotides at the root and the instantaneous

rate matrix) obtained by estimating GTR+Gamma parameters on the NemA-

TOL [66] alignment of 682 species of nematodes, using PAUP* [94]. We
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used the ROSE transitional probability matrix P (t) = eAt for t = .001 and A

the transitional rate matrix.

The frequencies of the nucleotides at the root were given by

TheFreq=[.300414,.191363,.196748,.311475]

and the transitional rate matrix for the GTR model was given by the following

off-diagonal entries:

A-C 1.24284

A-G 3.47484

A-T 0.48667

C-G 1.07118

C-T 4.38510

G-T 1.0

• Gap length distribution - We used three single-event gap-length distributions:

short, medium, and long, each geometric with finite tails. The long gap dis-

tribution had expected gap length 9.2 and median gap length 7; the medium

gap distribution had expected gap length 5.0 and median gap length 4; and

the short gap distribution had expected gap length 2.0 and median gap length

2. The gap length distributions used in our study are given below. The first

element of each list is the probability of a gap of length one, given that a gap

event occurs, the second is the probability of a gap of length two given a gap

event occurs, and so on.

Long Gap Length Distribution:
[0.1028, 0.0899, 0.0792, 0.0702, 0.0627, 0.0565, 0.0514,
0.0470, 0.0433, 0.0400, 0.0369, 0.0341, 0.0314, 0.0289,
0.0266, 0.0245, 0.0225, 0.0206, 0.0188, 0.0171, 0.0155,
0.0141, 0.0127, 0.0114, 0.0100, 0.0087, 0.0075, 0.0063,
0.0052, 0.0042]
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Model Taxa Gap Length Tree Height Gap Probability
1000L1 1000 long 35 4.3E-06
1000L3 1000 long 30 1E-05
1000L5 1000 long 5 7.5E-06
1000M1 1000 medium 35 8.2E-06
1000M2 1000 medium 30 1E-05
1000S1 1000 short 35 8.2E-06
1000S2 1000 short 35 4.3E-06

Table 6.2: Parameters used to simulate datasets. This table reports the model-
specific parameters for each of the ROSEsim models used to evolve sequences on
trees.

Medium Gap Length Distribution:
[0.2012, 0.1600, 0.1280, 0.1024, 0.0819, 0.0655, 0.0524,
0.0419, 0.0336, 0.0268, 0.0215, 0.0172, 0.0137, 0.0110,
0.0088, 0.0070, 0.0056, 0.0045, 0.0036, 0.0029, 0.0023,
0.0018, 0.0015, 0.0012, 0.0009, 0.0008, 0.0006, 0.0005,
0.0004, 0.0003, 0.0002]

Short Gap Length Distribution:

[0.4613, 0.2527, 0.1545, 0.0896, 0.0419]

• Probability of a gap event - We set insertion and deletion probabilities identi-

cally. The gap event probabilities we used for each model are in Table 6.2.

We set the shape parameter α of the gamma distribution, controlling rate variation

across sites, to 1.0. The ROSE script used to simulate data is given in Figure 6.1.

Table 6.2 gives the parameters used to simulate each dataset.

Again, for each of these model trees and associated datasets, I generated a

potentially inferable model tree (PIMT) as discussed in Section 2.3.2 to use as the
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TheInsFunc = <Insert event gap length distribution -
long, medium or short>

TheDelFunc = <Delete event gap length distribution -
long, medium or short>

InputType = 4
TheAlphabet = "ACGT"
TheFreq = [.300414,.191363,.196748,.311475]
ThePAMMatrix =
[[0.9948, 0.0012, 0.0035, 0.0005],
[0.0012, 0.9933, 0.0011, 0.0044],
[0.0035, 0.0011, 0.9944, 0.0010],
[0.0005, 0.0044, 0.0010, 0.9941]]
TheInsertThreshold = <Insertion event probability>
TheDeleteThreshold = <Deletion event probability>
SequenceLen = 1000
TheTree =<birth-death model tree in Newick format with

branch lengths, deviated from ultrametricity>
ChooseFromLeaves = False
AlignmentWithAncestors = True
TreeWithAncestors = True
SequenceNum = 999
SeedVal = <random seed integer>
TheMutationProbability=<site-by-site vector listing rate

multipliers for that site>

Figure 6.1: ROSE script.

reference tree, and also generated the unaligned set of sequences (by removing all

gaps).

6.2.0.3 Gutell Data

Gutell’s alignments are obtained on the basis of RNA secondary structure

– and therefore permit evaluation of the accuracy of an estimated alignment, and

hence of an estimated tree. The datasets I present here are just a few of the datasets
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Dataset Sites MNHD ANHD Gap Avg Gap
(%) (%) (%) Len

1000L1 3817.5 76.9 69.5 73.2 13.6
1000L3 7042.8 76.3 68.7 85.2 20.0
1000L5 1764.8 60.6 49.6 42.6 10.4
1000M1 3972.3 76.9 69.5 74.4 10.1
1000M2 2722.6 76.2 68.4 74.2 10.3
1000S1 2141.2 76.8 69.4 53.0 4.0
1000S2 1546.0 76.8 69.3 35.0 2.9

Table 6.3: ROSEsim data statistics. The number of taxa, number of sites, average
normalized hamming distance (ANHD), percentage of the matrix which is a gap
character (Gap), and average gap length (Avg Gap Len) are shown.

that Gutell has created, each of which has a highly reliable alignment. The pre-

sented datasets were chosen for their size and difficulty. Each of the chosen datasets

has at least 901 taxa (and as many as 7350 taxa) and is difficult to analyze, where

difficulty was assessed in terms of two-phase accuracy, as well as the computational

time and memory required to generate a tree.

The datasets I use have been cleaned [54]: any taxa with more than 50%

unsequenced letters have been removed, and columns that contained only ambigu-

ous or gap characters have also been removed. The resulting reference alignment

statistics are in Table 6.4.

For the two 16S.M datasets RAxML was run on the cleaned alignment with

500 bootstrap replicates. In my experiments, I considered as a reference tree the

bootstrap tree where only edges with greater than 75% bootstrap support were re-

tained. For the 16S.3 dataset, 500 bootstrap replicates were also run, and it is the

75% majority consensus tree of these 500 replicates that I use as a reference (the
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Dataset Taxa Sites MNHD ANHD Gap Avg Gap Ref. Tree
(%) (%) (%) Len Resolut’n

16S.M 901 4722 88.7 35.9 78.1 17.2 46.9
16S.M.aa ag 1028 4907 100 34.2 82.6 22.0 42.4

16S.3 6323 8716 83.3 31.5 82.1 9.4 50.2
16S.T 7350 11856 90.1 34.5 87.4 12.1 49.5

Table 6.4: Cleaned Gutell data statistics. The number of taxa, number of sites,
average normalized hamming distance (ANHD), percentage of the matrix which is
a gap character (Gap), and average gap length (Avg Gap Len) are shown. Also, the
resolution of the reference tree is given for each dataset. The reference tree is the
75% bootstrap tree of RAxML given the curated alignment.

final RAxML search had not completed after 22 days of processing).

For the 16S.T dataset, I also use as a reference the 75% majority consensus

tree, but for only 135 bootstrap replicates. These limited replicates are a result of

extreme running times for RAxML: using a 16 node machine (each node 2.5GHz),

a parallelized RAxML [69] using every node took more than 18 days to complete

these 135 replicates. (RAxML was run using its rapid bootstrapping option [89],

which estimates trees under the quick GTRCAT model [87], so branch lengths are

not available.)
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Chapter 7

Improving an Existing Tree: pRecDCM3

In this chapter, I explore one of the methods I used to accomplish the first

step of BLuTGEN, that is, producing overlapping subsets. The approach here is to

use an existing estimate of the tree to help guide the decomposition. Ideally, even

starting from a quick estimate of the tree would produce a final result that was as

good as or more accurate than the best methods currently available.

I considered two variants of the recursive DCM3 decomposition described

in Section 6.1.1.2: an unpadded version (RecDCM3) and a padded version (pRecDCM3).

The RecDCM3 decomposition results in subsets where the expected overlap is only

four taxa, while the padded decomposition allows the expected overlap to vary ac-

cording to the parameter p. Because I used recursive decompositions, if the de-

composition resulted in a subset whose size exceeded the maximum subset size

parameter, I then recursively decomposed this problem into smaller pieces, using

the input tree restricted to the taxa in the subset as the new guide tree.

I applied these decompositions to a variety of guide trees, including “part-

tree”, a very quick clustering algorithm available in MAFFT [49], two-phase meth-

ods where MAFFT and/or ClustalW were used to generate the initial alignment and

RAxML was used to estimate the tree, and also the true tree (when known in sim-
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ulation). Note that the parttree algorithm in MAFFT can be used to generate both

an alignment and a tree. In some cases I used this tree as an input guide tree, and at

times I also used the alignment. In general, the parttree tree is quite inaccurate, and

the tree estimated by RAxML from the parttree alignment is more accurate. When

not computationally prohibitive, the tree estimated by RAxML from the alignment

generated by the linsi version of MAFFT is most accurate.

I also examined the effect of iteration for both RecDCM3 and pRecDCM3.

In both cases, iteration helps to improve the accuracy of the estimated tree, but

pRecDCM3 is overall more accurate1. Thus, at the end of this exploration, the best

method in this class is a padded Recursive Disk Covering Method (pRecDCM3),

where iteration can help fine-tune the result. Note that because this work was ex-

ploratory, throughout these experiments I use several different choices for parameter

values.

7.1 RecDCM3 Based Decompositions

To see if the RecDCM3 decomposition could improve upon a good estimate

of the tree, I applied this decomposition to the RAxML(MAFFT) tree for two of

the most difficult ROSE datasets (1000M1 and 1000S1), and an easy one as well

(1000L5). As Figure 7.1 shows, using my approach resulted in an improvement to

the accuracy of the estimated tree as compared to the input guide tree. Note that for

1The current implementation of pRecDCM3 requires completely resolved binary trees with
branch lengths. Because the result of BLuTGEN is not always binary, and does not contain branch
lengths, in order to iterate I randomly resolve any polytomies, and then apply approximately unit
branch lengths (the branch lengths are random numbers between 0.95 and 1.05).

83



these decompositions I set the maximum subset size to 200 and the targeted overlap

to 50. Since the RecDCM3 decomposition resulted in an improved tree, the next

step was to see if further improvements could be made through the use of iteration.

As Figure 7.1 also shows, while further improvements are made, they are not as

substantial.

For these experiments, I saved both the final result of using SuperFine, and

the SCM tree, which was an intermediate step. One of the interesting things about

the RecDCM3 decomposition is that the SCM tree and the SuperFine tree have very

similar errors (see Figure 7.2). This means that there is either very little overlap

between the subsets, or all subsets agree on the relationships – either way there are

not many polytomies in the SCM tree for SuperFine to resolve (see Table 7.1 for

polytomy information). Given the nature of a DCM3 decomposition, the expected

overlap is only four taxa, and that is before any recursion. To address this, and see if

more overlap could help SuperFine produce a more accurate tree, I next considered

a padded RecDCM3, where instead of the expected four taxa overlap, I instead have

much more. The intuition here is that with more overlap, more accuracy (from the

source trees) can be maintained.

7.2 pRecDCM3

In Figure 7.3 I show the results of using a padded RecDCM3 decomposition,

where I aim to have a common subset size of 50 taxa at each level of the recursion.

Though not a huge improvement, only a few percentage points, it is clear that using

the padded RecDCM3 decomposition results in more accurate trees as compared to
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Figure 7.1: RecDCM3 iterative results on ROSEsim data. The missing
edge rates for trees resulting from RecDCM3 decompositions, starting with the
RAxML(MAFFT) tree, and then iterating using the SuperFine result as the
new guide tree. ML(MAFFT) indicates the RAxML(MAFFT) starting tree.
RD(ML(MAFFT)) indicates the result of using the RAxML(MAFFT) tree as a
guide tree for the RecDCM3 decomposition. “RD-1it” indicates using the re-
sult of RD(ML(MAFFT)) as a guide tree (i.e. 1st iteration). “RD-2it” indi-
cates using the result of the 1st iteration as a guide tree. ML(TrueAln) indicates
RAxML(TrueAlignment).
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Figure 7.2: Comparison of SCM and SuperFine results for RecDCM3 itera-
tive results on ROSEsim data. The missing edge rate for trees resulting from
RecDCM3 decompositions, starting with the RAxML(MAFFT) tree, and then it-
erating using the SuperFine result as the new guide tree. RD(ML(MF))-SCM in-
dicates the SCM result of using the RAxML(MAFFT) tree as a guide tree to the
RecDCM3 decomposition while RD(ML(MFT))-SF indicates the SuperFine result.
The iterative trees are referred to analogously.
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Dataset Tree Max Poly Deg. # Polytomies
RD(ML(MAFFT))-SCM 7.9 (1.1) 2.6 (0.3)

1000L5 RD-1it-SCM 6.4 (0.4) 3.8 (0.4)
RD-2it-SCM 6.2 (0.2) 4.3 (0.3)

RD(ML(MAFFT))-SCM 24.6 (1.1) 9.6 (0.6)
1000M1 RD-1it-SCM 37.5 (2.4) 10.2 (0.6)

RD-2it-SCM 31.3 (3.1) 9.6 (0.5)
RD(ML(MAFFT))-SCM 25.0 (12.4) 9.6 (0.6)

1000S1 RD-1it-SCM 32.7 (2.7) 8.9 (0.6)
RD-2it-SCM 30.4 (2.6) 8.7 (0.4)

Table 7.1: Polytomy information for iterative RecDCM3 decompositions of
ROSEsim data. The maximum polytomy degree and number of polytomies are
given for the SCM trees from each of several iterations of RecDCM3. Standard
errors are given in parentheses.

the non-padded version.

As with the non-padded RecDCM3, iteration seems like a possible help.

Figure 7.4 shows that there is again a small improvement as we iterate with the

padded RecDCM3 decomposition technique. However, within a few iterations,

keeping parameter values constant, no further improvements are made. However,

as Table 7.2 shows, the pRecDCM3 decomposition does result in more overlap as

measured by maximum polytomy degree and the number of polytomies in the SCM

tree that results as the first step of SuperFine.

Finally, in Figure 7.5 I directly compare pRecDCM3 and RecDCM3. This

shows that using padded RecDCM3 decompositions results in more accurate trees

than the unpadded version, at each step of iteration. Interestingly, after a few iter-

ations, the padded version has made greater gains in accuracy as compared to the
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Figure 7.3: Comparison of RecDCM3 and pRecDCM3 decomposition results
for ROSEsim data. The missing edge rate for the SuperFine trees resulting from
RecDCM3 and pRecDCM3 decompositions, using the RAxML(MAFFT) tree as
a guide tree. RD indicates the RecDCM3 result while PRD indicates the padded
RecDCM3 result.
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Figure 7.4: Effects of pRecDCM3 iteration on ROSEsim data. Results of iter-
ating using pRecDCM3 with maximum subset size 250 and targeting an overlap of
50 taxa.
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Dataset Tree Max Poly Deg. # Polytomies
1000L5 PRD(ML(MAFFT))-SCM 5.1 (0.2) 7.15 (0.4)

PRD-1it-SCM 5.5 (0.2) 8.2 (0.6)
PRD(ML(MAFFT))-SCM 41.0 (3.2) 23.2 (1.4)

1000M1 PRD-1it-SCM 55.9 (2.4) 15.1 (0.9)
PRD-2it-SCM 47.8 (2.1) 12.6 (0.8)

PRD(ML(MAFFT))-SCM 36.9 (3.7) 21.6 (1.6)
1000S1 PRD-1it-SCM 46.0 (2.4) 12.4 (0.6)

PRD-2it-SCM 41.4 (3.2) 13.4 (0.8)

Table 7.2: Polytomy information for iterative pRecDCM3 decompositions of
ROSEsim data. The maximum polytomy degree and number of polytomies are
given for the SCM trees from each of several iterations of pRecDCM3. Standard
errors are given in parentheses.

unpadded version. That is, even though the initial difference in accuracy between

the two versions was only about two percent, after two iterations, the difference was

about five percent.

Having developed a method that works well for the 1000 taxon ROSEsim

datasets, I then explored even larger datasets.

7.2.1 Gutell Datasets

Working with the 16S.3 (6263 taxa) and 16S.T (7350 taxa) datasets presents

a new challenge. Unlike the ROSEsim datasets, running a reasonable two-phase

method is computationally difficult in terms of both running time and required ma-

chine memory. Thus, I was unable to produce a highly accurate estimated tree from

which to begin a padded RecDCM3 decomposition technique. Further, since SATé

relies on estimating a tree from a full alignment, running SATé for these datasets
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Figure 7.5: Comparison of RecDCM3 (RD) and pRecDCM3 (PRD) iteration
on ROSEsim data. Missing edge rates for results of iterating using RecDCM3 and
pRecDCM3 with maximum subset size 250 and targeting an overlap of 50 taxa.
1st-application indicates the result of applying the indicated decomposition to the
RAxML(MAFFT) tree.
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was also infeasible. Therefore, the goal with these datasets was to produce a tree

that is as accurate as possible.

Since the padded RecDCM3 requires an input guide tree, I began by consid-

ering two alignment methods that quickly produce an alignment, though that align-

ment need not be very good. I used the quicktree option of ClustalW, and the

parttree option of MAFFT to quickly generate an alignment for each dataset,

and then used RAxML to estimate a tree from each of these alignments. Figure 7.6

shows the accuracy of these estimated trees, as well as the result of using each of

these trees as the guide tree for pRecDCM3. As a first observation, the MAFFT

alignments result in more accurate trees as compared the the ClustalW alignment,

but in each case, applying the pRecDCM3 decomposition is able to boost the accu-

racy of the initial result.

Since the RAxML(MAFFT) trees were more accurate than the RAxML(ClustalW)

trees, I used RAxML(MAFFT) trees as the starting trees for iteration with pRecDCM3.

As Figure 7.7 shows, continued improvements are made using this technique. In

fact, for the 16S.T dataset, it appears that the iterations may not yet have reached a

fixed point, and further iterations might improve the result.

7.3 Conclusions

When an initial estimate of a tree is available, it is possible to improve upon

this initial tree’s accuracy using a divide-and-conquer technique that uses the initial

tree as a guide tree. In this chapter I explored the use of a Recursive DCM3 de-

composition, and compared this to a padded Recursive DCM3 decomposition. My
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Figure 7.6: Improvements to missing edge rate for Gutell datasets. The missing
edge rate are shown for each of several trees. ML(Clustal) is the tree estimated
by RAxML on a ClustalW quicktree alignment. PRD(Clustal) is the tree estimated
using a single application of the pRecDCM3 decomposition of the ML(Clustal)
tree. ML(MAFFT) is the tree estimated by RAxML on the MAFFT parttree align-
ment. PRD(MAFFT) is the tree estimated using a pRecDCM3 decomposition of
the ML(MAFFT) tree. For pRecDCM3, source trees were estimated using MAFFT
alignments, and polytomies resolved using MRP with the default 100 ratchet itera-
tions.
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Figure 7.7: Effects of pRecDCM3 iteration on Gutell data. Missing edge rates of
iterating using pRecDCM3 with maximum subset size 250 and targeting an overlap
of 50 taxa. Source trees were estimated using MAFFT alignments, and polytomies
resolved using MRP with the default 100 ratchet iterations.
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results show that the padded decomposition results in improved accuracy as com-

pared to the non-padded version. Further, iterating with this technique results in

ever more accurate trees, even for large datasets with more than 5000 taxa.

There are still many things to be learned about these decompositions though.

A much more thorough exploration of the parameter space, in particular the max-

imum subset size and desired overlap parameters, is required. In addition, tech-

niques are needed to determine when “enough” iteration has been performed, and

more experiments are desired to discover if changing parameters in the course of

iteration might help move the technique away from local optima.
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Chapter 8

Phylogenies Without a Full Alignment

In this chapter I explore another method by which to accomplish the first

step of BLuTGEN, that is, dividing the original dataset into overlapping subsets.

Chapter 7 showed that if given a reasonable initial estimate of the phylogeny, it is

possible to improve the accuracy of the tree using a padded Recursive DCM3 de-

composition. In this chapter, I consider what is possible when an initial estimate

of the tree is not available. The goal here is to estimate a tree on par with exist-

ing two-phase techniques, but without ever generating an alignment for the entire

dataset. Then, once I have a reasonable estimate, I can apply the padded Recursive

DCM3 method to improve the result, and thus estimate an accurate tree without

ever generating an alignment for the full dataset.

I develop several decomposition techniques each of which clusters the se-

quences into subsets based on their BLAST hit ordering. Each decomposition is

named “BL” for “BLAST-based decomposition,” and then subsequent letters indi-

cate a variant. The first variant, simply “BL”, does not work very well, and after

a few initial experiments was discarded. The first successful decomposition was

BLD (“D” for “distinct”), with BLS (“S” for “simplified”) and BLF (“F” for “fast”)

improving upon this methodology in terms of speed, and to some extent, accuracy.
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As I developed these methods I tested them on a variety of the datasets described

in Chapter 6 choosing to attempt to understand the limitations of each method as

opposed to exhaustively testing each method on all datasets.

In each of these approaches, I build a BLAST database from the set of se-

quences (using formatdb) and then BLAST individual sequences against this

database (using blastall). The particulars of which sequences I use to BLAST

against the database, and which hits form a set, result in several different variants.

In every variant, the first set is created by taking the first sequence in the raw se-

quence file and using it to BLAST against the database. The top hits, up to the

maximum subset size specified, make up the first set. The variants differ according

to how they create subsequent hits.

At the end of this exploration, the BLF decomposition is the best in terms

of speed, and also accuracy.

8.1 BL Decomposition

The first decomposition I tried, BL, has two additional parameters in addi-

tion to the maximum subset size: low and high. These parameters are used to bound

the amount of overlap between the current set being created, and a previously gen-

erated set. As I create each set, I keep track of the number of taxa not previously

part of some set added to the current set, as well as the amount of overlap with a

previous set. Figure 8.1 gives the pseudocode for this decomposition.

To create subsequent sets, I consider the previous ordering, and use as a
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1. Generate first set from firstOrdering
2. Generate currentOrdering from first taxon \

following those in first set
3. While some taxon is not assigned to a set

3a. Reset variables: numberNew = 0
numberInCurSet = 0
setToMatch = unknown
seedForNextOrdering = unknown

3b. foreach currentHit in currentOrdering
If setList[currentHit] is undefined
If numberNew > (#maxSize# - #low#)

if seedForNextOrdering is unknown
seedForNextOrdering = currentHit

else
move on to next hit

else
Add currentHit to currentSet
update numberInCurSet, numberNew

else
If setToMatch is unknown:

setToMatch = first set of setList[currentHit]
Add currentHit to currentSet

else
if setList[currentHit] does not match \

setToMatch
move on to next hit

else
if (numberInCurSet - numberNew) < #high#

move on to next hit
else

Add currentHit to currentSet
Update numberInCurSet

If numberInCurSet = #maxSize#
set currentOrdering to hit ordering from \

BLASTing database using seedForNextOrdering
break out of foreach loop

Figure 8.1: BL decomposition.
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seed the first sequence from the ordering that is not yet contained in any set. I again

consider the hits in order. If the hit is not yet contained in any set, and I have no

more thanmaxSize–low new hits added to the current set, I add it to the current set.

If I have already added the maximum number of new hits, and have not yet saved a

hit as the next seed, I mark the current hit as the next seed. If the hit is contained in

some set, and I have not yet found such a hit, I mark the set that contained the hit

as the target overlap set, and add the hit to the current set. If I have already found a

target overlap set, and this hit is not a member of the overlap set, or I have already

found high overlap hits, I discard the hit. This continues until I have found a next

seed, and I have at least low overlap with a previous set, and maxSize–high new

hits.

Since my original goal was to create a method that could scale to large

datasets, I began by considering the RNAsim datasets which have 8192 and 16384

taxa. I set the maximum subset size to 250, low to 25 and high to 50. Unfortu-

nately, using this BL decomposition as the first step to BLuTGEN results in rather

inaccurate trees (see Figure 8.2), even when using the true alignment for subtree

generation. Looking at the SCM and SuperFine tree accuracy though (Figure 8.3),

I noted that each had very similar error, indicating that perhaps not enough overlap

was being generated. In an attempt to address this, I used the same technique, but

doubled the low and high parameters. Figure 8.4 shows that the parameter change

did result in a substantial improvement. However, the resulting trees still had much

more error than desired, especially considering that the tree estimated by RAxML

from the default MAFFT alignment indicated that these datasets are actually quite
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Figure 8.2: BL decomposition on RNAsim data. The missing edge rate is shown
for the BL decomposition method, using true alignments for subset generation, and
resolving polytomies with MRP. The maximum subset size is 250, low = 25 and
high = 50.

easy.

8.2 BLD Decomposition

The “D” of this decomposition’s name is for “distinct”. This BLAST-based

decomposition technique gets its name from the fact that it tries to create distinct

subsets, that is, subsets with enough, but not too much overlap. It does this through

the use of three new parameters, two of which (low and new) bound the amount

of overlap between sets. The third new parameter, seed, gives a new starting posi-

tion from which to find subsequent sets. Figures 8.5–8.7 give pseudocode for this

variant.

As with all BLAST-based decompositions, the first set is simply the top hits

from the ordering creating by BLASTing the first sequence in the file against the

100



 0

 0.2

 0.4

 0.6

 0.8

 1

SCM SuperFine

M
is

s
in

g
 E

d
g
e

 R
a
te

0.503 0.490

(a) 8192

 0

 0.2

 0.4

 0.6

 0.8

 1

SCM SuperFine

M
is

s
in

g
 E

d
g
e

 R
a
te

0.489 0.476

(b) 16384

Figure 8.3: Comparison of SCM and SuperFine trees for BL decomposition
on RNAsim data. The missing edge rate is shown for the SCM and SuperFine
trees resulting from the BL decomposition method, using true alignments for subset
generation, and resolving polytomies with MRP. The maximum subset size is 250,
low = 25 and high = 50.

database. Creating subsequent sets proceeds in three phases:

1. Strict: Consider the top maxSize hits using the hit from the previous set in

position seed as the seed. If the set has low overlap with some previously

defined set, and has at least new number of hits not already in some set,

accept the set. If this new set under consideration does not meet the criteria,

consider in turn as seeds the hits from the previous set following the initial

seed hit until some seed results in an accepted set, which then becomes the

previous set in the next loop iteration. If at any time all taxa have been put in

some set, the decomposition completes.

2. Relaxed: If some taxa are not in a set after the strict phase, I relax the re-

quirement that a new set must have a least new number of hits not already
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Figure 8.4: Two BL decompositions on RNAsim data. The missing edge rates
are shown for two parameter choices for the BL decomposition method, using true
alignments for subset generation, and resolving polytomies with MRP. Both Small
and Large have a maximum subset size of 250. Small sets low = 25 and high = 50
while Large sets low = 50 and high = 100.
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1. Generate first set from firstOrdering
2. Set previousOrdering to firstOrdering
3. Generate currentOrdering from taxon in position seed \

in first ordering
4. While possible seeds have not been exhausted

4a. Consider set of top #maxSize# hits in \
currentOrdering

If consideredSet has #low# overlap with some \
previous set and \
has at least #new# new hits

Accept consideredSet
Set possibleSeed to taxon in position seed of \

currentOrdering
else

Set possibleSeed to taxon in position one \
further past current seed (if possible) \
in previousOrdering

If each taxon is in some set
Break from while loop

Figure 8.5: Strict phase of BLD decomposition.
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1. Set previousOrdering to be what Strict phase last had
2. Generate currentOrdering from taxon in position #seed# \

in previousOrdering
3. While possible seeds have not been exhausted

3a. Consider set of top #maxSize# hits in \
currentOrdering

If consideredSet has #low# overlap with some \
previous set and \

has at least 2 new hits
Accept consideredSet
Set possibleSeed to taxon in position #seed# \

of currentOrdering
else

Set possibleSeed to taxon in position one \
further past current seed (if possible) in \

previousOrdering
If each taxon is in some set

Break from while loop

Figure 8.6: Relaxed phase of BLD decomposition.
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1. Foreach taxon not currently in some set
1a. Generate currentOrdering using current taxon as \

seed
1a. Consider set of top size hits in currentOrdering

If consideredSet has low overlap with some \
previous set

Accept consideredSet
If each taxon is in some set

Break from loop

Figure 8.7: Loose phase of BLD decomposition.

in some set. Instead, I simply require at least two hits not in some previous

set. I consider again all hits after the seed hit in the most recent ordering that

resulted in an accepted set.

3. Loose: If some taxa are still not in a set, consider each as a seed. If the

resulting set has low overlap with some previously defined set, accept the set,

and update the list of taxa not yet in a set accordingly so as not to consider

them as a seed.

In the Loose phase, a single pass through the set of taxa not assigned to a subset is

made. If at the end of the Loose phase the completed sets do not contain all taxa,

the decomposition fails. Note that it is possible that further passes through the taxa

not assigned to a subset could result in a valid decomposition that otherwise fails,

but I do not currently pursue this option.

I began by testing this method on the ROSEsim datasets. Figure 8.8 shows
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Figure 8.8: BLD decomposition average source tree error for ROSEsim data.
The average missing edge rate is shown for the source trees estimated from the BLD
decomposition method, using MAFFT alignments for subset generation.

the average subset tree error for this decomposition, which indicates that I have

managed to create reasonably accurate source trees (though they could be im-

proved) and Figure 8.9 shows the resultant full tree errors. The BLD errors are

still significantly greater than RAxML(MAFFT), but the BLD errors are more rea-

sonable than those the BL decomposition returned. Further, the ROSEsim datasets

are more difficult than the RNAsim datasets, so even though I do not give a di-

rect comparison of the BL and BLD decompositions, the BLD decomposition is

preferred.

Though it is possible that the BLD decomposition could fail to return a

successful decomposition, for the ROSEsim datasets it always returned a valid de-

composition, and results in trees with a more reasonable accuracy. Unfortunately it

cannot be applied to larger datasets due to computation time. Attempts to use the

BLD decomposition for the RNAsim datasets failed to complete after more than 15

hours of processing. Looking for the bottleneck of the algorithm, I soon discovered
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Figure 8.9: Missing edge rate of BLD decomposition on ROSEsim data. The
missing edge rate is shown for the BLD decomposition method, using MAFFT
alignments for subset generation, and resolving polytomies with MRP as well as
for the RAxML(MAFFT) tree.

that the many calls to blastall were to blame. On a decent desktop machine

(3.4GHz processor), it takes approximately 0.07 seconds to create a hit ordering

from a database with 1000 taxa, 26 seconds for a database with 8192 taxa, and 54

seconds when the database has 16384 taxa. Despite the fact that 54 seconds seems

a trivial amount of time, the BLD decomposition in the worst case considers every

taxon as a seed, which would mean more than 10 days of processing for datasets

with 16K taxa.

8.3 BLS Decomposition

To see if I could speed up the BLD decomposition, without degrading per-

formance, I created the BLS decomposition (“S” for “simplified”), which is the

same as BLD, but removes Phase 2 (thus the name). Using the BLS decomposition

resulted in much faster decompositions for the 1000 taxon datasets (see Table 8.1),

and maintained about the same accuracy (see Figure 8.10).
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Model Condition Method Decomposition Time (secs)
1000M1 BLD-50-250 223.1 (23.7)
1000M1 BLS-50-250 25.5 (1.5)
1000S1 BLD-50-250 223.4 (20.3)
1000S1 BLS-50-250 22.0 (1.3)

Table 8.1: BLD and BLS decomposition times. For simulated data, all times are
given in seconds, and are averages over 20 replicates per model condition, using a
heterogeneous mix of computers available through the UTCS condor system. Stan-
dard errors shown in parentheses.
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Figure 8.10: Comparison of BLD and BLS decomposition missing edge rates.
The missing edge rates are shown for the BLD and BLS decomposition methods,
using MAFFT alignments for subset generation, and resolving polytomies with
MRP.
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Unfortunately, it still takes unacceptably long to generate the BLS decom-

position for larger datasets, taking about seven hours for the 16S.3 dataset with

6263 taxa, and over eight hours for the 16S.T dataset with 7350 taxa (exact hard-

ware unknown, since run through the UTCS condor system). Even more troubling,

the decomposition was not successfully generated! Instead, after the last phase, the

union of the taxa in all sets was a proper subset of the taxa in the original dataset.

The BLS decomposition is the same as the BLD decomposition, just less restrictive

in the generation of early sets, indicating that if the BLD decomposition could be

run to completion for these datasets, it too would likely fail to produce a valid de-

composition. Of course, since the early sets might be different, it is possible that

the BLD decomposition could succeed where the BLS decomposition fails. Either

way though, the BLS decomposition is still slower than desired.

8.4 BLF Decomposition

The BLF decomposition (“F” for “Fast”, since that was the goal of this

variant) overcomes the limitations of the BLD and BLS decompositions by reducing

the number of calls to blastall and guaranteeing that source trees generated as a

result of the decomposition will be an acceptable input to a supertree method. The

pseudocode for this method is given in Figure 8.11.

The BLF decomposition creates the first set just as all BLAST-based de-

composition method do, and has just one additional parameter: low. In this variant,

to create subsequent sets, I consider the previous order, and use as a seed the first

sequence after the hits that made up the previous set that is not yet in a set. I con-
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1. Generate first set from firstOrdering
2. Generate currentOrdering from first taxon \

following those in first set
3. While some taxon is not assigned to a set:

3a. Reset variables: numberInCurSet = 0
seedForNextOrdering = unknown

3b. Foreach currentHit in currentOrdering
If numberInCurSet < #maxSize#

Add currentHit to currentSet
Update numberInCurSet

else
If setList[currentHit] is unknown

Set seedForNextOrdering to currentHit
else

Move on to next hit
If numberInCurSet = #maxSize# and\

seedForNextOrdering is known
set currentOrdering to hit ordering from \

BLASTing database using seedForNextOrdering
break out of foreach loop

4. Create overlap graph
5. Foreach set, use overlap graph to determine if more \

overlap should be added
5a. If overlap is too low, determine highest \

overlapping set
5b. Using a common taxon to highest overlapping set,\

and to create hitOrdering
5c. Loop through hitOrdering

If currentHit adds overlap to highest overlapping set
Add currentHit to currentSet

Figure 8.11: BLF decomposition.
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BLS BLF
Dataset/Model Decomposition Time Decomposition Time

1000M1 25.5 (1.47) secs < 1 sec
1000S1 21.95 (1.33) secs < 1 sec
16S.3 7 hours 45 min
16S.T 8+ hours 45 min

Table 8.2: BLS and BLF decomposition times. For the simulated data, all times
are averages over 20 replicates per model condition (single data point for real data).
All times are the result of using a heterogeneous mix of computers available through
the UTCS condor system. Standard errors (where applicable) are given in paren-
theses.

tinue until every sequence is in some set. However, at this point, there may not

be sufficient overlap, so I post-process the sets. I create an overlap graph, where

the nodes of the graph are the sets, and there is an edge between the nodes if the

corresponding sets have at least low overlap. I then add hits to sets as necessary

to ensure low overlap with some other set, and to ensure that the overlap graph is

connected.

Figure 8.12 compares the BLD and BLF decompositions source tree error

rates for the ROSEsim datasets, while Figure 8.13 compares the resulting full tree

error rates. It is clear that the BLF decomposition results in trees that are just as

accurate, and perhaps even better, than those generated with the BLD decomposi-

tion. Further, as Table 8.2 shows, it is also a win in terms of running time, making

BLAST-based decompositions feasible for datasets with over 5000 taxa.

To assess the impact of the low and maxSize parameters, I decreased these

parameters, naively thinking that smaller subsets would translate to more accurate
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Figure 8.12: Comparison of BLD and BLF decomposition average source tree
error rates for ROSEsim datasets. The average missing edge rates for source trees
are shown for the BLD and BLF decomposition methods, using MAFFT alignments
for subset tree generation. Both methods use a maximum subset size of 250, and
low set to 50.
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Figure 8.13: Comparison of BLD and BLF decomposition error rates for ROS-
Esim datasets. The missing edge rates are shown for the BLD and BLF decomposi-
tion method using source trees estimated using MAFFT alignments, and polytomies
resolved using MRP. Both methods use a maximum subset size of 250, and low set
to 50.
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Figure 8.14: Comparison of BLF decomposition error rates given different pa-
rameters for ROSEsim datasets. The missing edge rate is shown for two versions
of the BLF decomposition method, using MAFFT alignments for subset generation,
and resolving polytomies with MRP. Small sets low = 25 and the maximum subset
size to 100 while Large sets low = 50 and the maximum subset size to 250.

source trees, and thus more accurate full trees. However, as Figure 8.14 shows, this

was not the case. Instead, the source tree accuracy was reduced (see Figure 8.15),

perhaps because of insufficient taxon sampling, resulting in significantly less accu-

rate full trees.

Now, to determine if this BLF decomposition would be practical for even

larger datasets, I used it on the RNAsim datasets, setting the maximum subset size

to 250, and minimum overlap parameter low to 50. Figure 8.16 compares the BL

and BLF decompositions (since BL was the last successful decomposition for these

datasets). The BLF decomposition resulted in trees with much lower error for the

RNAsim datasets even though the BL decomposition had several advantages. First,

the results for the BL decomposition use true alignments to generate subtrees, while

113



 0

 0.1

 0.2

 0.3

 0.4

 0.5

Small-Src Large-Src

A
v
g

. 
M

is
s
in

g
 E

d
g

e
 R

a
te

0.285

0.211

(a) 1000M1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Small-Src Large-Src

A
v
g

. 
M

is
s
in

g
 E

d
g

e
 R

a
te

0.263

0.197

(b) 1000S1

Figure 8.15: BLF decomposition average source tree error. The average miss-
ing edge rates for source trees produced by two versions of the BLF decomposi-
tion method. Source trees were estimated using MAFFT alignments. Small sets
low = 25 and the maximum subset size to 100 while Large sets low = 50 and the
maximum subset size to 250.

the results for the BLF decomposition use alignments estimated by MAFFT. Sec-

ond, the results for the BLF decomposition of the 16384 dataset are based on a

non-standard (fast, but less accurate) version of SuperFine due to the extreme run-

ning time of the usual method (see Section 9.1 for further details).

To conclude this section, Figures 8.17 and 8.18 show the accuracy of the

BLF method on the full set of ROSEsim and Gutell datasets. Though the BLF

method does not result in trees more accurate than RAxML(MAFFT) for the ROS-

Esim datasets, given that no alignment is ever generated these results are positive.

Further, for the two smaller Gutell datasets (16S.M and 16S.M.aa ag) the BLF de-

composition results in a tree with accuracy on par with that of the RAxML(MAFFT)

tree (where MAFFT was run using the most accurate linsi option). For the two
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Figure 8.16: Comparison of BL and BLF decomposition error rates for
RNAsim datasets. The missing edge rate is shown for the BL and BLF decom-
position methods. The BL method uses true alignments for subtree generation, and
resolves polytomies with the default of SuperFine (QMC). The BLF method uses
alignments estimated by MAFFT for subtree generation, and resolves polytomies
using a time-limited MRP.
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larger Gutell datasets (16S.3 and 16S.T), where the most accurate version of MAFFT

is no longer feasible, the BLF decomposition result is considerably better than the

tree estimated by RAxML using the alignment generated by the parttree version of

MAFFT.

8.5 Future Directions

While the final tree error using the BLF decomposition method is still quite

high, I now have a “reasonable”, or at the very least no longer horrible, starting

tree, for which no full alignment was ever generated. I can now use this result as

the guide tree to a pRecDCM3 decomposition, and thereby estimate an accurate

tree without generating a full alignment.

As with the pRecDCM3 decomposition, there is still much to be discovered

and optimized about this approach. First, as Figure 8.14 indicated, appropriate

parameters are required in order for BLF to work well. A thorough exploration of

the impact of parameter choice on the resulting full trees would be enlightening.

Also, as will be explored further in Chapter 9, the BLF decomposition tends to

create large polytomies in the first part of SuperFine that then must be resolved.

It would be preferable to find an alternative to BLF that maintained its speed and

accuracy, but did not result in such large polytomies.
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Figure 8.17: BLF decomposition error for ROSEsim datasets. The missing edge
rates are shown for the BLF decomposition method using source trees estimated
using MAFFT alignments, and polytomies resolved using MRP (maximum subset
size of 250, and low set to 50. The accuracy of RAxML(MAFFT) is shown for
comparison, where MAFFT was run in its most accurate setting, linsi.
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Figure 8.18: BLF decomposition error for Gutell datasets. The missing edge
rates are shown for the BLF decomposition method using source trees estimated
using MAFFT alignments, and polytomies resolved using MRP (maximum subset
size of 250, and low set to 50. The accuracy of RAxML(MAFFT) is shown for
comparison. MAFFT was run in its most accurate setting, linsi, for 16S.M and
16S.M.aa ag and using the fast parttree algorithm for the remaining two datasets.
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Chapter 9

Extending BLuTGEN

In the past few chapters I have described the development of BLuTGEN,

which works by dividing the dataset into subsets, estimating trees for each subset,

and then assembling a full tree from the subtrees. In order to get a tree without

ever generating an alignment, BLuTGEN uses a BLF decomposition to build an

initial estimate of the phylogeny for a set of unaligned sequences, and then improves

this estimate using a padded recursive DCM3 decomposition. In this chapter I

consider an improvement to the basic algorithm that allow BLuTGEN to be used for

large datasets, and also consider the impact of starting tree for iterative pRecDCM3

decompositions. Finally, I apply the pRecDCM3 decomposition to a very large

dataset (27643 taxa) where even generating a reference tree is problematic.

9.1 Improving Merge Times

To assess the effectiveness of BLuTGEN on large datasets, I used the BLF

decomposition method for the 16S.3 Gutell dataset, and attempted to use it for the

16S.T dataset. Unfortunately, after over 5 days of processing, SuperFine had failed

to produce a tree for the 16S.T dataset, though I did manage to recover the SCM

tree produced in the first phase of SuperFine. This long computation time stemmed
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from the impact of the polytomy degrees in the SCM tree which is an intermediate

result of SuperFine.

When the largest degree polytomy in the SCM tree is very big, resolving

the polytomy of the SCM tree becomes a bottleneck. The default behaviour of Su-

perFine, when resolving with MRP, is to do a careful search for the best resolution,

and then take a greedy consensus of the best trees that resulted from the search.

Unfortunately, the time for this search can be extreme if the polytomy is large.

Given that I often have large degree polytomies when using a BLAST-based

decomposition (see Section 9.3), and that I then randomly refine this result before

using it as input to a padded RecDCM3 decomposition (since the current imple-

mentation of pRecDCM3 requires a binary input tree), I wondered if reducing the

accuracy of the resolution step could reduce the time required by BLuTGEN, with-

out substantially degrading performance.

The 16S.3 BLF SCM result has 478 polytomies, where the largest degree

polytomy has degree 1339. The 16S.T BLF SCM result has 533 polytomies, with

the largest degree polytomy having degree 2495. Figure 9.1 compares the accuracy

of the SCM tree, the SCM tree randomly-refined, and the result of using SuperFine

resolving with MRP in a very fast manner (a single two hour MRP tree search).

Figure 9.1(a) also shows the accuracy of the SuperFine result for 16S.3 when a

more thorough search for the MRP tree was completed (the analogous result for

16S.T was not available after more than 5 days of processing). Though the Su-

perFine result with a careful ratchet search is indeed the best, using the much faster

(see Table 9.1) time-limited search does not hurt accuracy enough to warrant the
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Dataset Resolution Type Time
16S.3 Random refinement 3.5 seconds

Time limited fast MRP search 1.95 hours
Default MRP search 19.7 hours

16S.T Random refinement 4.7 seconds
Time limited fast MRP search 10.07 hours

Default MRP search > 5 days

Table 9.1: Resolution times. For the large 16S datasets, a comparison of running
times for variations of the refinement step of SuperFine. Note that times are not
directly comparable as several different machines were used.

considerable increase in computation time.

9.2 Starting Tree Choice

The BLAST-based BLF decomposition works well to generate an tree with-

out ever generating an alignment for the full dataset. But if a reasonable two-phase

method could be applied (such as a MAFFT alignment followed by estimating a

tree with RAxML), the question becomes whether or not using the BLAST-based

decomposition is worthwhile. To explore this, I used the 16S.3 and 16S.T Gutell

datasets and considered starting an iterative pRecDCM3 approach starting from a

quick and dirty alignment (in this case the parttree alignment available in MAFFT)

as compared to starting from the BLF decomposition result (using the fast MRP

searches). Figure 9.2 shows that starting from either of the BLF-based or MAFFT-

based trees quickly converges to trees with very similar accuracy.

I also used two of the hard ROSEsim datasets for a similar comparison,

where I used a more accurate version of MAFFT (linsi) to generate the RAxML(MAFFT)
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Figure 9.1: Comparison of accuracy of several resolutions of SCM tree for
Gutell datasets. Missing edge rates are given. SCM is the strict consensus merger
tree that is the result of the first stage of SuperFine. Random-Refinement is the
SCM tree randomly refined. Fast-SuperFine is the SCM tree resolved using MRP,
but using a fast search for each MRP tree. Default-SuperFine resolves the SCM tree
in the default manner (using the greedy consensus of 100 ratchet iterations for the
MRP tree with no time limits for each polytomy).
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Figure 9.2: Impact of starting tree on iterative pRecDCM3 decompositions on
Gutell datasets. The accuracy of each starting tree (RAxML(MAFFT) and BLF re-
sult) are shown together with four iterative applications of the pRecDCM3 decom-
position (maximum subset size of 250, targeted overlap of 50). All decompositions
used MAFFT subset alignments and default MRP searches to resolve polytomies.
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starting tree (see Figure 9.3), and used the more thorough MRP search option to re-

solve polytomies. Again, starting from either the BLF or RAxML(MAFFT) trees

quickly converges to a result tree with similar accuracy, but starting from the BLF

tree reaches convergence in fewer iterations.

9.3 Understanding Decompositions

To further understand the decomposition methods, Table 9.2 shows a variety

of the statistics for two ROSEsim model conditions, the 16S.3 and 16S.T datasets,

and several decomposition methods.

For each dataset size, each of the BLAST-based decomposition methods

generate about the same number of subsets, but the pRecDCM3 decomposition re-

sults in much fewer. Also, the average size of the pRecDCM3 decompositions

are smaller, which translates to faster MAFFT alignments, and faster RAxML tree

estimations, as compared to the BLAST-based decompositions (see Table 9.3).

A smaller average subset size, and a smaller number of subsets means that the

pRecDCM3 decompositions have much less overlap than the BLAST-based decom-

positions, which is reflected in the maximum polytomy size resulting in the SCM

tree. This can also been seen by comparing the time required to merge the source

trees from the various decompositions: merging from pRecDCM3 decompositions

is much faster than merging BLAST-based decompositions.
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Figure 9.3: Impact of starting tree on iterative pRecDCM3 decompositions for
ROSEsim datasets. The accuracy of each starting tree (RAxML(MAFFT) and
BLF result) are shown together with five iterative applications of the pRecDCM3
decomposition (maximum subset size of 250, targeted overlap of 50). All decompo-
sitions used MAFFT subset alignments and default MRP searches to resolve poly-
tomies.
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Model Number of Avg Src SCM Max
Condition Method Src Trees Size Poly degree

BLD-50-250 31.4 (0.3) 250 (0) 758.4 (5.8)
PRD-BLD-50-250 11.1 (0.3) 131.3 (3.2) 53.9 (3.4)

BLS-50-250 29.1 (0.4) 250 (0) 417.5 (25.3)
1000M1 PRD-BLS-50-250 10.7 (0.3) 135.1 (3.4) 54.2 (4.3)

BLF-25-100 49.0 (0.6) 123.8 (0.1) 657.1 (24.3)
BLF-50-250 30.3 (0.4) 250 (0) 407.0 (34.9)

PRD-BLF-50-250 10.9 (0.3) 133.2 (3.4) 53.5 (4.1)
BLD-50-250 30.1 (0.5) 250 (0) 752.8 (5.5)

PRD-BLD-50-250 11.1 (0.3) 132.9 (3.4) 48.0 (3.2)
BLS-50-250 28.3 (0.5) 250 (0) 330.9 (24.6)

1000S1 PRD-BLS-50-250 10.8 (0.3) 134.6 (3.6) 47.8 (3.4)
BLF-25-100 48.9 (0.6) 123.7 (0.1) 613.2 (24.8)
BLF-50-250 29.3 (0.6) 250 (0) 363.1 (27.3)

PRD-BLF-50-250 10.7 (0.3) 135.1 (3.5) 48.2 (3.1)
16S.3 BLF-50-250 245 252.0 (0.6) 1339

PRDF-50-250 70 133.7 (5.4) 124
16S.T BLF-50-250 291 252.1 (0.6) 2495

PRDF-50-250 75 139.9 (6.2) 284

Table 9.2: A comparison of decomposition statistics. The number of source
trees resulting from the decomposition, the average number of taxa per subset,
and the maximum polytomy degree in the SCM tree are given. The low param-
eter and maximum subset size are given for each decomposition. PRD-BLD indi-
cates a padded RecDCM3 decomposition of the BLD result. PRD-BLS indicates a
padded RecDCM3 decomposition of the BLS result. PRD-BLF indicates a padded
RecDCM3 decomposition of the BLF result. Standard errors are given in parenthe-
ses.
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Model Avg Src Avg Src Serial
Condition Method Decomp Align Tree Merge Total (hours)

BLD-50-250 223.1 (23.6) 1228.5 (10.1) 1661.0 (26.5) 1174.9 (357.3) 25.6
PRDD-50-250 0.35 (0.16) 386.1 (18.8) 465.6 (21.2) 14.6 (1.3) 2.6

1000M1 BLF-25-100 <1 262.0 (1.6) 431.6 (6.2) 2544.5 (224.8) 10.2
BLF-50-250 <1 1183.1 (8.2) 1830.8 (38.2) 529.4 (81.1) 25.5

PRDF-50-250 0.3 (0.14) 383.8 (18.9) 464.2 (23.2) 3.0 (0.5) 2.6
BLD-50-250 223.4 (20.3) 1121.5 (7.7) 1424.8 (27.4) 785.5 (125.0) 21.6

PRDD-50-250 0.2 (0.13) 349.2 (16.7) 462.7 (24.3) 4.35 (0.6) 2.5
1000S1 BLF-25-100 <1 247.2 (1.7) 374.7 (5.4) 3372.2 (309.9) 9.4

BLF-50-250 <1 1096.1 (7.4) 1294.1 (21.4) 760.5 (158,0) 19.7
PRDF-50-250 0.3 (0.12) 378.0 (19.6) 421.2 (20.2) 2.0 (0.6) 2.4

16S.3 BLF-50-250 2710 2027.8 (34.0) 433.8 (12.5) 8257 170.6
PRDF-50-250 136 789.5 (73.6) 260.3 (28.3) 337 20.5

16S.T BLF-50-250 2710 1845.2 (35.2) 481.6 (13.7) 13620 192.6
PRDF-50-250 820 806.0 (81.4) 349.6 (40.2) 1579 24.7

Table 9.3: Running times. All times are given in seconds unless otherwise in-
dicated. For simulated data, all times are averages over 20 replicates per model
condition; analyses were run using a heterogeneous mix of computers available
through the UTCS condor system. The low parameter and maximum subset size
are given for each decomposition. PRDD indicates a padded RecDCM3 decompo-
sition of the BLD result. PRDF indicates a padded RecDCM3 decomposition of
the BLF result. Standard errors are given in parentheses. Serial total was computed
using the average times for each subset analysis. Times for PRD analyses do not
include the time to generate the tree used as input to the decomposition.
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Dataset Taxa Sites MNHD ANHD Gap Avg Gap Ref. Tree
(%) (%) (%) Len Resolut’n

16S.M 901 4722 88.7 35.9 78.1 17.2 46.9
16S.M.aa ag 1028 4907 100 34.2 82.6 22.0 42.4

16S.3 6323 8716 83.3 31.5 82.1 9.4 50.2
16S.T 7350 11856 90.1 34.5 87.4 12.1 49.5

16S.B.ALL 27643 6857 76.9 21.0 80.0 4.9 ?

Table 9.4: Gutell dataset statistics with 16S.B.ALL. The number of taxa, number
of sites, average normalized Hamming distance (ANHD), percentage of the matrix
which is a gap character (Gap), and average gap length (Avg Gap Len) are shown.
Also, the resolution of the reference tree is given for each dataset.

9.4 And now for something really big

The Gutell data I have presented thus far are just a few of the curated rRNA

datasets available from Robin Gutell’s comparative RNA database [12]. One more

dataset available here is the 16S.B.ALL dataset, which, after being “cleaned” like

the others (see Section 6.2.0.3), has 27643 taxa. Table 9.4 gives further details about

this alignment in addition to the previous Gutell datasets.

For this 16S.B.ALL dataset, a single estimate of the tree from the curated

alignment took over a week of processing (though the wall-clock time was less since

a threaded version of RAxML was used). Thus, no bootstrapping was accomplished

for this dataset, and therefore the only reference tree that exists for this dataset is

the single RAxML tree from the curated alignment. While this reference tree is

actually fully resolved, I list the resolution of the reference tree as “?”. This is

due the fact that if I could do bootstrapping, I would not expect a highly resolved

tree; the average normalized Hamming Distance of the curated alignment – 21%
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– is small enough that there are likely short edges in the true tree. Further, the

number of characters/sites in the dataset, 6857, is so small in comparison to the

number of taxa that a highly supported fully resolved tree is very unlikely – each

character would need to be informative for more than four edges in the tree. Thus,

given the curated alignment parameters, I would not expect the 75% bootstrap tree

to be more than 30% or 40% resolved. This means that, using the current reference

tree, missing edge rates of 60-70% might be the best possible, even using a highly

accurate alignment.

I computed the BLF decomposition for this dataset, and successfully gen-

erated a tree for each subset. Unfortunately, the SCM tree from the first step of

SuperFine has 1174 polytomies, and a resulting resolution of 26%. Though most of

these polytomies have degree less than 200 (easily handled by an MRP resolution),

the maximum polytomy degree is 15533. To resolve this polytomy with MRP, the

SuperFine algorithm creates a matrix to be analyzed using maximum parsimony.

In particular, SuperFine relabels source trees to reduce the problem size [93] and

codes the resulting edge information as binary characters, but this results in over

471K characters. Thus, to resolve this 15533 degree polytomy using MRP requires

writing an input file for PAUP that takes more than the available 2G of space in

the /tmp directory on the machine I used. Even if SuperFine were changed so that

the PAUP file could be written to a place with enough space for the entire file, it is

unclear if PAUP could handle the required analysis of over 15K taxa and more than

471K characters.

However, on this very large dataset I was able to use pRecDCM3 to gener-
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Number of Avg Src SCM Max
Method Src Trees Size Poly degree

BLF-50-250 2311 250.9 (0.1) 15533
PRD-50-250 302 133.4 (3.0) 427
PRD-75-500 139 261.9 (9.2) 465

PRD-100-1000 80 435.7 (22.4) 392

Table 9.5: Decomposition statistics for 16S.B.ALL (27643 taxa). The number
of source trees resulting from the decomposition, the average number of taxa per
subset, and the maximum polytomy degree in the SCM tree are given. The low
parameter and maximum subset size are given for each decomposition.

ate trees. To create the guide tree, I used the fast MAFFT parttree alignment, and

used RAxML to quickly estimate a maximum parsimony tree (the starting tree for

its search). I used the parttree alignment technique since it was the one alignment

technique that seemed likely to complete (other MAFFT variations may be possi-

ble, as might the quicktree option of ClustalW, but I was trying to quickly find

a starting point). I used the quick estimate of the maximum parsimony tree as op-

posed to the result of the RAxML search since the search failed after approximately

5 days of processing on a machine with 32G of RAM.

I started by considering three variants of the pRecDCM3 decomposition:

• PRD-50-250 sets low to 50, and maximum subset size to 250

• PRD-75-500 sets low to 75, and maximum subset size to 500

• PRD-100-1000 sets low to 100, and maximum subset size to 1000

Table 9.5 shows decomposition statistics for each of these decompositions.
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Figure 9.4 shows the comparison of the resulting trees as well as the initial

MP tree that was used as a guide tree, each as compared to the reference tree.

Note that the missing edge rate decreases by one percent each time the minimum

overlap (low) and maximum subsize size are increased. Given that this tree has over

27K taxa, this represents an improvement of more than 270 edges for each change.

Thus, though these are small numbers in terms of percentage, they are not as small

in terms of absolute numbers, suggesting that increasing the subset size can lead to

improvements in accuracy.

Note also that even the best tree here is missing about 70% of the refer-

ence tree edges. However, as previously discussed, we do not expect many of the

reference tree edges to have high bootstrap support. In comparing the empirical

statistics of the Gutell datasets, in fact, we would expect this dataset to have pro-

portionally fewer edges with high bootstrap support, with perhaps only 30-40% of

the edges having bootstrap support at the 75% level or higher. Thus, missing edge

rates of somewhere between 60-70% may be the best that can be obtained with re-

spect to the current reference tree, even with the best analyses (RAxML on the true

alignment, if computational requirements were not an issue). This means that the

analyses using pRecDCM3 may in fact be quite good.

Table 9.6 gives the running time information for each of the pRecDCM3

decompositions for this very large dataset. Note that by far the most time is spent

in estimating trees for subsets (since a source alignment and source tree must be

esimtated for each subset), but that this step is also highly parallelizable.
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Figure 9.4: pRecDCM3 applied to 16S.B.ALL Gutell dataset (27643 taxa). Each
of several estimated trees are compared to a single tree estimated by RAxML on the
curated alignment. MP indicates the maximum parsimony guide tree used for the
pRecDCM3 decomposition, PRD indicates the pRecDCM3 result. Targeted overlap
and maximum subset size parameters are given for each decomposition. In each
case subset alignments were estimated using MAFFT (with the linsi option) and
polytomies were resolved using the default MRP search.

Avg Src Avg Src Serial
Method Decomp Align Tree Merge Total

PRD-50-250 4.5 h 478.0 s (23.0) 173.9 s (9.8) 8.9 h 68 h
PRD-75-500 2.7 h 1835.5 s (118.1) 653.8 s (48.2) 9.5 h 108.3 h

PRD-100-1000 3.0 h 5390.9 s (506.1) 1851.1 s (193.3) 4.4 h 168.3 h

Table 9.6: Running times for pRecDCM3 decompositions of 16S.B.ALL (27643
taxa). Both the low and maximum subset size parameters are given. All times are
approximate, with “h” indicating hours and “s” indicating seconds. Decomposition
and merge steps run on machines with 32G RAM. Subset analyses performed using
the UTCS condor pool. When applicable, standard errors are given in parentheses.
Serial total was computed using the average times for each subset analysis and
does not include the time required to generate the tree used as input to the PRD
decomposition.
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1. Generate BLF decomposition tree by:
1a. Create BLF decomposition
1b. Estimate a tree for each subset
1c. Assemble tree on full dataset using SuperFine

2. Generate PRD decomposition tree by:
2a. Create PRD decomposition
2b. Estimate a tree fore ach subset
2c. Assemble tree on full dataset using SuperFine

3. Iterate step 2 if desired.

Figure 9.5: BLuTGEN

9.5 Conclusions

Generating a tree without ever generating an alignment for the complete

dataset is a lofty goal. But by combining approaches I have developed a new

method, BLuTGEN, which does just that, with good accuracy on hard datasets.

The pseudocode for BLuTGEN is given in Figure 9.5. The algorithm begins by us-

ing the BLF decomposition to estimate a tree without generating a full alignment,

and then improves this result by using the pRecDCM3 decomposition.

Though the BLF decomposition often creates large polytomies, changes to

the heuristics SuperFine uses to resolve polytomies allow this potential bottleneck

to be overcome – up to a point. Using the fast MRP search heuristic effectively

trades time and accuracy, allowing the BLF decomposition to generate a good start-

ing point for pRecDCM3 for large datasets. For extremely large datasets though,

the BLF decomposition results in polytomies which are too large to be handled in
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the usual way. Thus, new clustering techniques, which do not produce such large

polytomies will be required.

Finally, when an initial estimate of the tree can be generated in an alternative

way, using pRecDCM3 effectively improves the accuracy of the initial estimate, and

as I showed with the 16S.B.ALL dataset with 27643 taxa, this technique works well

even for very large datasets.
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Chapter 10

Conclusions and Future Work

This dissertation has contributed to the solutions of several of the problems

inherent to reconstructing phylogenetic trees. The work on TASPI gave a structure

to reduce the storage size requirements of large collections of trees. It also showed

that working with improved data structures can greatly reduce the computation time

required for strict and majority consensus analysis. Further, by developing the code

base in ACL2, and proving properties of the code, I have shown that confidence in

code can be attained. Given the ways in which phylogenetics is used, for example

in health care and law, ideally all phylogenetic code would be verified in some way.

There are still many ways that TASPI could be improved and extended, par-

ticularly as post-tree analyses continue to be developed. For one specific example,

the data structures developed could lend themselves well to tree-profiling, espe-

cially if an ordering element were also maintained. Also, the current representation

is limited when branch lengths are considered. Though TASPI can correctly read

and store branch lengths, their effect on the storage requirements has not been fully

explored. It seems likely that branch lengths for a subtree, particularly those with

20 decimal places such as those output by RAxML, will not be identical even if

the topology is identical. It would be enlightening to consider the effect of a bin-
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ning algorithm for these branch lengths, since two or three decimal places are likely

sufficient to make comparisons between trees.

The work on guide trees showed that improving the guide tree for MSA

methods can improve estimated phylogenies, provided that appropriate multiple

alignment methods are used. Trees estimated from ProbCons and Prank alignments

were significantly more accurate when the alignments were generated using a pre-

estimated guide tree. One of the interesting questions that arose from this study has

to do with alignment-error metrics. Given that SP-error fails to predict the ability

of an alignment to generate an accurate phylogeny, might there be a better measure

of alignment error?

And finally, BLuTGEN provides a means by which to estimate a tree from

sequence data, without generating an alignment on the full dataset. It does this by

combining two approaches to decomposing the full dataset into overlapping sub-

problems, and using a recent supertree method to combine the subproblems into a

full solution.

There are many ways that BLuTGEN might be improved and optimized.

The most readily apparent would be in the use of parallelization. In my experi-

ments, I made use of a condor pool of machines to generate source trees in parallel,

but this parallelization could be built directly into an executable. Also, there are

several parameters to the decompositions of BLuTGEN that could be explored to

determine if there are optimal settings that balance computation time with source

tree accuracy. In particular, finding a BLAST-based decomposition that maintained

speed and necessary overlap without causing very large polytomies could greatly
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reduce the running time of BLuTGEN, and allow even larger datasets to be analyzed

without generating an alignment on the full dataset.

There are also several ways SuperFine could be changed (for example vary-

ing the merge and polytomy resolution options), perhaps resulting in even more

accurate trees, or more speed. One more future direction considers again the use

of iteration. If the second phase of BLuTGEN is to be run several times, develop-

ing an appropriate stopping criterion will be necessary (for example, one possibility

might be to stop when the consensus tree stopped changing, an instance where using

TASPI to generate the consensus could prove useful).

Though there are still many challenges in reconstructing the Tree of Life, my

dissertation includes a few steps towards the goal of understanding the relationships

that surround us. In particular, the development of BLuTGEN will allow very large

datasets to be accurately analyzed in reasonable time frames, bringing us closer to

a fully assembled tree of life.
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Appendix 1

Commands for Software

1.1 Commands from Chapter 3

• PAUP v 4.0b10 for Unix

contree all/strict=no majrule=yes percent=<percent> \

treefile=<outfile> replace;

• TNT version 1.0

Strict consensus:

tsave * <outfile>;

nelsen *;

save /;

tsave /;

Majority consensus:

tsave * <outfile>;

majority = <percent> *;

save /;

tsave /;

139



1.2 Commands from Chapter 4

• Clustal v 2.0.9

Default alignment:

clustalw -align -infile=<raw sequence file> \

-outfile=<output file> -output=fasta \

-newtree=<file for default guide>

Passing guide:

clustalw -infile=<raw sequence file> \

-outfile=<output file> -output=fasta \

-usetree=<guide tree file name>

• Muscle v3.7

Default alignment:

muscle -in <raw sequence file> \

-fastaout <output file> \

-tree1 <file for default guide>

Passing guide:

muscle -in <raw sequence file> \

-fastaout <output file> \

-usetree_nowarn <guide tree file name>
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• ProbCons v1.12 (modified to take a user input guide tree)

Default alignment:

probcons <raw sequence file> <output file>

Passing guide:

probcons <raw sequence file> \

-g <guide tree file name>

• MAFFT v 6.504alpha (modified by Gotoh to accept guide trees)

– MAFFT-linsi

Default alignment:

mafft --localpair \

--maxiterate 1000 <raw sequence file>

Passing guide:

mafft --topin <guide tree file name> \

--localpair --maxiterate 1000 <raw sequence file>

– MAFFT-fftnsi

Default alignment:

mafft --retree \

--maxiterate 2 <raw sequence file>

Passing guide:

141



mafft --topin <guide tree file name> \

--retree 2 --maxiterate 2 <raw sequence file>

– MAFFT-fftns2

Default alignment:

mafft --retree 2 --maxiterate 0 <raw sequence file>

Passing guide:

mafft --topin <guide tree file name> \

--retree 2 --maxiterate 0 <raw sequence file>

• Prank v.080707

Default alignment:

prank -d=<raw sequence file> -o=<output file>

Passing guide:

prank -t=<guide tree file name> \

-d=<raw sequence file> -o=<output file>

• RAxML

raxmlHPC -m GTRGAMMA -w ./ -n <output file> \

-s <aligned sequence file in phylip format>

• PAUP v4.0b10

UPGMA:
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upgma brlens=yes showtree=no \

treefile=<upgma tree file name>

Midpoint:

roottrees rootmethod=midpoint userbrlens=yes;

1.3 Commands from Chapters 5 – 9

• MAFFT v 6.240

Parttree:

mafft --retree 0 --treeout --parttree <infile>

Subproblems:

mafft-linsi --quiet <infile> > <outfile>

• Clustal v 2.0.9

clustal -align -infile=<infile> -oufile=<outfile> \

-output=fasta -quicktree -newtree=<guidetree>

• SuperFine

Resolving with MRP:

runReup.py -w <uniqueName> -n <# ratchet iterations> \

-r <rmrp|gmrp> <sourceTrees>
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Resolving with QMC (the default):

runReup.py -w <uniqueName> <sourceTrees>

• RAxML v 7.0.4

Subproblems:

raxmlHPC -m GTRCAT -w <workDir> -n <output file> \

-s <aligned sequence file in phylip format>

Parallelized:

raxmlHPC-PTHREADS -s <PHYLIP input alignment> \

-n <name for the run> -m GTRCAT -T 8

Boostrapping:

raxmlHPC-PTHREADS -s <PHYLIP input alignment> \

-n <name for run> -f a -m GTRGAMMA \

-x <random number> -p <random number> -N 500 -T 16
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