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This work addresses the problem of stabilizing attitude dynamics with

an unknown delay in feedback. Two cases are considered: 1) constant time-

delay 2) time-varying time-delay. This is to our best knowledge the first result

that provides asymptotically stable closed-loop control design for the attitude

dynamics problem with an unknown delay in feedback. Strict upper bounds

on the unknown delay are assumed to be known. The time-varying delay

is assumed to be made of the constant unknown delay with a time-varying

perturbation. Upper bounds on the magnitude and rate of the time-varying

part of the delay are assumed to be known. A novel modification to the concept

of the complete type Lyapunov-Krasovskii (L-K) functional plays a crucial

role in this analysis towards ensuring stability robustness to time-delay in the

control design. The governing attitude dynamic equations are partitioned to

form a nominal system with a perturbation term. Frequency domain analysis

is employed in order to construct necessary and sufficient stability conditions

vii



for the nominal system. Consequently, a complete type L-K functional is

constructed for stability analysis that includes the perturbation term. As an

intermediate step, an analytical solution for the underlying Lyapunov matrix

is obtained. Departing from previous approaches, where controller parameter

values are arbitrarily chosen to satisfy the sufficient conditions obtained from

robustness analysis, a systematic numerical optimization process is employed

here to choose control parameters so that the region of attraction is maximized.

The estimate of the region of attraction is directly related to the initial angular

velocity norm and the closed-loop system is shown to be stable for a large set

of initial attitude orientations.
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Chapter 1

Introduction

1.1 Motivation

The problem of rigid body attitude dynamics and control has been

studied extensively over the last few decades, due to its significance with re-

spect to a wide range of applications, ranging from rigid aircraft and spacecraft

systems to coordinated robot manipulators [2]. For example, rigid spacecraft

applications, in particular, require highly accurate pointing maneuvers. These

performance requirements necessitate the spacecraft model to be essentially

nonlinear, so that large amplitude angle orientations are accurately stabilized.

Several results exist on feedback with attitude dynamics tackling various as-

pects of the attitude control problem. For instance, it is well known that linear

feedback of the states asymptotically stabilizes the closed-loop dynamics [2].

The problem of stabilization of attitude dynamics when feedback is

time-delayed is practically motivated and challenging to solve. The time-

delay is often unknown and at times time-varying. Time-delay can arise from

processing delays in actuator and/or sensor dynamics. For example, consider

a rigid spacecraft actuated by gas jet control system with actuators along

perpendicular axes. The thrust provided by this actuator system depends
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on electrical and mechanical delays in the valve circuits and the time for the

propellant to flow from the valve to the thruster [13]. Time-delay can also arise

in feedback due to communication delays. Analyzing effects of unknown time-

delay in feedback for a single spacecraft, which is an open problem, is also a

necessary and useful starting point for studying its impact on communication

between multiple spacecraft in a formation, an evolving area of research and

has applications such as space interferometry, synthetic aperture radar, and

on-orbit assembly.

As a result of feedback time-delay, the governing attitude dynamics does

not contain a time delay by itself, but is subjected to one in the closed-loop,

since current information of states is not available for feedback. The effect

of delay in feedback on system stability is an important problem to study

because delay is known to generally have a destabilizing effect, which if not

accounted for, leads to oscillatory behavior or even loss of stability [3]. Various

classical feedback linearization and Lyapunov based control design techniques

for nonlinear system stability cannot be employed since the feedback does not

contain current values of states. This leads to analyzing the problem from a

time delay system (TDS) framework.

1.2 Literature Review

In this section, a brief survey on development in time and frequency

domain stability analysis of time-delay systems is presented. In addition, we

consider recent progress made in stability of nonlinear time-delay systems and
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Figure 1.1: Communication delays in spacecraft [1]

stabilizing attitude dynamics with time-delayed feedback.

1.2.1 Time-delay systems: Overview

The study of time-delay systems, although starting at a similar place

as delay-free systems, continues along a different path and leads to richer and

more complex problems. Over the years, various methods have been studied

in order to represent time-delays in mathematical models. A brief description

and comparison between these modeling approaches, such as frequency do-

main or rational approximation of time delay, can be found in Reference [4].

Of these methods, the use of functional differential equations or FDEs to model

time-delay effects has proven to be popular of late, because FDEs are able to

incorporate the most general forms of delays, and are also generally computa-

tionally tractable. In the sequel, the terms “functional differential equations”

and “time-delay systems” will be used interchangeably.

The first FDEs were considered by Euler, Bernoulli, Lagrange and oth-
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ers in the 18th century in order to study various geometric problems. Starting

in the early 20th century, various practical problems in areas such as vis-

coelasticity and ship stabilization were modeled using FDEs [5]. Character-

istic equations of linear time-invariant FDEs are quasipolynomials in general.

Stability analysis through finding zeros of quasipolynomials started with Pon-

tryagin who obtained fundamental results. In the time-domain, properties

of FDE solutions have been richly researched since the 1950s, starting with

Myshkis in 1949, who for the first time formulated the initial value prob-

lem. Several classical results on solution properties of scalar FDEs with con-

stant and time varying delays have since been proposed by Yorke and others

[14, 27, 28]. Krasovskii extended Lyapunov’s second method to time-delay sys-

tems in the 1950s through the construction of so-called Lyapunov-Krasovskii

“functionals” for stability analysis, which will be explored in the forthcoming

Chapters. An approach using Lyapunov functions instead of functionals was

proposed by Razumikhin, who imposed certain restrictions on system trajecto-

ries. There are several books covering different aspects of time-delay systems

such as Myshkis [5], Bellman and Cooke [6], Hale and Lunel [7], Kharitonov

[8].

1.2.2 Stability of nonlinear time-delay systems

Stability analysis of nonlinear time-delay systems presents many more

challenges when compared to that of nonlinear systems without delay in gen-

eral. The problem difficulty depends considerably on the nature of delay
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present in the system. For instance, consider a nonlinear system where de-

lay is present, in the feedback and also in the system dynamics. Stability of a

general class of such systems has been addressed in Reference [9]. For example,

consider the system

ẋ(t) = g(x(t− τ)) + u(t− τ) (1.1)

In this case, the control can be readily employed to “get rid of the harmful

terms” by feedback linearization or backstepping. A more difficult problem

arises system where the feedback can be a function of time-delayed states

alone, and delay does not arise anywhere else in the system dynamics. For

example, consider the following system

ẋ(t) = f(x(t)) + u(t− τ) (1.2)

Feedback cannot be used to perfectly cancel out the plant dynamics in this

case. An example of such a system is rigid body attitude dynamics with feed-

back being time-delayed as will be shown in subsequent Chapters. A further

layer of difficulty is when the delay itself is unknown. Moreover, stability

analysis of systems with time-varying delay is more complicated than that of

systems with constant time-delay.

Lyapunov based stability methods, which have proven to be a popu-

lar tool for control design in nonlinear systems have been extended to TDS.

Krasovskii proposed the idea of a Lyapunov functional [10] (i.e. V (t, xt),

xt ∈ [x(t − τ), x(t)], τ > 0), also called a Lyapunov-Krasovskii (L-K) func-

tional, as opposed to a Lyapunov function V (t, x) in order to prove stability
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of certain classes of TDS. The problem of constructing a L-K functional for

any given TDS is comparatively more difficult than constructing a Lyapunov

function for its delay free counterpart, as will be shown in later sections of this

thesis. Moreover, there is no constructive method to formulate a L-K func-

tional for a particular TDS. Classical or “reduced” L-K methods cannot be

applied to systems which are unstable in the absence of delayed terms, i.e. the

delayed term is treated as a “perturbation” causing instability to the delay-free

“nominal system”. As a result, the problem of L-K functional construction in

general, has generated considerable interest in TDS research.

During the last few years, Kharitonov and Zhabko [11] proposed a con-

structive method to formulate a complete-type (i.e. completely quadratic) L-K

functional for any given TDS which was known to be exponentially stable. Fur-

ther, this complete-type L-K functional was employed for robust stability anal-

ysis for bounded perturbations to the the exponentially stable nominal system,

and estimates on how large the drift term could be were obtained. Niculescu

further elaborated this idea as a method to achieve regional stabilization, when

the perturbation could be nonlinear and bounded by a linear growth [12]. The

concept of the complete type L-K functional and its use in robustness analy-

sis extends naturally from finite dimensional linear time-invariant systems as

will be demonstrated in later chapters. In the finite-dimensional case, it is

well-known that for a system of the form ẋ = Ax + f(x), where ẋ = Ax is

exponentially stable (i.e. A is Hurwitz) and ‖f(x)‖ < γ‖x‖ for some posi-

tive γ, an estimate of the attraction region can be derived from Lyapunov’s
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second method using Lyapunov’s equation. The estimate depends directly

on γ which in turn is is a constant depending on a symmetric matrix P and

function f(x) (see, for instance, [13]). In this case, P > 0 is the solution of

the Lyapunov equation ATP + PA = −W for any chosen W > 0. Further,

γ can be maximized by choosing P and W subject to the constraint of the

Lyapunov equation. γ is maximized by choosing W to be the identity matrix

and P as the solution to the corresponding Lyapunov equation. This method

follows from using the Lyapunov function associated with the linear system

for stability analysis of the nonlinear system in a neighborhood of the origin.

An important distinction in the construction of the complete-type L-K

functional is that no assumptions are imposed on the system in the absence

of delayed terms. For example, consider the scalar integrator ẋ(t) = u(t− τ)

with delayed feedback u(t − τ) = −bx(t − τ). It is well known in litera-

ture that this scalar integrator with delayed feedback is exponentially stable

if and only if 0 < b < π/2τ [14]. Assuming that this condition is met, a

complete-type L-K functional can be constructed for this system and used

for robustness analysis, when a drift term f(x(t), x(t − τ)) present as in

ẋ(t) = f(x(t), x(t − τ)) − bx(t − τ) with 0 < b < π/2τ [12]. The com-

plete type L-K functional has since been applied to a biological problem [15].

However, the estimate on the region of attraction obtained was found to be

somewhat conservative [15]. Further, the analysis has been extended to con-

struct a complete type L-K functional which had a cross term in the time

derivative [16]. This generalization reduced the conservatism of the estimate.
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A notable requirement for this technique in calculating an estimate for the

region of attraction of the given system is precise knowledge of the time-

delay, which can be restrictive. The analysis in Reference [12] extended the

complete type Lyapunov-Krasovskii technique for stability analysis of systems

with time-varying delay. The technique treats the terms with time-varying

delay as perturbations and employs a “model transformation” method [21, 22]

in order to transform the system with a time-varying delay into a system with

a constant time-delay with a perturbation which includes the time-varying de-

lay term. As a result of this transformation, certain additional dynamics are

introduced, due to which stability of the transformed system implies stability

of the actual system, with the converse not necessarily being true. As a result,

the stability result obtained is additionally conservative [12]. The technique,

in the time-varying delay case also, relies on precise knowledge of the time-

delay. Moreover, the sufficient conditions obtained are quite difficult to satisfy

because they are not constructive. In certain cases, it has been found that as

the magnitude and rate of the time-varying delay become sufficiently large,

the sufficient conditions cannot be satisfied.

1.2.3 Attitude Dynamics with time-delay in feedback

Recently, Reference [3] has proposed a velocity-independent time-delay

controller for regulating the attitude orientation of a rigid body. Rodrigues Pa-

rameters (RPs) are employed to represent the attitude orientation. The control

design involves filter construction to avoid velocity measurement. Sufficient
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conditions for exponential stability of the system inside a region of attraction,

whose estimate is calculated, and a measure to evaluate the system rate of

convergence of the system to a desired setpoint, are presented. However, the

control design requires the delay to be known precisely, which is a restrictive

condition. Moreover, the estimate of the region of attraction was found to

be quite conservative, especially in terms of initial attitude orientations. Our

work will relax the restriction requiring precise knowledge of time-delay and

also obtain improved estimates of the region of attraction by making novel

modifications in the complete type L-K approach.

1.3 Contributions of this Thesis

This thesis considers the problem of stabilizing attitude dynamics with

an unknown delay in the feedback. Two cases are considered: 1) constant

time-delay 2) time-varying time-delay. Strict upper bounds on the unknown

constant delay are assumed to be known. The time-varying delay is assumed

to be made off the constant unknown delay with a time-varying perturbation.

Upper bounds on the magnitude and rate of the time-varying part of the

delay are assumed to be known. Modified Rodrigues Parameters (MRPs) are

employed to represent the attitude orientation. The control input is linear in

the delayed states, i.e. MRPs and angular velocities. The following points

enumerate the contributions made by this work.

1. A novel modification to the concept of the complete type Lyapunov-

Krasovskii (L-K) functional technique for stability analysis of a class
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of nonlinear time-delay systems is presented. This modification enables

stability robustness to time-delay in the control design i.e. stability holds

for all values of time-delay less than the known upper bound.

2. Robust stability analysis with the complete type L-K functional provides

sufficient conditions in terms of an estimate for the region of attraction of

the nonlinear time-delay system. The estimate of the region of attraction

is robust to time-delay.

3. In order to employ the modified theory of complete type L-K functional

for robust stability analysis of the attitude problem, the governing dy-

namics is separated into the form of a nominal dynamics, which is ex-

ponentially stable, and a perturbation or drift term as in the case of

finite-dimensional systems. The novel separation results in the nominal

system being in the form of 3 blocks of double integrators with delayed

linear feedback. After finding the range of control gain values for which

the nominal (linear) system is exponentially stable by using frequency

domain analysis, a complete type L-K functional is constructed.

4. The perturbation term obtained is such that it is a function of the current

value of the states alone, which allows specializations to be made in the

complete type L-K functional construction. As a result, the extent of

conservatism in the region of attraction estimate obtained is reduced.

5. As an intermediate step, an analytical solution for the Lyapunov matrix

is obtained by using Kronecker algebra [17] for the governing matrix dif-

10



ferential equations and associated boundary conditions. Previous to this

development, a piecewise linear approximation of the Lyapunov matrix

was employed by some authors.

6. Departing from previous approaches, where parameter values are arbi-

trarily chosen to satisfy the sufficient conditions, numerical optimization

is employed in order to choose parameters such that the region of at-

traction is maximized. The initial angular velocity norm is found to be

directly related to the size of the estimate of the region of attraction

and the closed-loop system is stable for a large set of initial attitude

orientations.

7. The complete type L-K functional approach is extended to the corre-

sponding class of nonlinear systems with unknown time-varying delay.

A model transformation is employed to partition the system into a nom-

inal time-invariant time-delay system with a time-varying perturbation.

Sufficient conditions on regional stabilization are obtained.

8. Limiting cases arising from the sufficient conditions are studied, along

with additional conservatism present in the conditions and comparison

is made with corresponding results from the constant delay case.

These are to our best knowledge the first results that provide asymp-

totically stable closed-loop control designs for the attitude dynamics problem

with an unknown delay in feedback.
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The rest of the thesis is organized as follows: Chapter 2 offers mathe-

matical preliminaries dealing with time-delay systems, problem statement for

attitude dynamics stabilization with unknown delay in feedback and a motivat-

ing example for study of effect of delay on stability. Chapter!2 also provides a

brief introduction to the Lyapunov-Krasovskii approach, a motivating example

as well as certain limitations. Further, the development of a modified complete

type L-K functional for a class of nonlinear systems with unknown constant

delay as well as unknown time-varying delay is presented in Chapter 3. Chap-

ters 4 and 5 present application of the complete type L-K technique to the

attitude stabilization problem with constant and time-varying delay respec-

tively along with simulation results, whereas the summary and discussion are

presented in Chapter 6.
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Chapter 2

Background

In this chapter, we provide some necessary background on study of

time-delay systems, such as mathematical preliminaries and stability analysis

with some illustrative examples. We also explain the problem statement of

this thesis and provide notation, which will be followed through the remainder

of this report.

2.1 Preliminaries

In this section, we introduce some mathematical preliminaries for a

prototypical retarded time-delay system. Throughout the remainder of this

work, we will employ the use of time-delay systems (TDS) interchangeably

with functional differential equations of the retarded type or retarded func-

tional differential equations (RFDEs). For this work, we consider differential

equations with a single delay value, i.e., of the form,

ẋ(t) = g(x(t), x(t− τ(t))) (2.1)

where x(t) ∈ R
n and τ(t) ∈ R+ denotes the delay and is assumed to be a

bounded continuous function ∀ t. For our problem τ(t) = τ0 + η(t). Equa-

tion 2.1 requires an initial condition for propagation. The initial condition for

13



an ordinary differential equation (ODE) is a point, i.e. x(t0) = x0, taken at

initial time t = t0. However, the initial condition for a functional differential

equation is a trajectory in general since the derivative of the state variable x(t)

depends on t and x(ζ) for t − τ(t) ≤ ζ ≤ t [7]. For Equation 2.1, the initial

condition can be written as

x(t) = φ(t), t ∈ Υ (2.2)

where Υ is given by

Υ = {t ∈ R : − 2τ0 ≤ t ≤ 0} (2.3)

where Equation 2.3 represents a class of trajectories with argument t ≤ 0 since

the time-delay τ(t) is required to have the construction τ0 = supt |η(t)|, where

t ∈ R. For the special case of a constant delay, i.e. τ(t) = τ0 ≥ 0, Equation 2.3

reduces to

Υ = {t ∈ R : t = θ, − τ0 ≤ θ ≤ 0} (2.4)

Referring back to Equation 2.1, g(u, v) represents a Lipschitz function in some

neighborhood of the origin, where u, v ∈ R
n and

lim
‖(u,v)‖→0

‖g(u, v)‖
‖(u, v)‖ = 0 (2.5)

From Equation 2.5, it follows that g(0, 0) = 0. In order to define a particular

solution x(t, φ) of Equation 2.1, an initial condition trajectory φ(t), t ∈ Υ,

should be given. We assume that φ belongs to the space of continuous vector

14



functions C mapping Υ to R
n. We assign a uniform vector norm ‖φ‖c to the

space C

‖φ‖c = sup
θ∈Υ

‖φ(θ)‖ (2.6)

Additionally, we denote by xt(φ) = x(t+ θ, φ), θ ∈ Υ, the propagation of the

solution x(t, φ) on Υ. Throughout this work, we employ the Euclidean norm

for vectors i.e. ‖.‖ = ‖.‖2. For any square matrix A, we employ the induced

matrix 2-norm i.e. ‖A‖ =
√
λmax (ATA), wherein we denote the maximum and

minimum eigenvalues of any symmetric matrix M by λmax(M) and λmin(M)

respectively.

We introduce stability definitions for time-delay systems of the class

represented by Equation 2.1 [7]. The definitions mirror those of finite-dimensional

systems in general.

Definition 1. The trivial solution x(t, φ) = 0 (or x(t) = 0 for simplicity) of

(2.1) is stable if for any ε > 0, there exists a δ = δ(ε) > 0 such that ‖φ‖c ≤ δ

implies ‖x(t, φ)‖ ≤ ε for all t ≥ 0.

Definition 2. The trivial solution x(t) = 0 of Equation 2.1 is asymptotically

stable if it is stable and there exists a δa > 0 such that ‖φ‖c ≤ δa implies

x(t, φ) → 0 as t→ ∞

Definition 3. The trivial solution x(t) = 0 of Equation 2.1 is exponentially

stable if there exist constants δe > 0, µ ≥ 1, α > 0 such that ‖φ‖c ≤ δe implies

‖x(t, φ)‖ ≤ µ‖φ‖ce
−αt for all t ≥ 0.
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2.2 Problem Statement

The problem considered in this work is that of stabilizing attitude dy-

namics of a rigid body with an unknown delay in feedback. We employ Modi-

fied Rodrigues Parameters (MRPs) in order to represent the attitude orienta-

tion of the rigid body. The system dynamics can be expressed as

σ̇(t) =
1

4
B (σ(t))ω(t) (2.7)

Jω̇(t) = −ω(t)×Jω(t) + u(t− τ(t)) (2.8)

where σ(t) ∈ R
3 is the MRP vector, J = JT ∈ R

3×3 is the positive definite

mass inertia matrix and B(σ) is defined as

B(σ) =
[(

1 − σTσ
)
I3 + 2σ× + 2σσT

]
(2.9)

where the skew symmetric matrix ω(t)× for any ω(t) = [ ω1(t) ; ω2(t) ; ω3(t) ]T

is defined as

ω(t)× =




0 −ω3(t) ω1(t)
ω3(t) 0 −ω2(t)
−ω1(t) ω2(t) 0


 (2.10)

The MRP vector has the physical interpretation of being

σ = ê tan(Φ/4) (2.11)

where ê is the three-dimensional unit vector along the principal rotation axis

and Φ is the principal rotation angle. The MRP vector σ(t) is nonsingular

for all rotations up to 360◦, i.e., −π < Φ < π [18, 30]. If σ(t) → 0, then the

orientation has returned back to the origin. It is shown in Reference [18] that
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the singularity at 360◦ can be avoided by mapping the original MRP vector

to its corresponding shadow counterpart σs through

σs = −(1/σ2)σ (2.12)

where σ2 = σTσ. By choosing to switch the MRPs whenever σ2 = 1, the MRP

vector remains bounded within the unit sphere in three dimensions. However,

switching of the MRPs leads to discontinuous kinematics as in Equation 2.7,

thereby complicating the discussion on existence and uniqueness of solutions.

In the problem under consideration, we currently restrict the MRP vector to

all rotations represented by σ2 < 1 to avoid switching.

We consider two cases: 1) The time-delay τ(t) is an unknown constant

τ with 0 ≤ τ < τmax with τmax being known. This problem is addressed in

Chapter 4. 2) The time-delay τ(t) is an unknown time-varying function with

the structure τ(t) = τ0 + η(t). This problem is addressed in Chapter 5. Initial

condition trajectories for Equations 2.7-2.8 are generated by propagating the

same dynamics without control action over the time-interval −τ ≤ t ≤ 0. Ini-

tial conditions σ0 ∈ R
3, ω0 ∈ R

3 are chosen to initialize this propagation such

that they lie within the region of attraction (to be established in the sequel)

and moreover, so that state trajectories do not escape from this estimate for

the region of attraction during the initial control-free propagation phase. This

propagation method for the constant delay case (τ(t) = τ) is depicted in Fig-

ure 2.1. It is assumed that delayed state measurements alone are available

for feedback purposes. Equation 2.8 shows that the feedback contains state
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Figure 2.1: Initial condition interval

information at time instant t−τ(t), where τ(t) is the time delay present in the

feedback and is assumed to be unknown. We assume perfect knowledge of τmax,

which is a strict upper bound on the feedback time-delay. In the absence of

delay (i.e. with τ(t) = 0) , it is well documented that linear feedback of states

u(t) = −K1σ(t) − K2ω(t), with K1 and K2 being arbitrary positive definite

matrices, stabilizes the dynamics in Equations 2.7-2.8 [18]. However, if delay

is present and not accounted for in the input, the result is increased closed

loop oscillations and even instability [3]. This behavior will be documented in

Chapter 4 for the constant delay case and in Chapter 5 for the time-varying

delay case. The control objective is to achieve stabilization of the states, i.e.

to ensure that σ(t) → 0 and ω(t) → 0 in the presence of unknown constant

and time-varying delay in feedback through a complete type L-K approach.
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Figure 2.2: Block diagram: Delay in feedback

2.3 Stability Analysis

Ordinary differential equations of the form

ẋ(t) = g(t, x(t)) (2.13)

are the conventional model description for finite-dimensional dynamical sys-

tems. However, a fundamental and limiting presumption ascribed to systems

modeled by Equation 2.13 is that the future evolution of the system is described

completely by the current value of the state variables x(t) ∈ R
n. In practice,

many dynamical systems cannot be modeled satisfactorily by an ODE, the

reason being that future evolution of the state variable depends not only on

their present values but also on their past values. This aftereffect is an ap-

plied problem in general. Reference [5] is an excellent resource for numerous

examples of aftereffect or lag appearing in systems in the fields of biology,

chemistry, economics, mechanics, viscoelasticity, physics, physiology as well

as population dynamics. From the point of view of implementing a feedback

control system, lag is introduced from actuator and sensor processes, which
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require a finite amount of time to complete their functions (process delay). In

addition, interconnected or field networks in feedback often introduce such de-

lays (communication or transmission delay). Therefore, it is of importance to

understand the sensitivity of the control system with the introduction of small

delays in the feedback. For some systems, small delays lead to destabilization,

while other systems are robust with respect to small delays.

As a motivating example, consider the following scalar linear time-

invariant time-delay system

ẋ(t) = −ax(t) − bx(t− τ(t)) (2.14)

with a specified initial condition x(t) = φ(t), where a > 0. It is common

knowledge that Equation 2.14 is exponentially stable for any a + b > 0 in

the absence of delay i.e. τ(t) = 0. If the delay is a constant, i.e. τ(t) = τ0,

it is of interest to investigate the maximum delay τmax such that stability

is maintained ∀ τ ∈ [0, τmax). For the case of constant delay, the stability

condition is obtained by using frequency sweeping analysis.

The characteristic equation for Equation 2.14 with constant delay, which

turns out to be in the form a quasipolynomial is

s+ a + be−τ0s = 0 (2.15)

The system is exponentially stable if and only if the roots of the characteristic

equation have negative real parts [7]. It is known that τmax is the minimum

delay for which the characteristic function becomes singular for certain s = jω
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[19]. The boundary of the stability region in terms of parameters a, b and the

maximum delay τmax can be found by substituting s = jω in the characteristic

equation and then separating out the real and imaginary terms, which leads

to

a = −b cos(ωτmax) (2.16)

ω = b sin(ωτmax) (2.17)

Eliminating ω leads to the following necessary and sufficient condition for τmax

in terms of a and b if a < b

τmax =
cos−1(|a|/b)√

b2 − a2
(2.18)

If a > |b|, the system is exponentially stable for all delay values since the

characteristic equation does not have imaginary roots for any τmax. This mo-

tivating example is an important illustration of the frequency sweeping method

[8], which will be extensively used for analyzing the stability characteristics of

the nominal system in the attitude dynamics application.

2.3.1 Lyapunov-Krasovskii method

As in the study of systems without delay, a popular method for de-

termining the stability of a time-delay system, especially one that contains

nonlinear terms, is Lyapunov’s second method. For systems without delay,

this requires construction of a Lyapunov function V (t, x(t)), which in some

sense is a potential measure quantifying the deviation of the state x(t) from 0.

Since, for a delay free system, x(t) is needed to determine the system’s future
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evolution beyond t, and since, for a time delay system, the “state” required

for the same purpose at time t is the value of x(t) in the interval [t − τ, t]

or xt, it is natural to expect that for a time delay system, the corresponding

Lyapunov function be a Lyapunov functional, i.e. V (t, xt) as proposed first

by Krasovskii [10], depending on xt, which should measure the deviation of xt

from 0. Such a functional is called a Lyapunov-Krasovskii (L-K) functional.

Consider the following generic time-delay system

ẋ(t) = f(t, xt) (2.19)

where x(t) ∈ R
n, xt = x(t+ θ), −τ ≤ θ ≤ 0. The following result is known as

the Lyapunov-Krasovskii theorem [19].

Theorem 2.3.1. The zero solution of the retarded system ẋ(t) = f(t, xt)

(Equation 2.19) is asymptotically stable if there exists a continuous functional

V (t, φ) for any φ mapping Υ to R
n, which is positive-definite, decreasing,

admitting an infinitesimal upper limit (∃ u(x), v(x): R
n → R

+, positive-

definite, u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖c)) and whose full derivative V (t, xt)

along the trajectories of x(t) is negative definite over a neighborhood of the

origin.

2.3.2 Motivating example

There are limitations in applying the Lyapunov-Krasovskii theorem for

stability analysis of a particular time-delay system. The main problem is that

there is no constructive method to formulate such a functional for a given
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system. A common practice is to employ “reduced” or “simple” functionals.

To illustrate this method, consider again the following scalar time-delay system

from Equation 2.14,

ẋ(t) = −ax(t) − bx(t− τ) (2.20)

where a > 0 and b are constants and the delay τ is a positive constant. This

system is exponentially stable in the absence of the delayed term bx(t − τ).

We choose the Lyapunov functional V (t, xt) to be

V (t, xt) =
1

2
x2(t) + µ

∫ t

t−τ

x2(θ)dθ (2.21)

where µ is any positive constant. Differentiating with respect to t

V̇ (t, xt) = −ax2(t) − bx(t)x(t − τ) + µx2(t) − µx2(t− τ)

= − [ x(t) x(t− τ) ]M

[
x(t)

x(t− τ)

]
(2.22)

with M
.
=

[
a− µ b

2
b
2

µ

]
(2.23)

The matrix M is positive definite if and only if a > µ and 4(a−µ)µ > b2. The

choice of µ that maximizes b is µ = a
2
. This gives the (sufficient) condition that

if |b| < a then the trivial solution x(t) = 0 is uniformly asymptotically stable,

which is conservative when compared to the necessary and sufficient conditions

obtained from the characteristic equation from Equation 2.18. Note that this

condition does not depend on the value of the delay. Lyapunov stability anal-

ysis treats the delayed term bx(t − τ) as a perturbation and obtains stability
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conditions by dominating it. This approach leads to conservatism in the sta-

bility conditions that the parameters must satisfy. Comparison between the

frequency approach and the Lyapunov-Krasovskii functional approach shows

the inherent conservatism arising from the latter. Moreover, if the system is

not stable in the absence of a delayed term (say, a = 0), there is no constructive

method to formulate a “reduced” (as in not complete) Lyapunov functional for

the system. Moreover, there is an inherent assumption that the system with-

out the delayed term is “more stable” than the time delay system since the

delayed term is considered to be an unstable perturbation. The L-K method

applied here requires that a > |b| in order to achieve stability and hence does

not address the case where a < b, which the frequency method does as seen

in Equation 2.18. These limitations have resulted in great interest in a con-

structive method to formulate a more completely quadratic functional rather

than a “reduced” Lyapunov-Krasovskii functional for stability analysis of a

prescribed time-delay system.
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Chapter 3

Complete type Lyapunov-Krasovskii

Functional approach

It is well known and it has been shown in Chapter 2 that there is con-

siderable difficulty in constructing a L-K functional for stability analysis of

any given system [8]. In order to circumvent this obstacle, Kharitonov and his

co-workers formulated a completely quadratic L-K functional for any linear

time-delay system which was known to be exponentially stable [11]. The same

functional was further adopted for robust stability analysis due to nonlinear

perturbations, based on the nature of perturbation term present, regional sta-

bilization conditions were obtained [12]. The complete type L-K technique

can be viewed as an extension of robustness analysis using the so-called “Lya-

punov equation” for delay-free systems. However, a major hypothesis here is

that the actual time-delay is assumed to be exactly determined, which can

be a restrictive condition. In the following development, we modify the L-K

functional concept in order to include robustness to time-delay as well, while

still preserving the original features of the complete type L-K approach. Two

cases are considered for the delay: 1) Constant unknown delay and 2) Time-

varying unknown delay. Sufficient conditions in each case enable us to obtain

an estimate for the region of attraction for a class of nonlinear time-delay
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systems.

3.1 Nonlinear systems with constant time-delay

In this section, we develop a modified complete type L-K functional

for robust stability analysis of a class of nonlinear time-delay systems with

unknown constant delay. We consider the following class of nonlinear time-

delay systems

ẋ(t) = A0x(t) + A1x(t− τ) + f(x(t), x(t− τ)) (3.1)

where τ is a positive unknown constant such that 0 ≤ τ < τmax where τmax is

perfectly known. The nonlinear system is partitioned to formulate a nominal

linear system

ẋ(t) = A0x(t) + A1x(t− τ) (3.2)

with a nonlinear perturbation f(x(t), x(t−τ)). The term A1x(t−τ) represents

the contribution of delayed linear state feedback. Having ensured exponential

stability of the nominal system, we construct a modified complete type L-K

functional and employ it for robust stability analysis in order to obtain a region

of attraction estimate.

3.1.1 Nominal system formulation

Consider the linear time-invariant time-delay system represented by

Equation 3.2. For any given τmax > 0 such that τ ∈ [ 0, τmax ), assume that
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A0 and A1 are such that Equation 3.2 is exponentially stable. This means that

∃ µ > 0 and α > 0 such that

‖x(t)‖ ≤ µ‖ϕ‖e−αt (3.3)

where ϕ(θ), −τ ≤ θ ≤ 0 is the initial condition required for the time delay

system. In order to construct a complete-type L-K functional, we start with

the observation that given any symmetric positive-definite matrices W0, W1,

W2, it follows from employing the Leibnitz rule with substituting ζ = t + θ

that

d

dt

(∫ 0

−τ

xT(t+ θ) [W1 + (τmax + θ)W2] x(t+ θ)dθ

)
= xT(t)(W1 + τmaxW2)x(t)

−xT(t− τ)W̃1x(t− τ) −
∫ 0

−τ

xT(t+ θ)W2x(t+ θ)dθ (3.4)

where W̃1
.
= W1 + (τmax − τ)W2. So, if there exists a functional V0(t, xt) such

that ∀ t ≥ 0

d

dt
V0(t, xt) = −w0(t, xt) = −xT(t) (W0 +W1 + τmaxW2)x(t) (3.5)

then the first time derivative of the functional

V (t, xt) = V0(t, xt) +

∫ 0

−τ

xT(t+ θ) [W0 +W1 + (τmax + θ)W2]x(t+ θ)dθ(3.6)

is given by

d

dt
V (t, xt) = −xT(t)W0x(t) − xT(t− τ)W̃1x(t− τ)

−
∫ 0

−τ

xT(t+ θ)W2x(t+ θ)dθ (3.7)
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If Equation 3.2 is exponentially stable, ∃ V0(t, xt) such that

V0(t, xt) =

∫ ∞

0

xT(t) (W0 +W1 + τmaxW2) x(t)dt (3.8)

V (t, xt) is called the complete type L-K functional associated with Equation 3.2

and is of the form

V (t, xt) = xT(t)U(0)x(t) + 2xT(t)

∫ 0

−τ

U(−τ − θ)A1x(t+ θ)dθ +

∫ 0

−τ

∫ 0

−τ

x(t+ θ1)A
T
1U(θ1 − θ2)A1x(t+ θ2)dθ1dθ2 +

∫ 0

−τ

xT(t+ θ)(W1 + (τmax + θ)W2)x(t+ θ)dθ (3.9)

where U(θ) is called the Lyapunov matrix [11] and is defined as

U(θ) =

∫ ∞

0

KT(t)W̃K(t+ θ)dt (3.10)

where W̃ = W0 + W1 + τmaxW2 and K(t) is the unique matrix function that

satisfies

K̇(t) = A0K(t) + A1K(t− τ) (3.11)

K(θ) = 0, θ < 0 ; K(0) = I

The Lyapunov matrix is well defined because K(t) vanishes for t < 0 and

approaches zero exponentially as t → ∞, since the nominal system is expo-

nentially stable. The complete type L-K functional from Equation 3.9 can be

recovered from Equations 3.6, 3.8 and 3.10 and using the so-called Cauchy

formula for the nominal state vector x(t) [6]

x(t, φ) = K(t)φ(0) +

∫ 0

−τ

K(t− τ − θ)A1φ(θ)dθ, for t ≥ 0 (3.12)
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The Lyapunov matrix U(θ) satisfies the second order matrix differential equa-

tion

U ′′(θ) = U ′(θ)A0 − AT
0U

′(θ) + AT
0U(θ)A0 −AT

1 U(θ)A1 (3.13)

subjected the mixed boundary conditions

U ′(0) + [U ′(0)]
T

= −W̃ (3.14)

U ′(0) = U(0)A0 + UT(τ)A1 (3.15)

Also, from Reference [8], it follows from Equation 3.10 and using the fact that

W̃ is symmetric, we can write

UT(τ) =

∫ ∞

0

KT(t+ τ)W̃K(t)dt

=

∫ ∞

τ

KT(ζ)W̃K(ζ − τ)dζ

=

∫ ∞

0

KT(ζ)W̃K(ζ − τ)dζ (3.16)

where we have used the fact that K(ζ − τ) vanishes when 0 ≤ ζ ≤ τ . This

leads to the useful observation that the Lyapunov matrix U(θ) is symmetric

at θ = 0 and specifically [8]

U(θ) = UT(−θ) (3.17)

Equation 3.13 together with boundary conditions from Equations 3.14-3.15

and the symmetry property from Equation 3.17 will be employed in the Sec-

tion 4.2 in order to find an analytical solution for the Lyapunov matrix asso-

ciated with the nominal system chosen to represent the attitude dynamics.
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3.1.2 Robustness analysis

The complete type L-K functional formulated in Equation 3.9 is em-

ployed to calculate an estimate for the region of attraction for the nonlinear

time-delay system

ẋ(t) = A0x(t) + A1x(t− τ) + f(x(t), x(t− τ)) (3.18)

where f(x(t), x(t − τ)) satisfies a Lipschitz condition in a certain vicinity of

the origin

‖f(x(t), x(t− τ))‖ < γ‖x(t), x(t− τ)‖ (3.19)

where γ is a positive constant. In addition the drift term satisfies

lim
‖x,y‖→0

‖f(x, y)‖
‖x, y‖ = 0 (3.20)

The following theorem extends results from Reference [12] in order to include

robustness to unknown time-delay.

Theorem 3.1.1. : For any given τmax > 0, let the nominal system (Equa-

tion 3.2) be exponentially stable for all τ ∈ [0, τmax). Then the nonlinear per-

turbed system (see Equation 3.18) is asymptotically stable for all τ ∈ [0, τmax)

if the drift term f(x(t), x(t−τ)) obeys the Lipschitz condition in Equation 3.19

where

0 < γ < min

{
λmin(W0)

u0(2 + ‖A1‖τmax )
,

λmin(W1)

u0(1 + ‖A1‖τmax )
,
λmin(W2)

u0‖A1‖

}
(3.21)

for any selection of n×n symmetric positive definite matrices W0, W1 and W2

and u0 = supθ∈[0, τmax] ‖U(θ)‖.
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Proof. The derivative of Equation 3.9 along the trajectories of the nonlinear

system (3.18) is

d

dt
V (t, xt) = −w(t, xt) + 2fT((x(t), x(t− τ))

(
U(0)x(t)

−
∫ 0

−τ

U(−τ − θ)A1x(t+ θ)dθ

)

where −w(t, xt) is the derivative of the functional along the trajectories of the

nominal system Equation 3.2. From the Lipschitz condition, we have

‖f(x(t), x(t− τ))‖ < γ‖x(t), x(t− τ)‖

It is easy to see that the following inequality holds

‖U(0)x(t) −
∫ 0

−τ

U(−τ − θ)A1x(t+ θ)dθ‖

≤ u0

(
‖x(t)‖ + ‖A1‖

∫ 0

−τ

‖x(t+ θ)‖dθ
)

(3.22)

It then follows that

2fT((x(t), x(t− τ))

(
U(0)x(t) −

∫ 0

−τ

U(−τ − θ)A1x(t+ θ)dθ

)

≤ γu0

[
(2 + ‖A1‖τmax) ‖x(t)‖2 + (1 + ‖A1‖τmax) ‖x(t− τ)‖2

+‖A1‖
∫ 0

−τ

‖x(t+ θ)‖2dθ
]

Considering this inequality is the first time derivative of the complete type

L-K functional V (xt), we arrive at the following inequality

d

dt
V (t, xt) ≤ −

[
λmin(W0) − γu0 (2 + ‖A1‖τmax)

]
‖x(t)‖2

−
[
λmin(W1) − γu0 (1 + ‖A1‖τmax)

]
‖x(t− τ)‖2

−
[
λmin(W2) − γu0‖A1‖

] ∫ 0

−τ

‖x(t+ θ)‖2dθ (3.23)
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If γ satisfies Equation 3.25, then V̇ (t, xt) is negative definite for all trajecto-

ries inside the set determined by Equation 3.19, and consequently, the trivial

solution x(t) = 0 of the nonlinear system in Equation 3.18 is asymptotically

stable for all τ ∈ [0, τmax).

The result for estimate of region of attraction can be specialized if the

drift term is a function of the current value of the state alone i.e. f(x(t), x(t−

τ)) = f(x(t)). Consequently, the conservatism is potentially reduced.

Remark 3.1.1. In the main theorem, we require that the matrices Wj, j =

0, 1, 2 be symmetric positive definite. However, the matrices can be positive

semi-definite, if the corresponding term to be dominated from the perturbation

term is absent, i.e. if the perturbation is a function of the current value of the

state alone then, W1 can be made zero. For example, the case of W1 = W2

being zero was investigated by Reference [20]. Reference [11] proposed the

case of Wj being positive definite in order to achieve robust stability. In our

formulation for the attitude dynamics problem, the perturbation turns out to

be a function of the current value of the state alone (see Chapter 4), which

permits specializations in order to reduce conservatism in region of attraction

estimate.

Corollary 3.1.2. Let the nominal system in Equation 3.2 be exponential stable

for all τ ∈ [0, τmax). Then the nonlinear system in Equation 3.18 is asymp-

totically stable for all τ ∈ [0, τmax) if the drift term f(x(t)) obeys the Lipschitz
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condition

‖f(x(t))‖ < γ‖x(t)‖ (3.24)

where

0 < γ < min

{
λmin(W0)

u0(2 + ‖A1‖τmax )
,
λmin(W2)

u0‖A1‖

}
(3.25)

and u0 = supθ∈[0, τmax] ‖U(θ)‖.

Remark 3.1.2. Due to the modifications made in the construction of the com-

plete type L-K functional from Equation 3.9 as well as the accompanying

robustness analysis with its time-derivative along with the Lyapunov matrix

evaluation, calculating the size of the estimate of region of attraction γ re-

quires knowledge of a strict upper bound τmax of the time-delay rather than

its precise value τ . The actual delay τ is however present in the complete type

L-K functional, which is employed for analysis purposes alone.

Remark 3.1.3. In the finite-dimensional case, (see Chapter 1), we can calculate

an estimate of a region for a corresponding finite-dimensional nonlinear system

by robustness analysis using the Lyapunov equation. In this case, the size

of the estimate can be maximized through choice of parameters subject to

the Lyapunov equation being satisfied. In the time-delay case, it is not so

straightforward to maximize the size of the estimate γ mainly due to increase

in number of parameters and the accompanying constraints. However, it is

possible to employ numerical optimization in a computing software such as

MATLAB in order to maximize γ. This optimization will be performed after

application to the attitude stabilization problem in the following Chapter.
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3.2 Nonlinear systems with time-varying time-delay

In this section, we extend the concept of the complete type L-K func-

tional for stability robustness with respect to unknown time-varying delay in

the system dynamics. This work extends results obtained with respect to

unknown constant delay in feedback. In order to simplify some of the accom-

panying algebra, we choose the generic nonlinear perturbation to be a function

of the current value of the state alone. As seen in Chapter 4, this simplification

will not restrict application to the attitude stabilization problem.

3.2.1 Nominal system

To begin with complete type L-K functional analysis, we consider the

following generic nonlinear time-delay system

ẋ(t) = A0x(t) + A1x(t− τ(t)) + f(x(t)) (3.26)

where x ∈ R
n is the state vector, A0, A1 ∈ R

n×n are suitably chosen matrices

and f(x(t)) is a nonlinear function which satisfies the aforementioned Lipschitz

condition. The delay τ(t) = τ0 + η(t) is the unknown and time varying which

is assumed to be differentiable everywhere. We assume perfect knowledge of

upper-bounds on the magnitude and rate of η(t), as well as strict upper-bound

on τ(t) i.e

|η(t)| ≤ η0, |η̇(t)| ≤ η1 < 1, 0 ≤ τ(t) < τmax (3.27)

where η0, τmax, η1 are known positive constants. In addition, the delay satisfies

the condition τ0 = supt |η(t)|. Equation 3.27 shows that the time variable is
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scaled without loss of generality so that the rate of change of the time-varying

part of the delay is normalized to be strictly less than unity. The initial

condition trajectory required to propagate the time-delay system represented

by Equation 3.26 is given by

x(t) = φ(t), t ∈ [−2τ0, 0] (3.28)

We choose the nominal system to be the same as the case with constant un-

known delay in feedback from Section 3.1 and to be described by

ẋ(t) = A0x(t) + A1x(t− τ0) (3.29)

We partition the nonlinear time-delay system from Equation 3.26 into the

nominal system from Equation 3.29 with a perturbation term. In order to

accomplish this step, we use a model-transformation [21, 22] in addition to as-

suming stability of the nominal system. Model transformation essentially in-

volves using the Newton-Leibnitz formula in order to replace the time-varying

delay term x(t− τ(t)) for t ≥ 2τ0 as

x(t− τ(t)) = x(t− τ0) −
∫ −τ0

−τ(t)

ẋ(t+ θ)dθ (3.30)

Substituting for ẋ(t+ θ) from Equation 3.26 in the above equation,

x(t− τ(t)) = x(t− τ0) −
∫ −τ0

−τ(t)

[
A0x(t+ θ) + A1x(t+ θ − τ(t+ θ))

+ f(x(t+ θ))
]
dθ (3.31)

Using Equation 3.31, we can write Equation 3.26 as

ẋ(t) = A0x(t) + A1x(t− τ0) + A1z(t) + f(x(t)) (3.32)

x(t) = ψ(t), t ∈ [−2τ0, 2τ0]
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where ψ(t) is given by

ψ(t) = φ(t), t ∈ [−2τ0, 0] ,

= x(t, φ), t ∈ [0, 2τ0]

and

z(t) = −
∫ −τ0

−τ(t)

[
A0x(t+ θ) + A1x(t+ θ − τ(t+ θ)) + f(x(t+ θ))

]
dθ (3.33)

Clearly, every solution of Equation 3.32 is a solution of Equation 3.26, and

therefore stability of Equation 3.32 implies stability of Equation 3.29. How-

ever, the process of model transformation thus used introduces conservatism

in the stability analysis. This conservatism is well documented and can be

found in detail in References [21] and [22].

Now, we construct a complete type L-K functional associated with

Equation 3.29 for the stability of Equation 3.26. For any symmetric positive-

definite matrices Wj, j = 0, 1, 2, consider the functional

w(t, x̃t) = xT(t)W0x(t) + xT(t− τ0)W̃1x(t− τ0)

+

∫ 0

−4τ0

xT(t+ θ)W0x(t+ θ)dθ (3.34)

where x̃t = x(t+ θ), θ ∈ [−τ0, 0] is arbitrary and W̃1
.
= W1 + (2τmax − τ0)W2.

If system Equation 3.29 is exponentially stable, then there exists a unique

quadratic functional V (x̃t), such that

dV (t, x̃t)

dt
= −w(t, xt) (3.35)
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where x̃t = x(t + θ), θ ∈ [−2τ0, 0], and xt = x(t + θ), θ ∈ [−4τ0, 0]. V (t, x̃t)

is the complete type L-K functional associated with the nominal system in

Equation 3.29. The functional is of the form

V (t, x̃t) = xT(t)U(0)x(t) − 2xT(t)

∫ 0

−τ0

U(−τ0 − θ)A1x(t+ θ)dθ

+

∫ 0

−τ0

∫ 0

−τ0

xT(t+ θ1)A
T
1 U(θ1 − θ2)A1x

T(t+ θ2)dθ1dθ2

+

∫ 0

−τ0

xT(t+ θ)(W1 + (2τmax + θ)W2)x(t+ θ)dθ (3.36)

where the matrix U(θ) from Equation 3.10 is defined for W̃ = W0 + W1 +

2τmaxW2, satisfies the second order matrix differential equation from Equa-

tion 3.13 and additional conditions Equation 3.14-3.17.

3.2.2 Robustness Analysis

The following theorem extends the results of Reference [12] in order to

include robustness to unknown time-varying time-delay.

Theorem 3.2.1. : Let the nominal system represented by Equation 3.29 be

exponential stable. Then the nonlinear system (see Equation 3.26) is asymp-

totically stable ∀ τ(t) ∈ [0, τmax), |η(t)| ≤ η0, |η̇(t)| ≤ η1 and for any selection

of n × n symmetric positive definite matrices W0 and W2 if the drift term
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f(x(t)) obeys the Lipschitz condition (see Equation 3.24) where

0 < γ < min

{
λmin(W0) − u0‖A0‖‖A1‖k−1

1 η0 − u0‖A1‖2 k−1
3 η0

u0(3 + 2‖A1‖τmax ) + u0 k−1
1 η0

,

λmin(W2) − u0‖A0‖‖A1‖2k−1
2 η0 − u0‖A1‖3k−1

4 η0

2u0‖A1‖ + u0‖A1‖2k−1
2 η0

,

λmin(W2) − u0‖A0‖‖A1‖ (k1 + k2‖A1‖τmax )

u0‖A1‖ (k1 + k2‖A1‖τmax )

}
(3.37)

and if the following conditions is satisfied for some positive constants kj, j =

1, 2, 3, 4

λmin(W0) − u0‖A0‖‖A1‖k−1
1 η0 − u0‖A1‖2k−1

3 η0 > 0 (3.38)

λmin(W2) − u0‖A0‖‖A1‖2 k−1
2 η0 − u0‖A1‖3 k−1

4 η0 > 0 (3.39)

λmin(W2) − u0‖A0‖‖A1‖ (k1 + k2‖A1‖τmax ) > 0 (3.40)

λmin(W2) > (1 − η1)
−1 u0‖A1‖2 (k2 + k3‖A1‖τmax) (3.41)

where u0 = supθ∈[0, τmax] ‖U(θ)‖.

Proof. The derivative of V (t, x̃t) along the closed loop dynamical system in

Equation 3.26 for t ≥ 2τ0 is given by

dV (t, x̃t)

dt
= −w(t, xt) + 2 [A1zt + f(x(t))]T

(
U(0)x(t)

−
∫ 0

−τ0

U(τ0 − θ)A1x(t+ θ)dθ (3.42)

The following inequality holds for t ≥ 2τ0

‖zt‖ ≤ (‖A0‖ + γ)

∫ −τ0

−τ(t)

‖x(t+ θ)‖dθ

+‖A1‖
∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ))‖dθ (3.43)
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where the Lipschitz condition from Equation 3.24 is employed. This leads to

‖A1zt + f(x(t))‖ < (‖A0‖ + γ)‖A1‖
∫ −τ0

−τ(t)

‖x(t+ θ)‖dθ

+‖A1‖2

∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ))‖dθ + γ‖x(t)‖ (3.44)

Substituting the above expression back into the derivative of V (xt)

dV (t, x̃t)

dt
= −w(t, xt) + 2u0

[
‖x(t)‖ + ‖A1‖

∫ 0

−τ0

‖x(t+ θ)‖dθ
]
×

(
γ‖x(t)‖ + ‖A1‖ (‖A0‖ + γ)

∫ −τ0

−τ(t)

‖x(t+ θ)‖dθ

+‖A1‖2

∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ)‖dθ
)

(3.45)

It can be easily observed that the following inequalities hold

2u0γ‖x(t)‖
(
‖x(t)‖ + ‖A1‖

∫ 0

−τ0

‖x(t+ θ)‖dθ
)
≤ u0γ

[
(3 + 2‖A1‖τmax) ‖x(t)‖2

+2‖A1‖
∫ 0

−τ0

‖x(t+ θ)‖2dθ (3.46)

2u0‖A1‖ (‖A0‖ + γ)

∫ −τ0

−τ(t)

(‖x(t+ θ)‖dθ)
(
‖x(t)‖ + ‖A1‖

∫ 0

−τ0

‖x(t+ θ)‖dθ
)

≤ u0‖A1‖ (‖A0‖ + γ)

[
k−1

2 ‖A1‖η0

∫ 0

−τ0

‖x(t+ θ)‖2dθ + k−1
1 η0‖x(t)‖2 +

(k1 + k2‖A1‖τmax)

∫ −τ0

−τ(t)

‖x(t+ θ)‖2dθ

]
(3.47)

2u0‖A1‖2
(
‖x(t)‖ + ‖A1‖

∫ 0

−τ0

‖x(t+ θ)‖dθ
)∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ)‖dθ

≤ u0‖A1‖2

(
k−1

3 η0‖x(t)‖2 + k−1
4 ‖A1‖η0

∫ 0

−τ0

‖x(t+ θ)‖2dθ

+ (k3 + k4‖A1‖τmax)

∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ))‖2dθ

)
(3.48)
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Using these inequalities in the derivative of the complete type L-K functional

dV (x̃t)

dt
< −λmin(W0)‖x(t)‖2 − λmin(W2)

∫ 0

−4τ0

‖x(t+ θ)‖2dθ

+λ1‖x(t)‖2 + λ2

∫ 0

−τ0

‖x(t+ θ)‖2dθ + λ3

∫ −τ0

−τ(t)

‖x(t+ θ)‖2dθ

+λ4

∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ))‖2dθ (3.49)

where

λ1
.
= u0γ (3 + 2‖A1‖τmax) + u0‖A1‖ (‖A0‖ + γ) k−1

1 η0

+u0‖A1‖2k−1
3 η0 (3.50)

λ2
.
= 2u0γ‖A1‖ + u0‖A1‖2 (‖A0‖ + γ) k−1

2 η0 + u0‖A1‖3k−1
4 η0 (3.51)

λ3
.
= u0‖A1‖ (‖A0‖ + γ) (k1 + k2‖A1‖τmax) (3.52)

λ4
.
= u0‖A1‖2 (k3 + k4‖A1‖τmax) (3.53)

Observing that
∫ −τ0

−τ(t)

‖x(t+ θ)‖2dθ ≤
∫ −τ0

−2τ0

‖x(t+ θ)‖2dθ (3.54)

and
∫ −τ0

−τ(t)

‖x(t+ θ − τ(t+ θ))‖2dθ ≤ (1 − η1)
−1

∫ −2τ0

−4τ0

‖x(t+ θ)‖2dθ (3.55)

leads to

dV (t, x̃t)

dt
< − (λmin(W0) − λ1) ‖x(t)‖2 − (λmin(W2) − λ2)

∫ 0

−τ0

‖x(t+ θ)‖2dθ

− (λmin(W2) − λ3)

∫ −τ0

−2τ0

‖x(t+ θ)‖2dθ

−
[
λmin(W2) − λ4(1 − η1)

−1
] ∫ −2τ0

−4τ0

‖x(t+ θ)‖2dθ < 0 (3.56)
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where, the inequality 3.56 holds because of the conditions from Equations 3.37

and 3.38-3.41. Hence, V̇ (t, x̃t) is negative definite for all trajectories inside the

set determined by Equation 3.37 and Equation 3.38-3.41, and consequently,

the trivial solution x(t) = 0 of the nonlinear system (see Equation 3.26) is

exponentially stable ∀ τ(t) ∈ [0, τmax), |η(t)| ≤ η0, and |η̇(t)| ≤ η1

Remark 3.2.1. Note that in order for γ to be meaningful, we require that Equa-

tions 3.38-3.41 be satisfied. The conditions from 3.38-3.41 with respect to the

constant delay case arise because the time-varying delay term is treated as a

perturbation. It is naturally important to investigate whether these conditions

are satisfied for all values of time-varying delay τ(t), which has not been done

in Reference [12] with respect to the development in stability analysis of non-

linear systems with known time-varying delay. Another area of investigation

is the conservatism arising due to the model-transformation employed, when

compared with results from the constant delay case with η1 → 0 and the con-

stant delay part being the same. We will further explore the aforementioned

conditions and conservatism from time-varying delay after application to the

attitude stabilization in the following Chapter.
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Chapter 4

Attitude stabilization with unknown constant

delay in feedback

In this chapter, we apply the complete type L-K functional method-

ology to the attitude stabilization problem with constant unknown delay in

feedback. Modified Rodrigues Parameters (MRPs) are employed to represent

the attitude kinematics. The control is chosen to be linear in the delayed

states. We express the closed-loop attitude dynamics as a nominal (linear)

system with a perturbation term. The linear system consists of 3 blocks of

double integrators and the perturbation term is a function of the state at

current time alone.

We apply the theoretical development in Section 3.1 to the attitude

stabilization problem with constant delay. After providing the problem state-

ment, we formulate the nominal system and obtain an estimate of region of

attraction from the perturbed system formulation and analysis over the initial

condition interval. Simulations verify the results.

We consider the problem of attitude dynamics with unknown constant
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delay in feedback with MRP representation for the attitude kinematics

σ̇(t) =
1

4
B (σ(t))ω(t) (4.1)

Jω̇(t) = −ω(t)×Jω(t) + u(t− τ) (4.2)

Initial condition trajectories for Equations 4.1)-(4.2 are generated by propa-

gating the governing attitude dynamics without control action over the time-

interval −τ ≤ t ≤ 0. Initial conditions σ0
.
= σ(−τ), ω0

.
= ω(−τ) are chosen

to initialize this propagation such that they lie within the estimated region

of attraction and moreover, so that state trajectories do not escape from this

estimate region during the initial control-free propagation.

We assume perfect knowledge of τmax, which is a strict upper bound

on the feedback time-delay. The control objective is to achieve stabilization

of the states, i.e. to ensure that σ(t) → 0 and ω(t) → 0 in the presence of

unknown constant delay in feedback through the complete type L-K approach.

4.1 Nominal System

The nominal system for applying this method to attitude dynamics

is taken to be a block of 3 double integrators. We can rewrite the attitude

dynamics from Equations 4.1-4.2 as

σ̇ =
ω

4
+

1

4
[B (σ) − I3×3]ω (4.3)

ω̇ = −J−1ω×Jω + J−1ū (4.4)

where ū
.
= u(t − τ). Adding and subtracting ω/4 to the attitude kinematics

enables the construction of a perturbation term that satisfies the Lipschitz
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condition (see Equation 3.19). We write the nominal system as

σ̇d =
ωd

4
(4.5)

ω̇d = J−1ū (4.6)

where the subscript d represents the state belonging to the nominal sys-

tem. Employing the state transformation q = ω/4 and choosing the control

ū(σ̄d, q̄d) = −4J (K1σ̄d +K2q̄d), where K1 = ω2
n and K2 = 2ξωn (ωn > 0, ξ > 0

representing the natural frequency and the damping coefficient respectively),

leads to the nominal system being a block of 3 decoupled double integrators

with delayed feedback, as in

σ̇d = qd (4.7)

q̇d = −2ξωnq̄d − ω2
nσ̄d (4.8)

On comparison with the generic nominal system (see Equation 3.2), we have

the following expressions for A0 and A1

A0 =

[
0 1
0 0

]
, A1 =

[
0 0

−ω2
n −2ξωn

]
(4.9)

The nonlinear perturbation is written as

F (σ, q) =

[
[B (σ) − I3×3] q
−16J−1q×Jq

]
(4.10)

From Equation 4.10, we observe that the nonlinear perturbation is a function

of the current value of the states alone. We analyze the double integrator

characteristic equation in order to determine the range of parameter values
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for which the nominal system is stable. Consider the double integrator with

delayed feedback:

ẋ1 = x2 (4.11)

ẋ2 = −ω2
nx̄1 − 2ξωnx̄2 (4.12)

The stability of the above system is completely determined by its transcen-

dental characteristic equation [7]:

s2 + ω2
ne

−τs + 2ξωnse
−τs = 0 (4.13)

Specifically, the system is exponentially stable if and only if the characteristic

equation has no zero, or root, in the closed right half plane. In order to

determine the maximum value of delay the system can tolerate for given control

parameters ωn and ξ, it suffices to determine the critical values of the delay for

which the roots of the characteristic equation move from the closed left half

plane to the imaginary axis, thus rendering the system unstable [19]. Thus,

we wish to find the smallest deviation of the delay from 0, say τmax, such that

the characteristic equation has imaginary roots, i.e.

(jω)2 +K1e
−τmaxjω +K2se

−τmaxjω = 0

where j =
√
−1. This leads to

−ω2 + (K1 + jK2ω) e−jτmaxω = 0

Separating the real and imaginary parts leads to

−ω2 +K1 cos τmaxω +K2ω sin τmaxω = 0 (4.14)

K2ω cos τmaxω −K1 sin τmaxω = 0 (4.15)
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Combining Equations 4.14-4.15 leads to cos τmaxω = K1/ω
2 and sin τmaxωK2/ω.

With some standard algebraic manipulations, an analytical solution for τmax

for a given ωn =
√
K1 and ξ = K2/(2ωn) is obtained as

τmax =
1

ωnf
sin−1 2ξ

f
(4.16)

f =

√
2ξ2 +

√
1 + 4ξ4

Equation 4.16 enables us to obtain a maximum delay τmax for given ξ and

ω. Equation 4.16 is a necessary and sufficient condition, i.e., the system is

critically stable τ = τmax and unstable for τ > τmax. In another context, for

a given τmax, we can calculate a set of values that ξ and ωn can take so that

the system is exponentially stable. Choosing a lower ωn increases τmax for

a constant ξ. Hence, for a given τmax, any parameter in the interval (0, ωn]

results in an exponentially stable system ∀ τ < τmax. Next, reducing ξ for a

given ωn results in a higher τmax since the term sin−1(2ξ/
√

2ξ2 +
√

1 + 4ξ4) is

monotonic with respect to ξ. Again, the system is exponential for any param-

eter in the interval (0, ξ] ∀ τ < τmax. Concluding, the system is exponentially

stable for any parameter in the parameter space (0, ξ], (0, ωn] ∀ τ < τmax. For

example, Figure 4.1 shows the ωn vs ξ curve for τmax = 0.2, 0.5, 1. For stability

analysis of the nonlinear system, we enforce the region of attraction condition

on the states by obtaining γ from Equation 3.25

0 < γ < min

{
λmin(W0)

u0(2 + ‖A1‖τmax )
,
λmin(W2)

u0‖A1‖

}
(4.17)

where A0 and A1 are given by Equation 4.9. The analysis to obtain γ does

not require knowledge of the structure of the perturbation term added to the
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Figure 4.1: ωn vs ξ for τmax= 0.2,0.5,1

nominal system from Equations 4.7-4.8, since it involves parameters associated

with the nominal system and the Lyapunov matrix ODE only. Note that the

condition in Equation 4.17 does not contain the W1 term that Equation 3.25

does, since the drift term does not depend on delayed value of the states (see

Equation 4.10). We use direct numerical optimization, choosing parameters

ωn =
√
K1, ξ = K2/(2ωn), W0 and W2, such that γ is maximized, while keep-

ing the nominal system exponentially stable. An intermediate step involves

finding the solution to the matrix differential equation for the Lyapunov matrix

represented by Equation 3.13.
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4.2 Analytical solution to Lyapunov matrix ODE

We apply kronecker algebra to the second order linear matrix ODE

represented by Equation 3.13 in order to obtain an analytical solution to the

Lyapunov matrix U(θ). The ODE can be written as a linear cascade system

for the attitude dynamics nominal system with U1
.
= U and U2

.
= U ′ as

U ′
1 = U2 (4.18)

U ′
2 = U2A0 −AT

0U2 + A0U1A0 − AT
1U1A1 (4.19)

where A0 and A1 are given by Equation 4.9. The mixed boundary condition

in Equation 3.15 can be written as

U2(0) + UT
2 (0) = −W (4.20)

U2(0) = U1(0)A0 + UT
1 (τ)A1 (4.21)

Define Z =
[
UT

1 UT
2

]T
. We can rewrite Equations 4.18-4.19 as

Z ′ = P0ZQ0 + P1ZQ1 +MZ (4.22)

where

P0 =

[
02×2 02×2

AT
0 I2×2

]
, P1 =

[
02×2 02×2

AT
1 02×2

]
, M =

[
02×2 I2×2

02×2 −AT
0

]
,

Q0 = A0 , Q1 = −A1

We define the transformation v(X) for any X ∈ Rm×n as

v(X) = [ x11 x12 . . . x1n x21 . . . x2n . . . xmn]T (4.23)
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where xij , i = 1, . . . , m, j = 1, . . . , n are the elements of X. From the property

of Kronecker products [17], we have

v(PXQ) = (P ⊗QT)v(X) (4.24)

Using Equation 4.24 in order to obtain a vector transformation for Equa-

tion 4.22 leads to

v(Z ′) = (P0 ⊗QT
0 + P1 ⊗QT

1 +M ⊗ I2×2)v(Z) (4.25)

The nominal system Equation 4.7-4.8 is stable for the range of gain values

determined by Equation 4.16 and therefore admits a unique solution for the

Lyapunov matrix [11]. The general solution for Equation 4.25 can be written

as

v(Z(θ)) = eKθv(Z(0)) (4.26)

In order to find the particular solution, we need to solve the boundary condi-

tions from Equations 4.20-4.21. Taking the vector transformation, we have

v(U2(0)) + Ev(U2(0)) = −v(W ) (4.27)

v(U2(0)) = (I2×2 ⊗ AT
0 )v(U1(0)) + (I2×2 ⊗AT

1 )Ev(U1(τ)) (4.28)

where E is the permutation matrix [11], which enables us to find the vector

transformation for a transposed matrix

v(XT) = Ev(X)
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Since Z =
[
UT

1 UT
2

]T
, U1(τ) can be expressed in terms of U1(0) and U2(0) by

substituting θ = τ in Equation 4.26. As a result of the substitution, Equa-

tions 4.27-4.28 have 8 unknowns, namely the elements of U1(0) and U2(0), one

of which are eliminated since U1(0) = U(0) is symmetric from Equation 3.17.

One of the equations is also eliminated since U2(0) + UT
2 (0) and W are both

symmetric. This leads to 7 equations with 7 unknowns, which can be solved

for. Since A0, A1 are such that the nominal system is exponentially stable, the

differential equation for the Lyapunov matrix U(θ) admits a unique solution

for θ ≥ 0. The analytical solution for the Lyapunov matrix will be employed

in order to obtain a supremum for ‖U(θ)‖ over the interval θ ∈ [0, τmax], to be

used in the formula for γ in Equation 3.25.

4.3 Analysis over torque-free interval and regional sta-

bilization

In order to realistically simulate the system, we require that there be no

control over the initial condition time interval, i.e. t ∈ [ −τ, 0 ]. It is highly

important to ensure that during this time evolution, the states do not escape

from the estimated domain of attraction as per Equation 4.17. This situa-

tion is tackled by calculating upper bound on the states during this interval.

Rewriting the system dynamics from Equations 4.1-4.2 with no control,

σ̇ =
1

4
B(σ)ω

Jω̇ = −ω×Jω
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We calculate an upper bound for the angular velocity norm by employing the

following positive-definite scalar function Vω = ωTJω. The time-derivative

over the trajectory is zero. Hence, λmin(J)‖ω‖2 ≤ λmax(J)‖ω0‖2. Define

Λ =
√
λmax(J)/λmin(J). This leads to an lower-bound for the ‖ω(t)‖ over the

initial condition interval as

‖ω‖ ≤ Λ‖ω0‖ (4.29)

An upper-bound for ‖σ(t)‖ over the initial condition interval is obtained by

calculating upper bounds in terms of σ0, ω0 over the initial condition interval.

In order to calculate an upper-bound for ‖σ‖, we employ the positive definite

scalar function Vσ = 2 log(1 + σTσ) [23]. The time derivative of Vσ along the

state trajectories is calculated to be

V̇σ = σTω ≤ ‖σ‖‖ω‖

≤ Λ‖ω0‖(eVσ/2 − 1)1/2 (4.30)

wherein we use the substitution ‖σ‖2 = eVσ/2−1. Next, from 2σσ̇ = eVσ/2V̇σ/2,

and substituting for V̇σ in Equation 4.30 we now have

4σ̇

(1 + σ2)
≤ Λ‖ω0‖ (4.31)

Integrating both sides from −τ to t ∈ [−τ, 0] and using the comparison prin-

ciple lemma [13] leads to

tan−1(σ) − tan−1(σ0) ≤
Λ‖ω0‖(t+ τ)

4
(4.32)
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Note that 4.32 is satisfied if the following holds

‖σ‖ ≤ tan
(

tan−1(‖σ0‖) +
Λ‖ω0‖(t+ τ)

4

)
(4.33)

In order to stabilize the actual system, we formulate the Lipschitz-like condi-

tion (See Equation 3.19) for the perturbation term. Rewriting the perturbation

term from Equation 4.10

F (σ, q) =

[
[B (σ) − I3×3] q
−16J−1q×Jq

]
(4.34)

Let F1(σ, q) = [B (σ) − I3×3] q and F2(σ, q) = −16J−1q×Jq. For the following

derivation, we employ the induced 2-norm, i.e. ‖.‖ = ‖.‖2. We upper bound

the perturbation term as

‖F1(σ, q)‖ ≤ ‖ − σTσI3×3 + 2σ× + 2σσT‖‖q‖ (4.35)

Since, (σ×)2 = σσT − σTσI3×3, we obtain

‖F1(σ, q)‖ ≤
(
‖(σ×)2‖ + 2‖σ×‖ + ‖σσT‖

)
‖q‖

≤ 2‖σ‖‖q‖ (1 + ‖σ‖) (4.36)

Let ‖q‖ ≤ ρ ∀ t. This leads to

‖F1(σ, q)‖ ≤ 2ρ‖σ‖ (1 + ‖σ‖) (4.37)

We have F2(σ, q) = −16J−1q×Jq. The angular dynamics perturbation term is

upper bounded as

‖F2(σ, q)‖ ≤ 16ρΛ2‖q‖ (4.38)

52



We wish to enforce the Lipschitz-like condition for the perturbation term

F (σ, q) as

‖F (σ, q)‖ ≤ 16ρΛ2‖σ, q‖ ≤ γ‖σ, q‖ (4.39)

In order to satisfy the above condition, in accordance with Equation (4.37),

we enforce the following condition on ‖F1(σ, q)‖

2ρ‖σ‖ (1 + ‖σ‖) ≤ 16ρΛ2‖σ‖ (4.40)

Substituting for ‖σ‖ from Equation 4.33 in Equation 4.40,

tan
(

tan−1(‖σ0‖) +
Λ‖ω0‖(t+ τ)

4

)
≤ 8Λ2 − 1 (4.41)

This leads to an upper bound for ‖σ0‖ as

‖σ0‖ < tan
(

tan−1(8Λ2 − 1) − Λ‖ω0‖(t+ τ)

4

)
(4.42)

Since t ∈ [−τ, 0], and τ < τmax, the above inequality can be replaced by

‖σ0‖ ≤ tan
(

tan−1(8Λ2 − 1) − Λ‖ω0‖τmax

4

)
(4.43)

Equation 4.43 represents an upper-bound on ‖σ0‖. This upper-bound is de-

pendent on Λ, ‖ω‖ and τmax and is valid only if the following upper-bound on

ω0 holds

‖ω0‖ ≤ 4

Λτmax
tan−1(8Λ2 − 1) (4.44)

If Equation 4.44 holds, 4.43 can be upper-bounded by

‖σ0‖ ≤ tan
(

tan−1(8Λ2 − 1)
)

= 8Λ2 − 1 (4.45)
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From definition, Λ ≥ 1. The quantity 8Λ2 − 1 is atleast 7. This corresponds

to a minimum permissable principal rotation angle, Φ, of 327.47◦. In addition

we impose σ2 < 1 in order to ensure the MRPs do not pass through a singu-

larity. Comparing Equation 4.39 with Equation 3.19, we obtain the regional

stabilization condition for the angular velocity norm (‖ω‖ ≤ 4ρ) as

‖ω‖ ≤ γ

4Λ2
(4.46)

Equation 4.46 along with Equation 4.29 leads to an upper bound on the angular

velocity norm initial condition ‖ω0‖ as

‖ω0‖ ≤ γ

4Λ
(4.47)

where γ is obtained using the numerical optimization process. Comparing

Equation 4.44 and Equation 4.47 leads to

‖ω0‖ ≤ 1

Λ
min

{γ
4
,

4

τmax
tan−1(8Λ2 − 1)

}
(4.48)

Considering Equation 4.48, the second term was found to be typically always

dominant over the first term. The norm of initial condition on the angular ve-

locity ω0 is directly related to the size of the estimate of the region of attraction

γ. The closed-loop nonlinear system is stable for all MRP initial conditions

σ0 shown in Equation 4.43. Equations 4.43 and 4.48 together represent the

estimate of the region of attraction for the closed-loop system. The initial

conditions upper bounds can be obtained provided that γ is calculated using

numerical optimization. The condition on ω0 from Equation 4.48 is evaluated
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first since it is in terms of γ and τmax alone. Having obtained ‖ω0‖, the con-

dition on σ0 Equation 4.43 is evaluated. Qualitatively, the larger the initial

condition on angular velocity, the less amount of initial rotation is permitted

inside the region of attraction estimate.

At this point, we wish to mention an important reason for choosing the

MRPs to represent the attitude kinematics rather than the more traditional

(and globally non-singular) quaternion parametrization. The kinematics equa-

tion with quaternion notation is expressed as [24]

[
ε̇
ε̇0

]
=

[
T (ε)
−εT

]
ω (4.49)

where ε ∈ R
3 is the vector part of quaternion and ε0 ∈ R is the scalar

part of the quaternion with the norm constraint ‖ε‖2 + |ε|2 = 1. T (ε) =
(
ε× +

√
1 − εTεI3×3

)
/2. T (ε) cannot be made homogenous in the state ε by

adding and subtracting some λω, as was done with the MRP representation

in Equation 4.3, and consequently, will not lead to definition of a drift term

satisfying the Lipschitz-like condition in Equation 3.19. This obstacle can be

avoided by using the MRP representation.

4.4 Simulation Results

We implement the control design proposed in the previous section for

the attitude dynamics problem with constant unknown delay in feedback. In

order to generate realistic trajectories over the initial condition interval, The

attitude dynamics is simulated torque-free with initial conditions σ0, ω0 over
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the delay interval [−τ, 0], which serves as the initial trajectory for the delay

problem.

We provide a brief outline of the implementation of the numerical op-

timization using MATLAB. We employ the inbuilt MATLAB function “fmin-

con()”. The performance index to be maximized is γ subject to constraints

on control gains represented by Equation 4.16 for exponential stability of the

nominal system represented by 3 blocks of double integrators with delayed

feedback. In doing so, we evaluate the analytical solution of the Lyapunov

matrix. The parameters to be chosen through optimization are W0, W2, ωn

and ξ.

4.4.1 Case I

The inertia matrix J is chosen to be

J =




20 2 3
2 19 2
3 2 25


 (4.50)

The quantity Λ turns out to be 1.2512. ‖ω0‖ was chosen to be 0.00542

which is less than the upper-bound γ/4Λ = 0.0056, and ω0 was chosen to

be [0.0032 , 0.0031, −0.0032 ]T which satisfies the attraction region condi-

tion. σ0 can be chosen so that ‖σ0‖ is slightly less than the upper-bound 11.295

obtained from Equation 4.43. The condition on ω0 ensures that Equation 4.46

is satisfied throughout the initial condition interval [ −τ, 0]. For the case

τmax = 1, we obtain γ = 0.02804 using the numerical optimization. The gain

parameters ξ and ωn obtained using this process turn out to be: ξ = 0.9112
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Figure 4.2: γ vs τmax comparison

and ωn = 0.4774. The Wi parameters turn out to be

W0 =

[
0.0755 0

0 0.0755

]
, W2 =

[
0.0234 0

0 0.0234

]
(4.51)

Figure 4.2 shows γ as a function of τmax. However, using the shadow set

transformation from Equation 2.12 (i.e. σs = −σ/‖σ‖2) leads to the new

initial condition MRP norm being significantly small. For instance, if σ0 is

chosen to be [−5.9 , −5.1 , 6.3]T. ‖σ0‖ is 10.0254, which satisfies the upper-

bound 11.295 obtained from Equation 4.43 (This value corresponds to a ini-

tial principal rotation angle of 337.2151◦), the initial MRP condition can be

transformed to the corresponding shadow set by employing Equation 2.12 (i.e.

σs = −σ/‖σ‖2) in order to reduce the control effort required for stabilization,
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which leads to the new initial MRP vector to be

σ0 = [0.0587 , 0.0507 , −0.0626]T (4.52)

which corresponds to an initial principal rotation angle of 22.78◦. In order to

obtain an initial condition with large initial principal rotation angle, we choose

σ0 so that its norm is close to unity, which would lead to a principal rotation

close to 180◦. In this case, we choose σ0 to be

σ0 = [0.5831 , 0.5831 , −0.5831]T (4.53)

where σ0 = 1.01. After employing Equation 2.12 in order to obtain the shadow

set, the new initial MRP vector turns out to be

σ0 = [−0.5716 , −0.5716 , 0.5716]T (4.54)

Figure 4.3(a) shows the trajectories of the state norms as a result of the imple-

mentation with feedback gains obtained as ξ = 0.9112 and ωn = 0.4774. The

insets in Figure 4.3(a) show the ‖σ(t)‖, 10‖ω(t)‖ (in order to emphasize their

time-varying nature) over the time interval −0.9 = −τ ≤ t ≤ 0. Figure 4.3(b)

shows the logarithmic plot of the state norms as a function of time in order to

depict the convergence of the states to the origin.

As is observed, the state trajectories converge to the origin. Figure 4.4

shows the control history for the same simulation. Comparing our results with

those from Reference [3], the size of the estimate for the region of attrac-

tion for a time-delay (which is known) of 0.0125 is 0.0018. This value is an
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Figure 4.3: Case I: τmax = 1, τ = 0.9
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upper-bound on the norm an augmented state vector containing the Rodrigues

parameters, angular velocity and the angular velocity filter. The size of the

region of attraction considered in our work for a strict upper-bound on the

time-delay of 1 is considerably less conservative in comparison to the afore-

mentioned result for a known time-delay of 0.0125 [3]. In passing, we note

that the estimate obtained using our approach is still potentially conservative.

However, numerical simulations carried out for a time delay τ = 1.8, which

is greater than τmax = 1, resulted in the system being unstable. Figure 4.5

shows the first 80 seconds of the simulation.
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4.4.2 Case II

The inertia matrix J is chosen to be diag(1000, 500, 700) from Reference

[3] for comparison. The maximum delay τmax is chosen to be 0.0125. The Ro-

drigues parameter vector initial condition is chosen to be ρ0 = [0, 0.001,−0.001]T,

which translates to an initial principal rotation angle of φ0 = 2 tan−1 (‖ρ0‖) =

0.1604, whereas ω0 is chosen to be [0, 0, 0]T. From our method, for the chosen

J , Λ turns out to be 1.4142. For τmax = 0.0125, γ is calculated through nu-

merical optimization to be 0.411689. The control gains are ωn = 1.5419 and

ξ = 0.7883. This leads to upper bounds on σ0 and ω0 to be

‖σ0‖ ≤ 10.8036, ‖ω0‖ ≤ 0.0728 (4.55)
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The condition on σ0 corresponds to a maximum permissable principal rotation

angle Φ0 = 338.84◦, which is two orders of magnitude higher compared to the

result in Reference [3]. However, similar to Case I, we choose σ0 so that its

norm is close to unity. σ0 is chosen to be

σ0 = [0.5831 , 0.5831 , −0.5831]T (4.56)

where σ0 = 1.01, which is the same as Case I. After employing Equation 2.12

in order to obtain the shadow set, the new initial MRP vector turns out to be

σ0 = [−0.5716 , −0.5716 , 0.5716]T (4.57)

The simulation of the attitude dynamics with the aforementioned initial con-

ditions is depicted in Figure 4.6. We choose initial MRP condition such that
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‖σ0‖ is close to unity. The initial condition σ0 is chosen to be

σ0 = [0.5831 , 0.5831 , −0.5831]T (4.58)

and is transformed to its shadow coordinate by Equation 2.12 in order to

reduce the control effort required to achieve stabilization. The new initial

MRP vector is calculated to be

σ0 = [−0.5716 , −0.5716 , 0.5716]T (4.59)

ω0 is chosen to be

ω0 = [−0.0420 , −0.0420 , 0.0420]T (4.60)
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Chapter 5

Attitude Stabilization with unknown

time-varying delay in feedback

In this chapter, we discuss the application of the theoretical develop-

ment in Section 3.2 to the attitude stabilization problem with time-varying

delay in feedback. We provide the problem statement, present the separation

as a nominal system with a perturbation, discuss implementation of sufficient

conditions, provide comparisons of the results with corresponding ones from

the constant delay case and present some simulation results.

We denote τ(t) = τ0 + η(t) as the unknown time varying time-delay

which is assumed to be differentiable everywhere. We assume perfect knowl-

edge of upper-bounds on the magnitude and rate of η(t), as well as strict

upper-bound on τ(t) i.e |η(t)| ≤ η0, |η̇(t)| ≤ η1 < 1, 0 ≤ τ(t) < τmax. In addi-

tion, the delay satisfies the condition τ0 = supt |η(t)|. Initial condition trajec-

tories for Equation 2.7-2.8 are generated by propagating the same dynamics

without control action over −2τ0 ≤ t ≤ 0. Initial conditions σ0
.
= σ(−2τ0),

ω0
.
= ω(−2τ0) are chosen to initialize this propagation such that they lie within

the estimate and moreover, so that state trajectories do not escape from this es-

timate during the control-free propagation. The control objective is to achieve
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stabilization of the states, i.e. to ensure that σ(t) → 0 and ω(t) → 0 through

a complete type L-K approach.

5.1 System Formulation

The nominal system chosen for the time-varying delay case is the same

as in Section 4.1 for the constant delay case (see Equations 4.7-4.8) i.e

σ̇d = qd (5.1)

q̇d = ū (5.2)

The Lipschitz condition on the term f(x(t)) along with analysis over the initial

condition interval [−2τ0, 0] leads to the similar upper bounds on the initial

condition norms in terms of γ as in Equations 4.47-4.48

‖σ0‖ ≤ tan
(

tan−1(8Λ2 − 1) − Λ‖ω0‖τmax

4

)
(5.3)

‖ω0‖ ≤ 1

Λ
min

{γ
4
,

4

τmax
tan−1(8Λ2 − 1)

}
(5.4)

where τmax ≥ 2τ0 ≥ τ(t) ≥ 0, where γ is evaluated from the sufficient condition

(see 3.37), provided the inequalities from 3.38-3.41 are satisfied. When applied

to the attitude dynamics problem, we have

A0 =

[
0 1
0 0

]
, A1 =

[
0 0

−ω2
n −2ωnξ

]
(5.5)

which are then substituted in the aforementioned conditions to obtain γ through

numerical optimization in MATLAB.
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5.2 Implementation of Sufficient Conditions

In order to obtain a meaningful region of attraction estimate, the in-

equalities from 3.38-3.41 must be satisfied for some positive constants kj, j =

1, 2, 3, 4. Rewriting the inequalities 3.38-3.41 with x1
.
= λmin(W0)/η0u0‖A1‖,

x2
.
= λmin(W2)/η0u0‖A1‖2, x3

.
= λmin(W2)/u0‖A1‖, x4

.
= λmin(W2)/u0‖A1‖2(1−

η1) with ‖A0‖ = 1 for simplicity leads to

x1 >
1

k1
+

‖A1‖
k3

(5.6)

x2 >
1

k2
+

‖A1‖
k4

(5.7)

x3 > k1 + ‖A1‖τmaxk2 (5.8)

x4 > k3 + ‖A1‖τmaxk4 (5.9)

Considering the above inequalities ∃ α, β, δ, ϑ ∈ (0, 1) such that

k1 >
1

αx1
, k3 >

‖A1‖
(1 − α)x1

(5.10)

k1 < βx3, k2 <
(1 − β)x3

‖A1‖τmax

(5.11)

k2 >
1

ϑx2
, k4 >

‖A1‖
(1 − ϑ)x2

(5.12)

k3 < δx4, k4 <
(1 − δ)x4

‖A1‖τmax

(5.13)

The above inequalities are satisfied only if the following inequalities are satis-

fied:

x3 < k1 <
1

x1
,

x3

‖A1‖τmax
< k2 <

1

x2
(5.14)

x4 < k3 <
‖A1‖
x1

,
x4

‖A1‖τmax
< k4 <

‖A1‖
x2

(5.15)
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The above conditions are sufficient and constructive in evaluating the positive

constants kj, j = 1, 2, 3, 4 from Equations 3.38-3.41 because they provide a

range in which the constants must lie for given W0, W2, ωn and ξ. An easy

way to implement checking of the conditions is to sweep through the ranges

while checking for satisfaction of the conditions. As in Chapter 4 with the

constant delay case, we employ the inbuilt MATLAB function “fmincon()”.

The performance index to be maximized is γ subject to constraints on control

gains represented by Equation 4.16 for exponential stability of the nominal

system represented by 3 blocks of decoupled double integrators with delayed

feedback and subject to satisfaction of the conditions 3.38-3.41. In doing so, we

evaluate the analytical solution of the Lyapunov matrix. The parameters to be

chosen through optimization are W0, W2, ωn and ξ as well as k1, k2, k3 and k4.

We implement the aforementioned sweeping method from Equations 5.14-5.15

in order to verify if there is a feasible solution.

5.3 Simulation results

In this section, we compare region of attraction estimate results with

those obtained from constant delay for the same upper bound on delay mag-

nitude τmax, analyze conservatism arising from conditions (see 3.38-3.41) and

provide some simulations on attitude stabilization with unknown time-varying

delay in feedback.

Table 5.1 provides a comparison in terms of γ and initial conditions

between the constant and time-varying delay case for various delay values
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Constant Time-delay Time-varying rime-delay

τmax γ Φ0 ‖ω0‖ τmax η0 η1 γ Φ0 ‖ω0‖
0.03 0.36 340.05◦ 0.07 0.03 0.01 0.0 0.11 340.12◦ 0.0257
0.03 0.36 340.05◦ 0.07 0.03 0.01 0.8 0.07 340.13◦ 0.0181
0.1 0.27 339.78◦ 0.05 0.1 0.01 0 0.06 340.05◦ 0.0133
0.1 0.27 339.78◦ 0.05 0.1 0.01 0.5 0.03 340.10◦ 0.0070
0.2 0.19 339.61◦ 0.03 0.2 0.1 0.1 0.02 340.09◦ 0.0047

Table 5.1: Comparison between constant and time-varying delay results

τmax, η1, η0. Table 5.1 shows that letting η1 → 0 does not recover the region

of attraction estimate from the corresponding constant delay case, which was

expected because of the additional conservatism. Moreover, for sufficiently

large parameter values of delay, the optimization does not converge, indicating

the problem may not be feasible. In the constant delay case however, the

optimization does converge for the same value of τmax.

As mentioned, the conditions from 3.38-3.41 are not particularly constructive

in finding constants kj, j = 1, 2, 3, 4. We observe by using the sweeping method

from conditions 5.14-5.15 that as the delay parameters become sufficiently

large, the conditions are not satisfied, which is not observed in the constant

delay case. We simplify the conditions and fix certain parameters in order to

obtain a range of delay parameter values for which a feasible γ can be found.

We fix W0 = W2 = I2×2 and W1 = 02×2 and ξ = 1 in order to enforce critical

damping for the nominal closed-loop system. The positive constants kj are

eliminated by using their strict upper bounds as obtained in 5.14-5.15. The
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free parameter remaining is ωn since ‖A1‖ =
√
ω4

n + 4ω2
n. As a result, the

inequalities 3.38-3.41 can be rewritten as

x1 −
1

x3

− ‖A1‖
x4

> 0 : Inequality 1 (5.16)

x2 −
‖A1‖τmax

x3

− ‖A1‖2τmax

x4

> 0 : Inequality 2 (5.17)

x3 −
1

x1
− ‖A1‖τmax

x2
> 0 : Inequality 3 (5.18)

x4 −
‖A1‖
x1

+
‖A1‖2τmax

x2
> 0 : Inequality 4 (5.19)

where u0 is a function of ωn alone (can be calculated through the analytical

approach in Section 4.2 or by polynomial curve fitting), and x1, x2, x3 and

x4 are as defined before with W0 = W2 = I2×2, W1 = 02×2 and ξ = 1. In

particular, we wish to find if there is a nonempty set of ωn values for which

the above conditions are simultaneously satisfied. Implementing this idea with

MATLAB for various cases leads to

1. η1 = 0, η0 = 0.001, leads to τmax being a maximum value of 0.23 (see

Figure 5.1). The set of ωn values can be observed in the accompanying

figure

2. Keeping η1 zero and increasing η0 to 0.01 leads to τmax decreasing to

0.18. Increasing η1 to 0.5 does not lead to satisfaction of the conditions

for τmax as small as 0.001 (see Figure 5.2).

3. Keeping η0 to 0.01 and increasing η1 to 0.05 further decreases τmax to

0.15 (see Figure 5.3).
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Figure 5.1: Inequalities vs. ωn for η1 = 0, η0 = 0.001, τmax = 0.23
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Figure 5.2: Inequalities vs. ωn for η1 = 0.5, η0 = 0.01, τmax = 0.001
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Figure 5.3: Inequalities vs. ωn for η1 = 0.05, η0 = 0.01, τmax = 0.15

The above method provides a range of delay parameter values for which there

exists a solution. However, this method is only sufficient. For the simulation

of attitude dynamics, we choose τmax is chosen to be 0.11, with η0 = 0.01 and

η1 = 0.5. As a result of the attraction estimate conditions, γ is calculated to

be 0.087295. We choose τ(t) = 0.09 + 0.01 sin(0.5t). The inertia matrix is

chosen to be the same as Case I in the constant delay simulation i.e.

J =




20 2 3
2 19 2
3 2 25


 (5.20)

Control parameters are calculate through numerical optimization to be ωn =

0.9143, ξ = 0.5275. Initial conditions are chosen as ω0 = [0.01 − 0.01 − 0.01]T,

σ0 = [ −5.9 − 5.1 6.3]T. System simulated for time interval [−2τ0, 0] without

control. Figures 5.4 and 5.5 show the results of the simulation. In order to
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gain some insight into the conservatism of the estimate with respect to time

delay, the same system is simulated with time-delay τ(t) = 1.5 + 0.1 sin(0.9t).

Figure 5.6 shows the results of the simulation. The trivial solution x(t) is

unstable, however, the conservatism is larger than that of the constant delay

case because τ(t) has to be increased much more from its original value in

order to see instability.

73



Chapter 6

Conclusions and Recommendations

This thesis considered the open problem of finding an estimate of region

of attraction for rigid body attitude dynamics with an unknown time-delay in

feedback. We considered two cases based on the nature of time-delay: 1) con-

stant and 2) time-varying. In both cases, the actual time-delay was unknown.

For the constant delay case, a strict upper bound on the unknown constant de-

lay was known. The time-varying delay was assumed to be made of a constant

unknown delay with a time-varying perturbation. Strict upper bounds on the

time-varying delay, the magnitude of the time-varying perturbation and the

rate of the time-varying perturbation were known.

The concept of the complete type L-K functional was successfully ex-

tended in order to investigate stability for a class of nonlinear time-delay sys-

tems with unknown time-delay. This extension enabled stability robustness

to time-delay in the control design i.e. asymptotic stability held for all val-

ues of time-delay less than the known upper bound. The region of attraction

estimate was maximized through numerical optimization by choosing the free

parameters from the sufficient stability conditions. The results obtained were

superior to those from a previous paper where the time-delay was known per-
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fectly. The simulations verified the results obtained, and showed instability

occurring if the actual time-delay was higher than the upper bound considered.

In the case of time-varying delay, sufficient conditions on regional stabi-

lization were obtained provided certain inequalities were satisfied which arose

from treating the time-varying delay term as a perturbation. The sufficient

conditions were tedious and not constructive to evaluate. A constructive

method to satisfy the simplified sufficient conditions was presented. Limit-

ing cases arising from the sufficient conditions were studied, along with addi-

tional conservatism present in the conditions and comparison was made with

corresponding results from the constant delay case. It was shown that allow-

ing the time-varying delay rate go to zero did not recover the estimate that

resulted from the constant delay case, which was expected due to the con-

servatism arising from the model transformation. Moreover, for sufficiently

large values of delay, numerical optimization could not converge to a feasible

solution indicating that the sufficient conditions in the form of inequalities

could not be satisfied. Further work could include a more constructive form

in order to evaluate the sufficient conditions. Simulations verified the results

obtained, and the actual time-delay had to be increased significantly in order

to achieve instability, indicating the increase in conservatism in comparison

with the constant delay case.

The control design does not require precise knowledge of the actual

time-delay, however, it does require the mass moment of inertia matrix to be

known exactly, which can be restrictive in some applications. Future work
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could include using projection in order to formulate an adaptive controller

which would employ an estimate of the mass moment of inertia matrix and

still converge to the origin with delayed measurements of the states. The time-

delay present in the different actuators is assumed to be the same, which, again

is not always physically true. Future work could include using different time-

delays in the different control actuators as well as different time-delays in the

state measurements, i.e. MRP and angular velocity state vectors delayed by

different amounts. Future work could also include extending the control objec-

tive to trajectory tracking as well as extending the single spacecraft problem

to achieving consensus in formation control with communication delay in feed-

back, which would present new issues when applying the complete type L-K

approach.
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