
Copyright

by

Birgi Tamersoy

2009



Vehicle Detection and Tracking in Highway Surveillance

Videos

by

Birgi Tamersoy, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2009



Vehicle Detection and Tracking in Highway Surveillance

Videos

APPROVED BY

SUPERVISING COMMITTEE:

J. K. Aggarwal, Supervisor

Kristen Grauman

Michael Ryoo



Acknowledgments

First of all, I would like to thank Dr. J. K. Aggarwal for his continuous

support, guidance and motivation. It is certainly a privilege for me to learn directly

from the master.

I would like to thank Dr. Kristen Grauman for her valuable comments and

inspiring lectures. It is for sure that these lectures shaped my vision.

I would like to thank Dr. Michael Ryoo for his help in this thesis, and the

rest of the Computer and Vision Research Center members for creating a friendly

and sincere research environment.

I would like to thank Dr. Alper Sen and Dr. Ramesh Yerraballi for supporting

me with TA positions during my research.

I would like to thank Dr. Muhittin Gokmen for providing us with the surveil-

lance videos used in this work.

Finally, I am grateful to my family for mentally and physically supporting

me all the time.

iv



Vehicle Detection and Tracking in Highway Surveillance

Videos

Birgi Tamersoy, M.S.E.

The University of Texas at Austin, 2009

Supervisor: J. K. Aggarwal

We present a novel approach for vehicle detection and tracking in highway

surveillance videos. This method incorporates well-studied computer vision and

machine learning techniques to form an unsupervised system, where vehicles are au-

tomatically “learned” from video sequences. First an enhanced adaptive background

mixture model is used to identify positive and negative examples. Then a video-

specific classifier is trained with these examples. Both the background model and the

trained classifier are used in conjunction to detect vehicles in a frame. Tracking is

achieved by a simplified multi-hypotheses approach. An over-complete set of tracks

is created considering every observation within a time interval. As needed hypothe-

sized detections are generated to force continuous tracks. Finally, a scoring function

is used to separate the valid tracks in the over-complete set. The proposed detection

and tracking algorithm is tested in a challenging application; vehicle counting. Our

method achieved very accurate results in three traffic surveillance videos that are

significantly different in terms of view-point, quality and clutter.

v



Table of Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vision Based Monitoring Systems . . . . . . . . . . . . . . . . . . . . 2

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2. Related Work 6

2.1 Vehicle Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Vehicle Detection in Ground-level Videos . . . . . . . . . . . . 8

2.2 Object Tracking in General . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 3. Vehicle Detection using Unsupervised Learning 11

3.1 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Identifying the ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Forming the Training Sets . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Detection Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Chapter 4. Vehicle Tracking 30

4.1 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Creating an Over-complete Set of Tracks . . . . . . . . . . . . . . . . 31

4.3 Improving the Vehicle Detection Results . . . . . . . . . . . . . . . . 35

4.4 Merging Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Backward and Forward Localization . . . . . . . . . . . . . . . . . . . 38

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5. Calculating the Traffic Parameters 45

5.1 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Traffic Flow Theory and Important Traffic Parameters . . . . . . . . . 46

5.3 Counting the Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 6. Conclusions and Future Work 51

Bibliography 52

Vita 55

vii



List of Tables

3.1 Parameters and symbols used in Chapter 3. . . . . . . . . . . . . . . 12

3.2 Training statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Frame-by-frame detection results. . . . . . . . . . . . . . . . . . . . . 23

3.4 Frame-by-frame detection results for the baseline algorithm. . . . . . 25

4.1 Parameters and symbols used in Chapter 4. . . . . . . . . . . . . . . 31

4.2 Frame-by-frame detection results before tracking. . . . . . . . . . . . 42

4.3 Frame-by-frame detection results after tracking. . . . . . . . . . . . . 42

5.1 Parameters and symbols used in Chapter 5. . . . . . . . . . . . . . . 46

5.2 Vehicle counting results. . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Performance comparison with a baseline. . . . . . . . . . . . . . . . . 50

viii



List of Figures

1.1 The motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An example of a low quality video. . . . . . . . . . . . . . . . . . . . 3

3.1 Vehicle detection system overview. . . . . . . . . . . . . . . . . . . . 12

3.2 Example traffic surveillance videos. . . . . . . . . . . . . . . . . . . . 13

3.3 Determining the ROI in Halic dataset. . . . . . . . . . . . . . . . . . 14

3.4 Determining the ROI in Elmali dataset. . . . . . . . . . . . . . . . . . 14

3.5 Determining the ROI in Mecidiyekoy dataset. . . . . . . . . . . . . . 15

3.6 Results of the enhanced adaptive background mixture model. . . . . . 16

3.7 Blob areas in four datasets. . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Relative positive and negative example centers. . . . . . . . . . . . . 18

3.9 Positive and negative training examples from Elmali and Halic datasets. 18

3.10 Processing a suspicious blob. . . . . . . . . . . . . . . . . . . . . . . . 21

3.11 ROC curves for the classifiers. . . . . . . . . . . . . . . . . . . . . . . 24

3.12 Good detection results in Mecidiyekoy (T) dataset. . . . . . . . . . . 26

3.13 Good detection results in Mecidiyekoy (B) dataset. . . . . . . . . . . 27

3.14 Good detection results in Elmali dataset. . . . . . . . . . . . . . . . . 28

3.15 Good detection results in Halic dataset. . . . . . . . . . . . . . . . . . 29

3.16 Bad detection results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Vehicle tracking system overview. . . . . . . . . . . . . . . . . . . . . 32

4.2 Observation window illustration. . . . . . . . . . . . . . . . . . . . . . 32

4.3 Creating an over-complete set of tracks. . . . . . . . . . . . . . . . . . 33

4.4 Motivation behind the tracking algorithm. . . . . . . . . . . . . . . . 36

4.5 Improving the frame-by-frame detection results using tracking. . . . . 37

4.6 One vehicle having two tracks. . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Eliminating FP tracks using merging. . . . . . . . . . . . . . . . . . . 38

4.8 Backward and forward localization. . . . . . . . . . . . . . . . . . . . 39

4.9 Benefits of backward and forward localization. . . . . . . . . . . . . . 40

4.10 Manually selected ROIs for the Mecidiyekoy dataset. . . . . . . . . . 40

4.11 Detection results before and after tracking. . . . . . . . . . . . . . . . 44

ix



Chapter 1

Introduction

1.1 Motivation

Figure 1.1: The motivation1.

Transportation, and hence traffic, is becoming an inevitable part of our daily

life. Especially in big cities, people are spending a substantial time on daily com-

mutes and it is by now clearly evident that using more resources, such as building

1Thanks to Chia-Chih Chen for locating this photo at
http://ffffound.com/image/819a732d51fc9456a217a24877bbe6e1ad63830c.

1



more highways or extending the existing ones, is not enough. We have to develop

“intelligent” traffic monitoring systems and use them to utilize the existing resources

as good as possible.

The ultimate goal is to have fully automated monitoring systems that can

observe, reason and decide. Such a system would gather information from several

highways, analyse this information to form efficient detours and finally re-direct the

new coming drivers to these calculated detours, minimizing the traffic and maximiz-

ing the overall throughput.

In this work we focus on detecting and tracking vehicles in highway surveil-

lance videos. Irrespective of the sensor being used (it may be an on-road detector,

or a surveillance camera as in our case), this analysis is required in order to make

decisions.

1.2 Vision Based Monitoring Systems

Vision based monitoring systems have always been of more interest than

on-road detector based system. There are two primary reasons for this: cost and

reliability. On-road detectors, such as the loop detectors, use a sensor loop to

detect vehicles. As a vehicle moves over the sensor loop, its metallic mass creates

an electric current in the sensor. These systems have high costs and safety risks

associated with their installation and maintenance. Besides, most of the highways

already have existing video surveillance infrastructures, whereas very few of them

have loop detectors.

Reliability is another concern. On-road detectors are point detectors and

can only provide a limited amount of information. Surveillance cameras, on the

other hand, provide a more thorough information of the whole scene. One may

2



compute vehicle trajectories from surveillance videos. With these trajectories, traffic

parameters will be calculated more reliably. Moreover, vehicle trajectories can be

used to recognize interesting activities such as accidents and illegal actions.

1.3 Challenges

Detecting and tracking vehicles in highway surveillance videos is a challenging

task. This is mainly because, the hardware systems that are used to capture these

videos differ significantly. In general, one may not make any assumptions about the

position of the camera, other than the fact that it will be on a relatively elevated

place. You may not expect to have high quality, high resolution videos either.

Especially with old surveillance equipment, effects of the lossy data compression and

the noise introduced by the system becomes dramatic (see Figure 1.2). Furthermore,

the accuracy of the proposed algorithm should not depend on lighting, weather or

traffic conditions.

Figure 1.2: An example of a low quality video.

3



1.4 Approach

Researchers have approached this challenging problem in various ways. The

proposed algorithms can be grouped in four categories: model based methods [24,

12, 22, 27], region based methods [16], active-contour based methods [13] and feature

based methods [5, 10]. All of these are well-studied computer vision techniques for

detecting and tracking objects in general. However, each of them has some pitfalls

associated with it, and none of them is robust enough to work with all high/low

quality, high/low resolution and heavy/light traffic surveillance videos.

We developed a new vehicle detection and tracking algorithm which is based

on “learning” the vehicles in a surveillance video, as they appear in the video. The

primary distinction of this method is that it does not make restrictive prior as-

sumptions about the scene, the video or the vehicle appearances. This results in

an extremely robust approach, which can handle surveillance videos that are signif-

icantly different in terms of view-point, quality and resolution.

Similar machine learning techniques have been widely used in other areas

such as object classification and even in Intelligent Transportation Systems (ITS).

However, most of the time this learning phase is not autonomous. We, on the

other hand, incorporated well-known computer vision techniques with the machine

learning techniques to derive an unsupervised system.

In our detection module, positive and negative vehicle examples are identified

automatically. Then these examples are used to train a video-specific binary classi-

fier. Vehicles in a video frame are detected using this binary classifier in conjunction

with an adaptive background model.

For tracking, we derived a simplified multi-hypotheses algorithm instead of

4



employing a straightforward linear dynamic model or a complicated probabilistic

multi-hypotheses approach. In this method, an over-complete set of tracks is main-

tained using both observed and hypothesized detections. Then a scoring function is

applied to determine the tracks corresponding to real vehicles.

1.5 Roadmap

In the following chapter we review previous research on vehicle detection

and tracking in highway surveillance videos. In Chapter 3 we explain our novel

vehicle detection approach. Chapter 4 presents our tracking algorithm. We explain

a common application of vehicle detection and tracking in Chapter 5. Finally, we

conclude and discuss possible future work in Chapter 6.

5



Chapter 2

Related Work

In this chapter we review previous work on vehicle detection and tracking.

Even though our focus is on detecting and tracking vehicles in highway surveillance

videos, we also mention previous research from related application areas.

2.1 Vehicle Detection and Tracking

Notable work in this area may be traced back to the early 1990s, where Sul-

livan [24] and Koller et al. [12] proposed model-based vehicle detection approaches.

They detected the vehicles by matching the dominant lines in a frame to the edges of

a projected 3D vehicle model. Even though these methods are capable of providing

very detailed information about the vehicles, they cannot be used once the vehicles

are partially occluded.

Michalopoulos [17] presented a background subtraction based algorithm. In

his system, background is estimated using a simple adaptive model and vehicles are

detected using background suppression. This detection process is performed in mul-

tiple user-defined spots along the highway. Then a “spatio-temporal state tracker”

coalesces these individual detections to form a high confidence decision about the

vehicle. Other vehicle detection algorithms based on various background models

have been proposed [20, 9, 18]. The primary shortcoming of these background sub-

traction only methods is that they cannot handle the situations where the vehicles

6



are partially occluded.

Koller et al. [13] proposed a deformable contours based algorithm to cope with

partial occlusions. In their “occlusion reasoning” step the ground plane constraint

is used to depth-order the vehicles. They handled the tracking using two linear

Kalman Filters, where one is used to estimate the motion and the other one is

used to estimate the shape. This tracking algorithm is effective in determining the

occlusions that eventually occur, but in the case of crowded scenes where the vehicles

enter the scene partially occluded, it will have significant errors.

In order to address the partial occlusion problem, Coifman and Beymer [5]

proposed a feature based tracking algorithm. They detected the “corner” features

and then grouped them according to a “common motion constraint”. Similarly, Jun

et al. [10] used a feature based approach to resolve occlusions. They over-segmented

the “irregular blobs” and then cluster the pieces according to the common motion

constraint of the extracted features. However, both algorithms depend solely on

the accuracy of feature detection and matching, which makes them error prone in

noisy, low resolution videos. Moreover, common motion constraint is not applicable

in very crowded scenes, where the vehicles are forced to move at similar speeds.

A relatively different approach for handling occlusions in vehicle detection

and tracking was proposed by Kamijo et al. [11]. They partitioned the input frame

into 8 × 8 pixel blocks. Detection and tracking of vehicles is done in the block-

level using background subtraction and block matching. Similar to the deformable

contour based approach mentioned before, this part based tracking method may

have errors in highway scenes where vehicles enter the scene partially occluded and

forced to move in similar speeds.

More recently, Song and Nevatia [22] incorporated a 3D model-based de-

7



tection approach with background subtraction. They created 2D templates from

the 3D vehicle models and used them to generate multiple hypotheses for a given

foreground mask. This approach makes use of the template contours, so like the

feature-based approaches, its performance on noisy, low resolution and crowded

scenes is uncertain.

Papageorgiou and Poggio [19] approached a more general problem, object

detection, from a machine learning perspective. They presented a trainable system

which may be used for detection of several different object classes, including ve-

hicles in a highway surveillance video. Their training is viewpoint-dependent and

requires different sets of “labeled” positive and negative examples for each particular

viewpoint. Forming these training sets may be costly.

2.1.1 Vehicle Detection in Ground-level Videos

There has also been a significant research in ITS about vehicle detection in

ground level videos (see Sun et al. [25] for a review). Betke et al. [2] used the relative

motion as a cue to detect the passing vehicles. They detected the distant vehicles

using a feature based approach where they evaluate the horizontal and vertical edges

in a frame.

van Leuven et al. [27] followed a simplistic approach in vehicle detection.

They created a small number of basic templates which describe the outline of a

vehicle and then used Chamfer 3/4 distance transform to locate the matches in a

frame. Like most of the other template-based ground-level detection approaches [25],

these two algorithms assume no occlusions and fairly good quality, high resolution

videos. Due to the limitations of template-based methods, more research is headed

towards appearance methods, where vehicle detection is approached as a two-class

8



pattern classification problem [25]. Like Papageorgiou and Poggio’s [19] approach,

these on-road vehicle detection methods require labelled training sets.

2.2 Object Tracking in General

In most of the previous work discussed in Section 2.1, the tracking is achieved

using linear dynamic models or Kalman Filters. These first-order Markovian meth-

ods cannot recover from failure.

Leibe et al. [14] addressed this issue by employing a multi-hypotheses track-

ing framework. They generated an over-complete set of hypothetical models and

determined the best subset using the minimum description length criterion. This

method is used to track pedestrians and vehicles in a city scene from a moving

vehicle.

Ryoo and Aggarwal [21] proposed a similar multi-hypotheses tracking ap-

proach. Their method “observes” a scene until enough information is obtained and

then probabilistically generates the most likely “explanation”.

Both of these multi-hypotheses methods perform very well in complex scenes,

but the highway surveillance imposes some restrictions that can (and should) lead

to simpler approaches.

2.3 Contribution

This work has two main contributions:

A novel method for vehicle detection in highway surveillance videos is pre-

sented. This method incorporates well studied computer vision and machine learning

techniques to form an unsupervised system. The proposed approach addresses most

9



of the aforementioned problems such as partial occlusions, low quality and noisy

videos, and costly viewpoint dependent training.

Moreover, a simple, but effective vehicle tracking algorithm is introduced.

This tracking approach considers both the near-past and the near-future observa-

tions in the process of creating vehicle tracks. This algorithm also generates hypoth-

esized detections as needed, and hence behaves like a simplified multi-hypotheses

approach.

Performance of the developed vehicle detection and tracking algorithm is

tested on a challenging task; counting vehicles in traffic surveillance videos that are

significantly different in terms of view-point, quality and clutter.

10



Chapter 3

Vehicle Detection using Unsupervised Learning

As mentioned in Chapters 1 and 2, vehicle detection in highway surveillance

videos is a challenging problem. These challenges include; large view-point changes,

low quality videos and crowded scenes. Hence, a good detection algorithm must be

robust enough to cope with all these challenges.

Figure 3.1 presents an overview of our approach. This approach has two ma-

jor phases: the training phase and the detection phase. In the training phase some

positive and negative vehicle examples are identified from background subtraction.

Then these two sets of image patches are used to train video-specific vehicle classi-

fiers. In the detection phase, background subtraction is used to determine the blobs

that are suspected to have more than one vehicle. These blobs are further processed

using the vehicle classifier obtained in the training phase.

The rest of the chapter is organized as follows: Section 3.2 explains an op-

tional pre-processing step. In this step a region-of-interest (ROI) is identified for the

surveillance video on hand. Section 3.3 reviews the employed background subtrac-

tion algorithm. In Sections 3.4 and 3.5 training and detection phases are explained

in detail. Section 3.6 presents the results of the derived detection algorithm on three

surveillance videos that are significantly different in terms of view-point, quality and

clutter. The chapter is concluded in Section 3.7.

0The work presented in this chapter is published in [26].

11



Figure 3.1: Vehicle detection system overview.

3.1 Symbols and Definitions

Symbol Definition

τarea Blob area threshold.
ws Median width of the positive vehicle examples.
hs Median height of the positive vehicle examples.
τdist Distance threshold between two detections.

Table 3.1: Parameters and symbols used in Chapter 3.

3.2 Identifying the ROI

Perspective effect in traffic surveillance videos is illustrated in Figure 3.2.

In the region that is closer to the surveillance camera, vehicles appear larger and

better separated. This region is called the “entrance region” (note that vehicles may

either enter or exit from this region). Moreover, projection of the 3D scene on the

2D image plane introduces significant occlusions and the entrance region is the part

12



of the scene which gets least affected from this projection. Hence, we define the

entrance region to be the ROI of a surveillance video in this context.

(a) Mecidiyekoy dataset. (b) Halic dataset. (c) Elmali dataset.

Figure 3.2: Example traffic surveillance videos.

The main road orientation in a highway surveillance video may be obtained

by identifying the dominant lines in the video (see Figure 3.2). This is achieved in

two steps: 1) Canny edge detection algorithm [3] is used to get the edge map of a

frame in the video and 2) Hough line transform [7] is applied to the edge map to

identify the dominant lines in the frame.

These dominant lines tend to lie on the sides and in the middle of the highway,

since these two regions have long edges that are not occluded by vehicles. With this

observation, the line with the median orientation is used in conjunction with a

predefined upper limit to set the boundaries of the ROI. This process is illustrated

in Figures 3.3, 3.4 and 3.5. This is a robust method for straight highways since the

number of cars in the scene do not affect the final results.

3.3 Background Subtraction

As Figure 3.1 shows, the quality of the background subtraction affects both

the training and the detection phases in terms of computational costs and accuracy.

13



(a) Dominant lines (in red). (b) Road orientation (in red)
and upper limit (in green).

(c) ROI (in blue).

Figure 3.3: Determining the ROI in Halic dataset (Best viewed in color).

(a) Dominant lines (in red). (b) Road orientation (in red)
and upper limit (in green).

(c) ROI (in blue).

Figure 3.4: Determining the ROI in Elmali dataset (Best viewed in color).

In this work we employed an enhanced version [10] of the adaptive background

mixture model [23].

In the adaptive background mixture model, the recent history of each pixel

is modeled by a mixture of K Gaussian distributions, where history of a pixel is a

time series of pixel values seen in that pixel (x0, y0) up to time t: {X1, . . . , Xt} =

{I(x0, y0, i) : 1 ≤ i ≤ t}. In this model, the probability of observing the current

pixel value becomes:

P (Xt) =
K∑

i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (3.1)

where K is the number of distributions and η is a Gaussian probability density

14



(a) Dominant lines (in red). (b) Road orientation (in red)
and upper limit (in green).

(c) ROI (in blue).

Figure 3.5: Determining the ROI in Mecidiyekoy dataset (Best viewed in color).

function. ωi,t, µi,t and Σi,t are the estimated weight, mean and covariance matrix,

respectively, of the ith Gaussian at time t.

Each new pixel value Xt is tried to be matched to one of these K Gaussian

distributions. If it cannot be matched to any of the existing distributions, the

distribution with the least weight is replaced with a new one. Distribution means,

covariance matrices and weights are updated accordingly.

For each pixel, B distributions with the most supporting evidence and least

variance are chosen as the background model. If the new pixel value Xt is matched

to one of these distributions, it is considered to be a background pixel. If not,

the pixel is labeled as a foreground pixel. Then a two-pass connected component

analysis is used to form the foreground blobs.

In the enhanced background subtraction method, Jun et al. [10] applies a

3D (time being the 3rd dimension) connected component analysis on the foreground

masks obtained from the original method of Stauffer and Grimson [23]. This 3D

connected component analysis incorporates both spatial and temporal information

in the background model, and hence results in extremely good foreground masks.

Additionally, the background model is capable of “adapting” itself to the chang-

15



ing lighting and weather conditions, as well as the day/night changes. Figure 3.6

illustrates a sample input and the foreground mask obtained from that input.

(a) Input frame. (b) Foreground mask.

Figure 3.6: Results of the enhanced adaptive background mixture model.

3.4 Training Phase

Independent of the classifier one may use, every training algorithm has two

major step: 1) forming positive and negative training sets and 2) feature extraction.

In many applications the former step requires manual labeling which is a costly

operation. In Section 3.4.1 we explain how to obtain these samples automatically

from the video sequences without human supervision. The latter step of training

also has a significant effect on the accuracy of the trained classifier. The employed

feature extraction method is explained in Section 3.4.2.

3.4.1 Forming the Training Sets

Figure 3.6 illustrates that foreground masks have blobs of varying sizes. One

key observation is that highway surveillance videos are usually captured from a

distance, so vehicles in the same video have similar sizes (exceptions are long buses

and trucks). Hence, the area of a blob which contains a single vehicle is significantly

different from the area of a blob that contains two or more vehicles. Consequently

a good area threshold can be used to separate these two sets of blobs.

16



Figure 3.7 shows the blob areas seen in four different datasets. As the figure

illustrates, it is relatively easy to determine where the blob areas show a steep

change. Therefore the area threshold (τarea) can be selected from the range where

this change is not significant. Additionally, since this is just the training phase, a

“safe” threshold may be chosen, which would not capture all existing single vehicle

blobs. Thresholds used for two different datasets is shown in the figure.

Figure 3.7: Blob areas in four datasets. Blobs seen in a dataset are sorted by area.
The area thresholds used for Elmali and Mecidiyekoy (B) datasets are also shown.

With these observations, patches corresponding to “small” blobs are stored

as positive examples. Figures 3.9(a) and 3.9(c) illustrate some automatically cap-

tured positive training examples from the Elmali and Halic datasets explained in

Section 3.6. Experiments showed that almost 100% of all generated positive exam-

ples contain a single, centered vehicle, when safe area thresholds are used.

17



Negative examples of the training are generated using the locations of the

positive examples. All patches centered at the corners and the edge midpoints of a

positive example boundary are taken as negative examples as illustrated in Figure

3.8. There are two primary motivations behind this unusual definition of negative

examples: 1) This way it is guaranteed that these are “real” negatives. However, if

the negatives are selected randomly, a selected patch may end up having a single

vehicle in the center. 2) The generated negative examples are “hard” negatives which

is better for the training of the classifier (illustrated in Figures 3.9(b) and 3.9(d)).

With these hard negatives the classifier is forced to learn structured clutter, rather

than just plain background, which is beneficial for accurate localization of vehicles

in blobs that are suspected to have more than one vehicle.

Figure 3.8: Relative positive and negative example centers. All patches centered
at the corners and the edge midpoints of a positive example boundary are taken as
negative examples.

(a) Elmali positive examples. (b) Elmali negative examples.

(c) Halic positive examples. (d) Halic negative examples.

Figure 3.9: Positive and negative training examples from Elmali and Halic datasets.

This strategy for automatically identifying the positive and negative exam-

ples works only if there are at least some number of well-separated vehicles in the

18



video during the training phase. This is a reasonable assumption since in the ROI

vehicles are relatively better separated and the training can be done when the high-

way is not extremely crowded.

Considering the number of existing traffic surveillance systems, and the fact

that each system consists of a large network of cameras, this unsupervised method

is crucial. On the other hand, if available, a human operator can still monitor the

quality of the generated positive and negative examples and give feedback about the

area threshold.

3.4.2 Feature Extraction

Color and texture based features are not discriminative enough to separate

the positive examples from the negative ones (see Figure 3.9). On the other hand,

positive and negative examples have significantly different line distributions and

orientations. For this reason a histogram of oriented gradients (HOG) based method,

similar to [15] and [6], is used to extract features from the patches.

First each patch is divided into four cells by a 2× 2 grid. Then for each cell,

an 8-bin HOG is computed. These histograms are normalized with respect to the

number of pixels in each cell. And finally, these 8-bin histograms are concatenated

and a support vector machine (SVM) is trained by the resulting 32-dimensional

feature vectors.

This method has two advantages: 1) Since the training examples are auto-

matically generated from the background subtraction, they have various sizes. This

method does not require any resizing or alignment, which is important since these

operations may not be accurate in this uncontrolled setting. 2) By using a 2 × 2

grid, partial spatial information is also captured. In this way the relative location

19



of the edges is also used, as well as the edge orientations, to build a binary vehicle

classifier.

3.5 Detection Phase

In the detection phase, blobs obtained by the background subtraction are

partitioned into two sets using the area threshold, τarea. As mentioned in Section

3.4.1, blobs with relatively small areas are assumed to contain only a single vehicle.

Hence, these vehicles can be detected directly by using the foreground masks. Con-

trary to this, some blobs are suspected to have two or more vehicles, so they need

to be further processed.

This is done with the help of the binary classifier generated in the training

step (see Section 3.4). Given a patch descriptor, this classifier decides if the patch

corresponds to a vehicle or not.

In order to detect the vehicles in these suspicious blobs, a sliding window

approach is used. The window size is determined by the median width (ws) and

height (hs) of the positive training examples of Section 3.4.1. As previously men-

tioned, highway surveillance videos are usually captured from a distance, so vehicles

in the same video have similar sizes. This is why a fixed window size performs well

on detecting a vast majority of vehicles (exceptions are long buses and trucks as

explained in Section 3.6).

At each pixel location along the suspicious blob, a patch centered at that

location is extracted. Then the 32-dimensional feature vector for that patch is

computed and used in the binary classifier. This process is illustrated in Figure

3.10. Figure 3.10(a) shows a blob which is suspected to have more than one vehicle.

The corresponding patch from the frame is shown in Figure 3.10(b), and Figure

20



3.10(c) illustrates the output of the pixel-wise sliding binary classifier. Each pixel

in this binary output indicates whether there is a vehicle centered at that pixel or

not.

(a) Suspicious blob. (b) Corresponding patch.

(c) Sliding window classifier output.

Figure 3.10: Processing a suspicious blob.

As Figure 3.10(c) suggests, results of the binary classifier should further be

processed in order to eliminate some false positives (misleading detections that do

not correspond to a vehicle). This is handled by the constraint that the distance

between two detected vehicle centers cannot be less than a particular threshold

(τdist). The system is relatively more sensitive to this threshold since it directly

affects the number of false positives and false negatives (vehicles which are not

detected). However, a good threshold can still be determined using the window size

and the average single vehicle blob area (see Section 3.4.1). So, for every suspicious

blob, results of the binary classifier are sorted in decreasing order of areas. Then

each result center is compared with all other result centers with larger areas. If the

Euclidean distance is less than the threshold τdist, this result is assumed to be a false

positive and is eliminated.

21



3.6 Experimental Results

Experiments are performed on three different traffic surveillance videos taken

in Istanbul, Turkey. The names Elmali, Halic and Mecidiyekoy correspond to the

locations that the videos were taken. Elmali is a very low-quality video with 384×288

resolution. Halic and Mecidiyekoy are middle- and high-quality videos with 320×240

resolutions each. For Elmali and Halic, the ROIs are automatically determined.

For Mecidiyekoy, the region of interest did not contain any suspicious blobs (due to

viewpoint, quality and amount of clutter). Hence no region of interest is determined

for Mecidiyekoy, and instead the frames are directly divided into two regions, top

(T) and bottom (B). Experiments are done independently on these two regions.

For background subtraction, the MATLAB code provided by [10] is used.

SVM related operations are handled by using the publicly available SVM library,

LIBSVM [4]. The rest of the system is implemented in C++, using the open-source

computer vision library, OpenCV [1].

Dataset
Training Test

Accuracy
+ - + -

Mecid. (T) 1001 1002 837 993 91.20%
Mecid. (B) 200 1501 135 1180 95.13%

Halic 700 7700 317 436 98.008%
Elmali 1100 11500 403 924 87.18%

Table 3.2: Training statistics. “+” and “-” are the number of positive and negative
examples, respectively.

A linear kernel is used for SVM training. Table 3.2 shows the number of

positive and negative examples used in training and testing. All of these examples

are generated automatically, and then partitioned randomly so that the training

set contains relatively more elements. The classifiers are trained with the exam-

22



ples in the training set and then tested with the examples in the test test. In each

experiment, the system extracted hundreds of positive and negative examples by

processing less than a minute of the input video. For Mecidiyekoy, only 600 frames

(∼ 20 seconds) were enough to generate the required number of examples. Classi-

fication accuracies on the test tests ranged from 87% to an impressive 98% for the

Halic dataset. The ROC curves of the four videos are illustrated in Figure 3.11.

These curves are obtained by varying the discrimination threshold between posi-

tive and negative classes. Figure 3.11 shows that with less than 10% false positive

rates, more than 90% detection accuracies can be achieved with these video-specific

classifiers.

Dataset Frames Vehicles (GT) Vehicles (D) Acc. FP FN

Mecid. (T) 100 659 633 96.05% 24 26
Mecid. (B) 100 335 313 93.43% 18 22

Halic 100 487 442 90.75% 33 45
Elmali 100 1197 1106 92.39% 85 91

Table 3.3: Frame-by-frame detection results. “GT” stands for “Ground Truth”,
“D” stands for “Detected”, “Acc.” stands for “Detection Accuracy”, “FP” stands
for “False Positives” and “FN” stands for “False Negatives”.

Frame-by-frame detection results are presented in Table 3.3 and Figures 3.12,

3.13, 3.15 and 3.14. From each dataset, 100 frames (with 10 frame periods to avoid

including very similar frames) are manually inspected. The total number of vehicles,

detections, false positives and false negatives are counted. As Table 3.3 shows,

the proposed system has very few false positives and slightly more false negatives.

Hence, extremely good detection accuracies, ranging between 90% to 96%, could be

achieved in these three significantly different and challenging highway surveillance

videos.

23



Figure 3.11: ROC curves for the classifiers.

For comparison, performance of a simple background subtraction only ap-

proach is presented in Table 3.4. In this baseline algorithm, every individual blob is

considered to be a detected vehicle. Table 3.4 shows that as the amount of clutter in

the video increases, the detection accuracies decrease dramatically with this base-

line algorithm. On the other hand, our detection algorithm identifies the suspicious

blobs and further processes them to achieve very good results. Note that different

100 frames are used in two sets of experiments.

It is worthwhile to emphasize the results of the Mecidiyekoy experiments. As

24



Dataset Frames Vehicles (GT) Vehicles (D) Acc. FN

Mecid. (T) 100 409 280 68.45% 129
Mecid. (B) 100 234 204 87.17% 30

Halic 100 488 331 67.82% 157
Elmali 100 990 564 56.96% 426

Table 3.4: Frame-by-frame detection results for the baseline algorithm. “GT” stands
for “Ground Truth”, “D” stands for “Detected”, “Acc.” stands for “Detection
Accuracy” and “FN” stands for “False Negatives”.

Figures 3.12 and 3.13 show, when the video is divided into two regions, very accurate

detection results could be achieved even though the vehicles in two regions look

different. This is because we had trained one classifier for each region independent

from the other region.

Figure 3.16 shows some shortcomings of our detection algorithm. The major

shortcoming is the poor detection of large vehicles. This can be explained by the

following; these vehicles look very different, training is done only with average-sized

vehicles and the detection window is too small for these vehicles. Other minor short-

comings are shadow-related localization problems and some false positives which

could not be eliminated by the method explained in Section 3.5.

3.7 Discussion

We presented a novel approach for vehicle detection in highway surveillance

videos. The main contribution is the underlying unsupervised learning framework

where the vehicles in a video are directly learned from the video without any prior

knowledge or supervision.

With this framework, we achieved very good detection results in three videos

that are significantly different in terms of quality, viewpoint and clutter.

25



Figure 3.12: Good detection results in Mecidiyekoy (T) dataset. Colors represent;
green: detection directly from background subtraction and red: detection by pro-
cessing suspicious blobs (Best viewed in color).

By the Mecidiyekoy experiments (see Figures 3.12 and 3.13), we showed that

this method can also be applied to complex highway surveillance videos, as long as

the video can be partitioned into several regions. The only requirement is that the

vehicles in a region should “appear” similar.

In Chapter 4 we explain a simple, but effective tracking algorithm that is

used to link the detections in consecutive frames. It is shown that this tracking

approach further improves the frame-by-frame results.

26



Figure 3.13: Good detection results in Mecidiyekoy (B) dataset. Colors represent;
green: detection directly from background subtraction and red: detection by pro-
cessing suspicious blobs (Best viewed in color).

27



Figure 3.14: Good detection results in Elmali dataset. Colors represent; green:
detection directly from background subtraction and red: detection by processing
suspicious blobs (Best viewed in color).

28



Figure 3.15: Good detection results in Halic dataset. Colors represent; green: de-
tection directly from background subtraction and red: detection by processing sus-
picious blobs (Best viewed in color).

Figure 3.16: Bad detection results. The major shortcoming is the poor detection of
large vehicles. This is mainly because the detection window is too small for these
vehicles. Shadow-related localization problems is another minor shortcoming.

29



Chapter 4

Vehicle Tracking

As explained in Chapter 3 we achieved very good detection accuracies. How-

ever, these frame-by-frame results are not enough to reveal the important traffic

parameters such as speed, flow and concentration. In order to compute these param-

eters, vehicles in the scene must be detected and tracked simultaneously. Moreover,

tracking may also be used to improve the frame-by-frame detection results.

Various object tracking approaches have been discussed in Chapter 2. These

approaches range from basic linear dynamic models [7] to more complex probabilistic

multi-hypotheses methods [14][21].

Since highway scenes are extremely restricted environments, tracking in this

environment does not require complicated methods that would be required in other

tracking applications such as pedestrian tracking. On the other hand frame-by-frame

detections are not perfect. So, a straightforward first-order Markovian approach

would not be sufficient either.

In this work we developed an efficient and effective tracking algorithm based

on having an over-complete set of tracks at any given time during the processing.

In Section 4.2 the basics of this approach is explained. In Section 4.3 the benefits of

the tracking on frame-by-frame detection results is discussed. Sections 4.4 and 4.5

explains merging and localization of tracks. In Section 4.6 the experimental results

are presented and the chapter is concluded in Section 4.7.

30



4.1 Symbols and Definitions

Symbol Definition

fn Video frame at time tn.
rn, i One observed detection in frame fn.
T Over-complete set of tracks.
T ′ Tracks in T after propagation.
Tt A new track.
Te An existing track, Te ∈ T .
ws Median width of the positive vehicle examples.
hs Median height of the positive vehicle examples.
κ1 Parameter for the observation window width.
fc Current frame, which is being processed.
fstart The first frame in the observation window.
fend The last frame in the observation window.
τmatch Distance threshold for matching a detection to a

track.

Table 4.1: Parameters and symbols used in Chapter 4.

4.2 Creating an Over-complete Set of Tracks

Figure 4.1 presents an overview of our tracking algorithm. Before proceeding

with the explanation, a few terms are defined:

observed detection - Every detection returned by the detection algorithm ex-

plained in Chapter 3 is considered to be an “observed detection (OD)”. Note

that any observed detection can actually be a true positive (TP) or a false

positive (FP).

hypothesized detection - Any detection that is generated by the tracking algo-

rithm is defined to be an “hypothesized detection (HD)”.

31



Figure 4.1: Vehicle tracking system overview.

track - A “track” is defined to be a list of observed and hypothesized detections.

A track can either be valid or invalid depending on its score.

observation window - The “observation window” is the 2κ1 + 1 frames examined

to create the over-complete set of tracks. fstart and fend are the first and the

last frames of this window.

Figure 4.2: Observation window illustration.

The over-complete set of tracks is then created as follows:

32



(a) Tracks at time t0. (b) Tracks at time t1.

(c) Tracks at time t2. (d) Tracks at time t3.

Figure 4.3: Creating an over-complete set of tracks. Solid shapes represent observed
detections, dotted shapes represent hypothesized detections. Columns correspond
to frames and rows correspond to tracks. Tracks are initiated with the ODs of the
first frame. Starting from the next frame, the ODs in all the following frames are
either matched to the existing tracks or used to create new tracks. Whenever a
track cannot be propagated by an OD, a HD is created and matched to the track.

Since there are no tracks to propagate at the beginning of the procedure, all

ODs in frame fstart are used to initiate new tracks. Starting from the next frame,

the ODs in all the following frames are either matched to the existing tracks or used

to create new tracks.

33



For every existing track, the position in the next frame is predicted using

a constant speed model. Then the OD in the next frame, which is closest to this

predicted position, is identified. If the Euclidean distance between the detection and

the prediction is less than a threshold (τmatch), the detection is added to the track.

This threshold is determined using the median positive example dimensions ws and

hs. If an OD is matched to a track, then this detection is removed from the list

of ODs for that frame. This ensures that the same OD is not assigned to multiple

tracks.

After the match making process, remaining tracks are propagated using HDs.

These HDs are generated at the predicted positions. Similarly, unmatched ODs are

used to create new tracks and these tracks are backward-propagated with HDs until

frame fstart. Track propagation and creation is illustrated in Figure 4.3. In this

figure, solid shapes on each column represent the ODs in the corresponding frame,

dotted shapes represent the HDs, and rows represent the tracks.

After the above procedure is repeated for every frame between fstart and fend,

the system has an over-complete set of tracks, where every OD within the obser-

vation window is considered. Moreover, all of the tracks have the same cardinality,

|Te| = 2κ1 + 1.

This over-complete set of tracks is maintained as the observation window

proceeds. As new frames are processed, oldest track elements are removed from

the existing tracks and new elements are added using new ODs or HDs. Also, new

tracks are added to the set whenever an OD cannot be matched to an existing track.

The tracks are removed from the set T , only when all of their elements are outside

the ROI.

34



The motivation behind this tracking algorithm is illustrated in Figure 4.4.

Frame-by-frame detection results may include FPs and FNs as well as the TPs (see

Figures 4.4(a) through 4.4(d)). These FPs and FNs in a frame can only be identified

when a set of frames within a time interval of this frame are examined collectively

(see Figure 4.4(e)).

4.3 Improving the Vehicle Detection Results

Once the global set of tracks T is generated, each track is scored with respect

to its elements. In our experiments a very simple scoring function is employed. In

this function, each track starts with a score of 0. Then for every OD in the track,

the score is increased by a value determined by the number of consecutive ODs up to

this one. Every HD decreases the score by 1. Finally, only the tracks with positive

scores are considered to be “valid” tracks for the currently processed frame.

This method easily identifies the FPs and the FNs in a frame. In a track

created due to a FP detection in the observation window, the majority of the ele-

ments are HDs. Hence, this track would have a negative score and be eliminated

(see Figure 4.3(d), 3rd and 5th rows). Similarly, FNs are the HDs of tracks with high

scores. Even though, the detection algorithm misses these detections, they can be

re-generated by the tracking algorithm (see Figure 4.3(d), 1st, 2nd and 4th rows).

The success of our tracking algorithm in identifying FPs and FNs is illus-

trated in Figure 4.5. Figure 4.5(a) shows the results obtained when only the detec-

tion algorithm explained in Chapter 3 is used. As the figure illustrates there is one

FP and one FN in this frame. Both of these could be identified and fixed by the

help of this tracking algorithm (see Figure 4.5(b).

35



(a) Detections at time t0. (b) Detections at time t1.

(c) Detections at time t2. (d) Detections at time t3.

(e) Identified FPs and FNs.

Figure 4.4: Motivation behind the tracking algorithm. Shapes represent the ODs in
the corresponding frames. FPs and FNs in a frame can only be identified when a
set of frames within a time interval of this frame are examined collectively.

36



(a) Detection results before tracking. (b) Detection results after tracking.

Figure 4.5: Improving the frame-by-frame detection results using tracking.

4.4 Merging Tracks

The tracking algorithm explained in Section 4.2 is based on creating “continu-

ous” tracks. Whenever a suitable OD cannot be located, another one is hypothesized

and the track is propagated.

In this tracking algorithm, occasionally, one vehicle may end up having two

or more tracks as illustrated in Figure 4.6. This is because each HD may introduce

a small distortion in the track. For each new frame, as long as the track orientation

cannot be fixed by an OD, this distortion will continue to increase.

Figure 4.6: One vehicle having two tracks. Solid shapes represent real detections,
dotted shapes represent imaginary detections.

Two key observations help to locate these situations where two tracks need

to be merged: 1) Even in extreme cases, the overall distortion cannot be dramatic.

Hence, two tracks that need to be merged will have a significant frame-by-frame

overlap. 2) If two tracks belong to the same vehicle, then they cannot have ODs for

the same frame.

As the global set of tracks T is updated after each frame, track pairs satisfying

the above properties are located and merged. Merging is done by replacing the

37



HDs of the first track with the corresponding ODs of the second track. If there

are no corresponding ODs in the second track, the HDs of the first track are kept

unchanged.

In the merging step it is important to mention some special cases. Two

negative score tracks should not be merged because this merge may end up validating

two FPs in the observation window. Another special case arises when two tracks

have a significant overall overlapping, but at the same have a few conflicting ODs.

In this case these tracks should be merged since these conflicts are most probably

caused by some FPs.

Figure 4.7 illustrates the benefits of this merging step. In Figure 4.7(a), a

single vehicle has three tracks associated with it. With the help of the merging step,

these three tracks could be identified and merged together as illustrated in Figure

4.7(b).

(a) Detection results before merging. (b) Detection results after merging.

Figure 4.7: Eliminating FP tracks using merging.

4.5 Backward and Forward Localization

The last step in the tracking algorithm is backward and forward localization.

Once the tracks are computed, appropriately merged and scored, then we can further

enhance the localization of the detections in a valid track.

In order to do so, vehicle specific average speeds are calculated using the

frame-by-frame detections in a track. Then the first pair of consecutive ODs, with

38



speed values within an acceptable range of the calculated average speeds, is located.

Starting from this pair, the locations of all observed and hypothesized detections are

fixed according to the average vehicle speed values. Note that all the speed values

mentioned in this chapter are given in pixels/frame.

In the backward localization, if the previous detection is not close enough to

the predicted position (τmatch is used as the threshold), then this detection is moved

accordingly. Similarly in the forward localization the same procedure is applied to

the next detection in the track. Figure 4.8 illustrates this procedure and Figure 4.9

shows its benefits. Note that this step also helps to eliminate some more FP tracks

since it “fixes” the distortions in the track orientations and hence makes it easier

for the merging step to identify these FP tracks.

Figure 4.8: Backward and forward localization. After the tracks are created, merged
and scored, the localization of the detections in a valid track can further be im-
proved. This is achieved by computing vehicle-specific average speeds and fixing the
displacements within the track that do not agree with these speeds.

39



(a) Detection results before localization. (b) Detection results after localization.

Figure 4.9: Benefits of backward and forward localization.

4.6 Experimental Results

Tracking experiments are performed on the same three traffic surveillance

videos mentioned in Section 3.6. Similar to the frame-by-frame detection experi-

ments of that section, for Elmali and Halic the ROIs are automatically determined.

For Mecidiyekoy, two non over-lapping regions (one from the top half of the frame,

and the other from the bottom half of the frame) are selected as the ROIs (see

Figure 4.10). These two ROIs are slightly different than the ones used in Section

3.6. Experiments are done independently on these two regions.

Figure 4.10: Manually selected ROIs for the Mecidiyekoy dataset.

The whole tracking algorithm is implemented in C++, using the open-source

computer vision library, OpenCV [1].

In order to get the detection results for a frame, we first created (or updated

if it already exists) the over-complete set of tracks (see Section 4.2). Then we merge

40



the appropriate tracks (see Section 4.4) and then apply the backward and forward

localization step (see Section 4.5). We achieved the best results when we apply

another merging step after the localization. This second merge helped to eliminate

a significant percentage of FPs.

In these experiments we used an observation window (see Section 4.2) of size

2κ1 + 1 = 17. Throughout the tracking, we maintained two average speeds, one for

each main highway direction. We used these average speeds to predict the position

of a track in the following frames.

In the merging step any two tracks with an overlapping area greater than

ws ∗ hs ∗ (2κ1 + 1)

3
(4.1)

are merged even when they have conflicting ODs. This is because, it is very unlikely

to have two separate vehicles in the ROI where one occludes, on average, 1/3 of the

other for 2κ1 + 1 frames.

One particular detail in the localization step helped us to get very good

tracks. In some cases, two consecutive detections in a track were very close, but the

direction of the displacement between these two detections was conflicting with both

of the two main highway directions. These detections are identified and irrespective

of their closeness, the second detection is replaced with a properly placed one.

Frame-by-frame detection results obtained before and after tracking are pre-

sented in Tables 4.2 and 4.3. Note that not the same 100 frames are used in these

two sets of experiments. Moreover, in Elmali and Halic videos, since the ROIs

mostly contain only a single side of the highway, all the vehicles in the other side

are ignored (contrary to the experiments of Section 3.6). In Mecidiyekoy (T) and

Mecidiyekoy (B) experiments, vehicles on both sides are considered.

41



Dataset Frames Vehicles (GT) Vehicles (D) Acc. FP FN

Mecid. (T) 100 659 633 96.05% 24 26
Mecid. (B) 100 335 313 93.43% 18 22

Halic 100 487 442 90.75% 33 45
Elmali 100 1197 1106 92.39% 85 91

Table 4.2: Frame-by-frame detection results before tracking. “GT” stands for
“Ground Truth”, “D” stands for “Detected”, “Acc.” stands for “Detection Ac-
curacy”, “FP” stands for “False Positives” and “FN” stands for “False Negatives”.

Dataset Frames Vehicles (GT) Vehicles (D) Acc. FP FN

Mecid. (T) 100 409 394 96.33% 25 15
Mecid. (B) 100 234 226 96.58% 16 8

Halic 100 488 460 94.26% 36 28
Elmali 100 990 920 92.92% 72 70

Table 4.3: Frame-by-frame detection results before tracking. “GT” stands for
“Ground Truth”, “D” stands for “Detected”, “Acc.” stands for “Detection Ac-
curacy”, “FP” stands for “False Positives” and “FN” stands for “False Negatives”.

As Tables 4.2 and 4.3 show, with this tracking algorithm we could improve

the detection results of Chapter 3. In two of these experiments the improvement

was significant. Interestingly the FP rate of each experiment was approximately

7%. And even with these small FP rates extremely good detection accuracies could

be achieved. Figure 4.11 compares some frame-by-frame detection results obtained

before and after tracking.

Tables 4.2, 4.3 and Figure 4.11 focus on the impact of tracking on frame-by-

frame detection results. The tracking quality is evaluated in Chapter 5.

42



4.7 Discussion

In this chapter we presented a simple, but effective approach for tracking

vehicles in a highway surveillance video. This approach is designed to identify the

FPs and FNs in frame-by-frame detection results as the tracking proceeds.

The simplicity of the current approach is a result of the restrictions imposed

by the environment. However, a major advantage of this tracking framework is

that it can easily be extended to meet the requirements of more complex tracking

scenarios.

The criteria used in track propagation is an example. It is explained in Sec-

tion 4.2 that tracks are propagated by using the Euclidean distance as the matching

criteria. In an other application, such as indoor pedestrian tracking, the surveil-

lance videos will have higher resolutions and better qualities. Then the algorithm

can make use of the visual correlation as well as the Euclidean distance in the

propagation process.

Similarly, depending on the application, a probabilistic track scoring function

can be used instead of the simple method explained in Section 4.3.

In Chapter 5 we explain how to obtain some important traffic parameters

using this vehicle tracking algorithm. This, in fact, is a major application of vehicle

detection and tracking in highway surveillance videos.

43



Before Tracking After Tracking

Figure 4.11: Detection results before and after tracking. The last row shows a major
limitation of this tracking algorithm. Large vehicles cause many FP detections in
consecutive frames. Hence these FPs cannot be identified.

44



Chapter 5

Calculating the Traffic Parameters

As mentioned in Chapter 1, the ultimate goal is to have fully automated

traffic monitoring systems that can observe, reason and decide. In previous chapters

“observing” a scene is explained. In this chapter the focus shifts to the “reasoning”

step.

Calculating the traffic parameters and recognizing important activities are

two of the most common applications of vehicle detection and tracking in highway

surveillance videos. In the latter one, important activities such as illegal actions

should be semantically defined, which is out of the scope of this work. Calculating

the traffic parameters, on the other hand, can be achieved using the vehicle tracks

obtained in Chapter 4.

The rest of the chapter is organized as follows: Section 5.2 briefly discusses

the traffic flow theory and some important traffic parameters. Section 5.3 explains

how to count the vehicles in a surveillance video using our tracking algorithm. Ex-

perimental results are presented in Section 5.4 and the chapter is concluded in

Section 5.5.

45



5.1 Symbols and Definitions

Symbol Definition

q Flow.
N Number of vehicles.
T Duration of the observation.
ūt Time mean speed.
ūs Space mean speed.

τvehicle Threshold for identifying the tracks corresponding
to vehicles.

Croi Approximate number of frames it takes for a
vehicle to pass through the ROI.

κ1 Parameter for the observation window width.
τbase Threshold used for counting in the baseline.

Table 5.1: Parameters and symbols used in Chapter 5.

5.2 Traffic Flow Theory and Important Traffic Parameters

Traffic flow theory is a tool that helps the researchers in many crucial ways.

It makes it easier to understand complicated traffic behaviour by providing solid

physical and mathematical explanations. Furthermore, it provides the necessary

theoretic background “to design and operate streets and highways with the greatest

possible efficiency” [8].

The three most important traffic parameters are flow, speed and concentra-

tion. These are defined as follows:

Flow - is the rate at which vehicles pass a given point in a highway:

q =
N

T
(5.1)

where N is the number of vehicles, and T is the duration of the observation.

Flow is usually expressed in vehicles/hour.

46



Speed - is defined in two ways:

ūt =
1

N

N∑
i=1

ui (5.2)

is the “time mean speed” with ui being the speed of the ith observed vehicle.

This is simply the arithmetic mean of the vehicle speeds. Similarly, the “space

mean speed” is the harmonic mean of the vehicle speeds and defined as:

ūs =
1

1
N

∑N
i=1 ui

(5.3)

In traffic flow theory the latter one is used more often.

Concentration - is the number of vehicles per unit length.

Out of these three important parameters, calculating speed and concentration

requires the real dimensions of the ROI. For the flow calculation only the number

of vehicles is required. T in Equation 5.1 can easily be derived using the frame rate

and the number of frames that are processed while the vehicles are being counted.

5.3 Counting the Vehicles

Our tracking algorithm maintains an over-complete set of tracks at any given

time as explained in Section 4.2. The vehicle counting problem is then solved if the

tracks that correspond to real vehicles can be identified within this over-complete

set.

In Section 4.3, improving the frame-by-frame detection results using the over-

complete set of tracks is explained. When identifying the detections in a frame, all

tracks with positive scores are assumed to be valid tracks. This criteria is good

enough for determining frame-by-frame detections, but it is not sufficient to identify

the “real vehicle tracks” in the video.

47



Hence, for counting the vehicles, a track is considered to be a real vehicle

only if it gets positive scores in a number of frames. A reasonable number for this

threshold, τvehicle, may be determined using the approximate number of frames it

takes for a vehicle to pass through the ROI.

5.4 Experimental Results

Experiments are performed on the same three traffic surveillance videos men-

tioned in Sections 3.6 and 4.6. For the counting experiments only one region (B)

from the Mecidiyekoy dataset is used.

A track that gets positive scores more than:

τvehicle
∼=
Croi

2
(5.4)

many times, where Croi is the approximate number of frames it takes for a vehicle to

pass through the ROI, is counted as a vehicle and all the other tracks are disregarded.

Dataset NF D
Ground Truth Results

Error
NV Flow NV Flow

Mecid. (B) 2250 90 256 10240 264 10560 3.12%
Halic 2250 90 235 9400 247 9980 5.10%

Elmali 2250 90 209 8360 220 8800 5.26%

Table 5.2: Vehicle counting results. “NF” stands for “Number of Frames”, “D”
stands for “Duration” and “NV” stands for “Number of Vehicles”. Duration is
given in seconds and flow is given in vehicles/hour.

Calculated number of vehicles and flow values are presented in Table 5.2.

These numbers are obtained by running the tracking algorithm on a 90 second seg-

ment of each dataset. In this tracking algorithm, tracks are independently created,

propagated and removed as the tracking proceeds. Hence, performance on a 90 sec-

ond segment seems to be a good enough approximation of performance on the whole

48



one hour of the surveillance video. Moreover, with these challenging videos, where

the flow values are higher than 8300 vehicles/hour, there is a high cost associated

with obtaining the ground truth of longer video segments.

These results may be interpreted as follows: 1) The speed-flow-concentration

relationship is clearly seen. One may expect to get larger flow values for very

crowded traffic scenes. However, concentration and speed are inversely proportional,

so vehicles in a crowded scene will have relatively smaller speeds. In our experiments

Elmali is the most crowded scene, but it has the smallest flow. 2) Error values

less than 6% show that our vehicle detection and tracking algorithm is capable of

producing very accurate results in significantly different and challenging videos.

The actual error in tracking may be slightly larger than the above error values

since during the counting process some of the FN tracks may be cancelled by other

FP tracks. However, the difference is expected to be very small since the tracks are

formed using very accurate frame-by-frame detections as explained in Chapter 4.

We compare the performance of our tracking algorithm with a simple Kalman

Filter based, first order Markovian approach in Table 5.3. In this baseline algorithm

tracks are propagated using only ODs. Tracks with number of elements greater

than a threshold (τbase) are counted as vehicles. We tested the baseline with three

different thresholds. Note that each dataset has a different value for Croi.

Table 5.3 clearly shows that simple Kalman Filter based tracking algorithms

cannot be employed in challenging applications such as vehicle counting. The pri-

mary reason is that these algorithms cannot recover from failure. A single FN is

enough to divide a valid track into two invalid tracks. On the other hand, our

approach can handle most of the FNs as well as the FPs.

49



Dataset GT
Results

Our Method τbase = κ1 τbase
∼= Croi/2 τbase

∼= Croi/4
NV Err NV Err NV Err NV Err

Mecid. (B) 256 264 3.12% 206 19.53% 198 22.65% 415 62.10%

Halic 235 247 5.10% 352 49.78% 163 30.63% 310 31.91%

Elmali 209 220 5.26% 699 234.44% 136 34.92% 393 88.03%

Table 5.3: Performance comparison with a baseline. “GT” stands for “Ground
Truth”, “NV” stands for “Number of Vehicles” and “Err” stands for “Error”.

5.5 Discussion

In this chapter we showed a simple application of vehicle detection and track-

ing in highway surveillance videos. We counted the real vehicles in the over-complete

set of tracks and then used this number to compute the traffic flow. If we had the

required highway measurements, we would also be able to compute traffic speed and

concentration values.

We achieved very good counting results. Error in the number of vehicles

reported by our approach was less than 6% for all of the datasets.

50



Chapter 6

Conclusions and Future Work

We have developed a novel approach for vehicle detection and tracking in

highway surveillance videos. In our detection module, we have shown how to build

an unsupervised vehicle detection system that is robust against view-point, noise and

low quality videos. We have also demonstrated that the restrictions imposed by the

highways may be used to develop simplified multi-hypotheses tracking algorithms,

which are very accurate and easily extendible.

We have tested our method in three traffic surveillance videos that are sig-

nificantly different in terms of view-point, quality and clutter. Our algorithm has

performed superbly in frame-by-frame vehicle detection, vehicle tracking and vehicle

counting.

In the current approach binary classifiers used in vehicle detection are not

adaptive. In future work we are planning to develop adaptive classifiers that will not

require periodic training. Also, we will test the system with more videos over longer

time periods. We are also interested in activity recognition in highway surveillance

videos.

51



Bibliography

[1] Open Source Computer Vision Library, 2000. Software available at

http://sourceforge.net/projects/opencvlibrary/.

[2] Margrit Betke, Esin Haritaoglu, and Larry S. Davis. Real-time multiple vehicle

detection and tracking from a moving vehicle. Machine Vision and Applica-

tions, 12:69–83, 2000.

[3] J. Canny. A computational approach to edge detection. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vec-

tor machines, 2001. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

[5] Benjamin Coifman and David Beymer. A real-time computer vision system

for vehicle tracking and traffic surveillance. Transportation Res.: Part C,

6(4):271–288, 1998.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. IEEE Conf. on Computer Vision and Pattern Recognition, 2005.

[7] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.

Prentice Hall, 2003.

[8] Daniel L. Gerlough and Matthew J. Huber. Traffic Flow Theory: A Mono-

graph. Transportation Research Board National Research Council, 1975.

[9] S. Gupte, O. Masoud, R. F. K. Martin, and N.P. Papanikolopoulos. Detec-

tion and classification of vehicles. IEEE Trans. on Intelligent Transportation

Systems, 3:37–47, 2002.

[10] Goo Jun, J. K. Aggarwal, and Muhittin Gokmen. Tracking and segmentation

of highway vehicles in cluttered and crowded scenes. IEEE Workshops on

Applications of Computer Vision, 2008.

[11] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi. Traffic monitoring and

accident detection at intersections. IEEE Conf. on Intelligent Transportation

System, 1999.

52



[12] D. Koller, K. Daniilidis, and H. Nagel H. Model-based object tracking in

monocular image sequences of road traffic scenes. Int. J. of Computer Vision,

10(3):257–281, 1993.

[13] Dieter Koller, Joseph Weber, and Jitendra Malik. Robust multiple car tracking

with occlusion reasoning. Proc. European Conf. on Computer Vision, 1994.

[14] Bastian Leibe, Konrad Schindler, Nico Cornelis, and Luc Van Gool. Coupled

object detection and tracking from static cameras and moving vehicles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 30(10):1683–1698,

2008.

[15] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int.

J. of Computer Vision, 60:91–110, 2004.

[16] F. G. Meyer and P. Bouthemy. Region-based tracking using affine motion

models in long image sequences. CVGIP: Image Understanding, 60(2):119–

140, 1994.

[17] P. G. Michalopoulos. Vehicle detection video through image processing: the

autoscopesystem. IEEE Trans. on Vehicular Technology, 40:21–29, 1991.

[18] B. Morris and M. Trivedi. Vector: Trajectory analysis for advanced highway

monitoring. Presented at ITS America’s Annual Meeting, 2009.

[19] Constantine Papageorgiou and Tomaso Poggio. A trainable system for object

detection. Int. J. of Computer Vision, 38:15–33, 2000.

[20] J. C. Rojas and J. D. Crisman. Vehicle detection in color images. IEEE Conf.

on Intelligent Transportation System, 1997.

[21] Michael Ryoo and J. K. Aggarwal. Observe-and-explain: A new approach for

multiple hypotheses tracking of humans and objects. IEEE Int. Conf. on

Computer Vision and Pattern Recognition, 2008.

[22] Xuefeng Song and Ram Nevatia. A model-based vehicle segmentation method

for tracking. IEEE Proceedings of the 10th Int. Conf. on Computer Vision,

2005.

[23] Chris Stauffer and W. E. .L. Grimson. Adaptive background mixture models

for real-time tracking. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, 1999.

53



[24] G. D. Sullivan. Model-based vision for traffic scenes using the ground-plane

constraint. in D. Terzopoulos and C. Brown (Eds): Real-time Computer Vi-

sion, pages 93–115, 1994.

[25] Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection: A

reviw. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28, 2006.

[26] Birgi Tamersoy and J. K. Aggarwal. Robust vehicle detection for tracking in

highway surveillance videos using unsupervised learning. IEEE Int. Conf. on

Advanced Video and Signal Based Surveillance, 2009.

[27] J. van Leuven, M. B. van Leeuwen, and F. C. A. Groen. Real-time vehicle

tracking in image sequences. IEEE Instrumentation and Measurement Tech-

nology Conference, 2001.

54



Vita

Birgi Tamersoy was born in Izmir, Turkey on April 14, 1985, the only son

of retired English teacher Çimen Tamersoy and retired computer engineer Mahmut

Tamersoy. After graduating from American Collegiate Institute in June 2003, he

entered the computer engineering program of Bilkent University, Ankara, where he

was awarded with three merit scholarships in three consecutive years. He received

his Bachelor of Science degree in May 2007. He started pursuing his graduate

degree in August 2007, in the department of Electrical and Computer Engineering

of the University of Texas at Austin. Since August 2008, he is a member of the

Computer and Vision Research Center and working under the supervision of Dr. J.

K. Aggarwal.

Permanent address: Armagan Sokak No:1 Sahilevleri Mahallesi
Narlidere Izmir, TURKEY 35320

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

55


