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Abstract 

A New Approach to Modeling Drop-Pair Collisions: 

Predicting the Outcome through a Fluidic-Mechanical 

System Analogy 

 

Paul Vincent Van Noordt, M.S.E. 

The University of Texas at Austin, 2009 

 

Supervisor:  Carlos H. Hidrovo 

 

A theoretical study of the approach and collision of 

liquid-drop pairs is performed with results obtained 

numerically.  The collision process is modeled by a 

squeeze-flow problem involving both planar and non-planar 

geometry, with attention given to the deformation of the 

interacting interfaces.  Based on the nature of the 

collision process, an analogy is made between the fluidic 

systems of colliding liquid bodies and a mechanical mass-

spring-damper system.  Examination of the analogous 

mechanical system yields the derivation of an effective 

damping ratio, !*, which is used to predict the outcome of 

the drop-drop collisions.  Predictions made by utilizing 

the effective damping ratio are then compared to 

experimental results presented in literature.   
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Chapter 1 

Introduction 

1.1 MOTIVATION 

Microfluidics refers to the study of manipulating fluids 

within networks of very small channels, typically with 

dimensions of ~5—500 µm.  Over the past several decades, the 

study of microfluidics has gained momentum as it has proven 

to be of great value in many engineering and scientific 

applications.  Because of the small scales involved, 

microfluidics requires only small sample sizes, which can 

result in shorter reaction and analysis times, relatively 

cheap costs, and little waste.  These characteristics of 

microfluidics make it especially useful in biology, 

chemistry, and medicine (Weibel & Whitesides, 2006).  Other 

industrial applications of microfluidics include combustion 

spray systems, ink-jet printing, micro-electromechanical 

systems (MEMS), as well as microscale total-analysis 

systems (Micro-TAS) and lab-on-a-chip (LOC) devices.   

The purpose of the present study is to investigate the 

process of two drops colliding head-on in order to gain a 

better understanding of the mechanisms that govern the 

outcome of the collision.  The relationship between kinetic 

and surface energy of the colliding drops is considered, as 

are the properties of the intervening gaseous medium, as 

factors that govern the outcome.  It is widely accepted 
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that one of four primary outcomes are possible after two 

drops collide, namely bounce, coalescence, disruption, or 

fragmentation (Orme, 1997).  Consideration of the factors 

that are believed to govern the collision process allow the 

development of a criteria that can be used to predict the 

outcome of the collision under a given set of initial and 

boundary conditions. 

1.2 REVIEW OF LITERATURE 

Interest in the collision process of liquid drops dates 

back as far as 1896 when Lord Rayleigh wrote about the 

collision of liquid droplets and the influence of 

electricity on the collision outcome (Rayleigh, 1896).  

Interest in drop collisions peaked in the early 1960’s as 

investigators became more interested in understanding 

raindrop formation and the behavior of raindrop 

interactions during free fall.  Many of the early 

experiments aimed at determining conditions under which 

water drops falling at terminal velocity would coalesce to 

form larger drops, as in the formation of precipitation. 

Many of the early experimenters focused on the Weber 

number, We = "V2D/# (where " is the drop density, V is the 

drop approach velocity, D is the drop diameter, and # is 

the drop surface tension), as a characteristic parameter 

that can be used to predict the outcome of drop-drop 
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collisions.  R.M. Schotland investigated the collision of 

drops of radii ranging from 100-400 µm onto a hemispherical 

surface and concluded that the drops tended to coalesce for 

We > 3 (Schotland, 1960).  Shortly thereafter, R. Gunn 

found that pairs of drops with radii, r = 1 mm bounced for 

relative approach velocities of V < 0.4 m/s, which 

corresponds to We < 4 (Gunn, 1965). 

In 1972, P.R. Brazier-Smith, et al. published their work 

that investigated the interactions of falling water drops 

of varying radii.  The drop radii ranged from 150-750 µm and 

the relative approach velocities ranged from 0.3-3 m/s.  

The study revealed four possible outcomes of the drop 

collisions: bouncing, permanent coalescence, coalescence 

followed by separation, and coalescence followed by 

separation and fragmentation, which resulted in the 

formation of satellite droplets.  Based on simple energy 

concepts, the authors derived an expression for coalescence 

efficiency, 

 

(1) 

 

 

where f(R/r) is a function of the droplet size ratio.  

Furthermore, they found that an accurate threshold for 

describing bouncing during the collision of equal-sized 
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drops is rU2"/# ~ 2.12.  This states that the collision of 

two equally sized drops of the same liquid is likely to 

result in bouncing if the corresponding Weber number (based 

on drop radius, r) is less than 2.12, or We < 2.12.  In 

addition, the effect of drop charge on the collision 

process was also investigated.  (Brazier-Smith, Jennings, & 

Latham, 1972) 

Later, in 1978, S.G. Bradley and C.D. Stow published 

Collisions Between Liquid Drops, in which they reported the 

results of a series of experiments that investigated the 

collision between free-falling drops of different sizes.  

The drops were allowed to reach their terminal velocities, 

and the trajectory, size, and electric charge of each drop 

was carefully controlled.  The experimental setup utilized 

synchronized flash photography to obtain images of the 

collision process.  (Bradley & Stow, 1978) 

Bradley and Stow attempted to describe the physics of the 

collision process in terms of an impact parameter, which 

they denoted as X (the impact parameter is a term that is 

related to the orientation of the drops during flight), and 

three different energy parameters: the electrostatic 

energy, rotational energy, and total energy of the drop 

system before impact.  Depending on the impact parameter, 

four types of rotational behavior after collision were 
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observed.  For nearly head-on collisions, however, very 

little rotation was observed in the resulting drop.  

Bradley and Stow also performed an analytical study of 

the film drainage process as a supplement to their 

experiments.  Lord Rayleigh was the first to propose the 

theory that a thin film of the gaseous medium between 

colliding drops is responsible for inhibiting coalescence.  

Since then, Lord Raleigh’s theory has become widely 

accepted among investigators.  Bradley and Stow simplified 

the problem by modeling the collision of disks rather than 

spherical drops and utilizing the lubrication 

approximation.  Their analysis accounted for interfacial 

motion as well as surface deformation.  Using simple 

theoretical concepts to model the flattening of the drops, 

combined with experimental results, the authors formulated 

a requirement for coalescence: 

 

(2) 

 

where R is the drop radius [mm] and We is the corresponding 

drop Weber number.  One shortcoming of this particular 

investigation is that the parameter values were limited in 

order to focus on reproducing atmospheric conditions. 

Stergios G. Yiantsios and Robert H. Davis have also 

studied the approach and collision of two viscous drops 
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rather extensively.  They first analyzed the approach of a 

viscous drop towards a deformable interface under the 

constraint of small Bond number, Bo = $"ga2/#, where a is 

the radius of the drop.  The limitation of small Bond 

number ensured that the deformation of the drop and 

interface that results from the lubrication force (for an 

analysis of the lubrication force, see Davis, Schonberg, & 

Rallison, 1989) remains negligible until the gap between 

the surfaces is very small.  By applying lubrication theory 

in the thin film between the surfaces and utilizing a 

boundary integral method to resolve the fluid-phase 

movement on each side of the film, Yiantsios and Davis 

showed that a dimple would always form on the surface under 

sufficiently long approach times.  The dimpling allows for 

the possibility of coalescence via the attraction of the 

surfaces due to van der Waals forces.  (Yiantsios & Davis, 

1990) 

Yiantsios and Davis later extended their work to 

include the approach of two viscous drops of different 

radii under buoyancy-driven axisymmetric motion (Yiantsios 

& Davis, Close Approach and Deformation of Two Viscous 

Drops due to Gravity and van der Waals Forces, 1991).  

Again, they limited the analysis to small capillary number, 

Ca = µV/#, and used similar techniques as in their previous 

work for resolving the flow field within the intervening 



 7 

film between the drops.  They also accounted for the 

internal circulation of the drops that results from large 

tangential stresses along the drop surfaces.  Numerical 

calculations were used to track the evolution of the drop 

shape as well as predict the “rupture time” of the 

intervening film.  The key limitation of both previously 

discussed analyses performed by Yiantsios and Davis is that 

the results are valid only within the creeping flow regime, 

which requires that the Reynolds number of the drops, Re = 

"VD/µ, be much less than 1.  This limits the analysis to 

very slow approach velocities, as found in buoyancy-driven 

flows.  Despite their limitations, Yiantsios and Davis’ 

studies have provided motivation and reference for many 

other investigators, such as S.A.K. Jeelani and S. 

Hartland, who followed Yiantsios and Davis’ methodology to 

study the effect of surface mobility on the collision of 

drop pairs (Jeelani & Hartland, 1998). 

Many contemporaries of Yiantsios and Davis were also 

looking into the collision of liquid drops.  For example, 

N. Ashgriz and J.Y. Poo published their work in 1990, which 

studied the collisions of water drops with size ratios of 

1, 0.75, and 0.5, and with We ranging from 1—100.  Ashgriz 

and Poo concluded that the parameters that most influence 

the outcome of the collision are the Weber number, the 

drop-size ratio, and the impact parameter.  For equally 
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sized drops, they found that the collision results in 

either reflexive separation or stretching separation.  

Bouncing was not observed under any circumstances.  

However, for nearly head-on collisions of equal-sized 

drops, the smallest Weber number imposed was 5, which 

prohibited the possibility of observing bouncing at lower 

We values.  (Ashgriz & Poo, 1990) 

J. Qian and C.K. Law performed what is arguably the 

most comprehensive and most cited study of drop collisions 

to date (Qian & Law, 1997).  They investigated the dynamics 

of binary drop collisions by making use of series of time-

resolved photographs that captured the collision process.  

The experiments consisted of both water and hydrocarbon 

drops colliding within various gases under varying 

pressures, enabling a wide range of collision conditions to 

be studied.  They found that five regimes of collision 

outcomes exist: coalescence after minor deformation, 

bouncing, coalescence after significant deformation, and 

coalescence followed by separation for both head-on and 

off-center collisions.  Qian and Law created collision maps 

in terms of the Weber number and impact parameter that show 

the boundaries between the five different regimes.  A 

representative collision map as created by Qian and Law is 

shown in Figure 1. 
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Figure 1: Representative collision map as created by Qian 
and Law (Qian & Law, 1997). 

 

Although the map in Figure 1 shows a bouncing regime, Qian 

and Law did not observe bouncing for water droplets under 

any circumstances.  They suggest this is because of the 

relatively high surface tension and low viscosity of water 

compared to hydrocarbon, which together act to prohibit the 

expelling of the gaseous film that acts as a barrier to 

coalescence.  However, they note that bouncing may very 

well occur for low-We head-on collisions of water drops in 

a high-pressure gas field, although this particular setup 

was not investigated.   

In addition to capturing photographs of the collision 

process of liquid drops, Qian and Law also derived a 

criterion that governs the transition between bouncing and 
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coalescence.  Using simple energy arguments, they found 

that the critical We beyond which coalescence occurs is 

dependent on the Ohnesorge number, Oh = 16µ/("R#)1/2; that 

is 

 

(3) 

 

where Z is the Ohnesorge number, % is a geometry parameter 

that is independent of the liquid properties, and & is a 

term that is related to the surface energy associated with 

the deformation, and hence the increase in surface area, of 

the colliding drops. 

Melissa Orme published a thorough review of 

experiments regarding drop collisions in 1997.  She 

compared and contrasted a number of significant experiments 

to date and found that although many investigators 

attempted to define the drop-drop collision process in 

terms of We and an impact parameter, there have been 

qualitative disagreements concerning the critical We that 

defines the boundary between the various collision outcome 

regimes.  Orme suggested that one possible reason for 

discrepancies amongst investigators who worked with similar 

fluids is that perhaps the presence of surfactants on the 

drop surfaces affects the collision outcome, a possibility 

that has been overlooked in many of the experiments she had 
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reviewed.  Orme also noted the significant differences 

between the behavior of water drops and fuel drops.  This 

finding supports the notion that the behavior of liquid 

drops depends strongly on the drop surface tension and 

viscosity, as well as the ambient gas properties, including 

density, viscosity, and pressure.  As a result, the value 

of the critical We that defines the threshold between the 

various regimes of the collision will vary with the drop 

fluid as well as the ambient fluid.  (Orme, 1997) 

Following Qian and Law, many investigators continued 

to study the collision of drops of various liquids under a 

wide range of conditions.  For example, J.P. Estrade, et 

al. studied ethanol drops colliding in air at atmospheric 

conditions (Estrade, Carentz, Lavergne, & Biscos, 1999).  

They focused their study on drops of diameter ranging from 

80—300 µm with approach velocities of 3—12 m/s.  Similar to 

previous investigators, Estrade, et al. used photographic 

images of the collision process to determine critical We 

values separating the various collision regimes.   
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Additionally, Estrade, et al. also performed an energy 

analysis to determine a new correlation that predicts 

bouncing in terms of We.  They argued that in order for 

bouncing to occur, the kinetic energy associated with the 

deformation of the drops can not exceed the energy that is 

required to produce a “limit deformation” (Figure 2). 

Figure 2: Sketch of drop deformation during bouncing, 
resulting in a "limit deformation" (Estrade, et 
al. 1999). 

 

This analysis resulted in a correlation that fit their 

experimental data very well.  The correlation predicted 

that the critical Weber number, Wecrit, that separates the 

bouncing and coalescence regimes is about 2.8, whereas the 

experimental results indicate that Wecrit ~ 4.57.  Although 

the correlation fit their data well, it disagreed greatly 

with previous predictions made by Brazier-Smith, et al. 
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(Brazier-Smith, Jennings, & Latham, 1972).  One limitation 

of this particular experiment is that the experimental 

setup only permitted bouncing to be observed for nearly 

head-on collisions with impact parameters of 0.3 or greater 

(head-on collisions correspond to an impact parameter of 

0). 

In recent years, investigators began to focus more on 

creating numerical models to predict the outcome of drop-

drop collisions, using the abundance of existing 

experimental results as a basis of comparison.  Scott L. 

Post and John Abraham (Post & Abraham, 2002) created a 

composite model that incorporated many of the previous 

correlations from past studies, such as those of Brazier-

Smith’s study (Equation (1)).  The motivation behind 

creating a composite model is that, as Qian and Law showed 

(Qian & Law, 1997), hydrocarbon drops tend to behave very 

differently than water drops under the same conditions.  

Therefore, in order to gain a better understanding of drop-

drop collisions in diesel sprays, for instance, 

modifications to the existing correlations that were 

primarily based on water drops were needed.  A comparison 

of Post and Abraham’s analytical composite model to various 

experimental models is shown in Figure 3. 
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Figure 3: Comparison of analytical and experimental 
collision maps for equal-sized drops at Patm = 1 
bar (Post & Abraham, 2002). 

 

Post and Abraham found that their composite model, which 

accounted for reflexive separation, rotational separation, 

as well as bounce, predicted a much lower coalescence rate 

than did Brazier-Smith’s earlier model.  As the authors 

themselves noted, many of the limitations of this study 

were a result of numerical inadequacies.   

Gloria Bach, et al. also studied the collision between 

small aerosol droplets with an emphasis on determining the 



 15 

conditions under which the droplets would bounce or 

coalesce.  Bach, et al. experimented with 20 and 40 µm 

radius water droplets of small We, approximately '(1), as 

they approached water sublayers under various pressures and 

viscosities.  Using asymptotic theory, which is only valid 

for small We conditions, they found that the critical Weber 

number that separates the bouncing and coalescence regimes 

is strongly dependent on the pressure and viscosity of the 

ambient gas through which the colliding drops travel.  

Their findings imply that the collision outcome is much 

more dependent on the Ohnesorge number, Oh, as well as the 

Knudsen number, Kn = (/a (where ( is the mean free path of 

the gaseous medium and a is the drop radius), rather than 

simply the Weber number of the colliding drops.  (Bach, 

Koch, & Gopinath, 2004) 

Yosang Yoon, et al. also studied the coalescence 

process of two equal-sized drops in an axisymmetric flow by 

utilizing an integral-boundary method.  Because it has been 

previously shown that the deformation of the colliding 

drops play an important role in the drainage of the 

intervening gaseous film that prohibits coalescence, Yoon, 

et al. were interested in modeling the drop shape evolution 

throughout the collision process.  They found that the 

drainage time of the film scales with Ca4/3, where Ca is the 

capillary number.  They also studied the relation between 
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the drainage time and the critical film thickness required 

for coalescence to occur.  They found that at moderate Ca 

values, the internal circulation of the drop might actually 

arrest the drainage process, which implies there may be a 

critical Ca that is required for coalescence to occur.  

(Yoon, Baldessari, Ceniceros, & Leal, 2007) 

Despite a rather extensive analytical and numerical 

investigation of the coalescence process, Yoon, et al. 

found a number of major discrepancies between the 

experimental results of past investigators and their own 

analytical results.  For example, the experimental and 

analytically predicted drainage times varied significantly.  

The authors suggest some of the inconsistencies may be due 

to viscoelastic effects of the deforming surfaces that were 

unaccounted for, as well as the fact that the axisymmetric 

assumption used in the analysis may not be valid for 

moderate Ca values.  In addition, they note that the 

continuum assumption may lose validity for sufficiently 

small film thicknesses.  (Yoon, Baldessari, Ceniceros, & 

Leal, 2007) 

Within the past year, investigators have continued to 

focus on improving existing numerical methods used in 

simulating drop-drop collisions.  N. Nikolopoulos, et al. 

presented a numerical investigation using the Volume of 

Fluid scheme (V.O.F.), which is useful for tracking the 
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liquid-gas interface of the colliding drops  (Nikolopoulos, 

Nikas, & Bergeles, 2009).  They employed two separate 

V.O.F. indicator functions in order to track both colliding 

drops separately throughout the entire collision process.  

The authors compared their numerical results to the 

experimental results of Qian and Law (Qian & Law, 1997) and 

found that they agree very well.  The V.O.F. method was 

able to accurately predict the details of the flow, such as 

the shape evoluation of the colliding drops.  Unforunately, 

experimental data did not exist for very high We values, so 

the authors were unable to test their numerical scheme for 

collisions under such conditions. 

Another recent numerical investigation of drop-drop 

collisions was performed by Shoaping Quan, et al.  They 

used a three-dimensional moving mesh interface tracking 

method (M.M.I.T.) to simulate multiphase flows, such as 

those encountered during drop-drop collisions.  They were 

able to accurately simulate the head-on coalesecnce of drop 

pairs by predicting the evolution of the bridge radius, 

which proved to agree well with experimental observations.  

(Quan, Lou, & Schmidt, 2009) 

Investigations into the dynamics of drop-drop 

collisions continue to gain the interest of many 

investigators.  Understanding the details of interactions 

between pairs or clusters of drops allows for the 
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possibility of manipulating individual drops precisily, 

which would be of great value to the study of 

microfluidics.   

For example, a groundbreaking study was just recently 

published by Tristan Gliet and John W. M. Bush in which 

they investigated liquid drops falling onto a soap film.  

They considered two cases corresponding to a static soap 

film and a vibrating soap film.  Under the static 

conditions, a number of collisions were observed, namely 

bouncing, crossing, where the liquid drop crossed through 

the soap film, and partial coalesecnce, where part of the 

approaching drop crossed the film and part of the drop was 

ejected from the surface as a satellite droplet.  A 

theroretical analysis revealed that the soap film may be 

modeled as a non-linear spring.  Through a combination of 

theoretical analysis and experimental investigation, the 

authors found that the critical Weber number that defines 

the transition between bouncing and crossing (crossing is 

analogous to coalescence in terms of drop-drop collisions) 

is Wecrit ~ 16.  (Gilet & Bush, 2009) 
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Chapter 2 

Theoretical Models 

2.1 PLANAR BODY APPROACHING NON-DEFORMABLE SURFACE 

The situation of two liquid drops approaching one 

another may be viewed as a simple squeeze-flow problem, in 

which two bodies are brought together, forcing out the 

fluid between them.  The “squeezing” of the intervening 

film causes a pressure distribution, which results in a 

normal force that is applied to each body.  In order to 

gain a greater understanding of the physics involved with 

the collision of liquid drops, the problem may be further 

simplified by modeling the situation as a squeeze-flow 

involving two planar bodies: that is, a rectangular plate 

of mass m approaching a non-deformable, planar surface.  A 

schematic of the problem description is shown in Figure 4. 

 

Figure 4: Squeeze-flow involving a planar body. 
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Squeeze-flow problems such as that described above 

typically involve flow regions where the characteristic 

length across the flow is very thin compared to the 

characteristic length along the flow direction (i.e. h(t) 

<< L).  If the corresponding Re of the flow is also small 

or moderate, lubrication theory may be utilized.  This 

approximation is used throughout this analysis.  It is also 

assumed that the intervening film is an immiscible fluid of 

constant density and that the flow is axisymmetric and 

unidirectional.  In such a situation, an order-of-magnitude 

analysis applied to the conservation of momentum equation 

in the x-direction reveals that the inertia terms may be 

neglected, resulting in a balance between pressure and 

viscous forces  (Panton, 2005): 

 

 

                           (4) 

 

A similar analysis of the y-direction conservation of 

momentum equation simply reveals that the pressure is 

dependent on the x position only, that is P = P(x-only).   

The velocity profile of the intervening fluid is 

obtained by first integrating Equation (4) and applying the 

following boundary conditions: 
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u(y = 0) = 0 

u(y = h) = 0. 

The resulting velocity profile in the x-direction is 

 

                        (5) 

 

From the velocity profile, the volumetric flow rate of the 

intervening film, Qout, is found to be 

 

                     (6) 

 

 

where w is the width of the approaching plate and the 

factor of 2 accounts for the symmetry of the unidirectional 

flow.  A control volume analysis allows for the 

determination of the pressure distribution, which is 

achieved by equating the volumetric flow rate of the 

intervening film to the rate of change of the control 

volume.  An appropriate control volume for this situation 

is shown in Figure 5. 
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The rate of change of the control volume is 2wx(dh/dt); 

continuity then requires that 

 

                   (7) 

 

where the right-hand side of Equation (7) was obtained by 

evaluating the integral in Equation (6).  Equation (7) may 

be rearranged to solve for the pressure gradient within the 

intervening film, which can then be used to obtain the 

pressure distribution throughout the film: 

 

 

                       (8) 

 

 

Figure 5: Control volume for squeeze-flow analysis. 
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The single boundary condition needed to solve for the 

pressure distribution is the requirement that the pressure 

at the edge of the control volume be that of the ambient 

gas outside of the control volume, which is set equal to P0, 

or Patm. 

Finally, the hydrodynamic force acting upon the 

approaching bodies is obtained via integration of the 

pressure distribution, resulting in 

 

                   (9) 

                   

 

The ultimate goal of this analysis is to obtain an 

evolution equation for the thickness of the intervening 

film.  In terms of colliding drops, understanding how the 

intervening film diminishes in thickness and the 

corresponding surfaces deform would allow one to determine 

whether or not coalescence via attraction due to van der 

Waals forces is achievable under a given set of conditions.  

For the present case (i.e. a planar body approaching a non-

deformable surface), application of Newton’s law results in 

an evolution equation of the form: 

 

            (10) 
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Nondimensionalization of governing equations is often 

very useful because it reduces the number of parameters 

that must be used to fully define a problem and it 

simplifies the governing equations significantly.  In this 

case, the evolution equation given by Equation (10) may be 

nondimensionalized by introducing the following 

characteristic scales: 

Characteristic length, Lc = L 

Characteristic time, tc = m/(wµ). 

The resulting evolution equation for the nondimensional 

film thickness is 

 

                  (11) 

 

where the overbars represent nondimensional parameters.  

The present analysis may be extended to include bodies of 

various shapes approaching a non-deformable surface.  The 

effect of the body shape on the evolution of the 

intervening film provides insight into the effect of 

surface deformation during a drop-drop collision.  With 

this in mind, analyses were performed for both a disk-

shaped body and a cylindrical body approaching a non-

deformable surface (Figure 6). 
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         (a)                 (b) 

 

The derivations of the governing equations are identical in 

procedure (see Appendix A for complete derivations) to the 

planar case.  The resulting evolution equations for the 

disk and cylindrical cases are: 

 

 

                            (12) 

                 

 

As shown, the cases of the disk and the plate approaching a 

non-deformable surface result in the same evolution 

equation for the intervening film thickness, h.  The 

cylindrical body, however, results in a slightly more 

complex equation, indicating that indeed the shape of the 

approaching body affects the film thickness and hence the 

collision outcome. 
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Figure 6: (a) Approach of disk-shaped body and (b) cylindrical 
body towards a non-deformable surface. 
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2.2 PLANAR BODY APPROACHING DEFORMABLE SURFACE 

The previous analyses involving various bodies of 

different shapes approaching a non-deformable surface may 

be expanded by allowing one surface to deform.  This 

approach more closely simulates the drop collision process, 

since the drop surfaces deform as the pressure within the 

intervening film increases, which has been shown to have a 

significant effect on the collision outcome.  The following 

schematic represents the setup of a squeeze-flow involving 

a planar body of length L approaching a deformable surface.  

This arrangement is very similar to that used in the 

analysis performed by Yiantsios and Davis  (Yiantsios & 

Davis, On the Bouancy-Driven Motion of a Drop Towards a 

Rigid Surface or a Deformable Interface, 1990). 
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The procedure to obtain an evolution equation of the 

deformation, )(x) for the situation shown in Figure 7 is 

identical to the previous cases involving non-deformable 

surfaces.  Beginning with the simplified x-direction 

conservation of momentum equation (Equation (4)), the 

velocity profile of the film becomes 

 

              (13) 

 

The primary difference between the present analysis and 

that of the cases involving a non-deformable surface lies 

within the boundary conditions.  With a deformable surface, 

the boundary conditions used to solve for the velocity 

profile are as follows: u(h) = u()) = 0. 

Once again, the volumetric flow rate of the film is 

obtained via integration of the velocity profile, that is 

Figure 7: Squeeze-flow with deformable surface. 
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                   (14) 

 

Substituting the velocity profile into Equation (14) and 

performing the integration results in  

 

             (15) 

 

In this case, the control volume now includes a deformable 

surface.  Therefore, the rate of change of the control 

volume is wx(dh/dt – d)/dt), where the term d)/dt accounts 

for the rate of change of the deformation of the deformable 

surface.  As before, the volumetric flow rate of the film 

is set equal to the rate of change of the control volume, 

allowing an expression for the pressure gradient to be 

obtained: 

 

             (16) 

 

 

Equation (16) shows that the pressure gradient is 

dependent on the position of the approaching plate as well 

as the deformation of the deformable surface.  Because an 

exact form of the deformation is not known, an analytical 

solution is not available and numerical methods must be 

employed.  In order to apply Newton’s second law to the 
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approaching bodies, a finite-difference formulation is 

applied to the pressure gradient in Equation (16).  This 

allows numerical integration to be used to solve for the 

force acting upon the approaching plate.  Equation (16) may 

then be rewritten as 

 

       (17) 

 

where the superscripts n and (n-1) represent the nodal 

points along the x direction.  Now, the force may be 

calculated by applying Newton’s law and performing a 

numerical integration: 

 

                  (18) 

 

where the summation is carried out over the length 0*x*L/2, 

and the factor of 2 accounts for the symmetry of the 

pressure distribution.   

Finally, the governing equations are 

nondimensionalized with the following characteristic 

scales: 

Characteristic length, Lc = L 

Characteristic time, tc = m/(µw) 

Characteristic pressure, Pc = µ
2w/m 
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The resulting set of nondimensional governing equations 

becomes: 

 

 

         (19) 

    

 

As shown in Equation (19), the pressure at each node is a 

function of the deformation at that particular node.  

Because the functional form of the deformation is not known 

explicitly, an addition parameter is needed to close the 

system of governing equations. 

The pressure and deformation at each node may be 

linked by introducing the concept of Laplace pressure.  The 

Laplace pressure refers to the overpressure that exists in 

the interior of a liquid drop, which is a result of the 

liquid’s surface tension.  Surface tension may be viewed in 

two perspectives; it may be viewed as the energy required 

to increase a surface area by one unit and it may also be 

viewed as a force per unit length, which acts normal to the 

surface and toward the liquid (de Gennes, Brochard-Wyart, & 

Quere, 2004).   

A drop tends to adopt a spherical shape in order to 

reduce its surface area.  When the surface area is 

increased, work is done by both the overpressure within the 
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drop as well as the surface tension.  However, at 

mechanical equilibrium, the drop remains spherical and the 

pressure and capillary forces balance each other.  This 

requirement is at the origin of Laplace’s theorem, which 

states that the pressure difference across the surface of a 

drop is equal to the product of the surface tension and the 

curvature of the surface.  In the present analysis, which 

is two-dimensional, only one curvature exists.  Therefore, 

Laplace’s theorem may be written mathematically as 

 

             (20) 

 

The radius of curvature of an explicitly described 

curve with the form y = f(x) is defined as (Edwards & 

Penney, 2002) 

 

                 (21) 

 

 

Therefore, Equation (21) may be used to define the radius 

of curvature of the deformable surface with the form ) = 

)(x) (Figure 7).  Consequently, Equations (19)–(21) relate 

pressure to deformation, which allows for the deformation 

of the surface to be determined. 
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2.3 SYMMETRIC APPROACH OF TWO DEFORMABLE CYLINDRICAL BODIES 

The analysis of a planar body approaching a deformable 

surface may be modified to model the situation shown in 

Figure 8. 

 

       (a)                           (b) 

 

Figure 8 illustrates a schematic of two liquid drops 

approaching one another (in two dimensions).  Because of 

the symmetry of the flow within the intervening film, a 

plane of symmetry may be used to simplify the analysis.  As 

a result, an appropriate control volume is that shown in 

Figure 8(b).   

Figure 8: (a) Schematic of two liquid drops approaching one 
another (b) Appropriate control volume for 
current analysis. 
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The control volume analysis for the situation depicted 

in Figure 8 is identical in procedure as the previous two 

analyses.  However, it should be noted that in the current 

analysis a deformation is applied to the approaching bodies 

so that they are initially circular in shape, similar to 

actual liquid drops.  As the bodies approach one another 

and the pressure within the intervening film increases, 

additional deformation will occur, causing the bodies to 

lose their circular shape (see Figure 9). 

 

 

 

Once again, the simplified conservation of momentum 

equation in the x-direction is applied to the fluid flow 

within the intervening film.  The boundary conditions for 

the velocity profile are: 

 

 

Figure 9: Example of surface deformation for initially 
circular body. 
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                     (22) 

 

The first boundary condition is a symmetry condition that 

requires the velocity gradient along the plane of symmetry 

to be zero.  The second boundary condition is simply a no-

slip condition along the body surface.  Application of 

these boundary conditions results in a velocity profile of 

 

             (23) 

 

The volumetric flow rate is obtained in the same 

manner as before.  The new limits of integration over which 

the velocity profile, u(y) is integrated are y = ) (lower 

limit) and y = h (upper limit).  This accounts for the 

shape of the deformable surface, since the origin remains 

at the center of the approaching body.  Again, by setting 

the volumetric flow rate of the film equal to the rate of 

change of the control volume, the pressure gradient of the 

film is found to be 

 

            (24) 
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Following the same procedure as described in the previous 

section, the resulting set of governing equations is: 

 

 

 

         (25) 

 

 

 

where Pc is the characteristic pressure scale (Pc = µ
2w/m), 

Ri is the initial radius of curvature of the cylindrical 

body, and Pin is the internal pressure of the cylindrical 

body.  The initial internal pressure is defined by 

Laplace’s equation (Equation (20)), where Ri is substituted 

for “R”. 
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Chapter 3 

Analogy to Mass-Spring-Damper System 

3.1 VISCOELASTICITY AND THE MAXWELL MODEL 

The outcome of a drop-drop collision is determined by 

the interaction between several mechanisms, namely the 

viscous damping of the drops’ momentum by the intervening 

film, the deformation of the drops’ surfaces due to surface 

tension effects, and the initial conditions of the drops as 

they are brought together.  This complex system may be 

greatly simplified using a model of an analogous mass-

spring-damper system (Figure 10). 

 

 

Figure 10 shows a mechanical mass-spring-damper system 

that is connected in series superimposed over the fluidic 

Figure 10: Analogy between fluidic system and mechanical 
mass-spring-damper system. 
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system comprised of a planar body approaching a deformable 

surface.  The implication is that as the mass approaches 

the deformable surface, the intervening film acts precisely 

as a viscous damper, slowing the plate’s momentum by 

applying a normal force that opposes the plate’s motion.  

The force also deforms the lower surface, which acts very 

much like a spring in that, as it deforms, it too applies a 

normal force that opposes motion.  The interaction between 

these various mechanisms ultimately determines whether or 

not the plate will coalescence with the deformable surface, 

gradually come to rest at some position above the surface, 

or rebound due to sufficiently high damping forces. 

The system of a spring element and damping element 

connected in series, such as that shown in Figure 10, is 

known as the Maxwell model.  The Maxwell model is used to 

model viscoelastic materials, such as rubber, synthetic 

rubber-like materials, and commercial plastics.  

Viscoelastic materials are named as such simply because 

they exhibit both viscous and elastic behaviors when 

stressed. 
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The defining characteristic of viscoelastic materials is 

demonstrated in the stress-strain curves presented in 

Figure 11.  When a constant stress is applied to a 

viscoelastic material, it does not deform immediately but 

rather “creeps”, or flows over time.  When the stress is 

removed, a viscoelastic material will hold some amount of 

residual deformation (Haddad, 1995).  Because the system of 

two colliding drops contains both viscous-like and spring-

Figure 11: (a) Strain and (b) stress curves for a viscoelastic 
material.  (Moore, 1993) 
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like elements interacting simutaneously, the Maxwell model 

with an attached mass should be an appropriate 

simplification. 
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3.2 TRANSFER FUNCTION ANALYSIS 

A transfer function of a linear, time-invariant system 

of differential equations is simply the ratio of the 

Laplace transform of the output, or response function, to 

the Laplace transform of the input, or driving function.  

The purpose of a transfer function analysis is to represent 

a system of differential equations by a system of algebraic 

equations.  By understanding the transfer function of a 

system, one can study the response under various forcing 

functions, which allows for a more thorough understanding 

of the nature of the system.  (Ogata, 2004) 

 

Figure 12: Mechanical mass-spring-damper system. 
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The system presented in Figure 12 is a mechanical mass-

spring-damper system that is identical in form to the 

Maxwell model including an attached mass.  The spring 

element has a spring constant k and the damper has a 

damping coefficient b.  The system contains two nodes to be 

analyzed, with the responses of each node measured relative 

to their equilibrium positions. 

 The set of equations governing the motion of the 

mechanical system shown in Figure 12 is 

 

 

                               (26) 

 

 

Performing a Laplace transform analysis (see Appendix B for 

complete analysis) to Equation (26) results in a transfer 

function of 

 

                  (27) 

 

The highest power of s in the denominator of Equation (27) 

indicates that this system is a third-order system.   

 The denominator may be rewritten as s(mbs2+kms+bk), 

which reveals that the characteristic equation for the 

system is (mbs2+kms+bk) = 0.  The roots of the 
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characteristic equation determine whether the system will 

be underdamped, critically damped, or overdamped.  The 

characteristic equation may be rewritten yet again as 

 

               (28) 

 

Equation (28) reveals that the natural frequency, +n of the 

system is ,(k/m) and the damping ratio, ! is ,(km)/(2b).  

The damping ratio of this system, in which the spring and 

damper element are connected in series, is essentially the 

inverse of the damping ratio of the more common mechanical 

mass-spring-damper system in which the spring and damper 

elements are connected in parallel (i.e. !parallel = 

b/(2,(km))). 
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3.3 STATE-SPACE APPROACH AND DERIVATION OF SYSTEM PARAMETERS 

 The state-space approach was used to solve the system 

of differential equations that model the response of the 

mechanical mass-spring-damper system discussed previously 

(Equation (26)).  The state-space representation is 

particularly useful for solving complex systems of 

equations because it allows a solution to be obtained very 

easily with use of a computer.  State-space representations 

utilize both a state equation and an output equation so 

that the system may be represented by a vector/matrix.  

(Ogata, 2004) 

 Referring to Equation (26) and Figure 12, the state-

space variables x1 – x3 are chosen to be: 

 x1 = y 

 x2 = dy/dt 

 x3 = ). 

Substitution of the selected state-space variables into 

Equation (26) results in the following system of equations: 

 

 

                     (29) 
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Like the sets of equations previously discussed, Equation 

(29) may be nondimensionalized by the following 

characteristic scales: 

 Characteristic length, Lc = L  

 Characteristic damping coefficient, bc = ,(km) 

 Characteristic time, tc = ,(m/k). 

The resulting set of nondimensional equations is 

 

 

 

                     (30) 

 

 

 In order to use the proposed mechanical mass-spring-

damper system as a model for a fluidic system, such as that 

discussed in Section 2.2, an effective spring constant and 

damping coefficient is required.  An effective spring 

constant may be defined as the ratio of a spring force to 

spring displacement, and an effective damping coefficient 

may be defined as the ratio of a damping force to the 

relative velocity of the damping element, that is 

 

 

                        (31) 
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This very approach has been used to model elastomeric 

machine elements in terms of spring and damper elements 

(Moore, 1993). 

 Equation (16) may be used to determine a damping force 

for the fluidic system.  Ignoring the spatial dependence of 

the position terms in the pressure gradient, a pressure 

distribution is found by integration: 

 

          (32) 

 

 

The damping force may then be obtained by simply 

integrating the pressure distribution over the length of 

the entire plate.  Symmetry is used to simplify the 

calculation: 

 

                      (33) 

 

where the differential area, dA = (w)dx.  The resulting 

damping force is 

 

            (34) 
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Following Equation (31), the effective damping coefficient 

is found to be 

 

               (35) 

 

 

It should be noted that the velocity used in Equation (31) 

refers to the rate of change of the damping element, which 

in the case of the fluidic system is the rate of change of 

the film thickness.  Therefore, the relative velocity 

(dh/dt – d)/dt) was substituted for the term d)/dt that 

appears in Equation (31). 

 Similarly, a dimensional analysis reveals that the 

effective spring constant, k - #l.  The deformable surface 

acts most like a rectangular leaf spring, where the 

deformations and stresses are found by the equations 

governing the deflection of beams (Spotts, Shoup, & 

Hornberger, 2004).  Therefore, the effective spring 

constant may be defined by k = 48EI/L3, where E is Young’s 

modulus, I is the moment of inertia, and L is the length of 

the surface.  Young’s modulus of a liquid drop is difficult 

to define; however, previous authors have taken E to be the 

Laplace pressure of the drop (Wang, Feng, & Zhao, 2008, 

Richard, Clanet, & Quere, 2002).  This choice of adopting 

the Laplace pressure as an equivalent modulus of elasticity 
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may be rationalized by thinking of E as a “stiffness”, or a 

resistance to deformation.  When a compressive pressure is 

applied to a spherical drop, it is the overpressure that 

exists within the drop that resists the deformation.  

Further, because strain is a dimensionless parameter, 

Young’s modulus has the units of pressure.  For these 

reasons, the Laplace pressure is a natural choice for the 

effective modulus of elasticity of a liquid drop. 

 

 

 

The moment of inertia, I, of a beam with cross-

sectional area of L.t is defined as wt3/12  (Spotts, Shoup, 

& Hornberger, 2004).  However, the situation of a planar 

body approaching a deformable surface does not allow for 

Figure 13: Schematic demonstrating similarity between 
cylindrical body and square beam approaching 
deformable surface, with the lubrication forces 
depicted as equivalent moments. 
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the direct calculation of I, since the thickness of the 

“beam”, which in this case is the deformable surface, is 

non-existent.  However, the situation of the approach and 

collision of two cylindrical bodies, which is the other 

fluidic model considered in this treatment, is very similar 

to the approach and collision of two beams with uniform 

cross-sectional areas (Figure 13).  This situation allows 

one to calculate I, with the thickness of the beam, t, 

being equal to the length, L.  Therefore, the moment of 

inertia is found to be I = wL3/12.  Substitution of E and I 

into the expression for k yields the following effective 

spring constant: 

 

                           (36) 

 

The effective damping coefficient of the fluidic 

system given by Equation (35) is dependent upon the 

position of the approaching mass as well as the amount of 

deformation of the deformable surface, both of which are 

time-dependent.  However, in order to apply the Laplace 

transform analysis and define an effective damping ratio, 

the mass-spring-damper system must be linear, meaning both 

the spring stiffness and the damping coefficient must be 

constant.  To this end, a critical damping coefficient 

shall be defined. 
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 Based on the form of the effective damping coefficient 

given by Equation (35), a critical damping coefficient may 

be defined as b* = wµL3/(24h*3), where h* is a critical 

height of the approaching mass from the origin.  Here, the 

complicated factor involving h(t) and )(t) in Equation (35) 

with dimension [L]3 was replaced by a constant term h*3.  To 

define the value of h*, a scaling analysis was performed. 

 A typical position trace of a mass approaching a 

deformable surface (see Section 2.2) is shown in Figure 14. 

 

 

Regardless of the outcome of the approach, there exist two 

important regimes of differing characteristic time scales.  

Figure 14: Typical position trace of fluidic system with 
various regimes labeled. 
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Initially, when the approaching body is far away from the 

deformable surface, the effective damping force, which is 

inversely proportional to h3, is essentially non-existent.  

This means the approaching body will experience no 

deceleration and will retain a constant velocity.  This 

initial regime is denoted with the characteristic time /1.  

Eventually, the approaching mass draws sufficiently close 

to the surface such that a damping force arises, which 

results in a deceleration as well as a deformation of the 

deformable surface.  This regime has a different 

characteristic time than the previous regime, and it is 

denoted by /2.   

 Because the initial regime of characteristic time /1 

contains no deceleration of the approaching body, it is as 

if the two bodies are “unaware” of one another and nothing 

of physical significance occurs.  Essentially, this initial 

regime may be disregarded in the present analysis.  The 

regime that follows, however, is very important in the 

collision process.  During this period when the approaching 

body experiences a damping force, all of the mechanisms 

that determine the ultimate outcome of the process (i.e. 

damping and deformation of the surface(s)) are provoked.  

Therefore, it is reasonable to conclude that both inertia 

and capillary effects are important in this regime.  This 

fact was used to determine an appropriate value for h*.   
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 Newton’s law may be applied to determine a 

characteristic time associated with the damping of the 

approaching body’s momentum: 

 

                  (37) 

 

The acceleration term, dV/dt in Equation (37) may be 

approximated by $V//2.  This leads to the conclusion that 

/2, which may be referred to as /µ, is ~ m/b*.  It is 

important to note that b* is used throughout this analysis, 

as opposed to simply b.  The presence of b* implies the use 

of h*, which may be thought of as a critical height where 

both inertia and capillary effects are prominent.  Hence, b* 

is used in the determination of /µ.  Substituting the form 

of b* as defined previously, is it found that 

 

                      (38) 

 

At this point, it remains to define h*.  The characteristic 

time associated with the damping of the approaching body, 

/µ, may be equated to a convective time scale within the 

region of interest; that is,  
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From Equation (39), h* = (wµL3/(24V0m))
1/2.  Therefore, the 

resulting critical damping coefficient, b* is 

 

                 (40) 

 

The critical damping coefficient given by Equation (40) is 

a constant value that is dependent only on system 

parameters and initial conditions, all of which are known 

quantities.  Therefore, it may be used to define an 

effective damping ratio of the mechanical system, which was 

previously shown to be ! = ,(km)/(2b).  Substitution of b* 

yields the following effective damping ratio of the 

mechanical mass-spring-damper system: 

 

 

                (41) 
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Chapter 4 

Numerical Methodology 

4.1 NUMERICAL METHODS AND PARAMETERS 

All numerical computations were performed using 

Matlab® software (R2007a), with the aid of Matlab®: An 

Introduction with Applications  (Gilat, 2005).  The Runge-

Kutta fourth-order procedure was used to obtain numerical 

solutions to the systems of ODEs.  The Runge-Kutta methods 

eliminate the need for higher-order derivatives since they 

evaluate the sought function at more points than other 

methods (such as the Taylor methods) while maintaining 

sufficient accuracy.  The truncation, or local error of the 

Runge-Kutta fourth-order method is O(h5) (Atkinson & Han, 

2004). 

 All derivatives that appeared in the governing 

equations were approximated using first-order finite 

difference equations.  The spatial and time resolutions of 

each program varied from one another.  The time-step, dt of 

each program was dependent upon the initial conditions; 

that is, the time-step was defined by dt = (h0/V0)/10,000, 

where h0 is the initial height of the approaching body (h0 = 

y0 for the mechanical m-s-d system), and V0 is the initial 

approach velocity [m/s].  This condition ensured that the 

time resolution was sufficiently small compared to the 
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initial convective time scale.  In all cases, the time-step 

was at most dtmax = 1e-3.   

Similarly, the space-step, dx was also dependent upon 

system parameters.  For the two fluidic-system programs 

related to a non-deformable surface and a planar body 

approaching a deformable surface, the spatial resolution 

was such that precisely fifty nodes were generated.  For 

the program that models two cylindrical bodies approaching 

one another, 500 nodes were used due to the additional 

complexity of the surface deformations.  Because all the 

models were symmetric in space, this condition amounted to 

dx = (L/2)/50 (non-deformable and planar models) and dx = 

(L/2)/500 (non-planar with deformation model).  The Matlab® 

codes used to generate the results presented herein can be 

found in Appendix C. 
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4.2 UNCERTAINTY ANALYSIS 

 Richardson extrapolation was used to determine an 

approximate uncertainty of the numerical results for each 

program.  This method assumes that the error of an 

approximate solution is chP, where h is a parameter upon 

which the true solution G(h) is dependent (for example, a 

time-step), and c and P are constants.  The exponent P is 

known as the “rate” or “order of convergence”, and an order 

of convergence of at least 1 implies the solutions are 

indeed convergent.  (Kiusalaas, 2005) 

A system of three equations of the form G = g(h)+chP, 

where h is varied each time, results in three unknowns that 

may be solved for, which allows a numerical error to be 

calculated.  This method was applied to all four programs 

that were used to obtain the results presented in this 

treatment.  The minimum position of the mass in each model 

was the parameter used to determine the error.   

 

 

Table 1: Values of minimum position for various time-steps, 
dt. 
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Table 1 lists the values of the minimum position of the 

approaching mass for each program (see Ch. 5 for 

description of each model) at three different time-steps 

(i.e. course, medium, and fine).  It should be noted that 

Case B required a more course set of time-steps for this 

analysis.  The data was then used to solve for the three 

unknowns of the previously discussed system of equations, 

which is shown in Table 2.  

 

 

As shown in Table 2, the percent error for each program is 

well within an acceptable limit, with the highest error 

being approximately 0.7%. 

 

 

Table 2: Error analysis data. 
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Chapter 5 

Results and Discussion 

5.1 CASE A: PLANAR BODY APPROACHING NON-DEFORMABLE SURFACE 

 As discussed in Section 2.1, the collision of two 

liquid drops may be greatly simplified using a squeeze-flow 

model.  The simplest such situation involves a planar body 

approaching a non-deformable, planar surface.  The 

motivation behind analyzing such a simple model is the 

aspiration of gaining a firm understanding of the physics 

involved in a squeeze-flow problem.  It has been shown that 

both a plate-shaped body and a disk-shaped body approaching 

a non-deformable surface result in the same set of 

governing equations.  However, when the approaching body is 

given a cylindrical shape, the resulting set of governing 

equations differs from those of the plate and disk-shaped 

bodies.  Figure 15 compares the position, velocity, and 

acceleration curves of the planar and non-planar 

(cylindrical) bodies under the same initial conditions.  

The system parameters used are as follows: 

 Length of plate, L = 300e-6 [m] 

 Width of plate, w = 1000!L [m] 

 Radius of non-planar body, R = L/2 (= 150e-6) [m] 

 Density of liquid, "l = 1000 [kg/m
3] 

 Viscosity of fluid film, µg = 1.79e-5 [Ns/m
2] 
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 Interfacial tension, # = 7.21e-2 [N/m] 

 Ambient pressure, P0 = 101,325 [Pa] 

 Mass of approaching body, m = 4/30(L/2)3"l. 

Unless specified otherwise, the above set of system 

parameters shall be taken as default values throughout the 

remainder of this treatment. 

 

(a) 



 59 

(b) 

(c) 

Figure 15: (a) Position traces of planar and non-planar 
bodies (b) Velocity comparison (c) Acceleration 
comparison. 
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As shown in Figure 15(a), the non-planar (cylindrical) 

body approaches the non-deformable surface much closer than 

the planar bodies.  The velocity and acceleration curves 

show that the non-planar body experiences a slower 

deceleration, which allows the body to continue its 

approach for a longer period, resulting in a smaller 

minimum film thickness.  These results indicate that not 

only does the shape of the approaching body affect the 

collision outcome, but also that a non-planar body will 

result in a smaller minimum film thickness.  Although not 

presented here, the results of this particular setup are 

identical under all circumstances (i.e. neither rebound nor 

coalescence were observed).   

The minimum film thickness is an important factor in 

determining whether coalescence will be achieved or not 

because the van der Waals forces are only significant at 

very small film thicknesses.  Therefore, in order for the 

van der Waals forces to attract the approaching bodies 

together and cause coalescence, a minimum film thickness is 

required.  For colliding drops, it has been shown that this 

value is ~102 Å  (Qian & Law, 1997).   

 It was mentioned in Chapter 2 that the lubrication 

approximation might be used to analyze squeeze-flow 

problems; however, this approximation has yet to be 

justified.  The derivation of the governing equations for 
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the present analysis began with a simplified momentum 

equation.  In order to employ such a simplification, the 

inertia terms of the Navier-Stokes equations must be 

neglected.  Two conditions are required to satisfy this 

condition: a geometric condition and a dynamic condition.   

The geometric condition necessary for application of 

lubrication theory is simply that the aspect ratio of the 

film, - (= Ly/Lx, where Ly and Lx are the length scales in 

the y and x directions, respectively) be much less than 1.  

This condition is easily met for all thin films and channel 

flows.  The dynamic requirement for the lubrication theory 

is Reh- << 1.  In other words, the product of the Reynolds 

number based on the film thickness and the film aspect 

ratio must be much less than 1.  Figure 16 shows that 

although this dynamic condition is not met during the 

initial approach regime, the requirement is satisfied in 

the region where the approaching bodies are sufficiently 

close to one another.  As discussed previously, it is in 

this regime where all the important mechanisms responsible 

for the collision outcome interact.  Therefore, one may 

conclude that lubrication theory is valid within the region 

of interest for the present squeeze-flow analyses.   

 

 

 



 62 

 

 

Figure 16: Dynamic condition for lubrication approximation. 
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5.2 CASE B: PLANAR BODY APPROACHING DEFORMABLE SURFACE 

 A number of outcomes are possible when two drops 

collide, namely bouncing, coalescence, disruption, or 

fragmentation.  The analysis of a planar body approaching a 

non-deformable surface revealed that under all 

circumstances the approaching body simply comes to a rest 

at some distance away from the surface it is approaching.  

The lack of deformation of either surface inhibits the 

possibility of bouncing to occur.  In addition, the lack of 

deformation inhibits the drainage of the thin film that 

acts as a barrier to coalescence; as a result, coalescence 

is not observed under any circumstances.  The analysis of a 

planar body approaching a deformable surface, however, 

shows that by allowing a surface to deform, “Rebound” is a 

possible outcome of the collision.   

 The governing equations used for the analysis of Case 

B are those that were derived in Section 2.2.  In modeling 

Case B, the following criteria were used to define the 

outcomes of the collisions.  The default outcome was set to 

“Rest”, meaning that unless another outcome occurred 

throughout the collision process, the outcome would remain 

“Rest”.  This simply means that the approaching body came 

to a rest at some distance away from the deformable 

surface, which implies neither coalescence nor rebound 



 64 

occurred.  It is the author’s opinion that in terms of an 

actual colliding-drop pair, “Rest” translates to a slow 

coalescence, an outcome that has been reported by a number 

of investigators (see Post & Abraham, 2002, Qian & Law, 

1997).  “Coalescence” was defined by the condition that the 

two bodies came within at least 400 Å from each other, the 

distance required for van der Waals forces to induce 

coalescence.  This criteria is based upon the results of a 

number of studies as cited by Nikolopoulos, et al. 

(Nikolopoulos, Nikas, & Bergeles, 2009).  Finally, 

“Rebound” was defined by the condition that the relative 

velocity between the approaching body and deformation of 

the deformable surface was such that the film thickness was 

increasing while the approaching body was bouncing away 

from the surface (i.e., the approaching body had a positive 

velocity) (note: all initial velocities are negative to 

account for direction of approach).   

 The following set of figures represent the results of 

a body approaching a deformable surface with an initial 

velocity of 1.5 m/s and default values for all other system 

parameters (see §5.1).  It should be noted that this 

initial velocity, together with the set of default system 

parameters, corresponds to an effective damping ratio of !* 

= 0.85. 
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(a) 

(b) 

Figure 17: (a) Approach curve of body approaching deformable 
surface (b) Velocity trace of approaching body. 



 66 

Figure 17 shows the approach and velocity traces of the 

approaching body.  Under the initial approach velocity of 

1.5 m/s, the body very gradually slows to a rest, which 

results in a non-dimensional minimum film thickness of 

approximately 0.2.  This corresponds to a film thickness of 

6e-5 m, which is much greater than the required 400 Å for 

coalescence (400 Å = 4e-8 m).  Therefore, the result of 

this particular collision is “Rest”.  Figure 18 shows the 

pressure distribution at various times throughout the 

collision process as well as the corresponding damping 

force trace. 

 

(a) 
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(b) 

 

As shown in Figure 18(a), the pressure distribution within 

the intervening film maintains a parabolic form (see 

Equation (32)) as it increases in magnitude.  Figure 18(b) 

shows the corresponding damping force, Fd [N] for the 

resulting pressure distributions.  The damping force for 

this particular scenario reaches a maximum value of 

approximately 3e-4 N, which is similar to values reported 

by previous investigators (see Bradley & Stow, 1978).  

Finally, the corresponding deformation of the deformable 

Figure 18: (a) Pressure distributions over deformable surface 
at various times (b) Resulting damping force trace. 
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surface at various times throughout the collision is shown 

in Figure 19. 

 

 

As expected, the deformation of the surface also maintains 

a parabolic form, similar to the corresponding pressure 

distributions.  The maximum non-dimensional deformation is 

approximately 7e-4, which corresponds to 2.1e-7 m.  This 

value is much smaller than the characteristic length of the 

problem, Lc.  Therefore, this deformation should be 

considered minor, which may help explain the outcome of the 

collision.  For minor deformations, it is expected that the 

spring effect of the deforming surface will also be minor, 

Figure 19: Deformation of deformable surface at various times 
throughout collision process. 
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which results in a situation that closely resembles that of 

Case A.  As shown in Section 5.1, the scenario of a planar 

body approaching a non-deformable surface (Case A) results 

in nothing other than “Rest”.  Therefore, for minor 

deformations, it is reasonable to conclude that rebounding 

cannot occur.  Furthermore, one may conclude from these 

results that surface deformation is indeed critical to the 

collision outcome.  

 The result of the collision changes significantly with 

an increased approach velocity of 2.5 m/s, which 

corresponds to an effective damping ratio of 0.40.  The 

approach curve and velocity trace for this situation as 

compared to the previous case of V0 = 1.5 m/s is shown in 

Figure 20. 
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(a) 

(b) 

Figure 20: (a) Comparison of position traces for two different 
approach velocities (b) Comparison of velocity 
traces for two different initial approach 
velocities. 
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As shown, a higher initial approach velocity of 2.5 m/s 

results in the approaching body rebounding away from the 

deformable surface rather than simply slowing to a rest.  

As expected, the increased momentum of the body at the 

start of its approach results in a smaller minimum film 

thickness as well as a faster collision time, meaning the 

body decelerates at a higher rate.  Figure 21 shows the 

pressure distribution over the deformable surface at 

various times throughout the process as well as the 

corresponding damping force for both approach velocities. 

 

(a) 
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(b) 

 

The pressure distributions are very similar in form for 

both initial approach velocities.  The damping force, 

however, is much larger for the higher approach velocity; 

the maximum force is approximately three times that of the 

previous case.  In addition, for the higher initial 

approach velocity of 2.5 m/s, the outcome of the collision 

is “Rebound”.  As shown in Figure 21(a), the value of the 

pressure across the deformable surface becomes less than 

ambient pressure, which implies the occurrence of a suction 

effect.  Previous investigators have shown that coalescence 

Figure 21: (a) Pressure distributions over deformable surface 
at various times (b) Comparison of damping force 
trace for two different approach velocities. 
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of colliding drops occurs during the rebounding phase of 

the process as opposed to the initial approach  (Bremond, 

Thiam, & Bibette, 2008).  The resulting low pressure that 

occurs within the intervening film due to the rebound 

causes the formation of “nipples” along the surface, which 

serve to induce coalescence by bringing the corresponding 

surfaces close enough for van der Waals forces to act.   

The deformation of the surface at various times 

throughout the collision is shown in Figure 22.   
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It is shown in Figure 22 that the deformable surface does 

indeed experience suction at the time of rebound, which is 

evident by the positive deformation.  It should also be 

noted that the maximum deformation is much larger than that 

for the previous case of V0 = 1.5 m/s.  The greater 

deformation translates to a greater spring effect, which 

promotes rebound. 

Although rebound and suction occur, coalescence is not 

observed under any circumstances when modeling a flat plate 

approaching a deformable surface.  This is most likely 

Figure 22: Deformation of deformable surface at various 
times throughout collision process for initial 
approach velocity of 2.5 m/s. 
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because of the initial, non-deformed geometry, which 

inhibits the formation of a “nipple” on the surface.  This 

observation serves as the motivation for extending the 

study to model two cylindrical bodies approaching one 

another, while allowing deformation of both surfaces (see 

§2.3).  This type of model allows for the possibility of 

the formation of two “nipples” during the separation phase 

of the collision, which may serve to bring the surfaces 

close enough to merge via van der Waals attraction 

(Bremond, Thiam, & Bibette, 2008).   

 



 76 

5.3 CASE C: SYMMETRIC APPROACH OF TWO DEFORMABLE CYLINDRICAL BODIES 

 As previously discussed, the symmetric approach of two 

cylindrical bodies with deformable surfaces is modeled to 

more closely approximate the approach and collision of two 

spherical drops while maintaining the necessary 

requirements for the unidirectional flow approximation.  

The results of this particular model are very similar to 

those of Case B; however, the initial circular geometry 

allows coalescence to occur during the rebound phase of the 

collision.   

 The following figures represent the results for a 

relative approach velocity of 1.75 m/s (!* = 0.95).   

 

(a) 
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(b) 

 

For a moderate approach velocity, the two cylindrical 

bodies experience rebound without coalescence.  As shown in 

Figure 23(a), the pressure distribution at various times 

throughout the collision process is very different in form 

when compared to the previous case of a planar body 

approaching a deformable surface.  A suction effect is 

evident for the present case; however, the low pressure 

within the intervening film that results from the rebound 

is significantly lower than that for Case B.  This is due 

to the initial geometry of the approaching bodies.  Because 

Figure 23: (a) Pressure distribution within intervening film at 
various times (b) Trace of corresponding damping 
force. 
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of the circular shape, the initial film shape is similar to 

a converging-diverging nozzle, as shown in Figure 24.  

Therefore, it should be expected that the pressure at the 

center of the film would be much lower than elsewhere along 

the film region.  This low pressure is intensified upon 

rebound.  The suction is also evident in the damping force, 

where the sign changes at the point where the bodies are 

sucked back toward each other, indicating a change in 

direction of motion.   

 

(a) 
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(b) 

 

 At a higher relative approach velocity of 2.5 m/s (!* = 

0.56), coalescence is observed upon rebound.  The higher 

momentum results in a transfer of more surface energy, 

which relates to a stronger spring effect and hence a 

stronger suction.  This suction is sufficiently strong such 

that dimples are formed on the surfaces of the approaching 

bodies, which allow the interfaces to connect.  The 

pressure distribution at various times and the 

corresponding damping force for this situation are shown in 

Figure 25. 

 

Figure 24: Shape of intervening film upon rebound for two 
approaching cylindrical bodies (b) Magnified 
view of film shape. 
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(a) 

(b) 

Figure 25: (a) Pressure distribution at various times 
throughout collision process (b) Corresponding 
damping force trace. 
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Because coalescence was induced, the suction effect is not 

evident in Figure 25.  It should be noted, however, that 

both the pressure and damping force are much higher than 

the previous values corresponding to the lower approach 

velocity of 1.75 m/s.  More interesting is the shape of the 

intervening film during the collision process.   

 

(a) 



 82 

(b) 

 

Figure 26 clearly shows the formation of “nipples” on the 

surfaces of both interfaces.  The formation of the 

“nipples” creates a region where the intervening film is 

completely drained and the interfaces are capable of 

merging.  The possibility of coalescence is the primary 

difference between the model of a planar body approaching a 

deformable surface and the symmetric approach of two, 

cylindrical bodies, both with deformable surfaces.  

However, the critical system parameters that define the 

transition between “Rest” and “Rebound”/”Coalescence” are 

Figure 26: (a) Shape of intervening film during coalescence 
of approaching bodies (b) Magnified view of film 
during coalescence. 
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very similar for both models, a result that is discussed in 

more detail in the next section. 
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5.4 COMPARISON BETWEEN FLUIDIC MODELS AND ANALOGOUS MASS-SPRING-DAMPER 

SYSTEM 

As discussed in Chapter 3, the fluidic systems that 

represent the approach and collision of two liquid drops 

may be modeled by a mechanical mass-spring-damper system.  

It has been shown that a Maxwell model with an attached 

mass very closely resembles the collision of two liquid 

drops. 

The damping ratio, !, of a mechanical mass-spring-

damper system is defined as the ratio of the actual damping 

value to the critical damping value of the system.  The 

damping ratio determines whether the system will experience 

oscillatory behavior.  For instance, an underdamped system 

having a damping ratio less than 1 will experience 

oscillatory behavior, whereas a system that is critically 

damped (! = 1) or overdamped (! > 1) will not.  Therefore, 

the goal of modeling a fluidic system comprised of 

colliding drops in terms of spring and damping elements is 

to create an effective damping ratio, based entirely on 

known system parameters and initial conditions, that can 

accurately predict whether the liquid drops will bounce 

apart from one another or coalescence upon collision.  This 

effective damping ratio was derived in Chapter 3, and this 

section aims to compare and contrast the results from the 
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mechanical and fluidic models as a means of testing the 

validity of the analogy.  

 Regardless of the orientation of the spring and 

damping elements in a mechanical system, the damping ratio 

is defined such that underdamped always corresponds to ! < 

1 and overdamped always corresponds to ! > 1.  It has been 

shown that the mechanical system considered herein has a 

damping ratio of ! = ,(km)/(2b), which is essentially the 

inverse of the damping ratio for the more common mechanical 

system comprised of spring and damping elements arranged in 

a parallel configuration (where ! = b/(2,(km))).  The 

responses of these two systems are compared in Figure 27.   

 

(a) 
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(b) 

 

The results presented in Figure 27 compare the responses of 

two mechanical systems with different configurations under 

the same exact conditions; that is, both systems had an 

impulsive force (downward) applied to the mass.  The 

results conform that despite the configuration of the 

mechanical elements, a system that is underdamped (! < 1) 

will indeed show oscillatory behavior.  Figure 27(b) shows 

the response of the Maxwell model with an attached mass, 

which is the system that is used to model the fluidic 

systems discussed throughout this study.   

Figure 27: (a) System response of mechanical mass-spring-
damper system with parallel configuration (b) 
System response of mechanical mass-spring-damper 
system with series configuration. 
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 The effective damping ratio of the mechanical system 

that models the fluidic system consisting of a planar body 

approaching a deformable surface is given by Equation (41) 

(derived in §3.3), which is shown below: 

 

                  (41) 

 

For a mechanical mass-spring-damper system, the transition 

between oscillatory behavior and non-oscillatory behavior 

is given by ! = 1.  Similarly, the effective damping ratio 

of the analogous mechanical system should also correspond 

to !* = 1 at the transition between “Rest” and 

“Rebound”/”Coalescence” (recall coalescence is observed 

only during the rebound phase of the symmetric approach of 

two non-planar fluidic bodies, hence the combining of the 

two outcomes).  Equation (41) may be rewritten in terms of 

the Weber number, We, and a modified Reynolds number, Re*, 

defined by Re* = "lVlL/µg.  This modified Reynolds number 

represents the relative importance of the fluidic body 

inertia to the gas viscosity (Bach, Koch, & Gopinath, 

2004).  Substitution of these two parameters reveals the 

following form of the effective damping ratio: 
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where the factor of 392.12 is the combination of the 

numerical coefficients that multiply a number of the 

parameters given in Equation (41), such as the mass and 

spring constant.  From Equation (42), the condition of !* = 

1 corresponds to the condition We ~ 153,760/Re*.  This 

condition, therefore, should serve as the threshold between 

oscillatory and non-oscillatory behavior, or “Rest” and 

“Rebound”.  To test this, collision maps have been created 

that plot the outcome of a wide range of collisions under 

various sets of system parameters. 

 A collision map comprised of results obtained from 

both fluidic models (i.e. a planar body approaching a non-

deformable surface and the symmetric approach of two 

deformable, cylindrical bodies) is shown in Figure 28.   
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The above collision map shows that indeed the theoretical 

condition of We ~ 153,760/Re* very accurately determines the 

transition between “Rest” and “Rebound” for both fluidic 

models discussed in this treatment.  Naturally, the two 

models do not coincide exactly with one another, and there 

are a number of possible reasons for this.  First, the 

factor of 392.12 in Equation (42) would be slightly 

different for the model of two cylindrical bodies 

approaching one another since there are two deformable 

interfaces in that scenario, and hence the effective spring 

constant should be doubled (this corresponds to an 

additional factor of ,2, which is negligible for the 

Figure 28: Collision map of fluidic models. 
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purposes of the present analysis).  Second, it has been 

shown that indeed the shape and evolution of the surface 

deformations have a significant effect on the collision 

outcome.  Therefore, it is reasonable to expect that a 

different initial surface shape would also affect the 

collision outcome.  However, the fact that the two fluidic 

models agree reasonable well with one another suggests that 

the simpler model of a planar body approaching a deformable 

surface is a good approximation of the drop-collision 

process. 

 Finally, in order to show that the analogy between the 

fluidic models and a mechanical mass-spring-damper system 

model is appropriate, a collision map comprised of the 

results of the analogous mechanical model was also created.  

This collision map is shown in Figure 29.   
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Figure 29 shows that the mechanical system behaves 

virtually identically to the fluidic models.  Recall that 

the system parameters (k, b, m, etc.) used to define the 

mechanical mass-spring-damper system was adopted from the 

fluidic model of a planar body approaching a deformable 

surface.  Therefore, it may be concluded that a mechanical 

mass-spring-damper system, whose system parameters are 

adopted directly from a fluidic model, can accurately 

predict the outcome of the corresponding fluidic system.  

The capability of the mechanical mass-spring-damper system 

to predict the outcome of an actual drop-drop collision 

depends entirely on the accuracy of the fluidic model upon 

Figure 29: Mechanical mass-spring-damper system collision 
map. 
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which it is based.  To this end, the following section 

compares the predictions of the mechanical system to 

experimental studies of previous investigators.  
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5.5 COMPARISON WITH EXPERIMENTAL RESULTS 

 The theoretical transition between “Rest” and 

“Rebound” derived in the previous section may be compared 

to other theoretical and experimental transition conditions 

reported by previous investigators.   

 

 

Table 3 lists the results of several past experiments that 

studied the approach and collision of liquid drops.  The 

reported transition between slow coalescence and rebound 

from each study has been reformulated in terms of the WeRe* 

product, which allows for a direct comparison to the 

theoretical transition condition proposed in this 

treatment.  Some important notes should be made regarding 

the results listed in Table 3.  The study conducted by 

Estrade, et al. gave only ranges of values for the system 

parameters used in their experiment, such as drop size and 

Table 3: Comparison between various experimental results. 
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approach velocity.  Therefore, precise combinations of 

approach velocity and drop size that result in bounce or 

coalescence are not known.  For that reason, average values 

of drop size and velocity were used to determine the 

critical value of Re* (however, the critical We was given as 

approximately 4.57, as listed).  It should also be noted 

that in some cases, the precise criteria for transition 

between rebound and slow coalescence was not given.  

Therefore, the set of conditions under which rebound was 

first observed was used as this threshold. 

 As shown in Table 3, the criteria for transition 

between “Rest” and “Rebound” presented here varies 

significantly from other studies in terms of percent 

difference.  However, it should be noted that the product 

of WeRe* is proportional to the approach velocity cubed.  

Therefore, a rather large percent difference between WeRe* 

values corresponds to a much smaller percent difference in 

terms of approach velocity.  For example, a percent 

difference in terms of the WeRe* of 100% corresponds to a 

percent difference of approximately 25% in terms of 

approach velocity, which is relatively small.   
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Chapter 6 

Conclusions 

 For a number of reasons, microfluidics is an 

increasingly important area of research for many 

investigators, especially for those involved in the 

biological sciences.  An important problem that has been 

studied rather extensively and serves as the basis of the 

present treatment is the problem of understanding the 

physics involved in the approach and collision of liquid 

drop pairs and predicting the outcome of the collision.  

The collision of liquid drops involves the transfer of 

kinetic energy to surface energy in the form of surface 

deformation, which may then be transferred back to kinetic 

energy via the rebound of the colliding bodies. 

 It has been shown that the complex system of colliding 

drops may be modeled by a simple squeeze-flow problem 

involving planar geometry.  Because of the nature of the 

collision process, an analogy between the fluidic system of 

colliding drops and a mechanical mass-spring-damper system 

has been proposed.  The results of several different 

fluidic systems were then compared to results of a 

mechanical system whose parameters were adopted directly 

from the fluidic systems’ governing equations, which 

provided validity to the analogy.  This analogy resulted in 
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the derivation of an effective damping ratio, dependent 

only upon known system parameters and initial conditions.  

The effective damping ratio, !*, may be used to predict the 

outcome of a pair of liquid drops; that is, the value of 

the effective damping ratio determines whether a pair of 

liquid drops will coalescence upon collision or rebound 

apart from one another.  The ability to predict the outcome 

of a drop-pair collision may be very useful in the study of 

a wide range of microfluidic applications.   

The present analysis may be further expanded to 

account for three-dimensional effects during the drop-

collision process as well as compressibility effects of the 

intervening gaseous film.  However, comparisons with 

previous experimental results as reported by a number of 

investigators shows that the model derived in this 

treatment may be used with little error, despite the number 

of simplifying approximations that were applied throughout 

the analysis.   
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Appendices 

APPENDIX A: DERIVATION OF GOVERNING EQUATIONS FOR A DISK-SHAPED AND 

CYLINDRICAL BODY APPROACHING A NON-DEFORMABLE SURFACE 

 

Disk-Shaped body of radius R approaching non-deformable 

surface 

 Following the derivation of a planar body approaching 

a non-deformable surface (§2.1), a control volume analysis 

yields the following velocity profile within the 

intervening film: 

 

                     (A1) 

 

where z and r represent the vertical and radial directions 

in cylindrical coordinates.  The volumetric flow rate of 

the film is then found via integration of Equation (A1), 

that is 

 

 

                  (A2) 

 

The rate of change of the control volume for this 

particular situation is 0r2(dh/dt).  Continuity requires 

that the rate of change of the control volume must equal 

the volumetric flow rate given by Equation (A2).  This 
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allows for the calculation of the following pressure 

gradient within the control volume: 

 

                      (A3) 

 

Integration of Equation (A3) with application of the 

boundary condition P(r=R) = P0 yields 

 

               (A4) 

 

The damping force may then be obtained via integration of 

Equation (A4) over the area of the approaching body, where 

the differential area, dA = 20rdr.  The damping force is 

found to be 

 

                     (A5) 

 

Finally, application of Newton’s second law yields the 

following evolution equation for the position, h: 

 

                     (A6) 

 

As mentioned in Section 2.1, the nondimensional equation 

governing the evolution of the mass position is identical 

for the case of a disk-shaped body approaching a non-
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deformable surface as for the case of a planar body 

approaching a non-deformable surface.  The characteristic 

time scale used to nondimensionalize Equation (A6) is tc = 

2m/(30µR).   

 

Cylindrical body of radius R approaching non-deformable 

surface 

 The situation of a cylindrical body approaching a non-

deformable surface is shown in Figure A1.   

 

Figure A1: Schematic of cylindrical body approaching non-
deformable surface. 

 

As shown, the position of the apex of the cylinder is 

referred to as ), whereas the position of the cylinder 
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surface in general is referred to as h (only at the apex 

does h = )).  It is approximated that near the apex the 

shape of the cylinder closely resembles a parabola.  

Therefore, it is assumed that h = ) + r2/R.   

 The present derivation begins with Equation (A3), 

since the pressure gradient within the film is identical to 

that from the previous case of a disk-shaped body 

approaching a non-deformable surface.  The pressure 

distribution is found via integration of Equation (A3), 

that is 

 

                   (A7) 

 

Substituting for h and performing the integration over r, 

with the required boundary condition being P(r=R) = P0, 

yields 

 

            (A8) 

 

 

Again, the damping force may be obtained via integration of 

the pressure distribution over the surface area of the 

cylindrical body, As = 0r2.  Integration yields the 

following damping force: 
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            (A9) 

 

 

Recognizing dh/dt = d)/dt, application of Newton’s law 

results in the following evolution equation for the 

position of the approaching cylindrical body in terms of 

the apex position, ): 

 

          (A10) 

 

 

Equation (A10) may be nondimensionalized by introducing the 

characteristic time scale, tc = m/(30µR), which results in 

the nondimensional evolution equation given by Equation 

(A11). 

 

                    (A11) 
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APPENDIX B: TRANSFER FUNCTION ANALYSIS OF MASS-SPRING-DAMPER SYSTEM 

 The set of equations that govern the motion of the 

mechanical mass-spring-damper system discussed in Section 

3.2 is  

 

 

                             (B1) 

 

 

A Laplace transform analysis may be applied to the above 

set of governing equations, yielding the following set of 

algebraic equations in terms of s: 

 

                    (B2) 

 

 

where the capitalized letters represent the Laplace 

transform of the corresponding variable.  Eliminating D 

from the above set of equations gives 

 

         (B3) 
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Finally, Equation (B3) may be simplified to yield the 

following Laplace transform of the output function, Y: 

 

                  (B4) 
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APPENDIX C: MATLAB® CODE 

 
Runge-Kutta 4th order method for solving ODEs 
 
function [state_new] = rk4(state, time, tau, state_deriv, param) 
% Runge Kutta 4th Order Method for solving ODEs 
% User inputs the state, time, time step (tau), 
% a function that takes the first derivative of the 
% state, and a parameter vector and the function outputs a new state   
% vector. 
 
% Calculating parameters (k1, k2, k3, k4) needed for rk4 step: 
 
k1 = tau*feval(state_deriv, state, time, param); 
 
temp_xx = state + .5*k1; 
k2 = tau*feval(state_deriv, temp_xx, time+tau/2, param); 
 
temp_xx = state + .5*k2; 
k3 = tau*feval(state_deriv, temp_xx, time+tau/2, param); 
 
temp_xx = state + k3; 
k4 = tau*feval(state_deriv, temp_xx, time+tau, param); 
 
state_new = state + k1/6 + k2/3 + k3/3 + k4/6; 
 
Case A: Planar body approaching non-deformable surface 
 
global mu LL L mm w 
 
rhs_file = input('Enter file for rhs in single quotes: '); 
 
% Initial conditions for ODE 
 
hh(1) = input('Enter initial height: '); 
dhdt(1) = input('Enter initial velocity: '); 
state = [hh(1) dhdt(1)]; 
state_deriv = feval(rhs_file, state, 0, 0); 
dh2dt2(1) = state_deriv(2); 
 
% Time-grid setup 
 
dt = 1e-3; 
timesteps = 2/dt; 
 
% Space-grid setup 
 
L = 300E-6; 
LL = L/2; 
dx = LL/50; 
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xx = [L/2:-dx:0]; 
spacesteps = numel(xx); 
params = 0; 
iplot = 1; 
tplot(1) = 0; 
 
% Initial conditions and constants 
 
P0 = 101325; 
mu = 1.79E-5; 
nu = 1.46E-5; 
rho_air = 1.23; 
rho_water = 1000; 
mm = rho_water*(4/3)*pi*(LL)^3; 
w = 1000*L; 
for j = 1:spacesteps 
P(1,j) = P0; 
 
end 
 
% Nondimensional Scales 
 
l_c = L; 
t_c = mm/(mu*w); % For plate situation 
t_c = 2*mm/(3*pi*mu*LL); % For disk situation 
t_c = mm/(3*pi*mu*LL); % For cylindrical situation 
 
for i = 1:timesteps; 
 
iplot = iplot + 1; 
 
state = rk4(state, (i-1)*dt, dt, rhs_file, params); 
state_deriv = feval(rhs_file, state, i*dt, params); 
tplot(iplot) = i*dt; 
hh(iplot) = state(1); 
dhdt(iplot) = state(2); 
dh2dt2(iplot) = state_deriv(2); 
 
if hh(iplot) == 0 
break 
end 
end 
 
Possible rhs file's: 
 
% Plate/Disk-shaped body approaching non-deformable surface (Governing 
% equations are identical for both cases) 
 
function [state_deriv] = disk_nd(state, time, params) 
 
hh = state(1); 
first_deriv = state(2); 
second_deriv = -first_deriv/hh^3; 
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state_deriv = [first_deriv second_deriv]; 
 
% Cylindrical body approaching non-deformable surface 
 
function [state_deriv] = sphere_nd(state, time, params) 
 
hh = state(1); 
 
first_deriv = state(2); 
second_deriv = -first_deriv/2*( (2*hh + 1) / (hh*(hh+1)^2) ); 
 
state_deriv = [first_deriv second_deriv]; 
 
Case B: Planar body approaching deformable surface 
 
% This program uses an iterative scheme to resolve the film      
% characteristics between a planar body and a deformable surface.  
 
rhs_file = 'name of file'; % See below for rhs file used for Case B 
delta_rhs_file = 'name of file'; % See below for rhs file used for  
% calculating the deformation of the surface 
 
% Constants 
 
global mu rho sigma P0 w mm L LL P_c l_c t_c xx dx 
 
mu = 1.79E-5; % viscosity of air [Ns/m^2] 
nu = 1.46E-5; % kinematic viscosity of air [m^2/s] 
rho = 1000; % density of water [kg/m^3] 
sigma = 7.21e-2; % interfacial tension of water [N/m] 
P0 = 101325; % [Pa] 
L = 300e-6; 
w = 1000*L; % width [m] 
 
% Space-grid setup 
 
LL = L/2; 
dx = LL/50;  
xx = [0:dx/L:LL/L]; 
spacesteps = numel(xx); 
mm = 4/3*pi*LL^3*rho; 
 
% ND Scales 
 
P_c = mu^2*w/(mm); 
t_c = mm/(mu*w); 
l_c = L; 
 
% Initial conditions 
 
V0 = -1.5; % [m/s] 
h0 = 2*L; 
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hh(1) = h0/l_c; 
dhdt(1) = V0*t_c/l_c; 
dh2dt2(1) = 0; 
Force(1) = 0; 
 
% Time-grid setup 
 
dt = 1e-3; 
timesteps = .2/dt; 
tspan = [0:dt:timesteps*dt]; 
 
for j=1:spacesteps 
delta(1,j) = 0; 
PP(1,j) = P0/P_c; % abs P 
RR(1,j) = 1000; 
ddelta_dx(1,j) = 0; 
ddelta_dt(1,j) = 0; 
end 
We(1) = (rho*(V0)^2*L)/sigma; 
Re(1) = abs(rho*V0*L/mu); 
Oh = mu/(rho*L*sigma)^0.5; 
aspect_ratio(1) = hh(1)*l_c/L; 
dyn_cond(1) = Re(1)*aspect_ratio(1); 
 
% Main Program 
 
iplot = 1; 
state = [hh(iplot), dhdt(iplot)]; 
 
for i = 1:timesteps 
 
params = [spacesteps, zeros(1,spacesteps-1); PP(iplot,:); RR(iplot,:)]; 
 
state = rk4(state, (i-1)*dt, dt, rhs_file, params); 
state_deriv = feval(rhs_file, state, i*dt, params); 
 
iplot = iplot + 1; 
tplot(iplot) = i*dt; 
 
hh(iplot) = state(1); 
dhdt(iplot) = state(2); 
dh2dt2(iplot) = state_deriv(2); 
 
We(iplot) = (rho*(dhdt(iplot)*l_c/t_c)^2*L)/sigma; % Weber # 
Re(iplot) = abs(rho*dhdt(iplot)*l_c/t_c*L/mu); % Re of film based on  
% film thickness 
aspect_ratio(iplot) = hh(iplot)*l_c/L; 
dyn_cond(iplot) = Re(iplot)*aspect_ratio(iplot); 
 
% Pressure 
 
for j=spacesteps:-1:1 
if j==spacesteps 
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PP(iplot,j) = P0/P_c; 
else 
PP(iplot,j) = (dx/l_c)*((j-1)*dx/l_c)*(dhdt(iplot) - ddelta_dt(iplot-
1,j))*... 
(-1/6*(hh(iplot)^3 - delta(iplot-1,j)^3) -1/2*(hh(iplot)*delta(iplot-
1,j)^2 - delta(iplot-1,j)*hh(iplot)^2))^(-1)... 
+ PP(iplot,j+1); 
end 
Force(iplot) = trapz(xx*l_c,PP(iplot,:)*P_c-P0)*2*w; % Using gage  
% pressure, '2' for symmetry, [N] 
RR(iplot,j) = sigma/(PP(iplot,j)*P_c - P0)/l_c;  
end 
 
% Deformation 
 
for j=1:spacesteps 
if j==1 
delta(iplot,j) = 0; 
ddelta_dx(iplot,j) = 0; 
else 
deltastate = [delta(iplot,j-1), ddelta_dx(iplot,j-1)]; 
deltastate = rk4(deltastate, xx(j), dx/l_c, delta_rhs_file, 
RR(iplot,j)); % Inputs ND'ed by l_c 
delta(iplot,j) = deltastate(1); 
ddelta_dx(iplot,j) = deltastate(2); 
end 
end 
 
for j = 1:spacesteps 
delta(iplot,j) = delta(iplot,j) - delta(iplot,spacesteps); 
end 
 
for j=1:spacesteps 
ddelta_dt(iplot,j) = ((delta(iplot,j)-delta(iplot-1,j))/dt); 
end 
 
% Outcome Conditions 
 
outcome = 'Rest'; % Default outcome 
if hh(iplot) - max(delta(iplot,:)) <= 4e-8/l_c % Stop if h reaches ~400 
% Angstrom (1 angstrom = 0.01 microns) 
outcome = ' Coalesce'; 
fprintf(outcome) 
break 
elseif isnan(hh(iplot))==1 
outcome = ' NaN'; 
fprintf(outcome) 
break 
elseif dhdt(iplot) - ddelta_dt(iplot,1) > 0 && dhdt(iplot) > 0 
outcome = ' Rebound'; 
fprintf(outcome) 
break 
elseif dh2dt2(iplot) == 0 && dhdt(iplot) == 0 
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outcome = ' Rest'; 
fprintf(outcome) 
break 
end 
 
end 
 
rhs file for Case B 
 
function [state_deriv] = file_rhs(state, time, params) 
 
global mu P0 w mm P_c LL dx xx l_c 
 
spacesteps = params(1,1); 
PP = params(2,:); 
RR = params(3,:); 
 
hh = state(1); 
hh_first_deriv = state(2); 
 
% Trapazoidal Rule for obtaining force 
 
Force = 2*trapz(xx,PP-(P0/P_c)); 
 
hh_second_deriv = Force; % ND acceleration 
 
state_deriv = [hh_first_deriv, hh_second_deriv]; 
 
rhs file used for deformation calculation 
 
function [delta_deriv] = delta_rhs_file(deltastate, xx, RR) 
 
ddelta_dx = deltastate(2); 
 
d2delta_dx2 = (1 + (ddelta_dx).^2)^(3/2) ./ RR; 
 
delta_deriv = [ddelta_dx, d2delta_dx2]; 
 
Case C: Symmetric approach of two deformable cylindrical bodies 
 
% This program uses an iterative scheme to resolve the film  
% characteristics between a deformable body (initially circular in  
% cross-section) and a plane of symmetry. 
 
rhs_file = 'name of file'; 
delta_rhs_file = 'name of file’; 
% Both above files are identical for both Case B and Case C 
 
% Constants 
 
global mu rho sigma P0 w mm L LL P_c l_c t_c xx dx 
 
mu = 1.79E-5; % viscosity of air [Ns/m^2] 
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nu = 1.46E-5; % kinematic viscosity of air [m^2/s] 
rho = 1000; % density of water [kg/m^3] 
sigma = 7.21E-2; % interfacial tension of water [N/m] 
P0 = 101325; % [Pa] 
L = 300e-6; 
w = 1000*L; % width [m] 
 
%   Space-grid setup 
 
LL = L/2; % Radius 
dx = LL/500; % Dimensional dx, this Case requires 500 nodes (50 is  
% insufficient) 
xx = [0:dx/L:LL/L]; 
spacesteps = numel(xx); 
mm = rho*4/3*pi*LL^3; 
 
% Characteristic Scales 
 
P_c = mu^2*w/(mm); 
t_c = mm/(w*mu); 
l_c = L; 
 
% Initial conditions 
 
V0 = -1.5; % [m/s], Relative velocity 
h0 = 2*L; 
hh(1) = h0/l_c; 
dhdt(1) = V0*t_c/l_c; 
dh2dt2(1) = 0; 
for j=1:spacesteps 
delta(1,j) = (sqrt(LL^2/l_c^2-((j-1)*dx/l_c)^2)); 
PP(1,j) = P0/P_c; % abs P 
RR(1,j) = -LL/l_c; 
Pin(1,j) = PP(1,j) - (sigma/(RR(1,j)*l_c*P_c)); % Internal pressure 
ddelta_dx(1,j) = -(1/2)*(LL^2/l_c^2-((j-1)*dx/l_c)^2)^(-1/2)*(-2*(j-
1)*dx/l_c); 
ddelta_dt(1,j) = 0; 
end 
We(1) = (rho*(V0/2)^2*LL)/sigma; 
Re(1) = abs(rho*V0/2*L/mu); 
Oh = mu/(rho*L*sigma)^0.5; 
aspect_ratio(1) = hh(1)*l_c/L; 
dyn_cond(1) = Re(1)*aspect_ratio(1); 
 
% Time-grid setup 
 
dt = 1e-3; 
timesteps = .3/dt; 
tspan = [0:dt:timesteps*dt]; 
 
% Main Program 
 
iplot = 1; 
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state = [hh(iplot), dhdt(iplot)]; 
 
for i = 1:timesteps 
 
for j = linspace(1,timesteps,50) 
if i == round(j) 
fprintf('%g\n', round(i/timesteps*100)) 
end 
end 
 
params = [spacesteps, zeros(1,spacesteps-1); PP(iplot,:); RR(iplot,:)]; 
 
state = rk4(state, (i-1)*dt, dt, rhs_file, params); 
state_deriv = feval(rhs_file, state, i*dt, params); 
 
iplot = iplot + 1; 
tplot(iplot) = i*dt; 
 
hh(iplot) = state(1); 
dhdt(iplot) = state(2); 
dh2dt2(iplot) = state_deriv(2); 
 
We(iplot) = (rho*(dhdt(iplot)*l_c/t_c)^2*L)/sigma;  
Re(iplot) = abs(l_c*L*dhdt(iplot)/(2*nu*t_c)); 
aspect_ratio(iplot) = hh(iplot)*l_c/L; 
dyn_cond(iplot) = Re(iplot)*aspect_ratio(iplot); 
 
% Pressure 
 
for j=spacesteps:-1:1 
if j==spacesteps 
PP(iplot,j) = P0/P_c; 
else 
PP(iplot,j) = (dx/l_c)*((j-1)*dx/l_c)*(dhdt(iplot) - ddelta_dt(iplot-
1,j))*... 
( (delta(iplot-1,j)^3 - hh(iplot)^3)/3 + hh(iplot)^2*delta(iplot-1,j) - 
hh(iplot)*delta(iplot-1,j)^2)^(-1)... 
+ PP(iplot,j+1); 
end 
Force(iplot) = trapz(xx*l_c,PP(iplot,:)*P_c-P0)*2*w;  
RR(iplot,j) = (sigma/(l_c*P_c))./(PP(iplot,j) - Pin(1,j)); % Assuming  
% Pin = const. 
end 
 
% Deformation 
 
for j=spacesteps:-1:1 
if j==spacesteps 
delta(iplot,j) = 0; 
ddelta_dx(iplot,j) = 10; % imposing large value compared to system 
elseif j==1 
delta(iplot,j) = delta(iplot,j+1); % d_delta/dx = 0 at x = 0  
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else 
deltastate = [delta(iplot,j+1), ddelta_dx(iplot,j+1)]; 
deltastate = rk4(deltastate, xx(j), dx/l_c, delta_rhs_file, 
RR(iplot,j)); 
delta(iplot,j) = deltastate(1); 
ddelta_dx(iplot,j) = deltastate(2); 
end 
end 
 
for j = 1:spacesteps 
delta(iplot,j) = delta(iplot,j) - delta(iplot,spacesteps); 
end 
 
for j=1:spacesteps 
ddelta_dt(iplot,j) = ((delta(iplot,j)-delta(iplot-1,j))/dt); 
end 
 
% Outcome Conditions 
 
outcome = 'Rest'; % Default outcome 
if hh(iplot) - max(delta(iplot,:)) <= 4e-8/l_c % Stop if h reaches ~400 
% Angstrom (1 angstrom = 0.01 microns) 
outcome = ' Coalesce'; 
fprintf(outcome) 
break 
elseif isnan(hh(iplot))==1 
outcome = ' NaN'; 
fprintf(outcome) 
break 
elseif dhdt(iplot) - ddelta_dt(iplot,1) > 0 && dhdt(iplot) > 0 
outcome = ' Rebound'; 
fprintf(outcome) 
break 
elseif dh2dt2(iplot) == 0 && dhdt(iplot) == 0 
outcome = ' Rest'; 
fprintf(outcome) 
break 
end 
 
end 
 
Mechanical Mass-spring-damper system 
 
% This program uses a state-space approach for modeling a mechanical 
% mass-spring-damper system 
 
global w mu 
 
equations = 'name of file holding governing equations'; 
 
% Constants 
 
mu = 1.79E-5; % viscosity of air [Ns/m^2] 
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rho = 1000; % [kg/m^3] 
sigma = 7.21E-2; % [N/m], interfacial tension of water and air 
L = 300e-6; % length, [m] 
w = 1000*L; % width [m] 
P0 = 101325; % [Pa] 
 
m =rho*4/3*pi*(L/2)^3; % [kg] 
k = 4000*sigma; 
 
V0 = -1; % [m/s] 
h0 = 2*L; % [m] 
 
h0_crit = abs((w*mu*L^3/(24*m*V0))^(1/2)); 
b_crit = (w*mu*L^3/(24*h0_crit^3)); 
 
% Characteristic scales 
 
l_c = L; 
t_c = sqrt(m/k); 
b_c = sqrt(k*m); 
 
% Nondimensional parameters 
 
We = rho*V0^2*L/sigma; 
Re = rho*abs(V0)*L/mu; 
Oh = mu/(rho*L*sigma)^0.5; 
 
zeta = sqrt(k*m)/(2*b_crit) % Damping ratio 
 
% Initial Conditions 
 
x1(1) = h0/l_c; 
x2(1) = V0*t_c/l_c; 
x3(1) = 0; 
tt(1) = 0; 
 
y(1) = x1(1); 
d(1) = x3(1); 
d_dot(1) = 0; 
 
b(1) = abs(w*mu*L^3/24*( (d(1)*y(1)^2/2 - y(1)^3/6 - d(1)^2*y(1)/2 + 
d(1)^3/6)*l_c^3 )^(-1) ) / b_c; 
 
F_d(1) = 0; 
F_s(1) = 0; 
 
% Time-Grid setup 
 
dt = abs(x1(1)/x2(1)/10000); 
if dt < 0.001 
dt = dt; 
else 
dt = 0.001; 
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end 
dt = ___; % overwrite dt for computational purposes here if necessary 
timesteps = 30/dt; 
 
% Main Program 
 
state(1,:) = [x1(1), x2(1), x3(1)]; 
 
for j=1:timesteps 
 
iplot = j+1; 
tt(iplot) = j*dt; 
 
b(iplot) = abs(w*mu*L^3/24*((d(j)*y(j)^2/2 - y(j)^3/6 - d(j)^2*y(j)/2 + 
d(j)^3/6)*l_c^3)^(-1) ) / b_c; 
 
params = [b(iplot),k,m]; 
state(iplot,:) = rk4(state(iplot-1,:),tt(iplot-1),dt,equations,params); 
state_derivs = feval(equations,state(iplot,:),tt(iplot),params); 
d_dot(iplot) = state_derivs(3); 
 
x1(iplot) = state(iplot,1); 
x2(iplot) = state(iplot,2); 
x3(iplot) = state(iplot,3); 
 
y(iplot) = x1(iplot); 
d(iplot) = x3(iplot); 
 
% Forces of interest [N] 
 
F_d(iplot) = -b(iplot)*b_c*(x2(iplot) - state_derivs(3))*l_c/t_c; 
F_s(iplot) = -k*d(iplot)*l_c; 
 
% Outcome Conditions 
 
outcome = 'Rest'; % Default outcome 
if y(iplot) - d(iplot) <= 400e-10/l_c 
outcome = 'Coalesce'; 
fprintf(outcome) 
break 
elseif x2(iplot) > 0 
outcome = 'Rebound'; 
fprintf(outcome) 
break 
elseif x2(iplot) - d_dot(iplot) > 0 && x2(iplot) > 0 
outcome = 'Rebound'; 
fprintf(outcome) 
break 
elseif isnan(b(iplot)) == 1 
outcome = 'NaN'; 
fprintf(outcome) 
break 
elseif state_derivs(2) == 0 && x2(iplot) == 0 
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outcome = 'Rest'; 
fprintf(outcome) 
break 
end 
end 
 
Function file holding governing equations for mechanical system 
 
function [derivs] = x_deriv(state,time,params) 
 
b = params(1); 
k = params(2); 
m = params(3); 
 
x1=state(1); 
x2=state(2); 
x3=state(3); 
 
derivs(1) = x2; 
derivs(3) = -x3/b + x2; 
derivs(2) = -b*(x2 - derivs(3));  
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