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This work introduces diagnostic methods for land surface model (LSM) 

evaluation that enable developers to identify structural shortcomings in model 

parameterizations by evaluating model ‘signatures’ (characteristic temporal and spatial 

patterns of behavior) in feature, cost-function, and parameter spaces. The ensemble-based 

methods allow researchers to draw conclusions about hypotheses and model realism that 

are independent of parameter choice.  

I compare the performance and physical realism of three versions of Noah LSM 

(a benchmark standard version [STD], a dynamic-vegetation enhanced version [DV], and 

a groundwater-enabled one [GW]) in simulating high-frequency near-surface states and 

land-to-atmosphere fluxes in-situ and over a catchment at high-resolution in the U.S. 

Southern Great Plains, a transition zone between humid and arid climates. Only at more 

humid sites do the more conceptually realistic, hydrologically enhanced LSMs (DV and 
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GW) ameliorate biases in the estimation of root-zone moisture change and evaporative 

fraction. Although the improved simulations support the hypothesis that groundwater and 

vegetation processes shape fluxes in transition zones, further assessment of the timing 

and partitioning of the energy and water cycles indicates improvements to the movement 

of water within the soil column are needed. Distributed STD and GW underestimate the 

contribution of baseflow and simulate too-flashy streamflow.  

This work challenges common practices and assumptions in LSM development 

and offers researchers more stringent model evaluation methods. I show that, because of 

equifinality, ad-hoc evaluation using single parameter sets provides insufficient 

information for choosing among competing parameterizations, for addressing hypotheses 

under uncertainty, or for guiding model development. Posterior distributions of 

physically meaningful parameters differ between models and sites, and relationships 

between parameters themselves change. ‘Plug and play’ of modules and partial 

calibration likely introduce error and should be re-examined. Even though LSMs are 

‘physically based,’ model parameters are effective and scale-, site- and model-dependent. 

Parameters are not functions of soil or vegetation type alone: they likely depend in part 

on climate and cannot be assumed to be transferable between sites with similar physical 

characteristics.  

By helping bridge the gap between the model identification and model 

development, this research contributes to the continued improvement of our 

understanding and modeling of environmental processes. 
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Chapter 1:  Introduction 

1.1. SCIENTIFIC SETTING AND MOTIVATION 
 
The land surface plays a key role in the energy and water cycle and the larger 

climate system. By exchanging fluxes of heat, momentum and moisture with the 

overlying atmosphere, topographic features, seasonal vegetation cover, water stored in 

the ground, etc. shape weather and climate (e.g., Pielke Sr., 2001). On timescales longer 

than a day, anomalies in land-surface states and fluxes propagate to the atmosphere (e.g., 

Childs et al., 2006). This land−atmosphere coupling is thought to be particularly strong in 

zones of transition between wet and dry climates (Koster et al., 2004). Our ability to 

predict weather and climate on seasonal and interannual timescales therefore depends on 

our ability to quantitatively understand and accurately represent land-surface processes 

such as evaporation, transpiration, soil moisture dynamics, and runoff. Land-surface 

models (LSMs) are the numerical representation of scientific hypotheses about how 

different terrestrial bio-hydrological processes determine the partitioning and temporal 

evolution of fluxes of water and heat and their dynamical interactions with the 

atmosphere (Viterbo, 2002; Pitman et al., 2003; Yang, 2004; Nijssen and Bastidas, 2005; 

Overgaard et al., 2006). The overarching goal that motivates the research described 

within this dissertation is to improve the scientific community’s ability to understand, 

model, and predict the hydrologic cycle in transition zones over short timescales. 

Hydrologic models are used to synthesize past events, to predict future events, 

and to evaluate the effects of change on a system. The development, application, and 

evaluation of environmental models make up a continual and dynamic process that itself 
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helps researchers to identify and understand system feedbacks and interactions 

(Refsgaard and Henriksen, 2004). Researchers work to increase the physical realism of 

models as a means for increasing confidence in a model’s prediction when boundary 

conditions change (e.g., in future prediction) (e.g., Maxwell and Miller, 2005). LSMs are 

a class of hydrologic models that are used to represent flows of energy, water, and 

momentum between the land and atmosphere and within reservoirs in the land surface.  

LSMs coupled with atmospheric models are used operationally for weather forecasting 

and climate predictions (e.g., Chen and Dudhia, 2001). Understanding and consequently 

representing with accuracy the hydrological processes responsible for land-memory 

mechanisms, such as the storage of water near the surface as soil moisture and the nature 

and seasonal progression of growing vegetation, still remain a challenge in land-surface 

modeling (Shuttleworth, 2007; Trier et al., 2008). Deficiencies in LSM parameterizations 

provide opportunities to improve numerical weather forecasting and climate prediction 

(Trenberth et al., 2003; Holt et al., 2006; Lyon et al., 2008). 

Different land-surface parameterizations characterize biophysical and 

hydrological processes that control fluxes of moisture (interception, throughfall, 

infiltration, runoff and snowmelt), energy (absorption of radiation at the surface, 

partitioning into latent and sensible heat flux, storage of heat), and momentum (frictional 

drag of surface on the planetary boundary layer). More complex parameterizations are 

often credited with improved simulation of modeled states and fluxes (e.g., Wood et al., 

1998; Bowling et al., 2003; Niu et al., 2009); however, as model complexity increases, 

parameter estimation becomes increasingly important. For example, Stöckli et al. (2008) 
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evaluated the latest enhancements made to the Community Land Model (Oleson et al., 

2008a) offline at a point scale using a number of the FLUXNET (Baldocchi et al., 2001) 

stations around the world and found that better simulations of the hydrological cycle 

chiefly translate into improvements in the simulation of latent heat flux. However, they 

noted that the persistence of bias may result from remaining deficiencies in the 

parameterizations, missing processes, and/or a lack of tuning of parameters. Even so, 

LSM parameters are very frequently assumed to be physical quantities (not tunable 

coefficients) that can be measured and that have strong relationships with physical 

properties of the system.  

The second phase of the Project for Intercomparison of Land-Surface 

Parameterization Schemes (PILPS) recognized that even simple manual, subjective 

adjustment of parameters can significantly improve model performance (Pitman et al., 

1999). It is often not established by how much performance could be improved with 

parameter calibration relative to the improvement that could be gained by modifying 

model structure. For example, Niyogi et al. (2006) modified parameterizations of canopy 

resistance, which resulted in improved simulation of forecasted air temperature and 

moisture; similar improvements in controlling respiration rates can be attained by using 

fine-tuned parameter values (Demarty et al., 2004). Calibration has been shown to reduce 

errors in simulated heat fluxes by 20 to 40% at different locations around the world 

(Nijssen and Bastidas, 2005). Leplastrier et al. (2002) showed that, although the most 

complex surface-energy-balance parameterizations perform best after calibration, the 

relative improvement over the simpler parameterizations is minimal; the researchers 
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question the benefit of using more complex representations in the absence of calibration 

data. Hogue et al. (2006) calibrated LSMs of increasingly detailed physical 

parameterizations and showed that additional complexity (presumably added as means 

for increasing the conceptual physical realism of the model) neither necessarily improves 

model performance nor reduces the uncertainty in the simulated fluxes of water and 

energy. They suggest that only when the new parameterization can be supported and 

identified with available observations should the additional complexity be employed. 

This dissertation comprises research endeavors that, accounting for uncertainty, 

evaluate the physical realism of several recently introduced representations of land-

surface processes at both a point and a catchment scale. I employ the extensively used 

Noah LSM (Ek et al., 2003) to investigate the importance of short-term vegetation 

processes and aquifer dynamics in determining seasonal variation of land-surface fluxes 

and states. The work described here has direct relevance for weather and climate 

prediction, water resources assessment, and flood modeling.  

1.2. MODEL EVALUATION: MODEL IDENTIFICATION VERSUS MODEL DIAGNOSTICS 
 
LSM evaluation and development is the dynamic assessment of hypotheses about 

our understanding of the dominant physical mechanisms of the soil-vegetation-

atmosphere system. Like other environmental models built to support scientific reasoning 

and testable hypotheses to improve our understanding of the Earth system, LSMs have 

grown in sophistication and complexity (Pitman, 2003; Niu et al., 2009). The evaluation 

of LSM simulations is consequently non-trivial and, especially when LSMs are to be used 
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in predictive mode for operational forecasting, policy assessments, or decision making, 

demands more powerful methods for the analysis of their behavior (Saltelli, 1999; 

Jakeman et al., 2006; Randall et al., 2007; Gupta et al., 2008; Abramowitz et al., 2009). 

For the most part, parameter estimation techniques have not been extensively used to 

inform LSM development even though hydrological modelers regard model calibration as 

a necessary step (Klemes, 1986; Kirchner et al., 1996; Gupta et al., 2005; Wagener and 

Gupta, 2005; Refsgaard et al., 2006). Too often, attempting to increase the realism of the 

parameterizations in LSMs has not been subject to rigorous model performance 

evaluation (Randall et al., 2007; Gupta et al., 2008). In rigorous evaluation of 

environmental models, an environmental model is iteratively conceptualized, identified, 

calibrated, and validated in methodical fashion, and meticulous assessment of model and 

data uncertainty is made throughout the modeling process (Beck, 1987; Jakeman et al., 

2006; Refsgaard et al., 2007). In part because of a dearth of information for validation, 

insufficient computational power to rigorously assess large-domain models, and a 

pervasive belief that ‘physically-based’ models do not require as much parameter tuning, 

standard practice in LSM evaluation has proceeded in a more ad hoc fashion. Individual 

modeling groups publish model results and model development work without a rigorous 

assessment of true predictive uncertainty (Table 1.1). 

The most concerted efforts to evaluate LSMs have been in the form of model 

intercomparison projects (MIPs) such as the PILPS family of research (Henderson-Sellers 

et al., 1993; Henderson-Sellers et al., 1995; Pitman and Henderson-Sellers, 1995; Liang 

et al., 1998; Pitman et al., 1999; Luo et al., 2003; Bastidas et al, 2007). MIPs depend on 
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the voluntary participation of members of the modeling community. Each modeling 

group is asked to submit one or a few model simulations for a given site/domain and time 

period, given prescribed meteorological forcing and ancilliary datasets. MIPs then 

compare output of models frequently using aggregate goodness-of-fit metrics (Legates 

and McCabe, 1999) or mean multiannual and seasonal bias assessments. MIP 

experimental designs compare model versus observation at different timescales 

(frequently coarse), and then they make an inference about the quality of the model. 

Although valuable, model-versus-observation comparisons often make it hard to infer 

causality. Major conclusions obtained by LSM MIPs have been that single-layer soil 

moisture schemes (‘bucket’ models) are insufficiently complex to represent hydrologic 

processes, that the scatter in the partitioning of energy and water fluxes among models is 

significant, and that, while individual land-surface schemes capture specific aspects of 

the cycles with reasonable accuracy, no one scheme captures the whole system 

satisfactorily and consistently (Pitman et al., 2003; Fox et al., 2006). 

My own involvement in the PILPS 2(g) ‘San Pedro’ (Bastidas et al., 2006b; 

Rosero and Bastidas, 2007; Bastidas et al., 2007) and the LBA-MIP (Rosero et al., 2007; 

de Goncalves et al., 2008; Saleska et al., 2008) taught me that, although the 

administrative work in coordinating inputs from a diverse set of participants and a diverse 

group of models is significant, conclusions generated by MIPs are often subject to big 

uncertainties, are qualitative and general, and are unable to provide a direction for model 

improvement, development, or scientific advancement. MIPs are limited for several 

reasons. Participating groups vary in their willingness to spend time tuning their model to 
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the given location(s): that one model’s output is ‘better’ than another’s is often fortuitous 

and may not be a result of an inherently more realistic structure.  Even if runs are directly 

comparable, MIPs are by nature formulated in a way that makes it difficult to pose 

questions and test hypotheses. A MIP is more of a poll of models (or a ‘beauty contest’) 

than a structured, quantitative assessment of individual model function. Additionally, in 

large part due to limited data, computational power, and available labor, MIPs have 

evaluated models by comparing time-averaged variables (e.g., annual or monthly mean 

temperature, monthly total evapotranspiration). Because the timescale at which the 

models’ simulated variables are compared (monthly, annually) is often far coarser than 

the timescales at which the models operate (hourly or less), conclusions about model 

function are at best qualitative and generalized, and do not often provide much insight 

into how models can be improved or why model results differ.  

Model identification (Step 7, Table 1.1) is seen in other hydrologic communities 

(e.g., the rainfall−runoff modeling community) as a process of uncertainty reduction 

(Wagener and Gupta, 2005; Wagener et al., 2009). It is commonly accepted that model 

(structure, parameters and states; also, initial and boundary conditions) and data 

(measurements of forcing and response) will all contain uncertainties that can affect the 

model predictions. These uncertainties stem from various sources and relate to our 

capacity to understand and measure the real-world system under study 

(perceptual/conceptual model uncertainty), the data (measurements errors, or the lack 

thereof), and the mathematical/numerical model and its components (Gupta et al., 2005). 

Model uncertainty is parsed into parameter-estimation uncertainty (i.e., the inability to 
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uniquely define a ‘best’ parameter set) (Gupta et al., 1998) and model structural error, 

which is introduced through simplifications, inadequacies, and ambiguity in the 

representation of real-world processes (Beck, 2002).  

Current procedures for a priori parameter estimation are often based on semi-

empirical relationships between model parameters and land (or basin) physical 

characteristics (i.e., soils, vegetation, topography, climate, geology, etc.). Available 

information about soils (e.g., texture) and vegetation (e.g., type or vegetation index) only 

indirectly relates to model parameters such as the parameters representing the hydraulic 

properties of soils (e.g., Clapp and Hornberger, 1978) and the parameterized rooting 

depths of vegetation (Duan et al., 2006; Wagener et al., 2006). Whether physically based 

model parameters are measurable physical characteristics or calibrated ‘effective’ 

quantities continues to be debated (e.g., Bastidas et al., 2006; Hogue et al., 2006). Duan 

et al. (2006) points out, “Estimation of hydrologic model parameters is, at present, highly 

problematic. Ultimately, we must deal with the fact that our models are imperfect and 

that one of the roles of model parameters is to ‘fit’ the model to the real world.”  

In well calibrated models: (1) the input–state–output behavior of the model is 

consistent with the measurements of system behavior; (2) model predictions are accurate 

(i.e., they have negligible bias) and precise (i.e., the prediction uncertainty is relatively 

small); and (3) the model structure and behavior are consistent with a current 

hydrological understanding of reality. (3) is often overlooked in operational settings, 

where the focus is generally on models that are ‘useful’ rather than on models that are 

realistic (Gupta et al. 2005; Wagener and Gupta, 2005). The ability of a parameter set to 
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help the model reproduce the observed system response is measured (summarized) by 

means of an ‘objective function’ (loss or cost function), which, typically, is an aggregated 

measure of the residuals, which are the differences between observed and simulated 

responses at each time step. In automatic model calibration (parameter estimation) the 

minimization of the objective function leads to the identification of ‘optimal’ parameters. 

In any modeling study of reasonably complex environmental systems, multiple models 

(and parameters) that provide predictions consistent with available observations can be 

found by means of calibration (Beven and Freer, 2001). Calibration results in model 

structure and parameter values that are either realistic or that are both unrealistic but that 

contain errors that compensate for one another (Kirchner et al., 1996). Furthermore, 

because degrees of freedom that are not constrained may worsen as a result of a 

rearrangement in the model structural error during calibration (Leplastrier et al., 2002), 

verification against datasets that are functionally equivalent to the training data can 

dramatically increase the number of false positives.  

Decades of research into appropriate methods for hydrological model 

identification under uncertainty have evolved from methods to identify a ‘best’ model 

(e.g. Duan et al., 1992), toward attempting to identify all models (or model structures) 

that are consistent with the observed system behavior (e.g., Gupta et al., 1998; Boyle et 

al., 2000; Vrugt et al., 2003; Beven, 2006). Note that because the model structural space 

is infinite and contains no ‘true’ model structure, it is only possible to find a currently 

‘best’ or ‘acceptable’ (i.e., ‘behavioral’) set of model structures by comparing each to all 

available observations.  
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Model identification approaches tend to be oriented toward finding the ‘best’ 

model (by adjusting it to best explaining the data) rather than toward understanding in 

which ways the model is inconsistent with the observed behavior of the natural system 

(Gupta et al, 2005; Wagener and Gupta, 2005). Such an evaluation framework is weak in 

the diagnostic sense (Gupta et al., 2008). A diagnostic approach helps determine 

components of a model, which when assumed to work properly, can explain the 

discrepancy between simulations and observations. According to Gupta et al. (2008), “At 

its strongest, a diagnostic evaluation will point toward the aspects of the model that need 

improvement, and give guidance toward the manner of improvement.” This approach 

goes beyond identifying models that conform with the data and enables us to draw 

conclusions about causality not merely based on correlation (i.e., if a better fit is found 

then the model is superior). Assert Gupta et al., “A causal diagnostic, however, is one 

where the underlying theory can be used to actually predict the (observable) impact of 

system changes (or defects), and similarly to infer various possible causes of an 

observable system response (or deviation thereof).” Very recently this philosophy has 

begun to be applied to rainfall−runoff modeling (Yilmaz et al., 2008; Bai et al., 2009). 

It is noted that a diagnostic approach is distinct from the quality assurance 

approach, in which a model, which is recognized as imperfect, is calibrated or bias 

corrected and the uncertainty bounds of its predictions are quantified (Refsgaard et al., 

2005). Quality assurance approaches are best suited to applications and operations, not to 

model development or scientific research.  
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Having gleaned what is possible out of the standard MIP approach, the LSM 

development community must move toward a diagnostic framework of model evaluation. 

Such an evaluation framework should focus on testing hypotheses underlying models via 

the evaluation of ‘signatures’ (i.e., characteristic behaviors of the observed system), and 

accounting for sources of uncertainty (e.g., by using all the models that best conform with 

the observed system behavior), thereby bridging the gap between model identification 

and model development.  

1.3. OVERVIEW OF WORK PRESENTED HERE 
 
The work presented here was undertaken to evaluate which of three versions of 

the Noah LSM (the benchmark standard, a dynamic-vegetation enhanced version, and a 

groundwater-enabled one) better represents the near-surface land-to-atmosphere fluxes 

and states in transition zones, both in terms of accuracy and in terms of insensitivity to 

parameter and data uncertainty. The results challenge typical assumptions made as part of 

standard LSM evaluation practices. Looked at in full, my dissertation presents a new 

framework in which models are evaluated using a diagnostic approach that analyzes a 

model’s typical behavior – or ‘signature’ – in cost-function space, parameter space, and 

feature space. This evaluation focuses on testing hypothesis behind the implementation of 

the models, which allow me to diagnose deficiencies in their implementation and make 

conclusions about the importance of short-term vegetation processes and aquifer 

dynamics in transition zones. 



 12 

I use an ensemble approach to explicitly account for uncertainty. I identify a 

representative group of alternative model structures that best reproduces the observed 

data either by training the LSM to best reproduce primary behaviors or by selecting 

behavioral performing models. The evaluation investigates what structures the model 

takes in order to be consistent with the observations (i.e., what parameter sets are in the 

behavioral range), how the relationships between parameters that describe the model 

functioning act, how different are the model structures between constrained realizations 

and models with only a priori information, what is the typical performance and 

partitioning of the energy and water cycles, and how well do the models reproduce 

observed, defined characteristics that summarize the behavior or ‘signature’ of the 

observed system. I diagnose potential structural reasons for the shortcomings in the 

capacity of the model to simulate fluxes and states both in time and space that cannot be 

attributed to parameter uncertainty. 

 The following overarching questions are addressed: (1) Are the hypotheses 

behind the implementation of conceptually realistic enhancements to the hydrological 

representations of land-surface memory mechanisms adequately supported by (add value 

to the ability of LSMs to simulate) observed fluxes and near-surface states?; and (2) 

Faced with parameter uncertainty, how can deficiencies in the model structure be 

diagnosed and a better model identified?  

I evaluate LSM performance in zones of transition between arid and humid 

climates in the continental U.S. Zones of transition between wet and dry climates are 

regions in which land-surface memory processes are particularly important to the 
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determination of weather and climate (Koster et al., 2004; Dirmeyer et al., 2006; 

Weckwerth and Parsons, 2006; LeMone et al., 2007). The research described in Chapters 

2 and 3 uses hydrologic observations from the International H2O Project (IHOP) 2002 

observation campaign, which collected meteorological conditions and high-temporal-

resolution surface-to-atmosphere fluxes at nine sites across the Southern Great Plains, 

USA, a zone of transition between the humid eastern and arid western United States. 

Research described in Chapter 4 employs data collected at several locations in the 611 

km2 Little Washita River watershed in south-central Oklahoma. 

In Chapter 2, a traditional MIP and an ensemble-based MIP are presented. Both 

MIPs are used to evaluate the ability of three versions of the Noah LSM to represent land 

surface states and fluxes in the transitional climate of Oklahoma, USA. I demonstrate that 

the traditional approach to model intercomparison is insufficient to differentiate between 

the behavior of calibrated competing models in both cost-function space and feature 

space. I then build on the traditional approach with an ensemble-based method that 

permits the evaluation of model signatures. That is, I evaluate model behavior based on a 

model’s typical performance (not on the performance of a single model realization) in 

partitioning of the energy balance and sustaining moisture during dry-down periods. I 

address following questions: (1) Do newly introduced, enhanced hydrologic 

paramterizations improve the LSM’s capacity to simulate high-frequency turbulent fluxes 

and soil states? (2) Which versions of the models provide the right answer for the right 

reasons and why? (3) How reliable are the schemes when faced with parameter 

uncertainty? The more sophisticated, ensemble-based MIP allows me to reach 
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conclusions about model structure and performance across sites that are independent of 

parameter uncertainty, which is most often significant and unavoidable. 

In Chapter 3, I focus primarily on model signatures in parameter space, an area 

that is often overlooked by LSM researchers. I study the effect of choice of parameters on 

model simulation and investigate how parameters vary by site and by model. I address 

the following questions: (1) What are the model parameters that contribute most to model 

variance in transition zones? (2) What are the dominant interactions between model 

parameters, and how do these change between models? (3) How do behavioral 

parameters change with dominant physical characteristics of the land?  In the process of 

addressing the models’ performance in parameter space, I challenge commonly held 

assumptions in LSM development practices and demonstrate a detailed method for 

variance-based quantification of model performance, linking an assessment of model 

performance in parameter space to that in cost-function space. 

In Chapter 4, I move beyond point-scale model evaluation to catchment-scale 

evaluation to assess the ability of a LSM augmented with a simple groundwater model 

and a topography related runoff parameterization to simulate an integrated watershed 

characteristic, streamflow, at a daily timescale on a distributed grid at fine resolution. 

Building upon the work presented in Chapters 2 and 3, I apply the ensemble-based 

methods to address the following questions. (1) Does the hydrologically enhanced LSM 

improve upon the standard model’s ability to represent the water cycle? (2) Are the 

behavioral ensembles of both models able to simulate the essential characteristics of 

streamflow on a daily timescale? (3) Do the behavioral ensembles accurately partition the 
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components of streamflow into surface and subsurface components? (4) Do the 

behavioral ensembles demonstrate improvement of simulations of other characteristics of 

the water balance (evapotranspiration and soil moisture variation)? The use of powerful, 

signature-based diagnostic methods to comprehensively evaluate LSMs over distributed 

domains presented in Chapter 4 is the first application of such techniques in the LSM 

field and complements the analysis presented in Chapters 2 and 3. 

In Chapter 5, I recapitulate the primary conclusions and contributions of the work 

contained within this dissertation. The research presented here is of fundamental 

importance for understanding model behavior and the continued development and 

improvement of land-surface models. 
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Table 1.1 Comparison of best practices for environmental model development 
(Jakeman et al., 2006) and typical LSM development 

Best practices  Typical LSM development 

1. Define model purpose Far-reaching purposes include: Providing lower 
boundary conditions to models of atmosphere that are 
used in numerical weather prediction and climate 
research; tracking land-surface states and surface-to-
atmosphere fluxes under system changes; 
understanding system feedbacks 

2. Specify modeling context (specific 
questions to be addressed, who will be 
served by the results, necessary outputs, 
forcing data, expected accuracy, time 
and space domains, etc.) 

Stakeholders are frequently the broader modeling 
community, policymakers, or the public interest. In 
model development applications, questions are often 
‘Is the new parameterization better than the old?’ (Niu 
et al. 2007b) or ‘Is process X important to overall 
system behavior?’ (Gulden et al. 2007). Forcing data 
is collected from standard, high-quality repositories. 

3. Develop a conceptual understanding 
of the system to be represented, specify 
data and other prior knowledge 
(iteratively return to step 2, if necessary) 

Researchers typically assume the correctness of the 
majority of conceptualizations present in existing 
models (e.g., Noah LSM, the Community Land Model 
[Oleson et al. 2008]) and then modify one or two 
aspects of the conceptualization thought to be 
deficient. 

4. Select model features, family, and 
form of uncertainty specification 

LSMs are, as a whole, semi-empirical/semi-
theoretical, distributed, deterministic models. 
Uncertainty specification is often ignored or limited in 
scope; models are assumed to be correct or nearly 
correct because they are ‘physically based.’ 

5. Choose method for identifying model 
structure and parameters. Parsimony 
should be the standard when selecting 
model structure.  

With the exception of recent multi-model ensemble 
approaches (e.g., Niu et al. 2009), the model chosen is 
often assumed to be the best structure either due to 
modelers’ preference or incentive structures that 
dictate the use of a given model. Parsimony is 
typically ignored.  
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6. Choose estimation/performance 
criteria and algorithm. The parameter 
estimation criteria should reflect the 
desired qualities of the model estimates 
(e.g., infectivity to outliers, etc.). When 
estimating parameters, the resulting 
model should be tested against criteria 
not used for calibration. 

Parameter values are most often assumed to be the 
default or able to be transferred from similar 
ecosystems but are occasionally tuned using 
rudimentary calibration methods (e.g., Gulden et al. 
2007b). Parameters are transferred between sites with 
similar characteristics and between models based on 
an assumption of ‘physical realism’. Modelers 
typically do not allude to parameter interaction as a 
potential concern. 

7. Identify model structure and 
parameter values (iteratively return to 
steps 4 and 5, if necessary) 

See comments for 5 and 6 

8. Verification, including diagnostic 
testing. “Once identified, the model 
must be ‘conditionally’ verified and 
tested to ensure it is sufficiently 
robust…It is also necessary to verify 
that the interactions and outcomes of the 
model are feasible and defensible, given 
the objectives and the prior knowledge.” 

LSM developers typically focus on single or a very 
few realizations of their models, not exploring the 
robustness of the model results with respect to 
parameter uncertainty or input data uncertainty. If the 
given realization provides feasible outputs for the 
objectives of interest, the model is deemed to be an 
improvement. 

9. Quantification of uncertainty LSM developers and researchers typically limit 
themselves to simple end-member sensitivity analyses 
or one-at-a-time parameter sensitivity tests. 
Uncertainty stemming from input data, parameter 
uncertainty, or structural uncertainty is rarely 
quantified. 

10. Model evaluation or testing 
(iteratively return to steps 2, 3, 4, 5, and 
7, as needed). Ideally this is done using 
data that were not used to construct the 
model. 

LSM developers apply their model on global scales. 
Over time and application by multiple modeling 
groups to varying locations at varying timescales, the 
strengths and weaknesses of a given model often come 
to light (e.g. Mitchell et al., 2004). The community as 
a whole responds to the multi-site, multi-group model 
evaluation by using such results to target areas for 
future model improvement. 
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Chapter 2:  Traditional and Ensemble-based model 
intercomparison1 

2.1. ABSTRACT 
 
We introduce and compare the performance of the unified Noah land-surface 

model (LSM) and its augments with physically-based, more conceptually realistic 

hydrologic parameterizations. We use 45 days of 30-minute data collected over 9 sites in 

transition zones to evaluate: (1) our benchmark, the standard Noah LSM release 2.7 

(‘STD’); (2) one equipped with a short-term phenology module (‘DV’); and (3) one that 

couples a lumped, unconfined aquifer model to the model soil column (‘GW’). Our 

model intercomparison, enhanced by multi-objective calibration and model sensitivity 

analysis, shows that, under the evaluation conditions, the current set of enhancements to 

Noah fail to yield significant improvement in the accuracy of simulated, high-frequency, 

warm-season turbulent fluxes and near-surface states across these sites. Qualitatively, the 

version of DV and GW implemented degrade model robustness, as defined by the 

sensitivity of model performance to uncertain parameters. Quantitatively, calibrated DV 

and GW show only slight improvement in the skill of the model over calibrated STD.  

Then, we compare multiple model realizations to explicitly account for parameter 

uncertainty. We quantify model performance, robustness, and fitness for use across 

varied sites. We show that the least complex, benchmark LSM (STD) remains as the most 

                                                 
1Significant portions of this chapter were first published as:  
 Rosero E., Z.-L. Yang, L. E. Gulden, G.-Y. Niu, and D. J. Gochis (2009), Evaluating enhanced 
hydrological representations in Noah-LSM over transition zones: Implications for model development. J. 
Hydrometeor., 10(3), 600-622 doi: 10.1175/2009JHM1029.1.  
Works cited here are referenced in the References section of this dissertation. 
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fit version of the model for broad application. Although GW typically performs best 

when simulating evaporative fraction (EF), 24-hour change in soil wetness (ΔW30), and 

soil wetness, it is only about half as robust as STD, which also performs relatively well 

for all three criteria. GW’s superior performance results from bias correction, not from 

improved soil moisture dynamics. DV performs better than STD in simulating EF and 

ΔW30 at the wettest site, because DV tends to enhance transpiration and canopy 

evaporation at the expense of direct soil evaporation. This same model structure limits 

performance at the driest site, where STD performs best. This dichotomous performance 

suggests that the formulations that determine the partitioning of latent heat flux (LE) need 

to be modified for broader applicability. Thus, our work poses a caveat for simple ‘plug-

and-play’ of functional modules between LSMs and showcases the utility of rigorous 

testing during model development. 

2.2. INTRODUCTION 
 
By regulating the partitioning and horizontal distribution of water and energy 

fluxes, land-surface processes and characteristics modulate local weather and climate 

(Viterbo 2002; Yang, 2004). Land-atmosphere interactions are thought to be particularly 

strong in zones of transition between dry and wet climates, such as the U.S. southern 

Great Plains (Koster et al., 2004). To understand what processes are important in 

controlling surface-to-atmosphere fluxes and to better predict weather and climate, 

researchers use land-surface models (LSMs) (Pitman, 2003). LSMs are representations of 

the interactions between soil, vegetation, and the atmospheric boundary layer. LSMs also 
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provide lower boundary fluxes of mass, energy, and momentum to weather forecasting 

and climate models (Nijssen and Bastidas, 2005). Hence, realistic representation of key 

hydrological processes within LSMs is important for accurate numerical weather 

prediction. 

Discerning which processes are essential to represent within LSMs is an ongoing 

effort within the research community. As our understanding of land surface process 

grows, LSMs are adapted. New parameterizations aim to improve on previous 

generations of models by including increasingly complex, previously neglected processes 

or by replacing old simplifications with newly proposed, conceptually more realistic 

approaches (e.g., Oleson et al., 2008; Niu et al., 2009).  

Vegetation processes and anomalies in soil moisture provide a source of 

hydrological memory and are believed to influence precipitation and shape climate (e.g., 

Pielke, 2001). Use of LSMs that include at least a rudimentary treatment of vegetation 

and soil processes tends to improve model simulations. Correct simulation of the 

initiation of convection depends on modeled soil temperature and moisture (Childs et al., 

2006; Weckwerth and Parsons, 2006); improved soil moisture representation within 

LSMs improves simulation of surface fluxes (Dirmeyer et al., 2000); the use of more 

realistic representation of vegetation states and processes (e.g., stomatal resistance) 

increases the predictive power of LSMs in both offline (Niyogi and Raman, 1997) and 

coupled simulations (Holt et al., 2006).   

Further refinement of the conceptual realism of LSM soil hydrology and 

vegetation processes may further improve model predictive capability. When compared 
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to more simplistic parameterizations, more complex, sophisticated LSMs have been 

credited with improved simulations of air temperature, runoff, snow, turbulent fluxes, and 

soil states (Boone et al., 2004; Bowling et al., 2003; Niu et al., 2005; Niu et al., 2007; 

Wood et al., 1998). However, other studies have demonstrated that additional complexity 

neither necessarily improves model performance nor reduces the uncertainty in the 

simulated fluxes of water and energy (Schultz and Beven, 2003; Hogue et al., 2006). 

Additional complexity in LSM representations is perhaps unjustified when the new 

parameterization cannot be supported or identified with available observations 

(Leplastrier et al., 2002; Schultz and Beven, 2003; Hogue et al., 2006).  

Keeping in mind that both too parsimonious and too complex models often lead to 

decreased skill (e.g., Jensen, 1998; Carlson and Doyle, 2002), we evaluate the 

augmentation of the latest version of the Noah LSM (Ek et al., 2003) with two more 

conceptually realistic parameterizations: groundwater processes and dynamic phenology. 

We test whether the new modules improve the model’s capacity to simulate high-

frequency turbulent fluxes and soil states and how reliable each model is when faced with 

parameter uncertainty. Due to the strength of the coupling, our work focuses on warm-

season climates in the transition zone of the central U.S..  

Our primary goal is to identify whether the recent enhancements to the Noah 

model offer improvements in skill or robustness in simulating high-frequency fluxes and 

soil states, which, for this paper, we will term ‘applications’. Although LSM development 

enables incorporating necessary degrees of freedom to research the nature of feedbacks 

(e.g. the role of groundwater in long-term memory), investigate trends (e.g., phenology 
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contrast between wet and dry years), test scenarios (e.g., carbon cycling), etc. (e.g. 

Dirmeyer et al., 2006; Kim and Wang, 2007; Lyon et al., 2008); in our applications-

focused framework, we confine our definition of a ‘better’ model to one that most 

accurately reproduces observed high-frequency states and fluxes at the local scale.   

The analysis we present here is more rigorous than the typical LSM evaluation 

exercise. We first evaluate the versions of Noah LSM, following the steps of a traditional 

model intercomparison, using single model realizations (default and calibrated runs). We 

then use multiple model realizations and the metrics introduced by Gulden et al. (2008b) 

to assess model performance and reliability in conditions that more closely resemble 

those in which LSMs are actually applied. Our goal is to understand how and why the 

new parameterizations change model performance. For both segments of our evaluation, 

we use 45 days of high-frequency near-surface states and heat fluxes data collected as 

part of the International H2O Project (IHOP_2002) (LeMone et al., 2007).  

Datasets, models, and methods are described in section 2.3. Experimental design 

and methods for model performance evaluation are explained in section 2.4. Section 2.5 

presents a detailed, traditional model intercomparison and sensitivity analysis. Section 

2.6 presents an assessment of model performance under uncertainty and focuses on 

hypothesis testing. Section 2.7 discusses implications of the results for model evaluation 

and development. Conclusions are summarized in section 2.8. 

2. 3. MODELS, DATA AND METHODS 

2.3.1.  Hydrological enhancements to Noah LSM 
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To alleviate known biases (e.g., dry biases in evapotranspiration and soil moisture 

during the warm season [e.g., Chen et al., 2007], poor energy partitioning even after 

calibration [Hogue et al., 2006]), Noah LSM (Ek et al., 2003; Mitchell et al., 2004) has 

been augmented with modules that improve the conceptual realism of land-surface 

processes. We compare our benchmark, the standard Noah LSM release 2.7 (‘Noah-

STD’) to (1) a version that we equipped with a short-term phenology module (‘Noah-

DV’) and (2) one that couples a lumped, unconfined aquifer model to the model soil 

column (‘Noah-GW’). 

2.3.1.1. Augmentation of Noah with a dynamic phenology module (DV) 
 
We added the physically-based vegetation module of Dickinson et al. (1998) to 

Noah-STD in order to dynamically calculate vegetation greenness fraction. Unlike Noah-

STD, which computes greenness fraction by linear interpolation between monthly 

climatological values, Noah-DV represents short-term phenological variation by allowing 

leaf biomass density to respond to environmental perturbations and to vary as a function 

of soil moisture, soil temperature, canopy temperature, and vegetation type. The module 

allocates carbon assimilated during photosynthesis to leaves, roots, and stems; the 

fraction of photosynthate allocated to each reservoir is a function of, among other things, 

the existing biomass density. The model also tracks growth and maintenance respiration 

and represents carbon storage. Following a modification by Yang and Niu (2003), DV 

explicitly makes vegetation fraction an exponential function of leaf area index (LAI). 

STD allows LAI only to influence the computation of stomatal resistance (Rs).  In 
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addition to that, DV makes direct soil evaporation, canopy evaporation, and transpiration 

depend on variations in leafiness, or, more precisely, LAI.  

2.3.1.2. Augmentation of Noah with a groundwater module (GW) 
 
Noah-GW couples a lumped unconfined aquifer model (Niu et al., 2007) to the 

lower boundary of the Noah-STD soil column. Water flows in both directions between 

the aquifer and the soil column. The modeled hydraulic potential is the sum of the soil 

matric and gravitational potentials. If insufficient water is available to maintain a near-

surface aquifer, the water table falls below the soil column; when water is plentiful, the 

water table is within the soil column of the LSM. Baseflow is parameterized using an 

index of topography (Niu et al., 2005). 

2.3.2. IHOP_2002 sites and datasets 
 
We used data from the IHOP_2002 field campaign (Weckwerth et al. 2004) to 

evaluate predictions from the different version of Noah LSM at nine sites. To enable 

definitive testing and development of LSMs in transition zones, IHOP_2002 collected 45 

days of high-temporal-resolution, multi-sensor measurements of meteorological forcing, 

surface-to-atmosphere flux data, and near-surface measurements of soil moisture and 

temperature along the Kansas-Oklahoma border and in northern Texas2. The interested 

reader is referred to LeMone et al. (2007) for details3. Table 2.1 presents the Noah LSM 

soil and vegetation classes and mean meteorological values for the observation period. 

                                                 
2 See Figure 3.1 for a map of the sites. 
3 The authors obtained the datasets at http://www.rap.ucar.edu/research/land/observations/ihop/.  
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The nine stations were sited to obtain a representative sample of the region, which spans 

a strong east–west rainfall gradient. 

Figure 2.1 shows evaporative fraction (EF) (Eq. 2.1) and 30-cm soil wetness (W-

30) (Eq. 2.2) for Sites 2 (Fig.2.1a) and 8 (Fig.2.1b) against the backdrop of precipitation 

and volumetric soil moisture (SMC) in three of the soil layers. With depth, the soil 

column dries at Site 2 (dry) and wets at Site 8 (wet). Evaporation at Site 2 tends to be 

moisture limited; evaporation at Site 8 is most often energy limited. Comparing EF at 

Site 2  to that at Site 8, we see that it peaks immediately after rainfall at Site 2  but at Site 

8 somewhat subsides immediately following precipitation; the EF does not peak until 

several days after the influx of rainwater to the soil. 

2.3.3. Model initialization and spin-up 
 
All runs described in this paper followed the same initialization and spin-up 

procedures. We used downscaled North American Land Data Assimilation System 

(NLDAS) (Cosgrove et al., 2003) meteorological forcing, interpolated from a 60-minute 

to a 30-minute time step, to drive the simulations between January 1, 2000, and May 13, 

2002. Following Rodell et al. (2005), we initialized each of the four soil layers at 50% 

saturation and at the multi-annual-mean temperature. For Noah-GW, the depth to the 

water table was initialized assuming equilibrium of gravitational and capillary forces in 

the soil profile (Niu et al., 2007). The models were subsequently driven by IHOP_2002 

meteorological forcing (see Table 2.1) between May 13, 2002, to June 25, 2002 (DOY 

130 to 176).  
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2.3.4. Calibration datasets 
 
To constrain and evaluate the models during the IHOP_2002 period, we used 30-

minute time step, observed: sensible heat flux (H), latent heat flux (LE), ground heat flux 

(G), ground temperature (Tg), and first layer soil moisture (SMC5cm). To score the 

performance, we used root mean square error (RMSE) (Appendix 1). We scored only the 

last 45 days of each 2.5-year-long model simulation, DOY 130 to 176.  

2.3.5. Parameters calibrated 
 
We selected 10 soil and 10 vegetation parameters that have been deemed sensitive 

at similar locations (Demarty et al. 2004; Bastidas et al., 2006a). We included 8 

parameters responsible for the phenology module and 4 that control the aquifer model to 

estimate a total of 28 and 24 parameters for DV and GW, respectively. All other 

coefficients in the models were kept constant at the recommended values. Defaults and 

feasible ranges (Table 2.2) for all parameters were taken from the literature (e.g., Chen et 

al., 1996; Hogue et al., 2006). 

2.3.6. Multi-objective parameter estimation technique 
 
To calibrate the models, we used the Markov Chain Monte Carlo sampling 

strategy of Vrugt et al. (2003). The calibration algorithm allows an initial population of 

parameter sets (randomly selected within pre-established, feasible ranges) to evolve until 

the population converges to a stable sample, which maximizes the likelihood function 

and fairly approximates the Pareto set. The Pareto set (PS) represents the multi-objective 
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tradeoff: no member of the PS can perform better with respect to one objective without 

simultaneously performing worse with respect to another, competing objective (Gupta et 

al., 1998). The simultaneous minimization of the RMSE of multiple criteria {H, LE, G, 

Tg, SMC5cm} allows us to constrain the model for consistency with several types of 

observations. Multi-objective optimization facilitates the identification of physically 

meaningful parameter sets (and their underlying posterior distribution) that cause the 

model to mimic the processes they were designed to represent (Gupta et al., 1999; 

Bastidas et al., 2001; Leplastrier et al., 2002; Xia et al., 2002; Hogue et al., 2006). We 

used a sample of 150 parameter sets to represent the PS.  

To obtain a detailed representation of the range of model performance (i.e., the 

objective-function space), we also ran a Monte Carlo sampling of 15,000 random 

parameter sets, uniform within the feasible bounds (Table 2.2). Figure 2.2 shows slices of 

STD’s objective-function space at Site 4. In frequentist terms, Fig. 2.2 suggests that, 

when very little is known about the parameters, the expected RMSE of STD at Site 4 is 

most probably ~55 Wm-2 for LE, ~3°C Tg, and ~5% SMC5cm. Note the difference 

between the location of the scores most frequently (MF) obtained and the location of the 

low-density region where the PS resides.  

2.4. EXPERIMENTAL DESIGN 
 
We aimed to identify the model that best reproduces the physical behavior of 

transition-zone point-scale heat fluxes and states during the warm season.  



 28 

2.4.1. Traditional model intercomparison 
 
We first compared the versions of Noah LSM using single model realizations. To 

evaluate the hypothesis that increased physical realism yields an LSM that better 

reproduces observations, we asked the question: Do conceptually realistic enhancements 

improve the ability of LSMs to simulate fluxes and near-surface states? We compared the 

performance of default and multi-objectively calibrated runs using the goodness-of-fit 

metrics of Appendix 1 and observations of H, LE, G, Tg, and SMC5cm. In situ, high-

frequency measurements are an integrated response of the land surface and therefore 

provide multiple data streams that we used to examine model soundness at specific 

locations (Bastidas et al., 2001; Stöckli et al., 2008). It is important to note that no 

estimates of observational uncertainty or errors in energy balance closure in the tower 

flux data were incorporated into the present analysis. We used the multi-criteria 

optimization as an objective test of the underlying hypothesis that models are able to 

concurrently simulate all the response modes that they were designed to represent. 

Additionally, we compared characteristic model behaviors (obtained from extensive 

Monte Carlo sampling of parameter space) as a proxy for robustness. Results are 

presented in Section 2.5. 

2.4.2. Ensemble-based model intercomparison 
 
We evaluate the hypothesis that increased physical realism in conceptual models 

not only improves their performance but enhances their robustness, making them less 

sensitive to errant parameter values (Gulden et al., 2007a). See Appendix 2 for definitions 
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of the ensemble metrics. We ask the question: Which version of Noah is best suited for 

broad application and why?  

To objectively identify the model that best reproduces observations from among 

STD, DV, and GW, we explicitly considered uncertainty and rigorously evaluated 

different realizations of a model in an ensemble framework. In order to capture 

representative model behaviors (Smith, 2002; Wagener and Gupta, 2005), we used 

parameter variation to create two ensembles that we used to evaluate each model. Three 

metrics were used: the model performance score (quantifies skill and spread of the 

ensemble), the model robustness score (quantifies insensitivity to poorly known 

parameters), and the model fitness score (enables ranking models based on suitability for 

broad application) (Gulden et al., 2008b; equations are presented in Appendix 2). We 

used this method because it enabled us to identify shortcomings in the formulation of 

LSMs that hinder their capacity to simulate surface exchanges and states, even with 

optimized parameters. We also evaluated the hypothesis that increased physical realism 

in conceptual models not only improves model performance but enhances model 

robustness, making them less sensitive to errant parameter values. Results are presented 

in Section 2.6.  

2.4.2.1. Generation of ensembles 
 
For each model and each of the nine IHOP_2002 sites, we generated two 150-

member, parameter-based ensembles: (1) a most-frequent-performing (MF), uncalibrated 

ensemble; and (2) a calibrated (PS) ensemble. The calibrated ensembles were drawn from 
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the PS, which tends to provide consistent and reliable model realizations (Boyle et al., 

2000). The MF ensembles were composed of 150 randomly sampled models whose 

RMSE was within the intersection of the spaces defined by one standard deviation around 

the mode of each of the five calibration objectives {H, LE, G, Tg, SMC5cm} (Fig. 2.2). 

The PS and MF ensembles characterize distinct modes of behavior and represent a 

signature of the LSM in the objective-function space (Gupta et al., 2008). We confirmed 

that the parameter sets of the PS and MF samples come from distinct distributions (results 

not shown).  

2.4.2.2. Evaluation criteria 
 
For model evaluation, we use three independent verification criteria: (1) 

evaporative fraction (EF), (2) 30-cm soil wetness (W30), and (3) change in wetness over 

24 hours (ΔW30).   
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where θi, zi, and ωi are, respectively, the volumetric soil moisture, thickness, and 

porosity of the ith layer of the soil column, which has Nlayer layers (for the observations, 

Nlayer = 4; for the models, Nlayer = 2). 

2.5.  RESULTS OF TRADITIONAL MODEL INTERCOMPARISON  
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The traditional evaluation of model development compares the performance of a 

new model against a baseline model, while often neglecting parameter uncertainty. 

Model intercomparisons are often incomplete because they are based on ‘ad-hoc manual-

expert model evaluation’ methods that are inadequate for highly complex models (Gupta 

et al., 2008). By applying customary evaluation methods to assess the potential 

improvement of the LSMs in simulating H, LE, G, Tg and SMC5cm, we draw conclusions 

regarding model performance, review the strengths and limitations of typical model 

development procedures, and demonstrate the need for a more complete approach to 

thoroughly compare the models described above. 

2.5.1. Comparison of default and calibrated runs 
  
To illustrate the concepts of full and partial calibration, model performance, 

before and after augmentation with DV and GW, is presented on Figs. 2.3 and 2.4. First 

we tested the implementation of DV with the default parameter values suggested by its 

developers.  Figure 2.3 shows that default STD overestimates LE flux at Site 7 (wet). 

Because the recommended default parameters may not adequately characterize the 

particular conditions of the site, the new module’s parameters are adjusted to better 

capture the desired behavior (e.g., Niu et al., 2005). The practice of adding modules and 

tuning only new parameters (i.e., partial tuning - ‘xDV’) may improve model 

performance, yielding reduced bias (Fig. 2.3c), better correlation, and lower error (Fig. 

2.3d). The improved performance may or may not be (but certainly could be) attributed to 

the superior nature of the new model.  
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The model may not achieve the desired level of improvement after partial 

calibration. In standard model development practice, the new model frequently is not 

rejected but is revised. Due to conflicting hypotheses or undesired interactions, the 

parameters of the host model may need to be adjusted to accommodate the new module 

(e.g. Gulden et al., 2007b). This is represented for SMC5cm in Fig. 2.4. Default GW 

results in too wet simulations, and adjusting only its four free parameters (i.e, ‘xGW’) 

fails to significantly correct this bias. When the parameters of both the host model and the 

new module are simultaneously tuned (calibrated GW), the model performs at its best and 

surpasses the baseline established by the uncalibrated STD.  

However, if we allow calibration of the free parameters of the new models, for a 

fair, more consistent comparison, STD should be given the same opportunity to reach its 

optimal performance. For each objective, the best achievable performance of calibrated 

STD is also depicted in Fig. 2.3 and 2.4. Performance metrics and statistics are presented 

in Table 2.3 (see Appendix 1 for definitions). The goodness-of-fit of calibrated STD is 

very similar to the best performance achieved by calibrated GW and DV. Distinguishing 

the models becomes nontrivial, and it is practically impossible to state which one is best 

based solely on these results. 

To circumvent this issue, Akaike (1974) and Schwarz (1978) proposed 

information criteria (AIC and BIC, respectively) for model selection. They aim to reward 

the model that better explains the data with the lower complexity (number of parameters). 

The order of preference given by the two information criteria favors STD over DV and 
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GW (Table 2.3), implying that the gain in performance, if any, does not justify the 

additional complexity.  

We do not argue that the aforementioned, generalized approach to validation 

within model development is fundamentally flawed, only that it is incomplete. To 

underscore that this indistinguishability between acceptable models (Beven and Freer, 

2001; Beven, 2006) is not the outcome of chance nor it is the sole consequence of 

demanding too little from the complex, multi-output models, at each site we calibrate the 

models simultaneously against five objectives: {H, LE, G, Tg, SMC5cm}. For simplicity, 

we selected for each calibrated model a single, ‘best’ set of parameters from among the 

PS (using minimum Euclidean norm of the vector composed by the RMSEs of the 5 

objectives, e.g., Hogue et al., 2005). With this preferred, compromise solution, we 

mimicked the common practice of using of a single ‘best’ parameter set during model 

validation.  

At each location, the scores of the fully calibrated STD, GW and DV are 

equivalent (Fig. 2.5). All calibrated models have consistently lower misfit and better 

correlation with observed turbulent fluxes and Tg in the wet locations. Model 

performance worsens as the location gets drier, and simulated SMC5cm is less variable 

than observed. At the drier locations, scores differ slightly, particularly between DV and 

the rest of the models. Table 2.4 reports, for each site, the statistics of simulated LE by 

the ‘best’ set for each of model. Although there is some slight variation in the scores, 

model performance is essentially indistinguishable. Calibrated DV ranks best in terms of 

NSE at four of the nine sites, calibrated GW at four sites, and calibrated STD at three 
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sites. Note that, after calibration, at three of the sites (4,7, and 9), two models tie for best 

performance, scoring the same NSE. The maximum difference between NSE scores is 

0.06 (Site 1 (dry)), but most often the difference between the calibrated models’ NSE 

scores is 0.01. 

The rank of the model depends, in part, on choice of objective (Table 2.4). 

Improvement in one evaluation metric tends to result in degradation in another (e.g., at 

Site 3, GW has a slightly better NSE and r2 than STD and DV; however, GW has the 

worst bias of the three models). Good performance at one site does not guarantee reliable 

performance at climatologically similar sites. For instance, calibrated GW is unbiased 

(bias = 0.24 Wm-2) and has an excellent NSE (0.97) at Site 7 (wet), but it is the most 

biased performer at Site 9 (bias = –13.8 Wm-2) despite having the same high NSE (0.92) 

and r2 (0.90) as STD. Note that, given that a single solution was selected from among a 

population of realistic, behavioral parameters (PS), the rankings (e.g. Table 2.4) are likely 

to change when different parameter sets are considered. 

Traditional model intercomparisons ignore the aforementioned caveats. They 

proceed to subjectively select models based on: dependable functioning as judged by an 

expert (e.g., STD, GW), distinguishing solutions that fulfill predetermined criteria such as 

the smallest possible RMSE with zero bias (Boyle et al., 2000), rejecting models that 

consistently underperform in the considered criteria (e.g., xGW, xDV), or rejecting the 

models whose optimal parameter values do not conform with a priori expectations given 

any attributed physical meaning. 
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2.5.2. Comparison using multiple model realizations 

2.5.2.1. Sensitivity of GW to model parameters 
 
GW exhibits decreased robustness at dry sites and almost the same frequency of 

errors as STD at wet sites. Cumulative distributions (CDF) of 15,000 RMSE scores 

obtained by STD, GW and xGW are shown in Fig. 2.6. At Site 1 (dry) (Fig. 2.6a), 75% of 

the STD runs have a LE RMSE lower than 55 Wm-2 and no simulation is worse than 

RMSE = 90 Wm-2; however, 75% of the GW runs have errors larger than 55 Wm-2. For 

SMC5cm, the top 10% of GW and STD runs have the same score (RMSE < 6%), but the 

interquartile range (IQR) of STD has RMSE = 8-14% whereas GW’s is RMSE = 9-30%. 

The behavior of GW at this dry, bare-soil site suggests significant degradation in model 

robustness. At Site 7 (wet) (Figs. 2.6e-f), the IQR of GW’s RMSE is very similar to 

STD’s (30-70 Wm-2, 3-7%). Although GW does a slightly better job when simulating LE, 

STD better simulates SMC5cm.  The good robustness of GW at the wet sites is consistent 

with Gulden et al. (2007a). At the intermediate site 4, STD is on average slightly worse 

than GW at simulating LE (Fig. 2.6c): 25% of GW’s runs have RMSE lower than 48 

Wm-2, 25% of STD runs score below RMSE=52 Wm-2. However, GW performs poorly 

on SMC5cm (Fig. 2.6d): 50% of STD runs score lower than RMSE=10%, whereas only 

10% of GW runs have lower than RMSE=10%. The improvement gained by the addition 

of the particular aquifer model implemented here (comparing the CDFs of PS STD and 

PS GW) appears to be small (results not shown).  

Partial calibration (i.e., xGW) significantly increases the probability of having 

large errors. At all sites, xGW shows bimodal distributions of errors. Nearly 70% of 
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xGW runs have very poor scores. For example, at Site 4 (Fig. 2.6c-d) (LE RMSE > 110 

Wm-2, RMSE SMC5cm> 16%), the majority of xGW runs have a larger RMSE than the 

worst-scoring 10% of STD runs. A very small fraction of xGW can be as good as GW. 

The exception is site 4, where the best 10% of xGW runs are still 10 Wm-2 worse than 

either STD or GW’s top-scoring runs. In general, xGW is at least 40 Wm-2 and 5% (for 

LE and SMC5cm, respectively) worse than the most-frequent performing models of STD 

and GW.  

Tuning only the four new parameters (xGW) is the wrong way to calibrate GW. It 

leads to biased model structures. This implies that the aquifer parameters (e.g., specific 

yield, exponential decay) and the STD soil parameters need to be coherent to 

accommodate the new structure (i.e., parameters need to be allowed to interact). 

2.5.2.2. Sensitivity of DV to model parameters 
 
DV worsens the robustness of STD, significantly at the dry sites and slightly at 

wet sites. Cumulative distributions of 15,000 RMSE scores obtained by STD, DV and 

xDV are shown in Fig. 2.7. At Site 2 (dry) (Fig. 2.7a), the IQR of STD simulations of LE 

lies between RMSE=42 and RMSE=55 Wm-2 whereas DV’s is between 50 and 67 Wm-2. 

Fifty percent of the STD runs score below RMSE=47 Wm-2. Fifty percent of the DV runs 

have RMSE higher than 57 Wm-2. Although the best performing runs of STD and DV 

have  RMSE =30 Wm-2, only 25% of the PS of DV scores below 40 Wm-2; the majority 

of the PS of DV scores are 15 Wm-2 worse than STD (results not shown). At Site 8 (wet) 

(Fig. 2.7b), the IQR of DV’s LE (RMSE=50−70 Wm-2) is very similar to that of STD 
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(RMSE=45−70 Wm-2). Half of STD runs score below RMSE=52 Wm-2, half of DV runs 

have RMSE lower than 57 Wm-2. The best-scoring STD and DV runs at Site 8 have 

RMSE=30 Wm-2 and RMSE=1.5 % (for LE and SMC5cm, respectively). In general, a 

significant improvement in terms of better simulating LE over the reference model (STD) 

is not seen. The bulk of the simulations of DV are worse than the most-frequent 

performance of STD. 

Like xGW, xDV is not an appropriate implementation of the model. At Site 2 

(dry), 90% of the xDV LE runs score between RMSE=55−70 Wm-2 (Fig. 2.7a). The 

scores of the top 10% of xDV PS are 5 Wm-2 worse than those of DV or STD. At Site 8 

(wet), only 10% of xDV runs have RMSE<75 Wm-2, while 75% of the DV and STD runs 

perform like the best 10% of xDV do. The top-scoring xDV has an RMSE=30 Wm-2 

(similarly to STD, DV) but their SMC5cm RMSE is 3% worse. We stress the need to let 

the parameters in the DV module interact with both vegetation and soil parameters of the 

host structure. This need becomes more pressing at more humid sites with more abundant 

vegetation. 

2.6.  RESULTS OF ENSEMBLE-BASED MODEL INTERCOMPARISON 
 
We evaluate the reliability of STD, DV, and GW in simulating EF, W30, ΔW30 

when faced with parameter uncertainty. Using the framework of Gulden at al. (2008b), 

summarized in Appendix 2, we show that STD is most fit for broad application. 

2.6.1. Use of the performance score to evaluate time-varying model performance 
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Figure 2.8 shows the time variation of the performance score (ζ-see Appendix 2) 

of the PS ensemble for each criterion (EF, W30, ΔW30) and model, for Site 2 (dry) (Fig. 

2.8a-c) and Site 8 (wet) (Fig. 2.8e-g). Despite calibration against {H, LE, G, Tg, 

SMC5cm}, when simulating ΔW30, all models significantly overestimate the speed at 

which the soil column wets and dries (Fig. 2.8c and 2.8g); this result holds for both PS 

and MF ensembles. All models also overestimate the extent by which a single rainstorm 

increases overall soil wetness (results not directly shown). When simulating W30, models 

typically do not identify the correct mean value.  However, because individual models 

have their own equilibrium states, the day-to-day change in soil wetness is arguably a 

more important objective for models than is the modeled soil wetness (i.e., different W30 

states in different models can yield the same ΔW30). In the next paragraphs, we use the ζ-

score to help us understand when and why the models fail. 

2.6.2. Use of the performance score to guide model development 
 
The ζ-score (Appendix 2) can be used as a tool to improve model structure and to 

help to assess whether a model is giving the ‘right’ answers for the ‘right’ reasons 

(Kirchner, 2006). Here we demonstrate the use of the time-varying performance score in 

this way. 

2.6.2.1. Does GW improve performance for the ‘right’ reasons? 
  
The hypothesis behind the implementation of the groundwater module is that the 

physical realism of the STD soil moisture profile is enhanced by improving simulated 
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soil moisture dynamics (Niu et al., 2007). By allowing upward water flow from deep-soil 

stores during times of dry-down or drought, the GW model presumably buffers the 

hydrologic cycle, alleviating the dry bias in LE in dry seasons. We examine the validity 

of this hypothesis with the help of Figs. 2.8 and 2.9.  

GW achieves the best performance scores of any of the three models when 

simulating W30 at Site 8 (wet) (Fig. 2.8f). However, its performance worsens as the soil 

dries down. This behavior is consistent with the deterioration in the performance of EF 

observed between DOY 150 – 155 (Fig. 2.8e). To reconcile this apparent contradiction, 

we also look at the temporal variation of ensemble bias (Fig. 2.9e) and the performance 

of GW when simulating ΔW30 (Fig. 2.8g). We assert that GW ameliorates the simulation 

of W30 by keeping the soil column wet during the overall simulation period not by 

improving soil moisture dynamics; hence GW is not able to improve the partitioning of 

surface energy at Site 8 (wet). At Site 2 (dry), the simulation of W30 by GW is 

comparable to that by STD (Fig. 2.8b), except immediately after precipitation, when STD 

outperforms GW. Observed EF in the dry location peaks sharply when available moisture 

is readily evaporated immediately after a rainstorm, but the cohort of models simulates a 

more muted response of EF. In terms of the partitioning of turbulent fluxes (Fig. 2.8a), 

GW’s simulation degrades because the evapotranspiration can be heavily influenced by 

soil moisture within deep layers. We note that other structural shortcomings, such as 

errors in rooting depth specification or insufficient soil layer discretization, may also 

exist. GW shows wet bias for W30 after rainfall events (see DOY 148–155 in Fig. 2.9b). 

The reason GW has a good score at Site 2 (dry) is likely because its mean soil moisture 
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value is larger than that of the rest of the models in the cohort (and it therefore has a 

larger moisture gradient between soil and air). At the daily timescale (ΔW30 reports the 

difference in moisture between time t and 24 hours prior), GW is not getting the ‘right’ 

answers for the ‘right’ reasons in the three sites reported here. It should be noted that, 

over longer timescales (months to years), the groundwater module may yet improve the 

realism of vertical water transfer in the soil; however, whether the coupling of the slowly 

responding aquifer with high-frequency processes such as root-zone-fueled 

evapotranspiration is correct has yet to be demonstrated. The dynamics of the aquifer 

model may be too slow, and result in dampening of the variability of the soil moisture.  

2.6.2.2. Does increased complexity of modeled vegetation improve simulation of 
surface energy fluxes? 

 
DV improves model performance over STD at humid, more heavily vegetated 

sites (e.g., Site 8) and degrades model performance at dry, sparsely vegetated sites (e.g., 

Site 2). Sites 2 and 8 have distinct moisture and evaporation regimes (Fig. 2.1, Fig. 

2.8d,h). At Site 2 (dry), total LE flux peaks in the two days immediately following 

rainfall; at Site 8 (wet), total LE flux peaks several days after the rain. We interpret this to 

mean that ‘fast’ evaporation sources (canopy evaporation [Ec] and direct soil evaporation 

[Edir]) play a larger role in shaping evaporative flux at Site 2 (dry); transpiration (Etransp) 

is more significant at Site 8 (wet).  

At Site 8 (wet), DV outperforms STD (Fig. 2.8e-g), especially as the soil dries 

after major precipitation events (e.g., DOY 153−155), when transpiration from deeper 

soil layers becomes the dominant source for evaporation. The relatively better 
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performance of DV (with respect to STD) at Site 8 occurs in both the MF ensemble (not 

shown) and the PS ensemble, underscoring the assertion that the improvement shown by 

DV is a structural improvement that is not related to choice of parameters. Because the 

relationship expressing vegetation fraction (vegfrac) as an exponential function of LAI 

favors vegfrac values that approach 1, DV favors a mode of behavior in which Ec and 

Etransp dominate LE flux at the expense of Edir. This mode is likely more physically 

realistic in more densely vegetated zones (e.g., Site 8). At Site 8 (wet), STD’s simulation 

of Edir and Ec (the ‘fast’ sources of LE flux) appears too high, and its simulated Etransp 

appears suppressed. STD tends to have higher LAI values than DV (mean LAI PS 

ensemble: 2.3 [DV], 3.3 [STD]), slightly lower Rs values than DV (results not shown), 

and higher soil moisture than DV (Fig. 2.9e). Despite these transpiration-promoting 

conditions, because total transpiration is scaled by vegetation fraction (0.7), STD still 

does not simulate as much transpiration as DV.  

It should be noted that DV does explicitly link all components of the LE flux to 

LAI, which it allows to vary. Although this linkage may improve the conceptual physical 

consistency and make the seasonality and interannual variation in surface fluxes more 

realistic, we presume that, over the timescales examined here, its effect is somewhat 

minimal. In DV, LAI (and vegfrac) can and do vary on very short timescales (days), but 

this appears to not be the primary reason that DV improves over STD at Site 8 (wet).  

At Site 2 (dry), DV’s tendency to favor Ec and Etransp over Edir worsens model 

performance. At Site 2, DV supports too much evaporation too quickly from both Ec and 

Etransp. After parameter adjustment in which the model is constrained by multiple 
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objectives, not all of which directly improve simulation of EF, the model favors this Ec 

and Etransp mode and a second mode in which Edir is strongly favored at the expense of Ec 

and Etransp. In both modes, at Site 2 (dry), DV overestimates the ‘fast’ sources of LE flux 

(Ec and Edir). STD, with its forced ratio of Ec, Edir and Etransp, performs best at Site 2. The 

additional degree of freedom provided by making vegfrac an exponential function of LAI 

makes the model very sensitive to the conversion. This sensitivity results in higher spread 

and less skill within the DV ensemble simulations of EF.  Lastly, at site 4, STD and DV 

perform equivalently well in simulating EF (results not shown). 

2.6.3. Evaluation of models’ suitability for broad application 

2.6.3.1. Which model is most reliable for a given site and objective? 
 
Table 2.5 presents the time-median ζ-score for each of the models examined, at 

Sites 2, 4, and 8, for the PS ensemble and for the MF ensemble. The  ζ -score effectively 

combines ensemble spread and skill, hence, due to the large sample sizes, differences in 

the 3rd decimal for EF and W30 are significant. Just as other goodness-of-fit metrics, the 

relative importance of a unit of difference depends on the criterion and on experience. 

We use the median performance score (instead of the mean) to minimize the effect of 

outliers, which have a relatively high chance of being the result of data outliers. As a 

group, the models simulate W30 and EF better than they simulate ΔW30. Although the PS 

ensembles tend to perform better than the MF ensembles, this statement cannot be 

uniformly applied, which underscores the assertion that calibration against certain 
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objectives may worsen the performance of the model in other, equally important, 

objectives (Leplastrier et al., 2002). 

GW achieves the best mean performance for EF, ΔW30, and W30, both within its 

MF ensembles and within its PS ensembles. STD and DV perform equivalently well 

across the three criteria; however, STD tends to slightly outperform DV.  

2.6.3.2. Which model gives the most consistent performance? 
 
A ‘robust’ model is generally less impacted by parameter variation (Carlson and 

Doyle, 2002; Gulden et al., 2007a) and therefore ‘model robustness’ can provide a 

measure of consistent performance across ensemble members and across sites. Table 2.6 

shows the robustness (ρ) score (Appendix 2) and rank for each model at each site and 

objective. The benchmark model (STD) is the most robust overall. At wet sites, DV is the 

most robust. 

2.6.3.3. Which model is best suited for broad application? 
 
The model fitness (φ) score combines the concepts expressed by the performance 

and robustness scores (Appendix 2). With the exception of Site 2 (dry), the models are 

significantly less able to accurately represent ΔW30 than they are to represent EF and 

W30. Because the models simulate some objectives more accurately than others, we 

evaluate models’ overall suitability for broad application by averaging their rankings for 

individual sites and objectives. Table 2.7 reports fitness scores and ranks; it also presents 

the individual site and criterion fitness-score rankings and the mean rank of each model, 
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averaged across sites and across criteria (see the final two lines of Table 2.7). In the 

models’ current configurations, and using these metrics for model fitness, the benchmark 

model, STD, is found to be most fit for broad application. It most consistently ranks at 

the top of the cohort in terms of fitness (mean rank of STD φ = 1.33). GW is second-most 

likely to rank at the top of the cohort (mean rank of GW φ = 1.67), but the variability of 

GW’s fitness ranking is a potential caveat. DV and GW are only somewhat less fit than 

STD; with improvements to the realism of model physical parameterizations, guided by 

the time variation of the performance scores, modified versions of each of these models 

have the potential to outperform STD for broad application. Of the three models 

evaluated here (STD, DV, and GW), despite apparent increases in the non-benchmark 

models’ conceptual realism, the least complex version of Noah (STD) is most fit for 

broad application across these 9 representative sites of summer climates in the central 

U.S.  

STD may perform better than the other models not because of a more physically 

realistic representation but rather because it has fewer degrees of freedom and therefore 

tends to have lower ensemble spread. However, this low spread could also be an indicator 

of ‘artificial skill’ in the context of providing an overconfident estimate. The inability of 

the enhanced parameterizations to outperform STD may also result from a mismatch 

between the level of complexity of STD and the new modules or the use of improper 

conceptualizations for the intended processes. For instance, the lack of a separate canopy 

layer in Noah may inhibit concordant functioning of Noah and the DV module. The DV 

module may augment the fitness of an LSM that explicitly represents canopy radiative 
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transfer. Thus it is possible that any of these modules may improve the fitness of other 

LSMs. We encourage the application of similar, thorough analyses for the same modules 

coupled to different LSMs, as a more robust test of model performance. 

2.7. DISCUSSION OF IMPLICATIONS FOR MODEL DEVELOPMENT  
 
Although the results discussed above may be considered model- or site-specific, 

their implications for LSM development and evaluation are significant and broad-

reaching. Our systematic analysis has demonstrated the limitations of traditional model 

evaluation techniques and has illustrated the utility of an ensemble-based framework that 

explicitly accounts for different sources of uncertainty in LSM predictions. 

Standard evaluation methods are inadequate for highly complex models such as 

LSMs. All models require parameter estimation (Jakeman et al., 2006). Regarding 

models that require calibration as inferior is not practical (Beck, 2002). We have shown 

that the improvement gained by calibration from an initial, ‘default’ state should not be 

used as a measure of the quality of the model for two reasons: (a) Default parameters are 

educated guesses made by developers (Dickinson et al., 1998; Shuttleworth, 2007) or are 

model-dependent values adopted by modelers after extensive testing (which makes the 

score of the model applied to analogous settings fortuitous); and, (b) using 

‘improvement’ gained by calibration as a 'measure' of overall model goodness is not 

correct. Models often adapt their structural error when undergoing calibration (Kirchner 

et al., 1996; Leplastrier et al., 2002). For that reason, even elevating models to their 

‘optimal’ performance before comparison is an incomplete and information-limited 
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approach for model intercomparison. We have shown that conclusions regarding model 

quality should not be drawn using a single set of parameters (whether with 'default' or 

'best' parameters). Single-realization model intercomparisons provide insufficient 

information to choose among competing models. Furthermore, such exercises offer 

limited help in diagnosing model structural deficiencies and do not fully explain why 

models differ and are therefore insufficient to guide model development.  

We used sensitivity analysis to show that significant uncertainty comes from 

unmeasureable, unknown, effective parameters (e.g., the e-folding depth of saturated 

hydraulic conductivity or the transformation factor for LAI to vegetation greenness). Our 

results are consistent with the notion that parameter values are model dependent 

(Wagener and Gupta, 2005; Hogue et al., 2006) and that there is no straightforward 

transferability of the values between models and/or, potentially, sites (Hogue et al., 

2005). The resulting implication is that default parameter values tested for a model 

component (e.g., GW) within one LSM (e.g., CLM [Oleson et al., 2008a]) will likely not 

be the same as those that yield the best—or even good—performance when the same 

module is used within a different LSM (e.g., Noah). This poses a caveat for simple 'plug-

and-play' use of functional modules between LSMs. 

Additionally, we showed that tuning only the parameters associated with new 

modules leads to biased model structures and significantly increases the chance of poor 

performance. We assert that parameters in the host model need to be modified coherently 

and in unison with the new parameters to allow for interactions in the soil-vegetation 

system that control responses to meteorological forcing.  
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Because of these limitations and because of the dearth of spatially and temporally 

extensive evaluation and validation data, modeling for the foreseeable future will have to 

contend with significant parameter uncertainty. We assert that, especially when LSMs are 

to be used operationally (for short-term weather forecasting), the community needs to 

employ an evaluation technique that explicitly accounts for sources of uncertainty that are 

inherent to modeling (e.g., parameters, data). For the purposes of model development, 

evaluation techniques should identify, in time, the model shortcomings that hinder its 

capacity to simulate surface exchanges and states, even with optimized parameters.  

To effectively capture a more complete spectrum of model behaviors, we 

employed the ensemble-based evaluation framework of Gulden et al. (2008b). 

Comparison of the performance of the MF and PS ensembles enabled us to draw 

conclusions regarding model structure that were independent of parameter uncertainty. 

The framework also allowed us to evaluate models rigorously and to consider model 

robustness as a criterion when selecting models best suited to operational use (that is, 

when possible, we wanted to choose the best-performing LSMs that were also less 

sensitive to parameter variation).  Finally, because model rank depends on criteria and 

reliability cannot be guaranteed for similar sites, the use of fitness scores gave us an 

objective way to compare models.  

One major caveat to this study is that we have neglected the uncertainty in the 

data, but we assert that the framework used here can and should accommodate both data 

and parameter uncertainty.  Uncertainty in model output that stems from uncertain initial 

conditions is relatively unimportant when compared to uncertainty in parameter values, 
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so long as reasonable initial conditions are used or the model is properly spun-up 

(Bastidas et al., 2001; Abramowitz et al., 2006; De Lannoy et al., 2006). We assume that 

this relative unimportance of initial data, combined with our 2.5-year spin-up period 

before the calibration/evaluation period, allows us to neglect uncertainty in initial 

conditions in this analysis. A less trivial source of uncertainty is uncertainty in 

meteorological forcing data. Model sensitivity to errors in boundary forcing data should 

be a criterion for model evaluation; however, due to computational constraints, we also 

neglect forcing-data uncertainty. Next-step work should encompass ensembles of 

simulations in which both parameters and input data are perturbed for each model run.  

This study illustrates how increased physical realism does not necessarily yield an 

LSM that better reproduces observations. Thus, our results are consistent with the notion 

that increasing complexity (and therefore degrees of freedom) can significantly increase 

the modeler's risk that his model will not perform as expected (e.g., Gulden et al., 2007a). 

We recognize that nature is inherently complex and that models must be sufficiently 

complex to represent key processes and feedbacks; however, especially when models are 

being used for prediction, because of parameter and structural uncertainty, researchers 

should be aware that there often exists a tradeoff between model complexity and model 

predictive performance. Our results have shown that when adding more conceptually 

realistic components reduces error in model simulations, additional information-based 

criteria often do not deem the improvement to be worth the additional complexity.  

Hence, modelers must increase the precision of their definition of ‘improvement’ (Smith, 

2002) to include a broad, multivariate suite of metrics. Results presented here illustrate 
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that lack of rigorous testing can preclude significant model development efforts. Raising 

the standards for objective comparison against benchmarks using strict, relevant tests will 

reward developers and foster confidence of the public and policymakers (Kirchner et al., 

1996; Jakeman et al., 2006; Refsgard et al., 2006; Randall et al., 2007; Clarke, 2008).  

2.8.  SUMMARY AND CONCLUSIONS 
 
We compare three versions of the Noah LSM (benchmark STD, dynamic-

vegetation enhanced DV, and groundwater-enabled GW) using an analysis that employs 

high-frequency, local-scale turbulent fluxes and near-surface states while taking into 

account both model structure and uncertainty in model parameters. When using either 

default model parameters or a single calibrated set of parameters, the performance of 

STD, DV, and GW is not distinguishable. After detailed analysis that takes into account 

parameter uncertainty, our primary conclusion is that, of the three models examined, the 

benchmark model (STD) is the best suited for reproducing observed high-frequency heat 

fluxes and soil states. It is significantly more fit than other models at arid and semi arid 

sites. Although GW typically achieves the best performance score when simulating each 

of the three criteria (evaporative fraction, 24-hour change in soil wetness, and soil 

wetness), GW is only about half as robust as the benchmark model (STD). DV is 

reasonably well suited for broad application in wet regions. It significantly improves the 

model’s ability to correctly partition net radiation at the Site 8 (wet), even when good 

model parameters cannot be identified.  
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We further conclude that although GW has the best average performance of any 

models in simulating all three criteria, its superior performance results from correcting 

the mean model state and is not due to improved short-term soil moisture dynamics. All 

three models are too quick to wet and too quick to dry; GW does not appear to 

significantly correct this problem. When compared to STD (and GW) DV improves 

simulation of EF at Site 8 (wet) because its partitioning of LE flux favors transpiration 

and canopy evaporation over direct soil evaporation. At Site 2 (dry), DV’s increased 

emphasis on canopy evaporation and transpiration leads to model degradation. 

Our results do not provide definitive evidence regarding the role of conceptual 

realism in shaping model robustness. At wetter sites (Site 7, 8), DV and GW often 

perform better and are slightly more robust than STD; at drier sites, GW and DV do not 

perform as well as STD and are less robust than STD. Therefore, the present formulations 

of DV and GW may be considered less conceptually realistic for use when simulating 

arid sites. 

Although the results discussed above may be model and site specific, the 

implications of our work are not. We have shown that traditional LSM evaluation 

methods which use evaluation data averaged in time and uninformative misfit metrics, 

and which do not account for parameter uncertainty, are, in many cases, insufficient for 

confident assessment of model performance. Ad-hoc evaluation using single parameter 

sets provides insufficient information to choose among competing models. It neither 

helps in diagnosing deficiencies nor explains why models differ; and it is insufficient to 

guide model development. We have demonstrated a need for increased rigor in LSM 
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evaluation using techniques that explicitly account for multiple sources of uncertainty 

and that can identify in time the shortcomings in the formulations of LSMs. Because 

default parameters are at best an educated guess and because models are frequently not 

distinguishable when all are given ‘ideal’ parameters, it may be necessary to revisit 

conclusions drawn from model evaluation studies that have not fully accounted for 

parameter uncertainty. Plug-and-play use of new modules, in which the new module’s 

parameters are either not calibrated or in which only parameters within the new module 

are calibrated, does not reliably yield optimal model performance. Adding complexity to 

models (although crucial for research endeavors) entails a significant risk in decreasing 

model robustness, which can lessen the model’s overall fitness for broad application in 

operational settings.  

We recommend that the approach used here be widely adopted by model 

intercomparison projects, which, in part because of a lack of stringent evaluation metrics, 

have often been plagued by a lack of firm conclusions. We encourage other modeling 

groups to perform similar analyses with their models. Finally, we advocate for a 

cooperative approach between the parameter estimation and model development 

communities as a way to ensure rapid, continued improvement of our understanding and 

modeling of environmental processes. 
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Table 2.1. IHOP_2002 sites and mean meteorological forcing observed during the 
evaluation period (13 May−25 Jun).   

Noah-LSM vegetation and soil types (indices in parenthesis). Rainfall is cumulative over 
the observation period. Mean annual precipitation (MAP). Shortwave (SW) and 
longwave (LW) radiation, 2-m air temperature (T), surface pressure (P), specific 
humidity (Q2) and wind speed (W) 
 

Site 1 2 3 4 5 6 7 8 9 

Lat (°N) 36.4728 36.6221 36.8610 37.3579 37.3781 37.3545 37.3132 37.4070 37.4103 

Lon (°W) 100.6179 100.6270 100.5945 98.2447 98.1636 97.6533 96.9387 96.7656 96.5671 

Vegetation 

type 

 

bare 

ground 

(1) 

grassland 

(7) 

sagebrush 

(9) 

pasture 

(7) 

wheat 

(12) 

wheat 

(12) 

pasture 

(7) 

grassland 

(7) 

pasture 

(7) 

Soil type sandy 

clay loam 

(7) 

sandy 

clay loam 

(7) 

sandy 

loam (4) 

loam (8) loam (8) clay loam 

(6) 

silty clay 

loam (2) 

silty clay 

loam (2) 

silty clay 

loam (2) 

Rain (mm) 154.5 69.1 72.4 164.5 173.6 203.6 175.4 296.6 250.8 

MAP (mm) 530 540 560 740 750 800 900 880 900 

SW (Wm-2) 293.8 296.7 296.9 272.6 270.3 269.8 268.9 261.8 261.8 

LW (Wm-2) 348.3 351.8 360.6 358.1 357.9 367.5 368.5 359.3 358.3 

T (°C) 21.4 21.7 22.5 20.7 20.7 21.0 20.7 20.1 19.9 

P (hPa) 914.6 915.9 924.1 955.4 955.9 966.2 970.5 965.2 963.4 

Q2 (gkg-1) 10.3 9.9 9.8 11.2 11.9 11.7 11.9 12.1 11.9 

W (ms-1) 7.8 7.8 6.6 6.3 5.9 5.6 5.3 5.3 5.9 
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Table 2.2. Feasible ranges of calibrated Noah-LSM parameters. 

Parameter Description units min max 

Soil parameters    
maxsmc Maximum volumetric soil moisture m3m-3 0.35 0.55 
psisat Saturated soil matric potential m m-1 0.1 0.65 
satdk Saturated soil hydraulic conductivity m s-1 1E-6 1E-5 
B Clapp-Hornberger b parameter - 4 10 
quartz Quartz content - 0.1 0.82 
refdk Used with refkdt to compute runoff parameter kdt  0.05 3 
fxexp Bare soil evaporation exponent - 0.2 4 
refkdt Surface runoff parameter  0.1 10 
czil Zilintikevich parameter - 0.05 8 
csoil Soil heat capacity Jm-3K-1 1.26 3.5 
Vegetation parameters    
rcmin Minimal stomatal resistance s m-1 40 400 
rgl Radiation stress parameter used in F1 term of canopy resistance  30 100 
hs Coefficient of vapor pressure deficit term F2 in canopy resistance  36 47 
z0 Roughness length m 0.01 0.1 
lai Leaf area index - 0.1 5 
cfactr Exponent in canopy water evaporation function - 0.4 0.95 
cmcmax Maximum canopy water capacity used in canopy evaporation  m 0.1 2.0 
sbeta Used to compute canopy effect on ground heat flux  - -4 -1 
rsmax Maximum stomatal resistance s m-1  2,000 10,000 
topt Optimim air temperature for transpiration K 293 303 
Dynamic Phenology parameters (Noah-DV)    
fragr Fraction of carbon into growth respiration - 0.1 0.5 
gl Conversion between greenness fraction and LAI - 0.1 1.0 
rssoil Soil respiration coefficient s-1 x1E-6 0.005 0.5 
tauhf Average inverse optical depth for 1/e decay of light - 0.1 0.4 
bf Parameter for present wood allocation  0.4 1.3 
wstrc Water stress parameter  10 400 
xlaimin Minimum leaf area index - 0.05 0.5 
sla Specific leaf area - 5 70 
Groundwater parameters (Noah-GW)    
rous Specific yield m3m-3 0.01 0.5 
fff e-folding depth of saturated hydraulic capacity m-1 0.5 10 
fsatmx Maximum saturated fraction % 0 90 
rsbmx Maximum rate of subsurface runoff  ms-1 1E-3 0.01 1 
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Table 2.3. Performance metrics and statistics for default and (fully and partially) 
calibrated models (STD, DV, and GW) against latent heat flux (LE) and first 
layer soil moisture (SMC5cm) at site 7 for the entire evaluation period.   

Partial calibration (denoted by xDV and xGW) refers to tuning only new free parameters, 
while leaving all other STD-parameters constant at default values. Calibrated STD is as 
good as calibrated DV and calibrated GW. AIC and BIC favor STD’s lower complexity. 
See Appendix 1 for metrics definitions. 
 

Metric  
Criterion LE [Wm-2] SMC5cm  [%] 

mean=126.36  std=136.36 mean=33.19  std=2.84 
Model STD DV xDV STD GW xGW 

Mean 
default 147.14 163.24 31.52 41.29 

calibrated 115.38 112.82 112.01 33.18 33.07 38.27 

Std Dev 
default 184.39 208.34 2.53 0.76 

calibrated 134.35 134.53 124.57 2.72 2.39 1.33 

RMSE 
default 69.01 97.18 2.22 8.46 

calibrated 24.27 24.66 33.46 1.26 1.48 5.48 

r2 
default 0.92 0.92 0.59 0.40 

calibrated 0.93 0.93 0.90 0.65 0.60 0.49 

Bias 
default 31.80 49.31 -1.64 8.12 

calibrated -3.55 -6.12 -6.78 0.03 -0.08 5.11 

NSE 
default 0.74 0.49 0.39 -7.86 

calibrated 0.97 0.97 0.94 0.80 0.73 -2.72 
Rank ΔAIC 1 2   1 2   
Rank ΔBIC 1 2   1 2   
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Table 2.4. Goodness-of-fit for the simulation of latent heat flux (LE) for default, partial 
and fully calibrated models.  

Calibrations report only compromise solution: preferred ‘best’ parameter set minimizes 
the L2 norm of the RMSE of the 5 objectives {H, LE, G, Tg, SMC5cm}.  Best performing 
model by site in bold. No. stands for number of sites a model performs the best. See 
Appendix 1 for definitions of metrics. 
 
Metric Model IHOP_2002 site No.1 

   1 2 3 4 5 6 7 8 9  
RMSE STD Def 49.46 56.08 55.36 62.27 49.81 86.78 69.01 79.78 95.09 0 
  Cal 44.77 32.58 47.89 41.36 46.97 42.05 25.50 32.52 33.86 2 
 DV Def 43.99 62.42 88.93 153.6 131.5 189.2 97.18 102.3 108.8 0 
   xDV 43.99 42.68 57.16 42.99 51.48 48.98 33.46 31.08 36.30 0 
  Cal 40.56 30.90 48.22 39.18 49.14 48.39 26.15 29.03 34.21 4 
 GW Def 87.49 157.8 90.66 113.3 69.35 138.0 98.61 102.05 112.7 0 
   xGW 47.41 54.38 54.29 56.73 43.93 62.75 38.12 51.79 66.32 1 
  Cal 41.18 31.71 47.72 40.13 46.6 58.78 25.09 33.48 33.61 3 

NSE STD Def 0.56 0.54 0.46 0.70 0.82 0.29 0.74 0.51 0.34 0 
  Cal 0.64 0.84 0.59 0.87 0.84 0.83 0.97 0.92 0.92 3 
 DV Def 0.65 0.43 -0.40 -0.80 -0.27 -2.37 0.49 0.20 0.13 0 
   xDV 0.65 0.73 0.42 0.86 0.81 0.77 0.94 0.93 0.90 0 
  Cal 0.70 0.86 0.59 0.88 0.82 0.78 0.96 0.94 0.91 4 
 GW Def -0.39 -2.67 -0.46 0.02 0.65 -0.80 0.48 0.21 0.07 0 
   xGW 0.59 0.56 0.48 0.75 0.86 0.63 0.92 0.80 0.68 1 
  Cal 0.69 0.85 0.60 0.88 0.84 0.67 0.97 0.91 0.92 4 

r2 STD Def 0.60 0.70 0.48 0.74 0.81 0.77 0.92 0.91 0.88 0 
  Cal 0.65 0.84 0.60 0.83 0.83 0.81 0.93 0.92 0.90 4 
 DV Def 0.63 0.60 0.46 0.77 0.76 0.68 0.92 0.91 0.88 0 
   xDV 0.63 0.73 0.55 0.82 0.78 0.74 0.90 0.91 0.87 0 
  Cal 0.69 0.85 0.60 0.85 0.79 0.75 0.93 0.91 0.90 3 
 GW Def 0.51 0.60 0.41 0.75 0.79 0.71 0.92 0.90 0.87 0 
   xGW 0.59 0.65 0.49 0.76 0.84 0.79 0.92 0.91 0.89 1 
  Cal 0.69 0.84 0.62 0.83 0.81 0.77 0.93 0.91 0.90 5 

bias STD Def 9.08 -34.1 -0.19 7.79 -2.82 37.67 31.80 23.40 40.29 2 
  Cal -2.38 -9.46 -10.0 -6.19 -20.6 -14.1 -7.71 -16.46 -11.4 0 
 DV Def -3.18 -34.2 34.06 79.12 49.10 96.80 49.31 37.21 48.87 0 
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   xDV -3.87 2.68 -25.6 -4.59 -14.5 -2.14 -6.78 -10.84 -2.05 2 
  Cal -0.61 -1.65 -6.63 -1.59 -13.5 -7.14 -4.41 -9.48 -11.6 2 
 GW Def 48.23 102.4 44.87 58.45 19.99 72.08 52.64 39.38 52.47 0 
   xGW 0.10 -10.2 -4.02 1.71 -15.6 19.13 4.76 0.36 19.25 2 
  Cal -3.36 -7.69 -12.5 -5.57 -13.1 16.34 0.24 -12.6 -13.8 1 
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Table 2.5. Median performance (ζ) score for each ensemble, site, criterion, and model.  

Lower ζ scores (Appendix 2) indicate better performance. Ensembles were constructed 
using 150 most-frequent performing (MF) and 150 Pareto set (PS) parameter sets. 
 

Criterion Site Ensemble STD DV GW 
EF 

2 

MF 0.204 0.291 0.238 

PS 0.186 0.342 0.190 

4 

MF 0.203 0.153 0.155 

PS 0.211 0.198 0.185 

8 

MF 0.224 0.073 0.076 

PS 0.130 0.113 0.157 

Average, MF 0.210 0.172 0.156 

Average, PS 0.175 0.217 0.177 

Mean, all realizations 0.193 0.195 0.167 
W30 

2 

MF 0.297 0.339 0.398 

PS 0.291 0.575 0.299 

4 

MF 0.330 0.299 0.247 

PS 0.329 0.282 0.188 

8 

MF 0.160 0.146 0.060 

PS 0.202 0.227 0.120 

Average, MF 0.262 0.261 0.235 

Average, PS 0.274 0.361 0.202 

Mean, all realizations 0.268 0.311 0.219 
ΔW30 

2 

MF 1.518 1.901 1.831 

PS 1.583 1.770 1.861 

4 

MF 3.486 2.950 1.784 

PS 3.059 3.125 2.795 

8 

MF 0.972 1.004 0.847 

PS 1.783 1.536 1.323 

Average, MF 1.992 1.952 1.487 

Average, PS 2.141 2.143 1.993 

Mean, all realizations 2.067 2.047 1.740 
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Table 2.6. Model robustness (ρ) score and rank for each site, criteria, and model.  

A rank of 1 means that the model is the most robust model for that site and criterion. 
Mean robustness score is averaged across sites and criteria. Lower scores indicate 
increased robustness (lower sensitivity to errant parameters). See Appendix 2 for the 
definition of ρ-score.  
 

  STD DV GW 
Site Criterion Rank ρ score rank ρ score rank ρ score 

2 EF 1 0.046 2 0.081 3 0.113 
W30 1 0.010 3 0.258 2 0.142 
ΔW30 2 0.021 3 0.036 1 0.008 
Mean rank 1.33  2.67  2  

4 EF 1 0.019 3 0.127 2 0.089 
W30 1 0.001 2 0.030 3 0.136 
ΔW30 2 0.065 1 0.029 3 0.221 
Mean rank 1.33  2  2.67  

8 EF 2 0.266 1 0.214 3 0.347 
W30 1 0.117 2 0.219 3 0.335 
ΔW30 3 0.294 1 0.210 2 0.220 
Mean rank 2  1.33  2.67  

Average  1.55 0.093 2 0.134 2.44 0.179 
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Table 2.7. Model fitness (φ) score and rank for each site, criterion, and model.  

Lower fitness scores indicate better models. A rank of 1 means that the model is the best-
performing model for that site and criterion. The average rank combines performance and 
robustness, and it is an indication of the model’s broad applicability. See Appendix 2 for 
the definition of φ-score. 
 

  STD DV GW 
Site Criterion rank φ score rank φ score rank φ score 
2 EF 1 0.0085 3 0.0278  2 0.0214 

W30 1 0.0030 3 0.1485  2 0.0424 
ΔW30 2 0.0329 3 0.0635  1 0.0155 
Mean rank 1.33  3  1.67  

4 EF 1 0.0041 3 0.0252  2 0.0164  
W30 1 0.0004 2 0.0085  3 0.0256  
ΔW30 2 0.1997 1 0.0901 3 0.6172  
Mean rank 1.33  2  2.67  

8 EF 2 0.0346 1 0.0241 3 0.0546  
W30 1 0.0235  3 0.0497  2 0.0403 
ΔW30 3 0.5246 2 0.3220  1 0.2905  
Mean rank 2  2  2  

Average rank 1.55  2.33  2.11  
Variance of rank 0.53  0.75  0.61  
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Figure 2.1. Segment of the time series of evaporative fraction (EF), 30-cm soil wetness 
(W30), volumetric soil moisture (SMC), and precipitation.  

(a) at Site 2 and (b) at Site 8. EF is shown in two ways: 30-minute data points and 3-hour 
smoothed data (gray). EF peaks and depletes immediately after rainfall at Site 2 but does 
not peak until several days after precipitation at Site 8. W30 is 30-40% at Site 2 and 70-
80% at Site 8. SMC* measurements at 5, 15, and 60 cm below the surface are reported 
using gray lines: the darkest line is the SMC in the layer nearest to the surface; the 
lightest gray line is the soil moisture in the layer farthest from the surface.  
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Figure 2.2. Bi-dimensional projections of the objective-function space of STD at Site 4.  

Higher density of RMSE scores of 15,000 Monte Carlo model runs shown with darker 
contours. The Pareto Set (PS), 150 calibrated parameter sets (black dots), represent the 
minimal uncertainty in the multi-objective tradeoff {H, LE, G, Tg, SMC5cm}. The most 
frequent performing (MF) models have RMSEs within the intersection of one standard 
deviation (σ) around the mode of each objective. Note that the relative position of 
‘default’ (x) is no indication of the goodness of model. 
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Figure 2.3. Performance of Noah LSM augmented with DV in simulating LE at Site 7.  

Figure shows: (a) a segment of the time series of LE and (b) its residuals; (c) scatter plot 
of simulation versus observations; and (d) Taylor plot, where dark is a single-objective 
calibrated run and gray is the uncalibrated (default) run. Partially calibrated (xDV) stands 
for the tuning of the free parameters of the DV augmentation only (see Table 2.2), while 
the rest of the STD parameters are left fixed to its corresponding default values.  (c) and 
(d) are for the entire evaluation period. See Table 2.3 for statistics.  
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Figure 2.4. Performance of Noah LSM augmented with GW in simulating SMC5cm at Site 
7.  

Figure shows (a)  a segment of the time series of SMC5cm and (b) its residuals; (c) scatter 
plot of simulation versus observations; and (d) Taylor plot, where dark is a single-
objective calibrated run and gray is the uncalibrated (default) run. Partially calibrated 
(xGW) stands for the tuning of the free parameters of the GW augmentation only (see 
Table 2.2), while the rest of the STD parameters are left fixed to its corresponding default 
values. (c) and (d) are for the entire evaluation period. See Table 2.3 for statistics. 
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Figure 2.5. Taylor diagrams of performance metrics for the entire evaluation period.  

Diagrams are shown for (a-c) latent heat flux (LE) for all sites; and, (d) sensible heat flux 
(H), (e) ground temperature (Tg), and (h) first layer soil moisture (SMC5cm) for Sites 2, 4 
and 8.  Default STD, DV, and GW shown in light gray. Fully calibrated (black) and 
partially calibrated (dark gray) models (i.e. xDV, xGW) use a compromise ‘best’ 
solution: preferred parameter set minimizes the L2 norm of the RMSE of the 5 objectives 
{H, LE, G, Tg, SMC5cm}. Calibrated models cluster together for any given site. See Table 
2.4 for statistics on simulated LE. 
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Figure 2.6. Cumulative distribution functions of 15,000 RMSE scores obtained by STD, 
xGW, and GW. 

Cumulative distribution functions (CDF) for STD (dashed), xGW (light gray) and GW 
(dark gray) at (a-b) Site 1 (dry), (c-d) Site 4, and (e-f) Site 7 (wet). LE left column, 
SMC5cm right column. Partial calibration (i.e., xGW) significantly increases the 
probability of having large errors. GW exhibits decreased robustness at dry sites and 
almost the same frequency of errors as STD at wet sites. 
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Figure 2.7. Cumulative distribution functions of 15,000 RMSE scores obtained for 
simulated LE by STD, xDV, and DV.   

Cumulative distribution functions (CDF) for STD (dashed), xDV (light gray) and DV 
(dark gray) at Sites 2 (dry) and 8 (wet). Partial calibration (i.e., xDV) significantly 
increases the probability of having larger errors. 
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Figure 2.8. Time-varying performance (ζ scores† for STD, DV and GW Pareto set (PS) 
ensembles between DOY 145 and 175 at Sites 2 and 8.  

Performance scores are shown at (a-c) Site 2 and (e-g) Site 8 for EF, W30, and ΔW30, 
respectively. The closer the score is to zero, the better. Bottom panels show precipitation 
and latent heat flux (LE) for (c) Site 2 (dry) and (h) Site 8 (wet). For ease of viewing, the 
EF performance score shown also as the daily mean value. Note that, at Site 8, periods of 
diverging performance (e.g., DOY 151-155) coincide with periods of increasing LE and 
drying soil. At Site 2, unlike at Site 8, DV is significantly worse than STD and GW. 
† ζ−score at time t is the normalized difference between the CDFs of the ensemble and of 
the observation. See definition in Appendix 2. 
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Figure 2.9. Ensemble Bias† of the STD, GW and DV Pareto set (PS) simulations of EF, 
W30 and ΔW30 at Sites 2 and 8.  

Performance scores are shown at (a-c) Site 2 and (d-f) Site 8. For ease of viewing, the EF 
bias shown here is the daily mean value. On a diurnal scale, for all models, ensemble-
mean simulated EF typically underestimates EF at the beginning and end of the day and 
overestimates it during midday. Note that the 30-cm soil moisture of GW at Site 8 (wet) 
is practically unbiased.  
†Bias at time t is the difference between the ensemble mean and the observation. See 
definition in Appendix 2. 
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Chapter 3:  Sensitivity, Parameter Interaction and Transferability4 

3.1. ABSTRACT 
 
We use sensitivity analysis to identify the parameters that are most responsible for 

determining land surface model (LSM) simulations and to understand the complex 

parameter interactions in three versions of the Noah LSM: the standard version (STD), a 

version enhanced with a simple groundwater module (GW), and version augmented by a 

dynamic phenology module (DV). We use warm season, high-frequency, near-surface 

states and turbulent fluxes collected over nine sites in the U.S. Southern Great Plains. We 

quantify changes in the pattern of sensitive parameters, the amount and nature of the 

interaction between parameters, and the covariance structure of the distribution of 

behavioral parameter sets. Using Sobol’s total and first-order sensitivity indexes, we 

show that very few parameters directly control the variance of the model response. 

Significant parameter interaction occurs so that not only the optimal parameter values 

differ between models, but the relationships between parameters change. GW decreases 

unwanted parameter interaction and appears to improve model realism, especially at 

wetter sites. DV increases undesirable parameter interaction and decreases identifiability, 

implying it is overparameterized and/or underconstrained. A case study at a wet site 

shows GW has two functional modes: one that mimics STD and a second in which GW 

improves model function by decoupling direct evaporation and baseflow. Unsupervised 

                                                 
4Significant portions of this chapter were accepted for publication as: 
 Rosero E., Z.-L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.-Y. Niu (2009), Quantifiying 
parameter sensitivity, interaction and transferability in hydrologically enhanced versions of Noah-LSM 
over transition zones during the warm season,  J. Geophys. Res., doi:10.1029/2009JD012035 (In Press). 
Works cited here are referenced in the References section of this dissertation. 
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classification of the posterior distributions of behavioral parameter sets cannot group 

similar sites based solely on soil or vegetation type, helping to explain why transferability 

between sites and models is not straightforward. This evidence suggests a priori 

assignment of parameters should also consider climatic differences.  

3.2. INTRODUCTION 
 
Like other environmental models built to support scientific reasoning and testable 

hypotheses to improve our understanding of the Earth system, land-surface models 

(LSMs) have grown in sophistication and complexity (Pitman, 2003; Niu et al., 2009). 

The evaluation of LSM simulations is consequently non-trivial and, especially when 

LSMs are to be used in predictive mode for operational forecasting, policy assessments, 

or decision making, demands more powerful methods for the analysis of their behavior 

(Saltelli, 1999; Jakeman et al., 2006; Randall et al., 2007; Gupta et al., 2008; Abramowitz 

et al., 2009). One such method is sensitivity analysis (SA). In this article, we inform LSM 

development by using sophisticated SA to guide the on-going development of the 

commonly used Noah LSM (Ek et al., 2003). 

SA is the process of investigating the role of the various assumptions, 

simplifications and other input (parameter) uncertainties in shaping the simulations made 

by a model. SA is a tool that enables the exploration of high-dimensional parameter 

spaces of complex environmental models to better understand what controls model 

performance (Saltelli et al., 2008). Monte Carlo-based SA uses multiple model 

realizations to evaluate the range of model outcomes and identifies the input parameters 
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that give rise to this uncertainty (Wagener et al., 2001; Wagener and Kollat, 2007).  Used 

to its full potential, SA weighs model adequacy and relevance, identifies critical regions 

in the space of the inputs, unravels parameter interactions, establishes priorities for 

research, and, through an interactive process of revising the model structure, leads to 

simplified models and increased understanding of the natural system (Saltelli et al., 

2006).  

SA has been underutilized in LSM development. Approaches to quantify 

‘sensitivity’ (the rate of change in model response with respect to a factor) very 

frequently are restricted to a simple exploratory analysis of the effects of factors taken 

one-at-a-time (OAT), without regard for their interactions. Although OAT is only 

justified for linear models (Saltelli, 1999; Bastidas et al., 1999; Saltelli et al., 2006), it has 

been used to explore the effects of parameters (e.g., Pitman, 1994; Gao et al., 1996; Chen 

and Dudhia, 2001; Trier et al., 2008), meteorological forcing, and ancillary data sets (e.g., 

Kato et al., 2007; Gulden et al., 2008a). A more powerful and sophisticated approach that 

implicitly accounts for parameter interactions is regionalized sensitivity analysis (RSA). 

RSA representatively samples the entire parameter space and provides a robust 

assessment of the way parameter distributions change between subjectively defined 

‘good’ and ‘bad’ (i.e., behavioral and non-behavioral) model simulations (e.g., Bastidas 

et al., 2006a, Prihodko et al., 2008) or within the behavioral range of different models 

(e.g., Gulden et al., 2007a; Demaria et al., 2007). By not explicitly accounting for 

interactions between parameters, RSA is prone to type II errors (nonidentification of an 

influential parameter) (Saltelli et al., 2008). RSA does not quantify the extent to which a 



 73 

parameter affects the variance of the model output, and it is typically applied with the 

sole purpose of identifying parameters that merit calibration (e.g., Bastidas et al., 1999). 

The factorial method is a global variance-based SA (VSA) that explicitly accounts for 

parameter interactions. It uses a set of model runs whose parameters have been perturbed 

from an arbitrary reference value (default) to identify parameters that affect the variance 

of model output. Because accounting for higher-order interactions requires a prohibitive 

number of model runs, factorial analyses in LSM research have been limited to two factor 

interactions of few selected parameters (e.g., Henderson-Sellers, 1993; Liang and Guo, 

2003; Oleson et al., 2008b) and have therefore not fully characterized parameter space. 

When RSA and VSA are used separately, both the lack of firm conclusions regarding the 

effect of dominant parameters (and their interactions) on the model variance (e.g.,  

Bastidas et al., 2006a) and the inability to draw cause-effect relationships between 

parameter regions and model responses (e.g.,  Liang and Guo, 2003) have precluded SA 

findings from being widely used in LSM development.  

We employ SA to compare the performance and physical realism of three 

versions of the Noah LSM: the standard Noah (STD), a version augmented with a simple 

groundwater model (Niu et al., 2007) (GW), and a version augmented with an interactive 

canopy model (Dickinson et al., 1998) (DV) simulate the land-surface states and fluxes at 

nine sites in a transition zone between wet and dry climates using the datasets of 

IHOP_2002 (LeMone et al., 2007). Because of the strength of the land-atmosphere 

coupling in transition zones (Koster et al., 2004), we focus on warm-season climates of 

the U.S. Southern Great Plains. Neglecting uncertainty in the meteorological forcing, we 
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document how parameter interaction and sensitivity varies with model, site, soil, 

vegetation, and climate.  

We use the Monte Carlo-based VSA method of Sobol' to quantify total and first-

order sensitivity indexes. The method of Sobol' is more robust (it employs a 

representative sample of the parameter space) and efficient than factorial analysis 

(Saltelli et al. 2002), and it bypasses the perceived complexities (e.g., the design of the 

calculation matrix) often associated with factorial analysis. Note that because LSM 

developers have attempted to use physical principles when designing their models, the 

parameters of such physically-based models are assumed to correspond to unchanging 

physical characteristics of a system. Consequently, the level of parameter interaction can 

be treated as an indirect measure of the physical realism of LSMs. That is, it is assumed 

that physically-based models with less undesirable parameter interaction are better (i.e., 

more physically realistic) (Beck, 1987; Spear et al., 1994; Gupta et al., 2005). We show 

that only a few parameters directly control model variance and that parameter interaction 

is significant. 

We look at the marginal distributions of behavioral parameters to investigate the 

ways in which ‘physically meaningful’ LSM parameters function within alternate model 

structures. We focus on selected dominant parameter interactions that dictate model 

response. Because LSM parameter values are assumed to be ‘physically meaningful’ (e.g. 

Dickinson et al., 1986) that can be either measured in the field (e.g., porosity) or inferred 

from (remotely sensed) observations (e.g. LAI), their values should not change between 
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models for a given site. We show that the distributions of the behavioral parameters differ 

between models and that the relationships between parameters change.  

A priori assignment of parameters based on soil texture and vegetation type is 

standard practice in the application of LSMs, justified by the assumption that ‘physically 

meaningful’ parameters can be transferred between locations that share the same physical 

characteristics (e.g., Sellers et al., 1996). As a consequence of our SA-enabled model 

evaluation, we observe that LSM parameters are highly interactive and change between 

models and between sites, which implies that a priori assignment of parameters may not 

be justified. We use unsupervised classification to test parameter transferability. The 

similarity of estimated multivariate posterior distributions of behavioral parameters and 

their sensitivity for each site are compared to those obtained at other sites. We show that 

the changes between sites are not solely controlled by soil texture or vegetation types but 

appear to be strongly related to the climatic gradient.  

This paper is organized as follows. Experimental design and driving questions are 

formulated in section 3.3. Datasets, models, and methods are described in section 3.4. 

Section 3.5 presents the patterns of sensitivity obtained by the global variance-based 

method of Sobol'. Section 3.6 presents a case study demonstrating the use of SA to 

understand the functional relationships between behavioral parameters, whose interaction 

serves to characterize model structure and test hypotheses that regard the formulation of 

model. Section 3.7 discusses implications of the results for the transferability of 

parameters between locations with similar physical characteristics. Conclusions are 

summarized in section 3.8. 
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3.3. DRIVING QUESTIONS AND EXPERIMENTAL DESIGN 
 
We first ask: What are the dominant model parameters across the region? We run 

a suite of Monte Carlo simulations to identify parameters that exert the greatest control 

on the variability of simulated fluxes and states at each IHOP site for all 3 models (STD, 

GW and DV). We quantify sensitivity using the method of Sobol'. Our SA guides our 

further investigation. 

We then address the question:  How do the dominant parameters’ interactions 

change between models? With our focus toward model development, we investigate the 

relationships between behavioral model parameters and quantify how they change 

between models using the estimates of the total-order sensitivity, the multivariate 

posterior parameter distributions, and the covariance structures.  

We finally ask: How do behavioral parameters change with dominant physical 

characteristics of the land? We summarize the relationships between model parameters 

and physical characteristics by classifying the multivariate posterior parameter 

distributions according to sites’ soil and vegetation types. Our classification provides 

insights into how parameters can be transferred to ungauged locations. 

3.4. MODELS, DATA AND METHODS 

3.4.1.  Hydrologically enhanced versions of Noah LSM 
 
We compare the standard Noah LSM release 2.7 (STD) to one that couples a 

lumped, unconfined aquifer model to the model soil column (GW) and a version that we 

equipped with a short-term phenology module (DV). 
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3.4.1.1. Noah standard release 2.7 (STD) 
 
Noah (Ek et al., 2003; Mitchell et al., 2004) is a one-dimensional, medium 

complexity LSM used in operational weather and climate forecasting. The model is 

forced by incoming short- and longwave radiation, precipitation, surface pressure, 

relative humidity, wind speed and air temperature. The computed state variables include 

soil moisture and temperature, water stored on the canopy and snow on the ground. 

Prognostic variables include turbulent heat fluxes, and fluxes of moisture and 

momentum. Noah has a single canopy layer with climatologically prescribed albedo and 

vegetation greenness fraction. The soil profile of Noah is partitioned into 4 layers (lower 

boundaries at 0.1, 0.4, 1.0 and 2.0 m below the surface). The vertical movement of water 

is governed by mass conservation and a diffusive form of the Richard’s equation. 

Infiltration is represented by a conceptual parameterization for the subgrid treatment of 

precipitation and soil moisture. Drainage at the bottom is controlled only by gravitational 

forces; percolation neglects hydraulic diffusivity. Direct evaporation from the top soil 

layer, from water intercepted by the canopy and adjusted potential Penman-Monteith 

transpiration are combined to represent total evapotranspiration. The surface energy 

balance determines the skin temperature of the combined ground-vegetation surface. 

Soil-layer temperature is resolved with a Crank-Nicholson numerical scheme. Diffusion 

equations for the soil temperature determine ground heat flux. The Noah LSM uses soil 

and vegetation lookup tables for static soil and vegetation parameters such as porosity, 

hydraulic conductivity, minimum canopy resistance, roughness length, leaf area index, 

etc. 



 78 

3.4.1.2. Noah augmented with a simple groundwater model (GW) 
 
GW couples a lumped unconfined aquifer model (Niu et al., 2007) to the lower 

boundary of the STD soil column. In GW, water flows vertically in both directions 

between the aquifer and the soil column. The modeled hydraulic potential is the sum of 

the soil matric and gravitational potentials. The relative water head between the bottom 

soil layer and the water table determines either gravitational drainage or upward diffusion 

of water driven by capillary forces. Aquifer specific yield is used to convert the water 

stored in the aquifer to water table depth. When water is plentiful, the water table is 

within the model’s soil column; if water is insufficient to maintain a near-surface aquifer, 

the water table falls below the soil column. An exponential function of water table depth 

modifies the maximum rate of subsurface runoff (for computation of baseflow) and 

determines the fraction of the grid cell that is saturated at the land surface (for calculation 

of surface runoff) (Niu et al., 2005). Observed moderate recharge rates for non-irrigated 

agricultural ecosystems in the Southern Great Plains (Scanlon et al., 2005) warrant the 

simple representation of an aquifer for the simulation of surface-to-atmosphere fluxes in 

the region. 

3.4.1.3. Noah augmented with a short-term dynamic phenology module (DV) 
 
We coupled the canopy module of Dickinson et al. (1998) to STD in order to 

compute changes in vegetation greenness fraction that result from environmental 

perturbations. The module allocates carbon assimilated during photosynthesis to leaves, 

roots, and stems; the fraction of photosynthate allocated to each reservoir is a function of, 
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among other things, the existing biomass density. The model also tracks growth and 

maintenance respiration and represents carbon storage. Unlike STD, which computes 

greenness fraction by linear interpolation between monthly climatological values, DV 

represents short-term phenological variation by allowing leaf area to vary as a function of 

soil moisture, soil temperature, canopy temperature, and vegetation type. DV makes 

vegetation fraction an exponential function of leaf area index (LAI) (Yang and Niu, 

2003). Because DV links vegetation fraction to dynamic LAI, DV makes direct soil 

evaporation, canopy evaporation, and transpiration more responsive to environmental 

conditions than STD. Unlike Dickinson et al. (1998), we parameterize the effect of water 

stress on stomatal conductance as a function of soil moisture deficit, not as a function of 

soil matric potential. 

3.4.2. IHOP_2002 sites and datasets 
 
We used datasets available at www.rap.ucar.edu/research/land/observations/ihop/ 

from the IHOP_2002 field campaign (LeMone et al., 2007) to evaluate the three versions 

of Noah LSM at nine sites along the Kansas-Oklahoma border and in northern Texas 

(Fig. 3.1). The nine stations were sited to obtain a representative sample of the region, 

which spans a strong west-east (east-west) gradient of rainfall (topography and the 

Bowen ratio). We used 45 days of high-frequency, multi-sensor measurements of 

meteorological forcing, surface-to-atmosphere fluxes, and near-surface soil moisture and 

temperature. Site characteristics, soil and vegetation classes, mean meteorological values, 
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average heat fluxes and near-surface states for the observation period are summarized in 

Table 3.1.  

3.4.3. Model initialization and spin-up 
 
Following Rodell et al. (2005), we initialized each of the four soil layers at 50% 

saturation and at the multi-annual-mean temperature. To drive the spin-up (between 

January 1, 2000, and May 13, 2002), we used downscaled North American Land Data 

Assimilation System (NLDAS) (Cosgrove et al., 2003) meteorological forcing, 

interpolated from a 60-minute to a 30-minute time step. The models were subsequently 

driven by IHOP_2002 meteorological forcing from May 13, 2002, to June 25, 2002 

(DOY 130 to 176). For GW, water table depth was initialized assuming equilibrium of 

gravitational and capillary forces in the soil profile (Niu et al., 2007).  

3.4.4. Evaluation datasets 
 
To evaluate the models, we used sensible heat flux (H), latent heat flux (LE), 

ground heat flux (G), ground temperature (Tg), and first layer volumetric soil moisture 

(SMC5cm). All data was recorded at a 30-minute time step. In situ, high-frequency flux 

and near-surface state measurements are an integrated response of the land surface and 

therefore provide useful data for examining model soundness at a specific location 

(Bastidas et al., 2001; Stöckli et al., 2008). To score model performance, we used root 

mean square error (RMSE).  
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3.4.5. Parameters considered in the sensitivity analysis 
 
We study all 10 soil and 10 vegetation parameters of STD, assigned a priori via 

look-up tables. We included eight parameters responsible for the phenology module and 

four that control the groundwater module to analyze a total of 28 and 24 parameters for 

DV and GW, respectively. All other coefficients in the models were kept constant at the 

recommended values. Default values and feasible ranges (Table 3.2) for all parameters 

were taken from the literature (e.g., Chen and Dudhia, 2001; Hogue et al., 2006). 

3.4.6. Sobol' indices for global variance-based sensitivity analysis (VSA) 
 
We use the variance-based method of Sobol' (Sobol', 1993; 2001) to efficiently 

identify the factors that contribute most to the variance of a model’s response. The 

method of Sobol' deals explicitly with parameter interaction and has recently been used to 

quantify model sensitivity and parameter interactions in hydrology (e.g., Tang et al., 

2006, Bois et al., 2007; Ratto et al., 2007; Yatheendradas et al., 2008; van Werkhoven et 

al., 2008). Our review of the literature shows that it has not yet been used for LSM SA. 

Sobol' indices enable researchers to distinguish the subset of independent input 

factors X={x1, .,xi,., xk}that account for most of the variance of the model’s response 

Y=f(X) either by themselves (first-order) or due to interaction with other parameters 

(higher-order). For completeness, here we summarize the efficient Monte Carlo-based 

scheme presented by Saltelli (2002) to compute first-order and total Sobol' sensitivity 

indices.   
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The first-order sensitivity index (Si) represents a measure of the sensitivity of 

( )kxxxfY ...,,, 21=  (the RMSE of a model realization evaluated against observations) to 

variations in parameter xi. Si is defined as the ratio of the variance of Y conditioned on the 

ith factor (Vi) to the total unconditional variance (V):  
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is obtained from products of values of f computed from the sample matrix (n model 

realizations long) times values of f computed from another n-realizations matrix where all 

k parameters except xi are re-sampled.  

The estimates of the mean squared and the total variance are computed as: 
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Instead of computing all 2k–1 terms of the variance decomposition: 
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(which would require as many as n2k model runs), in addition to estimating Si, it is 

customary to estimate only the total sensitivity index (STi) associated with parameter xi. 

STi encompasses the effect that of all the terms in the variance decomposition that include 
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the factor xi have on the variance of the model’s response. STi is estimated by the 

difference between the global unconditional variance of Y and the total contribution to the 

variance of Y that is caused by factors other than xi, divided by the unconditional 

variance: 
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is obtained from products of values of f computed from the sample matrix times the 

values of f computed from another matrix where only xi is re-sampled.  

A significant difference between STi and Si points to an important role of the 

interactions of the ith factor (at all orders) in affecting Y (Saltelli et al., 2006). 

Identification of such parameter interactions can help guide model development. STi are 

also useful to identify input factors that are non-influential, which can help reduce the 

dimensionality of the parameter estimation problem. If an STi is negligible, then it is 

reasonable to fix that factor to any value within its range of uncertainty, and the 

dimensionality of the space of input factors or model parameters can be reduced 

accordingly (van Werkhoven et al., 2009).  

3.4.7 Sampling strategies for sensitivity analysis 
 
We generated representative samples of model parameters using Latin Hypercube 

Sampling (LH) and of the behavioral parameter sets through multi-objective calibration.  
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3.4.7.1 Latin Hypercube Monte Carlo sampling (LH) 
 
We ran a total of 405,000 Monte Carlo simulations sampling random parameter 

sets (15,000 samples for each model and site) to obtain a representation of the range of 

model responses that was sufficiently detailed yet balanced computational constraints. 

We used LH because it combines the strengths of stratified and random sampling to 

ensure that all regions of the parameter space are represented in the sample (McKay et 

al., 1979; Helton and Davis, 2003). LH divides each parameter range into disjoint 

intervals of equal probability. From each hypercube, one sample value is randomly taken. 

We sampled uniformly within feasible bounds (Table 3.2). For each sample, we recorded 

the RMSE of 5 criteria: H, LE, G, Tg, and SMC5cm.To create all the matrices involved in 

the computation of the Sobol' indices, we used a modified LH that enables replication 

(Tang et al., 2007).  

3.4.7.2 Multi-objective Markov Chain Monte Carlo parameter estimation technique  
 
We used the efficient Markov Chain Monte Carlo sampling strategy of Vrugt et 

al. (2003) to approximate the joint posterior distribution of optimal parameters. The 

simultaneous minimization of the RMSE of multiple criteria {H, LE, G, Tg, SMC5cm} 

allowed us to constrain the models to be consistent with several types of observations and 

facilitated the identification of the underlying posterior distribution of physically 

meaningful behavioral parameter sets. It is hoped that sets from the posterior distribution 

cause the model to mimic the processes it was designed to represent (Gupta et al., 1999; 

Bastidas et al., 2001; Leplastrier et al., 2002; Hogue et al., 2006). The calibration 
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algorithm runs, in parallel, multiple chains of evolving parameter distributions to provide 

a robust exploration of the parameter space. These chains communicate with each other 

through an external population of points, which are used to continuously update the size 

and shape of the proposal distribution in each chain. This procedure allows an initial 

population of parameter sets (uniformly sampled within pre-established, feasible ranges) 

to converge to a stationary sample, which maximizes the likelihood function and fairly 

approximates the Pareto set. The Pareto set (PS) represents the multi-objective tradeoff: 

no member of the PS can perform better with respect to one objective without 

simultaneously performing worse with respect to another competing objective (Gupta et 

al., 1998). We used a sample of 150 parameter sets to represent the posterior distribution 

of ‘behavioral’ parameter sets.  

3.4.8. Hierarchical clustering for comparisons of parameter distributions 
 
Unsupervised classification of behavioral parameter distributions allowed us to 

understand data similarities across locations, with specific focus on the relationships 

between types of parameters and sites. We used clustering methods to classify into 

groups the marginal posterior distributions of calibrated parameters sets. Agglomerative 

hierarchical clustering methods start with n groups (one object per group) and 

successively merge the two most similar groups until a single group is left. We used 

MATLAB’s complete linkage algorithm, in which the maximum distance between 

objects, one coming from each cluster, represents the smallest sphere that can enclose all 

objects in the two groups within a single cluster (Hair et al., 1995). Because the distance 
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used to measure dissimilarity between observations (e.g., Manhattan, Euclidean, etc.) 

may influence the membership of samples to groups, we used the cophenetic correlation 

coefficient to assess the quality of the linkage (Martinez and Martinez, 2002). We used 

dendrograms to show the links between the objects as inverted U-shaped lines, whose 

height represents the distance between the objects. 

3.5. WHAT PARAMETERS ARE SENSITIVE? 
 
VSA shows that there are only a few parameters that, by themselves, exert 

significant influence on model predictions. In contrast, parameter interaction 

predominates and is hence the principal mechanism for sensitivity. Figures 3.2, 3.3, and 

3.4 present, for all sites, all considered parameters, and all models, the Sobol' first-order 

sensitivity indexes (Si, which is the fraction of the total variance of RMSE that can be 

solely attributed to the ith parameter) and the residual between Sobol'’s total and first-

order sensitivity index (STi –Si, which is the fraction of total variance that results from the 

interaction of the ith parameter with other parameters at all orders) for H, LE, and 

SMC5cm, respectively. When the influence of parameters change as we would physically 

expect, we interpret the results as consistent with our hypothesis that, to a first order, a 

model adequately represents the site-to-site variation in the water and energy cycles. Site-

to-site variation in the most sensitive parameters is not chiefly governed by soil or 

vegetation type but, similar to other studies (e.g, Liang and Guo, 2003; Demaria et al. 

2007; van Werkhoven et al., 2008), appears to be of secondary importance when 

compared to the influence of the predominant climatic gradient. Although we cannot rule 
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out the potential importance of other east-west gradients (e.g., the topographic or 

hydrogeologic gradient), in section 3.5.1 we provide explanations for the observed 

patterns that are consistent with the climatological change between sites. 

3.5.1. First-order sensitivity (Si) 
 
For several key parameters, a pattern of first-order sensitivity can be linked to the 

hydrology of the sites. For most sites and models, the greatest first-order control on 

simulated top-layer soil moisture is porosity (maxsmc) (Fig. 3.4a). At dry sites 1-3, where 

direct evaporation is presumably a major component of LE flux, for STD and GW, the 

bare soil evaporation exponent (fxexp) exerts the most first-order control on soil moisture. 

The LE flux simulated by GW at dry sites is controlled by fxexp and specific yield (rous), 

which helps control depth to the water table. lai directly controls transpiration and hence 

the surface energy budget; at the most vegetated sites (7-9), lai consequently shapes most 

of the variance of H and LE for both STD and GW (Fig. 3.2a, 3.3a). The initial value of 

lai is not important to DV’s simulated H and LE because DV allows lai to change over 

time. Instead, minimum stomatal resistance (rcmin) exerts the most control on DV-

simulated LE. Two new parameters associated with DV, gl and sla, which control the 

calculation of lai, also exert first-order control on the simulated energy fluxes. In sparsely 

vegetated sites (1-3), the Zilintikevich coefficient (czil) plays a significant role in the 

variance of H.  

The specific parameters that control model variance change between models and 

between sites. In STD, as the mean annual precipitation (MAP) increases, fxexp becomes 
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less important to top-layer soil moisture (SMC5cm) and refkdt, a parameter involved in 

determining maximum rates of infiltration, becomes more important (Fig. 3.4a). This 

pattern changes for GW, in which surface runoff is relatively de-emphasized and 

subsurface runoff is relatively emphasized (see discussion about GW’s preferred modes 

of operation, Section 3.6). In GW, although fxexp still exerts first-order control on 

SMC5cm at dry sites, refkdt has little direct influence on SMC5cm at wet sites. The most 

sensitive parameter for SMC5cm at sites 1-3 is rous, which controls whether aquifer water 

is accessible to the near-surface soil. Consistent with our expectations, soil suction 

(psisat), which in GW controls upward movement of water from the aquifer to the soil, 

has significant control on SMC5cm within GW but not within STD, in which psisat plays a 

less dominant role in shaping soil hydraulic behavior (Fig. 3.4a).  

Especially in the case of STD and DV, as sites get wetter, surface exchange 

coefficient czil exerts progressively less influence and rcmin progressively more 

influence on H (Fig. 3.2a). The shift is consistent with our expectation that at more 

vegetated sites, stomatal resistance will be more important to determining the surface 

energy balance. As a site’s MAP increases, rcmin and lai increasingly shape simulated 

LE, and fxexp becomes less influential (Fig. 3.3a). Even at dry sites (1-3), DV favors 

larger values of vegetation fraction (shdfac) than are prescribed by STD and GW. As a 

consequence, DV stands apart from GW and STD in that fxexp does not directly 

contribute to variance of any criterion at the three driest sites (with the exception of 

unvegetated site 1, at which LE is controlled by fxexp). 
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Examinations of Si that are not in line with expectations may be used to help 

modelers diagnose likely problems with conceptualization, forcing data, and/or model 

structure. For instance, in STD, fxexp has the highest Si of simulated H and LE at site 6. 

We do not expect direct evaporation to be a relatively more significant component of the 

LE flux at site 6 than at climatically similar sites 4 and 5 or at the semi-arid sites 1-3. The 

discrepancy implies that either our conceptual understanding of the physical processes at 

site 6 is incorrect, that the model does not adequately represent the physical processes, 

and/or that our forcing and/or evaluation data are faulty at one or more of the sites. 

3.5.2 Sensitivity through interactions (Si–STi) 
 
Interactions between parameters are responsible for most of the variance in the 

models’ predicted H, LE, and SMC5cm (Figures 3.2b, 3.3b, and 3.4b). If we assume that 

the parameterizations are correct, then the significant parameter interaction indicates 

model overparameterization (Saltelli et al., 2008; Bastidas et al., 2006a; Yatheendradas et 

al., 2008). Arguably, it is also possible that the observed parameter interaction results 

from models that are either too simplistic and/or incorrect. Although parameter 

interaction may not be an inherently negative trait (e.g., in porous media, we expect 

hydraulic conductivity and porosity to be functionally related), when there are no known 

functional relationships between the physical quantities that two parameters represent, 

interaction is likely to be indication that the model works in a way that is not consistent 

with the conceptual model from which the parameterizations were built.   
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All models exhibit the most parameter interaction at the driest sites, consistent 

with the findings of Liang and Guo (2003) and suggesting the need to revise the 

formulation of all three models for semi-arid regions (Hogue et al., 2005; Rosero and 

Bastidas, 2007). Especially for H and SMC5cm, GW reduces parameter interaction at the 

middling moisture (4-6) and semi-humid sites (7-9) (e.g., Fig. 3.5b). GW’s reduction of 

parameter interaction is evidence (although by no means conclusive) that GW is more 

realistic than STD at sites 4-9. This result is consistent with foregoing observations on the 

robustness of GW (Gulden et al., 2007a). Conversely, GW appears to increase parameter 

interaction at the driest sites (1-3), indicating STD better represents semi-arid processes 

than GW. DV parameters are much more interactive than those of STD and GW, 

especially at the wettest sites when simulating LE and SMC5cm. The increased interaction 

between the DV-specific parameters and the rest of the conceptually unrelated STD 

parameters suggests DV is not functioning as its developers intended. The significant 

parameter interaction is consistent with the poor robustness of DV (Rosero et al., 2009a). 

Looked at in full, the models best represent the surface water and energy balances 

at the intermediate moisture and wet sites, where parameter interaction tends, within a 

given model, to be lowest. Because it reduces parameter interaction, GW is most likely of 

any of the three models to be representing the key physical processes with the most 

realism.  

3.6.  HOW DO SENSITIVE PARAMETERS INTERACT AND SHAPE MODEL BEHAVIOR? 
CASE STUDY AT SITE 7 
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Toward our objective of thoroughly evaluating the physical realism of the three 

models presented, we perform a case study in which sensitivity analysis (SA) links model 

identification and model development. We follow the impact of shifted preferred values 

of three ‘physically meaningful’ parameters that made considerable contributions to 

variance: porosity (smcmax), the muting factor for vegetation’s effect on thermal 

conductivity (sbeta), and minimum stomatal resistance (rcmin). We examine model 

structure at site 7 because at that site STD, DV, and GW show nearly equivalent 

performance when using their behavioral parameter sets (Fig. 3.5). Such ‘equifinality’ 

occurs frequently in hydrologic modeling (Beven and Freer, 2001). In this case, 

distinguishing a ‘best’ model is not trivial. It requires us not only to confront the 

simulations with observed behavior to test for consistency (Rosero et al., 2009a) but, mor 

important, to understand the underlying model structures (the relationship between 

parameters) that make STD, GW and DV perform equally well. We show how sensitivity 

analysis offers the power and the ability to discriminate between model structures that do 

and do not conform to our physical understanding of the systems. 

3.6.1 Focus on sensitive parameters to better understand model function 
 
The models have distinct optimal parameter distributions for the same physical 

parameters (Fig. 3.6), implying not only that the parameters cannot be transferred 

between models but that the relationships between them are different. Even the direction 

of ‘sensitivity’ (understood as the rate of change of score with parameter value along the 

range of possible values of the parameter) changes between models (e.g., Fig. 3.6a). The 
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simulation of SMC5cm by STD and DV degrades as porosity increases, while GW 

improves. We also note that, along the possible range, the response can be enhanced (Fig. 

3.6d) or become relatively insensitive to changes in parameter value (Fig. 3.6c). The 

identifiability of parameters (when parameters have a clearly defined local minimum) 

changes between models. For example, in DV, there is a clear low point of the RMSE of 

LE along the range of values of the maximum water-holding capacity of the canopy 

(cmcmax), but STD and GW have less of a preference (Fig. 3.6c). The interquartile range 

of rcmin of STD is smaller than that of GW or DV (Fig. 3.6b). The fundamental 

implication of our observations is that although the different optimal values of parameters 

are important (as found during model identification), the change in the functional 

relationship between the parameters (the information contained in the interactions) is 

most relevant for purposes of model development.  

3.6.1.1 The role of porosity (maxsmc) 
 
In all three versions of Noah, higher values of maxsmc tend to decrease direct 

evaporation from the first soil layer (EDIR). EDIR is estimated as the product of Penman’s 

potential evaporation (ETpot), the complement of the vegetated fraction (shdfac), and the 

ratio of top-layer volumetric soil moisture (SMC1) to maxsmc: 
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where SMCdry is the lowest possible volumetric water content of the top soil layer, and 

the bare soil evaporation exponent (fxexp) is a parameter ranging from 0.2 to 4. 
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In STD and DV, the error in simulated LE tends to be relatively small when 

maxsmc is low and relatively large when maxsmc is high (Fig. 3.6a). However, GW better 

simulates LE as maxsmc increases. The tendency of STD and DV to simulate LE well 

when maxsmc is low (and direct evaporation from the soil consequently tends to be high) 

implies that STD and DV often underestimate direct evaporation at site 7. The tendency 

of STD to underestimate direct evaporation was also suggested by Peters-Lidard et al. 

(2008), who improved results by changing the value of fxexp from 2 to 1. Given the same 

maxsmc, GW more easily simulates sufficient direct evaporation, perhaps because of 

wetter soil (Rosero et al., 2009a).  

In STD and DV, maxsmc controls surface and subsurface runoff. Hydraulic 

conductivity (wcnd) is computed by scaling saturated hydraulic conductivity (dksat) by 

wetness (SMC/maxsmc), raised to an exponent containing the Clapp and Hornberger 

parameter (b): 
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    (3.9) 
 

Lower maxsmc yields higher wcnd, which means water moves through the soil 

more quickly. For subsurface runoff (Runoff2), wcnd controls lateral water movement 

through the soil. In STD and DV, Runoff2 is wcnd times the slope of the grid cell. 

Consequently, higher maxsmc decreases Runoff2. Higher maxsmc also decreases surface 

runoff (Runoff1) by increasing the maximum rate of infiltration. Both changes increase 

soil wetness.  
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GW changes the way runoff is computed; maxsmc does not control surface or 

subsurface runoff in GW, which eliminates two of the three ways that maxsmc controls 

soil moisture. Runoff2 is represented as an exponential function of depth to water (Niu et 

al., 2007): 

WTZfffersbmxRunoff *2 −=     (3.10)  

where rsbmx is the maximum rate of subsurface runoff, fff is the e-folding depth of 

saturated hydraulic conductivity, and ZWT is the depth to the water table, which is 

computed by the model. Runoff1 is computed using a version of the function used to 

compute Runoff2 (Niu et al., 2005): 

( )WTZfffefsatmxpcpdrpRunoff *5.0*1 ∗−=     (3.11) 

where pcpdrp is the effective incident water and the second term is the fraction of 

unfrozen grid cell that is saturated.    

In STD (and DV), maxsmc couples two physically unrelated (or very weakly 

related) processes (direct soil evaporation and lateral surface and subsurface runoff). GW 

decouples these processes by eliminating the dependence of parameterized lateral runoff 

on maxsmc. This decoupling reduces the spurious parameter interaction of maxsmc and, 

within GW, nearly eliminates the tradeoff between good simulation of LE and SMC5cm. 

GW is, in this regard, a better model for simulating fluxes at site 7. 

The question remains – why does GW poorly simulate SMC5cm when maxsmc 

increases? maxsmc is used to compute vertical hydraulic conductivity (using the same 

function as STD). GW uses vertical hydraulic conductivity to regulate the flow of water 
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between the aquifer and soil down a hydraulic gradient. Higher maxsmc yields lower 

hydraulic conductivity, which, in addition to decreasing the transfer of water between 

layers within the soil column, decreases the communication between the aquifer and the 

soil profile (that is, it decreases the flow of water between the two, increasing the 

potential for water to be retained near the surface). At site 7, GW best simulates SMC5cm 

when high vertical hydraulic conductivity connects the aquifer and soil.  

Consistent with the work of others (e.g., Demaria et al., 2007), parameter values 

and model sensitivity to maxsmc are not consistent between sites along a climatic 

gradient or even within a set of sites with similar characteristics. Conclusions about 

model performance are therefore difficult to generalize. This lack of continuity of 

behavior between sites is consistent with at least one of the following possibilities: (1) 

model parameterizations do not represent key aspects of the system and/or (2) our multi-

objective calibration provided insufficient constraint for the estimation of behavioral 

parameters. We suggest the use of observed infiltration and/or runoff to increase the 

strength of conclusions drawn regarding the physical realism of runoff-related processes 

in GW. 

3.6.1.2 The role of the thermal conductivity muting factor (sbeta) 
 
All three models compute ground heat flux (G) using a flux-gradient relationship: 
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In which STC1 is the temperature at the center of the first soil layer (0.5*ZSOIL(1)) and T1 

is the surface temperature. DF1 is the heat conductivity of the top soil layer. 

Noah assumes that, as vegetation cover increases, heat flux into the ground 

decreases. sbeta and the vegetated fraction (shdfac) mute DF1:  

shdfacsbetaeDFDF ∗∗= 11     (3.13) 

At site 7, the mode of the posterior probability distribution of all three models is 

near the bound of the explored parameter range (-1) (Fig. 3.6d). The preference for near-

bound values is more pronounced in DV, which at site 7 tends to have shdfac values near 

1.0 (putting downward pressure on the value of sbeta). The skewed posterior parameter 

distributions suggest that an even-less-negative value of sbeta may have yielded better 

results at site 7. 

The assumption that vegetation necessarily decreases the thermal conductivity of 

the top layer of the soil may be incorrect. If the ‘vegetation effect’ on thermal 

conductivity is real, the model underestimates the top-layer soil thermal conductivity. At 

site 7 (and at several other sites), there is a clear tradeoff between H and G that is 

mediated by the thermal conductivity. The tradeoff hints at the need for revised process 

understanding. 

When comparing site 7 simulations to those of the other two wet sites (8 and 9), 

we see a roughly consistent preference for near-zero values of sbeta. At the drier sites (1-

6), the model’s strong preference for near-zero values of sbeta is less obvious; however, 

shdfac is closer to zero at these sites, which lowers the value of the muting factor (Eq. 

3.13). 
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3.6.1.3 The role of minimum stomatal resistance (rcmin) 
 
The parameter rcmin controls much of the variance in H and LE, especially at 

wetter sites. As rcmin increases, the ratio of actual to potential evapotranspiration 

decreases. rcmin has a more consistent influence on the variance of H than on that of LE. 

At site 7, all three models perform best with a low rcmin (Fig. 3.6b), which 

increases LE for a given potential evapotranspiration; however, rcmin is less identifiable 

in GW and DV. The mode of the rcmin distribution is higher for GW than for STD, 

perhaps because GW tends to have a wetter soil and a more robust simulation of LE. The 

spread of the posterior parameter distribution of rcmin for DV is significantly larger than 

that for STD, although both models share the same mode. This decrease in identifiability 

of parameters functionally related to lai (as is rcmin) is consistent with the added degrees 

of freedom allowed by DV (DV parameters gl and sla are most important in predicting 

lai [Fig. 3.2]). Because DV simulations include a wider spread of lai states, they also 

have a wider spread of ‘good’ rcmin values. 

3.6.2 What changes in GW to make it work better than or as well as STD at Site 7? 
 
The response surface of RMSE SMC5cm changes between STD and GW (Fig. 3.7; 

e.g., see maxsmc vs. psisat). For GW, the shape of the bivariate posterior distributions of 

soil parameters that are shared with STD is significantly different, presumably because of 

interaction of the GW parameters and module with those of STD. Such shifts in model 

function affect the model covariance structure (Table 3.3).  
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After multi-objective parameter estimation, at site 7, GW functions in one of two 

preferred modes (Fig. 3.7b). In the slightly preferred first mode (m1), the parameters 

work together to help GW function as the developers likely intended. Strong 

communication between the aquifer and the soil column is supported by relatively high 

values of saturated hydraulic conductivity (satdk), low values of the reciprocal of the e-

folding depth of hydraulic conductivity (fff), and low porosity (maxsmc). A relatively low 

surface runoff scaling factor (fsatmx) and relatively high subsurface runoff scaling factor 

(rsbmx) ensure that subsurface runoff dominates surface runoff. Mimicking nature, high 

soil suction (psisat) pulls water upward. A high aquifer specific yield (rous) deepens the 

water table (weakening the direct influence of the saturated zone on the model soil 

column) and transforms more water to runoff rather than to recharge.  

In the second mode (m2), GW adopts parameter values that make the model work 

as one would expect STD to function (i.e., the model operates with parameters that render 

GW nonfunctional) (Fig. 3.7b). Relatively high values of fff effectively seal the bottom of 

the soil column, limiting communication between the aquifer and the soil column; high 

maxsmc decreases the vertical conductivity, further inhibiting the already poor 

communication between the soil and aquifer. High maxsmc favors decreased direct 

evaporation. Surface runoff is augmented by a relatively high fsatmx; subsurface runoff is 

lessened by the relatively low rsbmx.  

These alternative behaviors are a possible explanation for the issue identified by 

Rosero et al. (2009a), who showed that despite very good performance of calibrated GW, 
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the model suffered from low robustness (i.e., a high sensitivity to unmeasurable 

parameters).  

3.6.3 What changes in DV to make it work better than or as well as STD at site 7? 
 
STD and DV functionally differ in two ways: 1) STD prescribes shdfac using 

monthly climatological values (~0.7 at site 7), while DV predicts it as a function of 

environmental variation in moisture and radiation availability; and 2) STD treats lai as a 

parameter (a constant throughout the simulation), while DV uses shdfac to predict 

variable lai variation using a functional relationship: 
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Vegetation affects all components of LE flux (via shdfac): vegetation shades the soil, 

modulating direct evaporation (Edir); vegetation retains water above the soil, contributing 

to evaporation from the canopy (Ec); vegetation fuels transpiration (Etransp). In DV, a high 

value of conversion parameter gl fixes shdfac near 1 and yields a regime in which Ec and 

Etransp are strongly favored over Edir. Low values of gl fix shdfac near zero and promote a 

regime in which Edir is the dominant component of LE. When shdfac is near zero, both Ec 

and Etransp are minimized. At sites with sufficient vegetation, DV enables the model to 

correctly give more weight to Etransp. STD, unable to change the value of shdfac to shift 

the balance of components of LE, favors higher lai (which decreases stomatal resistance 

and increases Etransp) as means for increasing total LE.  
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When compared to STD, DV can achieve ‘good’ model performance using a 

wider range of values for shdfac and lai. We see this decreased identifiability of DV 

parameters when comparing the bivariate posterior parameter distributions of STD to 

those of DV at site 7 (Fig. 3.8). The identifiability in the response surface of RMSE LE 

has changed (e.g. lai vs. rcmin) (Fig. 3.8). The decrease in identifiability of parameters 

that are functionally related to shdfac and/or lai can be seen across the IHOP sites (results 

not shown). The interplay of the parameters of the DV module also leads to changes in 

parameter densities of STD and DV (Fig. 3.8). We see additional evidence for increased 

interaction between parameters in DV when we note that the models’ covariance 

structure has been altered (Table 3.4). For example, rcmin and maxsmc are positively 

correlated in STD, but in DV they have a very slight negative correlation.  

Although the increased flexibility of lai and shdfac values may improve the 

model’s simulation of seasonal and interannual variation in surface fluxes, over 

timescales examined here, DV does not appear to improve the model. The constraints 

imposed by the turbulent and near-surface states may be insufficient for the complexity 

of the model and/or DV’s degrees of freedom may need to be constrained with 

observations of carbon fluxes and plant growth. When there is little vegetation (e.g., at 

sites 1-3), DV may be failing to consider special water use features associated with the 

semi-arid vegetation (Unland et al., 1996). The function of the DV module may be 

hindered by Noah’s lack of a separate canopy layer (Rosero et al., 2009a) or the absence 

of a more complex Ball-Berry type of stomatal conductance formulation (Niu et al., 

2009). 
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3.7. WHAT ARE THE IMPLICATIONS OF OUR SENSITIVITY ANALYSIS FOR PARAMETER 
TRANSFERABILITY? 

 
Our foregoing assessments have shown that parameter interaction is a significant 

contributor to model variance (section 3.5) and that the behavioral posterior parameter 

distributions for a given site change between models (section 3.6) and for a given model 

between sites (not shown; see Fig. 3.9). These observations challenge a long-standing 

assumption of land-surface modeling: i.e., LSM parameters are physically meaningful 

quantities. Because developers have attempted to use physical principles when designing 

LSMs, physically based model parameters have been assumed to correspond to 

unchanging physical characteristics of a system (e.g. Dickinson et al., 1986), which can 

be either measured in the field (e.g., porosity) or inferred from (remotely sensed) 

observations (e.g. LAI). Identical LSM parameters are used in locations that share the 

same physical characteristics (e.g., Sellers et al., 1996). ‘Parameter transferability,’ a 

priori assignment of parameter values based on a site’s physical characteristics (e.g., soil 

and vegetation type), depends on the above assumption. By making sets of vegetation-

related (soil-related) parameters functions of vegetation (soil) type, LSMs contain the 

implicit assumption that vegetation (soil) type solely determines the ideal values of 

vegetation (soil) parameters. 

The joint multivariate posterior distribution summarizes much of the information 

regarding the relationships between model parameters (i.e., the model structure) at a 

particular location given observed datasets. We compare the similarity of the marginal 

posterior distributions of the behavioral parameter sets across sites to test the assumption 
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that parameters and parameter relationships directly relate to physical characteristics of 

the sites. We also evaluate the extent to which climate determines the similarity of 

parameters between locations. 

3.7.1  Testing parameter transferability between sites using soil textures and 
vegetation types 

 
If parameters were readily ‘transferable’ between sites solely based on the sites’ 

vegetation type, we would expect the distributions of the vegetation parameters at two 

sites with the same vegetation type but different climatic regime (e.g., sites 2 and 8) to be 

more similar than the distributions of the same parameters at two sites with different 

vegetation but similar climate (e.g., sites 2 and 1). This expectation is in general not 

supported by evidence. The distributions of rcmin and lai (Fig. 3.9a, 3.9b) and rsmax and 

z0 are more similar between sites with similar climate (dry) than they are between sites 

with the same vegetation (grass). hs and cmcmax show a similar lack of transferability. 

Only sbeta shows ‘transferability’ (i.e., there are smaller differences between the 

distributions from sites with the same vegetation cover) for all models (Fig. 3.10c). 

Parameter cfactr is transferable, but only for STD. rgl could be considered ‘transferable,’ 

but only for DV and GW. The IHOP dataset does not enable us to test parameter 

transferability using two sites with the same soil texture but different climatology.  

The case studies above are by no means conclusive, but they do not support the 

hypothesis that parameters are transferable solely based on vegetation type. The results 

instead suggest that LSM parameters are more sensitive to climatic forcing than to a 

specific land-cover classification. Our results support similar observations for other 
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hydrologic models (Demaria et al., 2007; van Werkhoven et al., 2008), for the Noah 

LSM, and using single optimal parameter sets (Hogue et al., 2005; Rosero and Bastidas, 

2007; Gutmann and Small, 2007). 

3.7.2 Synthesizing sensitivity to site, soil and vegetation classes by means of 
clustering 

 
In order to more quantitatively synthesize knowledge gained through sensitivity 

analysis for use at ungauged locations, we build upon the aforementioned idea of 

comparing the similarity of parameter distributions across sites (Rosero and Bastidas, 

2007) by complementing the approach with unsupervised, agglomerative hierarchical 

clustering methods. 

For each IHOP site, we obtained a stable, multivariate probability distribution χ 

of behavioral parameter sets X={x1, x2, …, xi, …xk} using multi-objective MCMC 

sampling. The marginal probability distribution for the ith parameter is χi. To circumvent 

comparing sites two at a time, as done in section 3.7.1, we define a triangular probability 

distribution Di as a reference distribution for each parameter. Di=1 when the value of 

parameter xi is the “default” for the site. Di=0 when xi is at either edge of the feasible 

range. This step allows us to introduce the assumption that the parameters relate to soil 

and vegetation types. 

For each parameter, and at each site, we quantify the closeness (similarity) 

between the cumulative distribution of the ‘optimal’ values of xi (i.e, the marginal χi) and 

the reference Di. We use the Hausdorff norm to quantify the difference χi – Di. For each 
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model, the matrix of ‘signatures’ of the marginal distributions of k parameters at all the n 

evaluation sites is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−
=

knknkk

kk

DD

DD
S

χχ

χχ

...
..........

...

11

111111

     (3.15)
 

S can be used to identify groups of parameters that are similar between locations or to 

identify locations where groups of parameters behave alike. We then use the 

unsupervised, agglomerative hierarchical clustering algorithm (described in Section 

3.3.8) to find these groups without making any further assumptions about the number of 

groups. 

If the previously described assumption of parameter transferability based on site 

characteristics holds (and if IHOP vegetation classifications are correct), then, given the 

set of signature vectors created using the set of vegetation parameter distributions 

S(xveg,1..n), a clustering procedure should be able to classify similar sites in groups that 

resemble the IHOP vegetation type groupings (Table 3.1). Similarly, clustering of 

S(xsoil,1..n) would result in sites grouped according to the IHOP soil texture classification 

(Table 3.1). 

Applying a suite of distance metrics (e.g., Manhattan, Euclidean, Cosine, etc), 

neither soil nor vegetation parameters render groups of sites that partition solely based on 

the expected soil or vegetation classifications. Figure 3.10a shows the classification tree 

(dendrogram) for STD using the Euclidean distance, which maximizes the cophenetic 

correlation coefficient of the linkage (also shown).  None of the distance metrics allowed 
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us to classify S(xveg,1..n) by location in a way that matched the IHOP vegetation 

classifications. Given the subset S(xsoil,1..n), composed of the signature vectors of the 10 

soil parameters at all sites, classification of the IHOP sites according to soil 

characteristics was also not feasible (Fig. 3.10b). Using signature vectors for STD, GW, 

and DV, some (but not all) of the distances identified sites 7, 8, and 9 as having the same 

soil and same vegetation type (although, because they also share the same climate type, 

we are unable to definitively attribute such classification to shared vegetation type). The 

rest of the sites do not strongly coalesce according to physical properties. For example, 

the pasture sites are not distinctively grouped; sites 5 and 6 (wheat crops) are never 

grouped according to vegetation (Fig. 3.10a). Sites 1 and 2 (sandy clay loam) and sites 4 

and 5 (loam) do not cluster together using soil parameters (Fig. 3.10b). These results are 

consistent with earlier findings presented here, which suggest that interaction between 

soil and vegetation parameters is significant (section 3.5), to the point that it shapes the 

posterior parameter distributions (section 3.6).  These results also suggest that soil or 

vegetation type are not, by themselves, good physical characteristics by which to transfer 

parameters.  

To account for interdependence between soil and vegetation parameters, we 

classified the entire matrix S(xsoil,xveg). If parameters can be transferred based on shared 

vegetation and soil type, then the clustering of the entire matrix should identify groups of 

sites with the same vegetation and soil type (e.g, sites 7-9). Figure 3.10c shows a pattern 

(found with several distances) that is consistent across models: sites 7-9 cluster together. 

Sites 7, 8, and 9 have also similar climates, and the classification of the sites shows 
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strong resemblance to the climatic gradient. Given this dataset, we cannot disprove the 

contention that parameters can be transferred between sites that have both the same 

vegetation and soil type.  

If we instead cluster S looking for groups of parameters, we expect that xsoil will 

as a whole behave in a similar way across sites. In other words, one can produce a map of 

sensitivity to characterize which parameters are most similar to their default (prior 

distribution) and which are not. Figure 3.11 shows representative groupings of the 

behavioral, marginal posterior distributions of STD and GW parameters at all sites. Using 

a suite of distances, we were unable to identify definitive clusters of soil and vegetation 

parameters within the set of signature vectors S, meaning that individual parameters are 

not sensitive in groups that primarily relate to soil alone or to vegetation alone. The new 

GW parameters do behave in a way that is similar to other soil parameters (Fig. 3.11b), 

which informs the estimation of GW parameters for distributed applications.  

We conclude that the primary site-to-site control on parameters values is not a 

site’s soil or vegetation type alone. This result is consistent with the notion that LSM 

parameters, which must represent physical processes across multiple scales, are 

“effective” values rather than physically derived quantities (Wagener and Gupta, 2005). 

It is also consistent with the assertion that interaction between classes of parameters (e.g., 

‘soil’ parameters and ‘vegetation’ parameters) is very important. Our clustering analysis 

suggests that climate is a major control of site-to-site variation in parameter values and 

supports recommendations that climate be considered when transferring parameter values 

between sites (Liang and Guo, 2003; Demaria et al., 2007; van Werkhoven et al., 2008).  
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3.8.  SUMMARY AND CONCLUSIONS 
 
Sensitivity analysis allows us to draw conclusions regarding land-surface model 

(LSM) development and model assessment practices, the functioning of three versions of 

the widely used Noah LSM, and the a priori assignment of parameter values. Our work 

yields several conclusions that can be generalized to all LSM and to other environmental 

models and several others that are specific to the Noah LSM.  

We show that the clear patterns of parameter importance identified by variance-

based sensitivity analysis (VSA) are consistent with site-to-site variation in climate and 

with model-to-model changes in physical parameterization. VSA shows that parameter 

interactions within models exert significant control on model variance. Shifts in 

parametric control on variance and covariance hint at whether a model represents the 

water and energy cycles in a way that is consistent with expectations. Although the 

optimal value of a parameter is useful information, the change in the functional 

relationship between parameters is more relevant for model development and hypothesis 

testing.  

Transfer of parameters based solely on shared vegetation type or on shared soil 

texture is not a viable method for a priori parameter assignment. The work presented 

here shows that vegetation type and soil texture are not the most significant contributors 

to site-to-site variance in optimal parameter values. Interaction between soil and 

vegetation parameters is significant and varies between sites; parameter interaction at 

least partially explains why transfer of parameters based solely on shared vegetation type 

or soil texture does not work. The primary factor controlling site-to-site variation in 
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parameters is likely climate, although, given the dataset used here, the combination of a 

site’s vegetation type and soil texture or some unidentified factor cannot be ruled out as 

the dominant controlling factor.  The lack of viability of parameter transfer based solely 

on soil and vegetation type is a conclusion that has significant implications for the field 

of regional and global land surface modeling, which depends on parameter transfer based 

on stand-alone vegetation type and soil texture as a means for a priori parameter 

assignment.  

Looking specifically at the performance of the three versions of the Noah LSM 

used here (STD, GW, and DV), we make several non-site-specific conclusions regarding 

model behavior. All three models exhibit significant parameter interaction, indicating that 

the models are overparameterized and/or underconstrained. All three show the least 

parameter interaction at the middling-moisture and wet sites and the most parameter 

interaction at the three driest sites. This difference suggests a need for reformulation of 

Noah LSM such that semi-arid regions are more realistically represented. On the whole, 

GW has less parameter interaction than STD (except at dry sites), indicating that it 

represents land-surface system with the most realism of any of the three models. GW is 

also least sensitive to errant parameters at the wettest sites (where groundwater is likely 

the most influential). DV has much more parameter interaction than STD, which provides 

evidence that the model is not performing as its developers intended, does not add value 

to STD, and/or requires additional constraint. Specific to site 7, we make the following 

observations: STD and DV tend to underestimate direct evaporation from the soil; GW 

does not (maybe because of wet soil). The assumption that vegetation decreases the 
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thermal conductivity of the top layer of the soil is not well supported by data (this 

conclusion can be roughly generalized to other sites, especially the wet sites). At site 7, 

GW functions in one of two modes – the slightly preferred mode works in a way that 

mirrors what the developers likely intended; the second mode makes GW function as one 

might expect STD to work. Constraining runoff may isolate the more realistic mode. GW 

has less spurious parameter interaction in part because it decouples direct evaporation and 

subsurface runoff (which are coupled via porosity in STD and DV). This decoupling 

appears to make the model function more realistically, with less tradeoff between the 

simulation of soil moisture and LE. Adding modules (DV, GW) decreases the 

identifiability of minimum stomatal resistance, although all three models prefer low 

minimum stomatal resistance (thus increasing LE for a given set of conditions). Across 

several sites, DV functions in one of two modes: the first emphasizes direct soil and 

canopy evaporation over transpiration; the second emphasizes transpiration over direct 

evaporation from the soil and canopy. 

Our approach to sensitivity analysis complements new methods for characterizing 

typical modes of LSM behavior (Gulden et al., 2008b; Rosero et al., 2009a) within a 

model diagnostic framework (Gupta et al., 2008) that helps bridge the gap between model 

identification and development. We encourage other modeling groups to perform similar 

analyses with their models as a way to ensure rapid, continued improvement of our 

understanding and modeling of environmental processes. 
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Table 3.1. Average meteorology, near-surface states and turbulent fluxes observed during 
the calibration period (13 May−25 Jun) at the nine IHOP_2002 sites.  

See Figure 3.1. Indices of vegetation types and soil classes are in parenthesis. Rainfall is 
cumulative over the observation period. Dry, sparsely vegetated sites (1-3) receive almost 
half of the amount of mean annual precipitation (MAP) than wet sites (7-9), with lush 
vegetation. Mean 2-m air temperature (Ta), Bowen ratio (β), sensible (H), latent (LE) and 
ground (G) heat flux, ground temperature (Tg) and soil moisture content at 5-cm 
(SMC5cm). 
 

Site 1 2 3 4 5 6 7 8 9 
Lat (°N) 36.4728 36.6221 36.8610 37.3579 37.3781 37.3545 37.3132 37.4070 37.4103 

Lon (°W) 100.6179 100.6270 100.5945 98.2447 98.1636 97.6533 96.9387 96.7656 96.5671 

Vegetation 

type 

 

bare 

ground (1) 

grassland 

(7) 

sagebrush 

(9) 

pasture (7) wheat (12) wheat (12) pasture (7) grassland 

(7) 

pasture (7)

Soil texture sandy clay 

loam (7) 

sandy clay 

loam (7) 

sandy 

loam (4) 

loam (8) loam (8) clay loam 

(6) 

silty clay 

loam (2) 

silty clay 

loam (2) 

silty clay 

loam (2) 

Elev. (m) 872 859 780 509 506 417 382 430 447 

Rain (mm) 154.5 69.1 72.4 164.5 173.6 203.6 175.4 296.6 250.8 

MAP (mm) 530 540 560 740 750 800 900 880 900 

Ta (°C) 21.4 21.7 22.5 20.7 20.7 21.0 20.7 20.1 19.9 

β  (-) 1.08    0.92     1.11    0.41    0.46    0.63    0.20 0.14    0.24 

H (Wm-2) 70.5 70.7 75.7 43.9 51.9 61.4 25.9 17.1 27.9 

LE (Wm-2) 65.1 76.1 68.2 106.2 111.2 97.1 126.4 122.8 115.3 

G (Wm-2) -10.4 -6.4 -9.3 -2.7 -5.1 -7.5 -5.6 -12.1 -10.5 

Tg (°C) 24.1 24.1 25.8 23.2 21.9 22.9 22.3 22.4 22.7 

SMC5cm (%) 15.4 18.0 7.0 18.0 18.1 19.0 33.2 32.8 34.0 
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Table 3.2. Feasible ranges of Noah parameters considered in the sensitivity analysis. 

Parameter Description units min max 
Soil parameters    
maxsmc Maximum volumetric soil moisture m3m-3 0.35 0.55 
psisat Saturated soil matric potential m m-1 0.1 0.65 
satdk Saturated soil hydraulic conductivity m s-1 1E-6 1E-5 
b Clapp-Hornberger b parameter - 4 10 
quartz Quartz content - 0.1 0.82 
refdk Used with refkdt to compute runoff parameter kdt  0.05 3 
fxexp Bare soil evaporation exponent - 0.2 4 
refkdt Surface runoff parameter  0.1 10 
czil Zilintikevich parameter - 0.05 8 
csoil Soil heat capacity Jm-3K-1 1.26 3.5 
Vegetation parameters    
rcmin Minimal stomatal resistance s m-1 40 400 
rgl Radiation stress parameter used in F1 term of canopy resistance  30 100 
hs Coefficient of vapor pressure deficit term F2 in canopy resistance  36 47 
z0 Roughness length m 0.01 0.1 
lai Leaf area index - 0.1 5 
cfactr Exponent in canopy water evaporation function - 0.4 0.95 
cmcmax Maximum canopy water capacity used in canopy evaporation  m 0.1 2.0 
sbeta Used to compute canopy effect on ground heat flux  - -4 -1 
rsmax Maximum stomatal resistance s m-1  2,000 10,000 
topt Optimum air temperature for transpiration K 293 303 
Dynamic Phenology parameters (Noah-DV only)    
fragr Fraction of carbon into growth respiration - 0.1 0.5 
gl Conversion between greenness fraction and LAI - 0.1 1.0 
rssoil Soil respiration coefficient s-1 x1E-6 0.005 0.5 
tauhf Average inverse optical depth for 1/e decay of light - 0.1 0.4 
bf Parameter for present wood allocation  0.4 1.3 
wstrc Water stress parameter  10 400 
xlaimin Minimum leaf area index - 0.05 0.5 
sla Specific leaf area - 5 70 
Groundwater parameters (Noah-GW only)    
rous Specific yield m3m-3 0.01 0.5 
fff e-folding depth of saturated hydraulic capacity m-1 0.5 10 
fsatmx Maximum saturated fraction % 0 90 
rsbmx Maximum rate of subsurface runoff  ms-1 1E-3 0.01 1 
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 Table 3.3. Spearman rank correlation coefficients between parameter sets belonging to 
the behavioral set for STD and GW.  

STD is above the diagonal; GW is below the diagonal. Note the change in the covariance 
structure in Fig. 3.7. See Table 3.1 for abbreviations of parameter names. 
 
 
 

 STD    

GW maxsmc psisat satdk fxexp rous fff fsatmx

maxsmc  -0.10 -0.40 0.29    

psisat -0.33  -0.14 -0.32    

satdk -0.09 0.49  0.22    

fxexp -0.26 0.41 0.23     

rous -0.01 0.26 0.24 0.14    

fff 0.11 -0.46 -0.45 -0.49 -0.37   

fsatmx -0.22 -0.04 -0.17 0.09 -0.37 0.17  

rsbmx 0.11 -0.25 -0.13 -0.21 0.32 0.08 -0.24 
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Table 3.4. Spearman rank correlation coefficients between parameter sets belonging to 
the behavioral set for STD and DV.  

STD is above the diagonal; GW is below the diagonal. Note the change in the covariance 
structure in Fig. 3.8. See Table 3.1 for abbreviations of parameter names. 
 
 

 STD    

DV rcmin hs maxsmc psisat fragr bf xlaimin 

rcmin  -0.35 0.44 0.02    

hs 0.30  -0.15 -0.36    

maxsmc -0.16 -0.29  -0.10    

psisat 0.50 0.36 -0.21     

fragr 0.58 0.24 -0.02 0.10    

bf 0.61 0.30 -0.19 0.59 0.40   

xlaimin -0.72 -0.31 0.10 -0.31 -0.62 -0.54  

sla 0.80 0.21 -0.15 0.35 0.66 0.45 -0.67 
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Figure 3.1. IHOP_2002 near-surface state and flux stations.

The contours show the strong east−west mean annual precipitation (MAP) gradient. The 
nine sites were located in representative land covers (see Table 3.1): six on grassland of 
varying thickness, two on winter wheat, one on bare ground, and one on shrubland. The 
surface temperature of the dry (MAP=550 mm), sparsely vegetated sites (1-3) is mainly 
linked to the soil moisture. In contrast, the green, lush vegetation of the wet sites (7-9) 
(MAP=900 mm) controls the surface temperature. In sites 4-6 (MAP=750 mm), a mix of 
winter wheat and grassland, the surface temperature is influenced by both soil moisture 
and vegetation. 
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Figure 3.2. First-order sensitivity indices (Si) and difference between total sensitivity 
index and Si for H for the parameters of STD, GW and DV at all sites. 

(a) First-order Sobol' sensitivity indices. Si is the individual contribution of a parameter to 
the variance of the RMSE of H. (b) Difference between Sobol'’s total sensitivity index 
and Si. STi-Si is the contribution to the variance through interactions with other 
parameters.  Parameters grouped by soil and vegetation. Table 3.2 lists abbreviations of 
parameter names. Regional sensitivity patterns from semi-arid (MAP=550 mm), sparsely 
vegetated sites (1−3) to semi-humid (MAP=900 mm) sites (7−9) with green, lush 
vegetation, are easily distinguishable.  
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Figure 3.3. First-order sensitivity indices (Si) and difference between total sensitivity 
index and Si for LE for the parameters of STD, GW and DV at all sites. 

Same as Figure 3.2 but for LE. 
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Figure 3.4. First-order sensitivity indices (Si) and difference between total sensitivity 
index and Si for SMC5cm for the parameters of STD, GW and DV at all sites. 

Same as Figure 3.2 but for SMC5cm. 
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Figure 3.5. Tradeoff LE-SMC5cm and cumulative distribution functions (CDF) of scores 
of behavioral STD, GW and DV at Site 7.  

(a) Scatterplot in objective function space of parameter sets that maximize the likelihood 
function after multi-objective calibration against {H, LE, G, Tg, SMC5cm}.  CDF of root 
mean squared errors (RMSE) of behavioral runs evaluated against observed (b) LE, and 
(c) SMC5cm. GW (dark grey), DV (light gray) perform as good as or better than STD 
(black). 
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Figure 3.6. Marginal cumulative distribution functions (CDF) of the posterior distribution 
of selected behavioral parameter sets at Site 7.  

(a) Porosity [maxsmc], (b) minimum stomatal resistance [rcmin], (c) maximum water 
holding capacity of the canopy [cmcmax], and (d) effect of the vegetation on ground heat 
flux [sbeta]. Along with the CDFs, the histograms and interquartile ranges are also 
shown.  The trend in the scatterplots of RMSE of LE and SMC5cm is shown by fitting a 
minimum complexity polynomial. Note that in all subpanels GW (dark grey), DV (light 
gray) and STD (black) are shown. 
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Figure 3.7. Multivariate posterior distribution of the behavioral parameters of STD and 
GW at site 7 shown for selected parameter combinations in bivariate plots.   

Higher density of parameter values are indicated with increasingly redder contours. The 
response surface of SMC5cm is shown in the back; darker regions have higher errors.  The 
bi-modal behavior of GW is signaled by m1 and m2. See text for explanation.    
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Figure 3.8. Bivariate depiction of the posterior distribution of behavioral parameters of 
STD and DV at Site 7.   

Higher density of parameter values are indicated with red contours. The response surface 
of LE is shown in the back; darker regions have higher errors. Note the significant change 
in the identifiability of hs and maxsmc.    
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Figure 3.9. Difference between the marginal posterior parameter distributions. 

For selected, sensitive vegetation parameters ((a) rcmin, (b) lai, and (c) sbeta), the left 
panels show the difference between the marginal posterior parameter distributions (PPD) 
obtained at sites with the same vegetation but different climate (sites 2 and 8) 
(continuous, bright lines) and the difference between the marginal posterior parameter 
distributions obtained at sites with similar climate but different vegetation (sites 1 and 2) 
(dashed, dark lines). As shown in the bar graphs at right, the total difference between 
parameter distributions at sites with the same vegetation but different climate (brightly 
colored bars) is generally not smaller than the difference of distributions of the same 
parameters between contiguous sites with similar climate but different vegetation (dark 
colored bars). 
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Figure 3.10. Clustering of sites using only the vegetation parameters of STD, only the 
soil parameters of GW, and both soil and vegetation parameters of GW.  

The similarity between marginal distributions of behavioral parameters at all sites is 
compared using different distances. The plots report the distance that maximizes the 
cophenetic correlation coefficient of the linkage. Note that neither soil nor vegetation 
parameters render groups solely based on soil or vegetation type. The clusters of all 
parameters seem to have a strong relationship with the 3 climatic zones: (1-3) semi-arid, 
(4-6) middling, and (7-9) semi-humid. 
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Figure 3.11. Clustering of soil, vegetation, and GW-only parameters for the behavioral, 
marginal posterior distributions STD and GW at all sites.  

Soil parameters are shown in black; vegetation parameters are shown in gray; GW-only 
parameters are labeled with their names. The cophenetic correlation coefficient for the 
complete linkage for the parameters of STD and GW is 0.87 and 0.90, respectively. GW 
parameters seem to behave in a similar way as the soil parameters do. 
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Chapter 4:  Partitioning of the water balance in high-resolution 
simulations over the Little Washita River Experimental Watershed 

4.1. ABSTRACT 
 
We evaluate the ability of two versions of the Noah LSM to simulate the water 

cycle of the Little Washita River experimental watershed (LWREW) in Oklahoma, USA, 

at high resolution. We compare Noah STD, which uses the standard hydrological 

parameterizations of release 2.7, to Noah GW, which uses a simple aquifer model and 

topography-related surface and subsurface runoff parameterizations in place of the STD 

subsurface hydrology. We ask: (1) Can STD simulate the high-temporal-resolution and 

long-term features of runoff when applied on a high-spatial-resolution grid? (2) Does GW 

improve on STD’s ability to partition the water balance? We drive 125,000 (STD) and 

200,000 (GW) realizations with NEXRAD Stage IV precipitation data on a 4-km grid, 

representing 1997−2007. Parameters important to runoff are varied: each realization uses 

a unique parameter set sampled within physically realistic bounds. Simulations are 

compared to observed daily-mean runoff, soil moisture, and latent heat. Despite extensive 

parameter variation, STD and GW overestimate the ratio of runoff to evapotranspiration. 

Behavioral ensembles of STD and GW overestimate the surface-to-subsurface runoff 

ratio; simulated streamflow is much flashier than observations. In its current formulation, 

GW extremely underestimates the contribution of baseflow to total runoff and requires a 

shallow water table to function realistically. In the LWREW (where the depth to water is 

>10 m), GW functions as a simple bucket model. We note that model parameters are 
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likely scale and site dependent, and we underscore the need for even ‘physically based’ 

models to be extensively calibrated for all domains on which they are applied.  

4.2. INTRODUCTION 
 
Runoff is an integral component of the water balance, and because it is a primary 

source of water for human use and consumption, it is of great importance for society. Yet, 

of the variables represented by land-surface models (LSMs), runoff, together with soil 

moisture, is in general poorly represented (Viterbo, 2002; Nijseen and Bastidas, 2005; 

Overgaard et al., 2006). Major uncertainty remains in LSMs’ simulation of the surface 

water balance. Some of this uncertainty is governed by the parameterization of processes 

that drive runoff and the differences in the storage characteristics of LSMs (Pitman, 

2003). The strong interaction between the surface water balance and energy balance 

means that systematic errors in the allocation of moisture to reservoirs and runoff lead to 

errors in the partitioning of turbulent heat fluxes (Chen et al., 1997; Koster and Milly, 

1997; Liang et al., 1998; Wood et al., 1998; Dirmeyer, 2006). This cascade of errors 

affects the models’ simulation of weather and climate (Pitman et al., 1999; Li et al, 

2007). The Intergovernmental Panel on Climate Change (IPCC) identified freshwater 

resources as particularly vulnerable to climate change and highlighted the need for 

increased capacity to model runoff processes at high-resolution (catchment scale) within 

the LSMs that are linked to climate models (Bates et al., 2008). The IPCC asserts that 

such improvements, combined with more extensive, high-resolution runoff datasets, are 
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necessary for improved assessment of the feedbacks affecting humans’ freshwater 

resources.  

The complexity of the subsurface hydrology parameterizations of LSMs is 

relatively low when compared to the complexity of their parameterizations of above-

ground processes (Stöckli et al., 2008). While most LSMs describe the canopy and root 

zone in great detail, the interactions between groundwater, the root zone, and surface 

water are normally neglected (Overgaard et al., 2006). Due to the lack of observations of 

the vadose zone flow, diverse representations of infiltration, drainage and interflow 

processes in LSMs stem mainly from their unconstrained development, which focused 

primarily on regional fluxes to the atmosphere (Wetzel et al., 1996). Many LSMs, like the 

Noah LSM (Ek et al., 2003), neglect topographic effects, assume spatially continuous soil 

moisture values, parameterize surface runoff with a simple infiltration-excess scheme, 

and treat baseflow as a linear function of bottom soil-layer drainage (Schaake et al., 

1996). More complex in its subsurface-hydrology parameterizations than most LSMs, the 

multilevel reservoir Variable Infiltration Capacity (VIC) (Wood et al., 1992) family of 

models tends to perform relatively well in simulating runoff (e.g., Nijssen et al., 1997). 

VIC and its descendants (e.g., Liang et al., 1996) use a spatial probability distribution to 

represent subgrid heterogeneity in soil moisture and treat baseflow as a nonlinear 

recession curve. Other alternative LSM runoff schemes such as the Catchment model 

(Koster et al., 2000; Ducharne et al., 2000) have been used only in limited research 

applications (e.g., Reichle and Koster, 2005). Given sufficient data and computing power, 

lumped catchments may eventually replace rectilinear grid cells as the chosen method for 
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discretizing the land surface (Goteti et al., 2008); however, in current research and 

operational practice, LSMs are typically run using rectilinearly gridded domains. The 

parameterizations of LSMs continue to be developed. Recently, groundwater dynamics 

have been incorporated into LSMs (e.g., Gutowski et al., 2002; Liang and Huang, 2003; 

Yeh and Eltahir, 2005; Maxwell and Miller, 2005; Niu et al., 2007; Fan et al., 2007; 

Kollet and Maxwell, 2008). Advances in routing schemes for the high-resolution 

representation of the lateral transport of soil water are limited by the accuracy of their 

surface and subsurface runoff inputs (Gochis and Chen, 2003; Lyon et al., 2008). 

Several major concerted efforts have evaluated the ability of multiple LSMs to 

simulate runoff at coarse scales in temperate regions. The PILPS 2(c) compared the 

simulations of the seasonal cycle of runoff and the mean annual runoff in the Arkansas-

Red River basin (566,251 km2) on 1×1° grids. The Rhone-AGG (86,000 km2) addressed 

issues of domain resolution when comparing simulated land-surface states and fluxes, 

including runoff, at 8-km, ½°, and 1° aggregated grid. Such intercomparisons indicate 

that: [1] Bucket models are insufficiently complex to capture runoff processes (Wood et 

al., 1998; Lohmann et al., 1998). [2] Especially in semi-arid regions, most LSMs 

overpredict runoff: PILPS 2(c) showed that most LSMs overestimate mean annual runoff 

(and hence underestimate ET) and that the overestimation of runoff is especially 

pronounced during summer and in the drier portions of the Red-Arkansas River Basin 

(Wood et al., 1998; Lohmann et al., 1998), which is the region on which the study 

presented here focuses. [3] Models whose runoff schemes were dominated by subsurface 

runoff (baseflow) most accurately simulated summer-season runoff (Lohmann et al., 
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1998). [4] Most LSMs can simulate monthly total river runoff relatively well, provided 

that the precipitation and other forcing input data are sufficiently accurate (Oki et al., 

1999). Performance degrades significantly when evaluated at a daily timescale, although 

most LSMS are still able to slightly outperform the mean discharge (Boone et al. 2004). 

[5] Increasing model grid resolution tends to increase the volume of simulated runoff 

(Boone et al. 2004), which implies that there may be a need for the revision of modeling 

formulations as increasingly finely gridded models and/or at catchment-based models are 

used to meet societal demands for water-resource information. Model efficiency in the 

subbasins of the Rhone river, which are comparable in area to those of the MOPEX-

basins (1,020 to 4,421 km2), was found to be lower than the model efficiency for the 

entire watershed. [6] LSMs appear to be sensitive to subgrid runoff parameterizations 

(Stöckli et al., 2008) and model parameters (Wood et al., 1998); however, the multi-

model intercomparisons’ use of only one or a few model realizations has made it difficult 

to definitively attribute the sensitivity of runoff simulations to parameterization, to 

parameters, or to a combination of the two. For example: runoff ratios 

(runoff/precipitation) of single realizations of 16 different LSMs that were used as part of 

the PILPS 2(c) ranged from 0.02 to 0.41 (the observed runoff ratio was 0.15) (Wood et 

al., 1998).   

The identification and evaluation of distributed hydrological models has been 

complicated by the large number of model parameters and the lack of sufficiently 

powerful methods that can be used to perform a truly distributed assesment of model 

performance (e.g., Beven, 1989; Beven, 2001; Beven, 2002; Konikow and Bredehoeft, 
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1992; Refsgaard, 1997; Refsgaard and Henriksen, 2004). Recently, Nasonova et al. 

(2009) showed that with appropriate automatic calibration of a large number of 

parameters and with the introduction of correction factors for the model forcing 

(precipitation and incoming radiation), LSMs can simulate runoff at 1/8° with accuracy 

comparable to that of the hydrological models participating in the MOPEX (Andreassian 

et al., 2006). 

Research presented here evaluates the ability of two versions of the Noah LSM to 

simulate the water-cycle at high spatial and temporal resolution without the use of 

forcing-correction factors. The runoff parameterization of the standard version 2.71 of the 

Noah LSM (hereafter, STD), is relatively simple, as described above, but is still more 

complex than a bucket-model parameterization. Motivated by observations of other 

researchers regarding the overly simplistic hydrologic parameterizations in LSMs, we 

also evaluate a version of the Noah LSM that has been augmented with a lumped, 

unconfined aquifer model (hereafter, GW), which represents the vertical flow of water 

between the soil column and an aquifer according to a parameterization of Darcy’s Law 

and which represents surface and subsurface runoff as a function of topography (Niu et 

al., 2007). In an effort to capture the subgrid heterogeneity in land surface properties that 

controls runoff generation, a TOPMODEL-based parameterization (Niu et al., 2005) 

replaces in GW the surface and subsurface runoff parameterizations of STD. Niu et al., 

(2007) reported improving a complex LSM’s capacity to simulate monthly total runoff 

volume over continental-scale river basins on a 1×1° grid. We hypothesize that because 

of GW’s increased complexity and conceptual realism when compared to STD, and 
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because of GW’s previously reported good performance in reproducing near surface 

fluxes and states at single points in semi-humid regions of transition zones (Rosero et al, 

2009a; Rosero et al., 2009b), GW will outperform STD when simulating runoff. 

Our chosen modeling domain is the Little Washita River Experimental Watershed 

(LWREW) (Allen and Naney, 1991), which is a 611-km2 basin in Oklahoma, USA (Fig. 

4.1). The influence of frozen soil hydrology is negligible. The LWREW is slow draining: 

baseflow is a major component of overall runoff, which makes the basin an ideal location 

in which to test the parameterizations of Niu et al. (2005, 2007). Noting the community’s 

call for increased spatial and temporal scales when predicting runoff, we run both 

versions of Noah LSM on a 4-km grid and evaluate daily river discharge. We further 

assess the models’ abilities to simultaneously simulate runoff, soil moisture, and 

evapotranspiration. This analysis is at a finer temporal and spatial scale than has been 

done previously for LSMs.  

We address the following broad questions: Can a medium-complexity LSM (i.e., 

Noah STD) simulate runoff at a fine spatial and temporal resolution in a zone of 

transition between humid and arid climates? Does the addition of a more complex, 

physically realistic parameterization of groundwater dynamics improve the model’s 

capacity to simulate runoff? Note that we do not expect the LSMs to be able to provide 

highly accurate mean daily discharge predictions; rather, we evaluate them based on their 

capacity to reproduce the essential components and character of runoff generation and of 

the water balance of the LWREW. Following earlier work done by this research group 

(Rosero et al, 2009a; Rosero et al., 2009b), we use an extensive evaluation approach that 
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incorporates the models’ typical behavior (i.e., their ‘signatures’) of ensembles that use 

realistic, near optimal sets of parameters. We focus extensively on a set of Monte-

Carlo−derived behavioral runs that best reproduce the timing and the volume of 

streamflow.  

This is a preliminary study aimed toward improved runoff simulation within 

LSMs. Because of the small scale of the basin (611 km2), we assume routing is not 

necessary to predict daily total streamflow volumes (Fig. 4.2). We further assume that the 

meteorological input forcing data are accurate enough (i.e., not correction is required). 

We calibrate a subset of model parameters for seven groups of grid cells (that share the 

same soil and vegetation type) within the watershed; we leave more exhaustive 

calibrations (e.g., of parameters at each grid point) to future work. 

Section 4.2 introduces the models, evaluation datasets, and Monte-Carlo–based 

methods. Section 4.3 presents the results of the intercomparison. Discussion is offered in 

section 4.4. Section 4.5 summarizes our conclusions. 

4.3. DATA, MODELS, AND METHODS 
 
We used two versions of the Noah LSM (Ek et al., 2003; Mitchell et al., 2004) to 

produce ensembles of LSM realizations of near-surface states and fluxes over the Little 

Washita basin in Oklahoma, USA from 1 January, 1997 to 31 December, 2007. The first 

five years of model output are treated as spin-up. We evaluate simulations of the period 1 

January, 2002 to 31 December, 2007. 
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4.3.1. The Little Washita River Experimental Watershed (LWREW) 
 

The LWREW (Fig. 4.1), a tributary of the Washita River, is just south of 35°N 

and is centered on -98°E. Grass, crops, and wooded grassland cover the 611-km2 basin, 

which contains soil types ranging from fine sand to silty loam. The climate is temperate 

and continental: average annual rainfall is 760 mm. Most precipitation is received in the 

spring and fall. Summers are long, hot, and dry; winters are short, temperate, and dry. 

Mean annual temperature is 16°C. Daily mean maximum (minimum) temperature in July 

is 35°C (21°C); and daily mean maximum (minimum) temperature in January is 10°C 

(−4°C). The watershed is well drained, with gently rolling hills dominating the landscape. 

Maximum topographic relief is about 180 m. LWREW campaigns and datasets (e.g., 

Jackson et al., 1993) have been used to validate models (e.g., Wang et al., 2009). 

Additional description of the watershed can be found in Allen and Naney (1991).  

4.3.2. The Noah LSM 
 

Noah is a medium complexity LSM that takes meteorological forcing as input and 

uses physically based equations to simulate near-surface states and surface-to-atmosphere 

fluxes. Noah is used operationally by the National Centers for Environmental Prediction 

models and it is the land component of the Weather Research Forecasting model. Noah 

uses mass conservation and a diffusive form of the Richards equation to represent vertical 

water flow through its four-layer soil column (with lower boundaries at 0.1, 0.4, 1.0, and 

2.0 m). The dependency of hydraulic conductivity and soil matric potential on soil 

moisture is parameterized according to Clapp and Hornberger (1978). 
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The two versions of Noah that we used are hydrologically distinct: (1) in STD, the 

standard hydrological parameterizations of Noah version 2.71 are used; (2) in GW, a 

simple aquifer model is coupled to the model’s soil columns and the surface and 

subsurface runoff parameterizations of STD are replaced by the TOPMODEL-based 

parameterizations of Niu et al. (2005, 2007).   

Because the maximum time-lag correlation of daily streamflow between gages 

upstream of the outlet is under 1 day, no routing scheme was used (Fig. 4.2). 

4.3.2.1. The standard version of the Noah LSM (STD)  
 
STD uses an infiltration-excess parameterization to represent surface runoff and a 

gravitational drainage parameterization to represent subsurface runoff (Schaake et al., 

1996). Surface runoff (ܳ௦) is: 

  ܳ௦ ൌ ௗܲ െ ݊ܫ ௠݂௔௫      (4.1) 

where ௗܲ is the rate at which water reaches the soil surface and ݊ܫ ௠݂௔௫ is the maximum 

rate of infiltration into the soil. ݊ܫ ௠݂௔௫ is calculated as function of the hydraulic 

conductivity of the first soil layer, according to the subgrid parameterization of the water 

balance deficit as: 

݊ܫ   ௠݂௔௫ ൌ ܲ݀ ஽௫ሾଵି௘௫௣ሺି௞ௗ௧ൈఋ೟ሻሿ
௉ௗା஽௫ሾଵି௘௫௣ሺି௞ௗ௧ൈఋ೟ሻሿ

    (4.2) 

where Dx is the soil moisture (θ) deficit term integrated across soil layers (Δzi) on time 

interval δt: 

ݔܦ   ൌ ∑ ௜ሺఏೞೌ೟ିఏ೔ሻݖ∆
ସ
௜ୀଵ       (4.3) 
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and the variable kdt is calculated as a function of the ratio of the saturated hydraulic 

conductivity (Ksat) and its reference value (Kref).  

ݐ݀݇   ൌ ௥௘௙ݐ݀݇ ൈ
௄௦௔௧
௄ೝ೐೑

      (4.4) 

Subsurface runoff (ܳ௦௕ሻ is: 

  ܳ௦௕ ൌ ݁݌݋݈ܵ ൈ  ௡௦௢௜௟      (4.5)ܭ

where ݈ܵ݁݌݋ is a scaling factor between 0 and 1 and ܭ௡௦௢௜௟ is the hydraulic conductivity 

of the bottom layer.  

4.3.2.2. The Noah LSM augmented with a groundwater parameterization (GW) 
 
GW parameterizes both ܳ௦ and ܳ௦௕ as a function of depth to water table (ݐݓݖ). In 

GW: 

  ܳ௦௕ ൌ ൫ܴ௦௕೘ೌೣ൯݁
ିሺ௙ሻሺ௭௪௧ሻ     (4.6) 

where ܴ௦௕೘ೌೣ is the maximum rate of subsurface runoff and the parameter ݂ is the e-

folding depth of saturated hydraulic conductivity, which, following Silvapalan et al. 

(1987), is assumed to exponentially decay with depth. GW uses a similar 

parameterization for ܳ௦: 

  ܳ௦ ൌ ሺ ௗܲሻ൫ ௦݂௔௧೘ೌೣ൯݁
ି଴.ହሺ௙ሻሺ௭௪௧ሻ    (4.7) 

where ௗܲ is the rate of precipitation reaching the ground and ௦݂௔௧೘ೌೣ is the maximum 

fraction of ground area that can be saturated. 

4.3.3. Meteorological forcing inputs 
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We used hourly, 4-km NEXRAD stage IV as precipitation input for all model 

runs after 1 January, 2002. For all other meteorological forcing (longwave radiation, 

shortwave radiation, atmospheric pressure, wind speed, air temperature, and specific 

humidity), hourly North American Land Data Assimilation (NLDAS) meteorological 

forcing (Cosgrove et al., 2003) was used. The NLDAS forcing data were bilinearly 

interpolated from their native 12-km resolution to the 4-km grid used to represent the 

LWREW (Fig. 1). We chose to use the NEXRAD precipitation in place of the NLDAS 

precipitation because the timing of rainfall, the volume of precipitation in individual 

events, and the cumulative volume of precipitation specified by the NEXRAD data were 

more consistent with the characteristics of 24 single-point observations obtained by the 

USDA Agricultural Resource Service (ARS). 

4.3.4. Initialization of model realizations  
 
Each model realization was spun up between 1 January, 1997 and 31 December, 

2001. All runs were initialized with snow-free ground, a dry canopy, and at the 

approximate multiannual mean temperature. Soil moisture was initialized as 50% of the 

realization’s specified porosity. We used the equilibrium-water-table assumption of Niu 

et al. (2007) to initialize the water table for the Noah-GW realizations.  

4.3.5. Evaluation data 

4.3.5.1. USGS daily mean runoff 
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We evaluated model performance by comparing simulated daily mean discharge 

rate to observed data collected by the United States Geological Survey (USGS). We 

obtained data for the five gauging stations (73274406, 73274458, 7327442, 7327447, and 

7327550) within the LWREW for which data was available for the model-evaluation 

period at http://waterdata.usgs.gov/nwis.  

4.3.5.2. FLUXNET evapotranspiration data 
 
We compared hourly simulated latent heat flux for 1 January, 1998 − 31 

December, 1998 to the mean hourly observed latent heat flux (Meyers, 2001) obtained at 

the Ameriflux site at Little Washita (-97.9789°E, 34.9604°N). Data were accessed at 

http://public.ornl.gov/ameriflux/Site_Info/siteInfo.cfm?KEYID=us.little_washita.01. No 

latent heat flux observations within the LWREW were available for any other period of 

time. 

4.3.5.3. Soil moisture data 
 
Daily volumetric soil moisture observations at 5 cm and 25 cm for the period 1 

January, 2005 – 31 December, 2007 for 24 sites within the LWREW were obtained from 

the USDA’s ARS Micronet website (http://ars.mesonet.org/). Time series for selected 

sites (A148 and A153) and statistics of soil moisture for all the sites are compared. 

4.3.6. Land cover classification 
 

We used 1-km University of Maryland vegetation data (Hansen et al. 2000) and  

1-km FAO/STATSGO2 soil texture classifications (Soil Survey Staff, 2009), both of 
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which were aggregated (using the most predominant type) to the 4-km grid shown in 

Figure 4.1, to classify the basin according to seven unique soil-vegetation groups. 

Because it is unlikely that parameters vary solely as a function of soil type alone or of 

vegetation type alone (Rosero et al., 2009b), and to reduce the total number of parameters 

studied, we described the domain as a mosaic of soil-vegetation classes (Table 4.1; 

Figure 4.1d). For simplicity and to ease computational burden, when identifying the soil-

vegetation groups, we treated crop and grass as the same vegetation class. 

4.3.7. Parameter values 
 
We vary a total of 61 parameters for STD and 64 for GW for the distributed run. 

In a given grid cell, for each of the STD realizations, 9 parameters deemed important to 

the simulation of soil hydrology (8 soil and vegetation parameters and 1 basin –

topography-related– parameter) were randomly sampled from uniform distributions (see 

Table 4.2); for the GW realizations, 10 parameters (7 soil and vegetation parameters and 

3 basin parameters) were allowed to vary. For each model run, a unique parameter set 

was assigned to each soil-vegetation class (Figure 4.1d) and to each of the five sub-basins 

in the watershed. That is, the parameters of each soil-vegetation class and each basin 

varied independently, and all the cells within a class (or basin) had the same soil-

vegetation (or basin) parameters. Ranges in Table 4.2 were taken from the literature (e.g., 

Chen et al. 1996; Schaake et al. 1996; Bastidas et al. 2006; Hogue et al. 2006). 

Parameters that were held constant between realizations were set to the default value used 
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by Niu et al. (2009) for that vegetation or soil type or, in the case of Noah-GW 

parameters, to the default values set by Niu et al. (2007). 

4.3.8. Methods  

4.3.8.1. Latin Hypercube Monte Carlo model realizations 
 
Using Monte Carlo simulation, we obtained ensemble predictions of watershed 

responses using samples of parameter sets drawn from within feasible parameter ranges 

(Table 4.2). We used uniform prior distributions independently defined for each 

parameter to sample 125,000 model realizations for STD and 200,000 for GW using a 

Latin Hypercube sampling algorithm. We used LH because it combines the strengths of 

stratified and random sampling to ensure that all regions of the parameter space are 

represented in the sample (McKay et al., 1979; Helton and Davis, 2003). We classified 

models as behavioral or as non-behavioral based on acceptable or unacceptable behavior 

(Hornberger and Spear, 1981). The behavioral sample fulfilled a subjective threshold 

(Beven and Binley 1992) for this classification: conservation of mass (Eq. 4.11). It also 

minimized two measures of performance: heteroscedastic maximum likelihood 

estimation (HMLE) of daily flows (at stations 07327447 and 07327550), which accounts 

for timing, and the Bias of monthly flows at the outlet gage 07327550, which accounts 

for volume: 

ܧܮܯܪ  ൌ ටଵ
௡
∑ ൫ݍ௦௜௠,௜

௧ െ ௢௕௦,௜௧ݍ ൯ଶ௡
௜ୀଵ

మ
       (4.8) 

௜௧ݍ  ൌ
ሺொ೔ିଵሻλ

λ
        (4.9) 
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where ݍ௜௧ is the transformed flow (Box and Cox, 1964) with λ=0.3 (Sorooshian and 

Dracup, 1980).  

ݏܽ݅ܤ   ൌ ଵ
௡
∑ ൫ܳ௦௜௠,௜ െ ܳ௢௕௦,௜൯௡
௜ୀଵ      (4.10) 

   ா
௉
൑ 1         (4.11) 

The behavioral runs are those that are best able to reflect the timing and the 

volume of streamflow without violating the long term water balance. We used Monte 

Carlo filtering (Ratto et al., 2007) only as a screening tool after which further analysis of 

the behavioral ensemble was performed. 

4.3.8.2. Sobol' sensitivity indexes  
 
We used the variance-based method of Sobol' (Sobol', 1993; 2001) to efficiently 

identify the factors that contribute most to the variance of a model’s response. The first-

order sensitivity index (S1,k) represents a measure of the sensitivity of the performance of 

a model realization that is evaluated against observations to variations in parameter xk. 

S1,k is defined as the ratio of the variance conditioned on the kth factor to the total 

unconditional variance of the performance measure (e.g., Eq. 4.8, 4.10). For details see 

Saltelli (2002). We used the Sobol' semi-random sampling sequence, as implemented in 

SimLab (Saltelli et al., 2004), to evaluate 8320 and 11008 runs for STD and GW, 

respectively. The number of realizations allowed us to use a sample size m>128 for each 

parameter. 
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4.3.8.3. Ensemble-based performance score 
 

The performance of the behavioural ensemble at every time step i was quantified 

using the score of Gulden et al. (2008b):  

  ߫௜ ൌ
஼஽ி೐೙ೞ,೔ି஼஽ி೚್ೞ,೔

ଵି஼஽ி೚್ೞതതതതതത
        (4.12) 

where CDF is the cumulative distribution function of the ensemble or the observed 

quantity. The score is lowest (i.e., best) when the ensemble brackets the observation, is 

highly skilled (observations centred on the ensemble mean), and has low spread. See 

Appendix 2. 

4.4. RESULTS  

4.4.1. Most frequent performance and selection of behavioral runs 
 
The typical performance of the 125,000-member STD ensemble and the 200,000-

member GW ensemble suggest a wet bias in the total amount of simulated discharge and 

the inability of both models to adequately capture the timing of the daily streamflow in 

the LWREW (Fig. 4.3). Both STD and GW tend to overpredict the ratio of runoff to total 

precipitation (Fig. 4.4b); however, the bias of total watershed discharge simulated by GW 

tends to be slightly lower than that simulated by STD (solid lines in Fig. 4.3a). The 

typical simulation of runoff by STD achieves an equally good HMLE as does that of GW 

(solid lines in Fig. 4.3b). GW tends to overestimate the evaporative flux; the RMSE of its 

simulated LE is significantly greater than STD (Fig. 4.3c). Dotted lines in the panels of 

Figure 4.3a and 4.3b show that calibration of model parameters leads to a significant 

reduction in the simulations’ bias and HMLE; however, as reported in myriad other 
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studies (e.g Koster and Milly, 1997) there exists a tradeoff between a model’s achieving 

better runoff performance and accurate simulation of evapotranspiration. Constraining the 

top 0.05% of model runs (behavioral) to better capture basic characteristics of the runoff 

does not yield improved simulations of latent heat flux. The tuning of model parameters 

significantly improves performance but is insufficient to overcome structural biases in 

model formulation. 

4.4.2. Partitioning of the water cycle 
 
The majority of simulations of STD and GW are unable to capture the 

fundamental features of the long-term hydrologic response of the basin (Fig. 4.4). We 

treat the 4-km NEXRAD stage IV precipitation data, used as meteorological input to the 

model cohorts, as observed precipitation and use it to compute evaporative (E/P) and 

runoff (Q/P) ratios. Noah’s tendency to overestimate runoff volumes is shown in the 

positively (negatively) skewed E/P (Q/P). The Q/P ratio is overestimated by interquartile 

range of the STD and GW runs by a factor of 6 (Fig. 4.4b). Treating the evaporation 

observed at the AmeriFlux site to be approximately representative of the rates for the 

entire basin, we compute an estimated observed E/P ratio (solid line in Fig. 4.4a). 

Seventy-five percent of the runs of both models underestimate the evaporative ratio. We 

presume that this estimated observed E/P is itself likely an underestimate of the actual ET 

in the LWREW; therefore, the dry bias of the model-ensemble simulated ET is likely 

even greater than it appears in Figure 4.4. The subset of behavioral models (that achieve 

the lowest bias and best HMLE scores) do nearly conserve mass and are able to 
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reasonably accurately simulate the gross characteristics of the LWREW water balance 

(STD* and GW* in Fig. 4.4).  

4.4.2. Ensemble-based evaluation of daily streamflow 
 
Having established that neither STD nor GW is skilled in simulating the large-

scale features of the water balance, we sharpened our focus to the daily timescale as a 

means for understanding why the two version of Noah fail to capture essential features of 

the water cycle in the LWREW. We examined the best-performing subset of models and 

examined in more detail the components of runoff simulation and the hydrologic cycle. 

Results presented in this section apply only to the behavioral (lowest-bias and best 

HMLE) subset of runs for both STD and GW.  

4.4.2.1. Hydrographs and recession curves 
 
The streamflow hydrographs suggest that the models are limited in their ability to 

capture the timing of daily runoff and have less skill with respect to the magnitude, 

especially during dry spells. During wet periods, such as the spring and summer of 2007, 

both STD and GW simulate runoff that is overly flashy: the models are too responsive to 

small inputs of precipitation, they overestimate the rate of discharge after precipitation 

events, and the simulated recession of discharge is too fast (Fig. 4.5). After dry-down, 

STD significantly outperforms GW; however, the difference in performance results from 

STD’s larger baseflow (GW often has no baseflow at all; see further discussion below). 

During dry periods, such as the summer and early fall of 2005, STD again outperforms 

GW, especially when baseflow is the primary source of water in the channel (Fig. 4.5). 



 145 

Both models overestimate post-precipitation increases in discharge and overestimate the 

speed at which channel flow recedes. Spurious peaks in the hydrograph may indicate that 

the precipitation forcing data contain errors. The time-mean performance score of the 

Box-Cox transformed runoff (over the period 1 January, 2002 – 31 December, 2007) at 

the outlet is 1.42 for GW and 0.99 for STD. (Table 4.3).  

In Figure 4.8, it is evident that the models do not have the skill to reproduce the 

recession events observed on May, Jun and Aug 2007. We consequently do not try to fit a 

power/exponential-law−type model to the observations to better quantify the recession 

characteristics. Mismatch between the measured flow recession characteristics (Brutsaert 

and Nieber, 1977) and those of the modeled flow, is another clear indication that the 

subsurface flow dynamics of the model need to be investigated. 

4.4.2.2. Flow duration curve 
 
We use a flow exceedance probability curve (FEPC) (also known as the flow 

duration curve) (Vogel and Fennessey, 1994) to summarize the models’ ability to 

simulate the long-term distribution of flows of different magnitudes, which in turn is 

indicative of the different contributions made by surface and subsurface runoff to total 

streamflow (Farmer et al., 2003; Yilmaz et al., 2008; van Werkhoven, et al., 2008) (Fig. 

4.7). The FEPC represents the flow regime, and its steepness reflects the speed of 

watershed drainage, which is a result of the watershed functional behavior (Wagener et 

al., 2007). The gently sloping FEPC of the observed discharge, indicates that 

groundwater or ‘slow’ runoff is a significant contributor to the discharge (Smakhtin, 
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2001) of the Little Washita River system in both its upstream (Fig. 4.7a) and downstream 

(Fig. 4.7b) reaches. Neither STD nor GW is able to capture this essential baseflow-

dominated character of the LWREW streamflow (Fig. 4.7). 

Both STD and GW simulate too-frequent high and extreme flows and too-

infrequent intermediate and low flows. The models’ short, steep FEPCs indicate that the 

models exhibit significant flow variability and limited flow persistence. At the mid-

catchment gauge (7327447), the entire GW behavioral ensemble and part of the STD 

cohort show that the model is much more flashy (i.e., with low water-storage capacity 

and overland-flow-dominated runoff) than the actual Little Washita River (Fig. 4.7a). 

STD is more sensitive to the choice of parameters. At the downstream gauge (7327550), 

the behavioral ensemble of STD obtains more baseflow from the lowlands of the 

watershed (likely because of a change in soil-vegetation group type in the downstream 

reaches). Although the probability of intermediate and low flows in STD is lower than 

the observed, at the downstream gauge, several realizations of STD do exhibit a 

distribution of flow volumes that somewhat resembles the slope of the observed FEPC, 

although STD’s intermediate flows are dry-biased with respect to observations (Fig. 

4.7b). Even at the downstream gauge, GW simulations remain much flashier than 

observations. The FEPC of GW provides evidence that, in the LWREW, GW behaves as 

a simple bucket model that does not parameterize groundwater flow (Farmer et al., 2003; 

Wagener et al., 2007) (see section 4.5 for a discussion of this dichotomy).  

4.4.2.3. Spatial distribution of the runoff partitioning 
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Consistent with our foregoing observations, a spatial analysis of the ensemble-

mean of the cumulative surface (Qs) and subsurface (Qsb) flow shows that the total runoff 

(QTotal) estimated by the two versions of Noah LSM is composed mostly of surface, 

overland, fast runoff (Fig. 4.9). The dominance of Qs is particularly pronounced for GW. 

That simulated Qs/Qtotal is high is inconsistent with the observed FEPC, which shows a 

more slowly responding watershed.  

4.4.2.4. Sensitive parameters  
 
Analysis of the parameters most responsible for the model’s behavior (Fig. 4.10) 

shows that for STD more than 70% of the variance is controlled by the Clapp and 

Hornberger b of groups D-G, while for GW, less than 50% of the variance can be 

apportioned to b of groups D and E. A quarter of GW’s variance corresponds to the 

porosity (smcmax), saturated soil matric potential (psisat), and aquifer specific yield 

(rous) of D-F. Despite that D-G correspond to the larger areas in the catchment, the 

fractions of the variance do not directly correspond to the area covered. 

That the Clapp and Hornberger b exponent is important for both STD and GW is 

not surprising:  [1] Parameter b controls the shape of the pedotransfer function from 

which the change of soil hydraulic conductivity with saturation is computed. [2] Paramter 

b is also used to provide physical consistency between parameters: multiple internal 

model parameters (e.g., the wilting point, the saturated soil diffusivity, etc.) are computed 

using b (Chen et al., 1996; Chen and Dudhia, 2001).  
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Parameter b plays a larger role in shaping the variance of runoff in STD than in 

GW (Fig. 4.10). In STD, b is used to compute the maximum rate of infiltration (which 

controls surface runoff); it is also used to compute the hydraulic conductivity of the 

bottom layer of soil, of which Qsb is a linear function. In GW, although b still plays a role 

in determining the values of multiple soil hydraulic properties, it does not directly control 

surface runoff or subsurface runoff.  

A comparison of Figure 4.1 and Figure 4.9 shows that in both models, but 

especially in GW, surface runoff is a function of soil-vegetation group and not of 

watershed. The only parameter indirectly used to compute surface runoff in GW that is 

also linked to land cover is the maximum canopy water content (cmcmax), which 

determines the amount of precipitation reaching the surface. Basin-linked parameters 

fsatmx and f are also used to compute surface runoff, but Figure 4.9 shows a clear 

dependence of surface runoff on soil-vegetation group. The variable groundwater table 

depth (zwt) is the only remaining aspect of the GW computation of surface runoff that is 

indirectly linked to land-cover group, and it clearly is controlled by parameters of each 

soil-vegetation group (Fig. 4.11). GW’s method of calculation of zwt explains the 

contribution to model variance of smcmax, psisat and rous. 

4.4.3. Ensemble-based evaluation of daily soil moisture 

4.4.3.1. Soil moisture statistics 
 
Point-based soil moisture measurements are difficult to compare with the spatially 

smoothed simulations of a model grid; however, statistical properties are often preserved 



 149 

across scales (Famiglietti et al., 2008). We compare the first, second, and third moments 

of observed and modeled soil moisture across the LWREW (Fig. 4.12). Observed soil 

moisture observations reveal that the coefficient of variation (CV) exhibits an 

exponentially decreasing pattern with increasing mean moisture content. In the upper soil 

layer (5 cm), the skewness of observed moisture generally decreases, from positive to 

negative values, with increasing mean soil moisture, with most observations centered 

around zero. In the root zone (25 cm), observed skewness shows approximately the same 

pattern, but with more scatter, and is on average slightly positive. Of the behavioral 

subset of model realizations, neither STD nor GW captures the essential character of the 

soil moisture statistics. Skewness is far too positive at both depths, and the coefficient of 

variation of simulated moisture increases with mean soil moisture. The addition of the 

groundwater module to STD does not fundamentally change the character of simulated 

soil moisture (Fig. 4.12). Observed soil moisture is more normally distributed than is 

modeled. In both models, simulated soil moisture is especially positively skewed for the 

driest cells: the model soil columns saturate quickly and then dry quickly, favoring lower-

than-mean moisture. At both depths, observed soil moisture is more variable than 

modeled, and is most variable in drier cells. Near the surface, lower-mean grid cells have 

less moisture variation than their wetter counterparts; at depth, lower-mean grid cells 

exhibit more variation than their wetter counterparts. For both STD and GW, model 

output is consistent with expectations but not with reality. We (and likely the model 

developers) expect that the mean state of the soil moisture profile will monotonically wet 

with depth; yet observations show that in some cases this is not the case.  
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4.4.3.2. Upper layer and root zone soil moisture  
 
We use observations from two selected sites from within the basin (A148 and 

A153; see Fig. 4.1), each with distinct wetting profile and behavior, to evaluate model 

performance. The ensemble mean, time-mean soil moisture profile of GW and STD 

slowly wet with depth at both sites, which is not consistent with observations (Fig. 4.13). 

Simulated gradual wetting with depth is consistent across the basin; only the uppermost 

layer of soil varies consistently between soil-vegetation groups (Fig. 4.14).  

Time series of simulated soil moisture are plausibly realistic at both 5 cm and in 

the rooting zone, although both STD and GW simulate soils that exhibit a dry bias in the 

top layer when compared to observations (Fig. 4.15, 4.16).  Although the simulations 

exhibit little differentiation between sites and between regions of the catchment, the 

models tend to perform better in the root zone of site A148 (Fig. 4.16). The amount of 

time that it takes for the soil to dry down is consistent with observations, although the 

magnitude of the change in modeled soil moisture is normally much greater than what is 

observed. It appears that the model may have a (dry) equilibrium state that it strongly 

prefers, possibly in spite of local forcing (Fig. 4.16). Performance scores for both models 

at the sites and depths are very similar (Table 4.3). 

4.4.4. Ensemble-based evaluation of daily evapotranspiration (ET) 
 

In most parts of the basin, the time-averaged ensemble-mean ET rates are much 

larger in GW than in STD (Fig. 4.17); a qualitative examination of the spatial distribution 

of ET shows that ET rates are controlled by soil-vegetation group parameter choices, not 
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by basin-related parameters. Examination of the performance of the behavioral ensemble 

when simulating the time variation of daily ET at a single grid cell (where the FLUXNET  

tower is located) shows that both GW and STD are too variable in their ET simulation 

and show that both models, but especially GW, overestimate ET at the given site (Fig. 

4.18). This result is consistent with the overly robust evapotranspiration pathway 

observed for GW in previous studies (Rosero et al., 2009a). We note that it is possible 

that the eddy-flux tower location from which the ET data was collected may not be 

representative of the ET flux averaged across the domain of the overlapping 4-km grid 

cell. 

4.5. DISCUSSION 
 
The failure of our implementations of STD and GW to realistically represent 

runoff in a small baseflow-dominated watershed appears to result in large measure from 

the models’ inability to adequately represent the soil hydrology and a steady subsurface 

runoff. Consequently, both models significantly overestimate the fraction of total runoff 

(QT) that is rapid. Our results are consistent with the conclusions of Boone et al. (2004), 

who observed that, in general, higher ratios of surface runoff (Qs) to total runoff (Qs/QT 

>0.25) corresponded to less-realistic simulated discharge. Lower Qs/QT values were 

especially important for obtaining good performance at a daily timescale. Boone et al. 

(2004) also observed that schemes with little water-storage capacity in their soils tend to 

overestimate runoff; both STD and GW can be characterized as having low water-storage 

capacity in their soils: they both wet and dry too quickly in response to precipitation 
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events. The flashy response of the model watersheds is in part a consequence of low 

water storage in the modeled soil column.  

We note that in the current implementation of GW, surface runoff is needlessly 

increased by the scaling factor 0.5 in the exponential term used to scale the precipitation 

rate (Eq. 4.7). Given the observations of Boone et al. (2004) and others regarding 

improved simulations obtained with models that have a low Qs/QT, we suggest that this 

factor need be either eliminated (thereby effectively increased to 1.0) or increased to 

force a decrease in surface runoff. However, a simple decrease in surface runoff is not 

sufficient to create a constant supply of baseflow. Modifying the groundwater 

formulation used here such that it provides a time-delayed second reservoir for flow and 

such that it is able to generate a steady subsurface flow, even in regions where the water 

table is low, will likely improve the Noah LSM’s capacity to simulate more physically 

realistic streamflow in the LWREW. 

The current GW parameterization does provide a constant reservoir that is a 

potential source of runoff, but in its current implementation, GW does not function 

effectively when the water table is low because modeled surface and subsurface runoff 

decrease exponentially with water table depth (Eq. 4.6 and 4.7). Given the current 

parameterization, when the water table falls below 10 meters beneath the land surface, 

little subsurface runoff is produced (Fig. 4.19). The modeled equilibrium groundwater 

tables for the LWREW in the behavioral GW runs range from 1 up to 80 m in some cells 

(Fig. 4.11), with most values being deeper than regional observations (10-25 m; USGS 

water data and D. Moriasi, personal communication). While previous work using the 



 153 

same or similar implementations of the Niu et al. (2007) groundwater model have shown 

that the GW module performs realistically in simulating various aspects of the terrestrial 

water cycle (Niu and Yang, 2003; Niu et al., 2007; Gulden et al., 2007a; Lo et al., 2008: 

Rosero et al. 2009a, 2009b), it is necessary to point out that, in the other researchers’ 

simulations, domain-average water tables have been shallow. GW seemed to degrade the 

simulation of near surface fluxes and states in regions of transition zones were the water 

table is believed to be deep (Rosero et al. 2009a, 2009b). 

One potential, domain-specific solution is to set the tunable parameter f near zero 

such that there is only a very weak exponential dependency of runoff on depth to water 

(see Eq. 4.6 and 4.7). We investigated physically plausible values of f (Table 4.2). Niu 

and Yang (2003) provide a range from 1.5 to 5.2 of physically realistic values of f 

reported in the literature using similar topography-based runoff schemes in somewhat 

similar modeling environments (Famiglietti et al., 1992; Stieglitz et al., 1997; Chen and 

Kumar, 2001; Dai et al., 2003). The calibrated values adopted by Niu et al., (2005, 2007) 

are shown in Figure 4.19.  However, in such studies, the resolution of the grid cell was 

coarser, and the depth to the (parameterized) water table was relatively shallow, which 

made the exponential component of the subsurface runoff significantly greater (see Eq. 

4.7). The ideal value of f likely changes with grid cell size, with soil properties, with 

modeled equilibrium depth to water, and with host model (Rosero et al., 2009a). By 

comparing our runs with those of other researchers’ results we clearly see that f must be 

treated as a scale dependent tunable parameter, not a physical quantity.  
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We also note that a potential explanation for the deeper-than-observed modeled 

water table is an overly robust parameterization of soil matric potential, which sucks 

water from the overly deep groundwater reservoir and contributes to significantly 

overestimated ET (Fig. 4.18).  

Other potential explanations for the poor quality of simulated streamflow are that 

the soil hydrology representation of Noah is insufficiently complex and/or not realistic. 

This potential limitation is consistent with the poor-quality behavioral simulations of 

STD runoff, which appear to result from the model’s low soil-water residence time. The 

increasing or constant CV with increasing mean soil moisture implies that the model does 

not have the capacity to retain or to buffer soil moisture. That is, model grid cells with 

high porosity likely have larger mean moisture because they occasionally are briefly 

saturated; however, all cells, including the cells that are wetter on average, dry quickly. 

For cells with higher porosity, this behavior increases the CV of soil moisture content. 

Such quick-to-wet, quick-to-dry behavior may be ameliorated by increasing the number 

of layers in the modeled soil column. However, such a change may be insufficient to 

fundamentally alter the statistics of the modeled soil moisture.  

It is worth noting that Famiglietti et al. (2008), working in the same region, 

observed an overall increase in skewness with the scale of soil moisture measurements, 

which implies that positive skewness of the soil moisture distribution under dry surface 

conditions may be more pronounced at the larger end of a range of scales. This 

observation may help explain why our 4-km soil-moisture simulations have skewness 

values that are much larger than those of observations.  
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The runoff parameterizations within GW are related to topography but do not 

actually depend on the statistics of topography. In the development of the physically 

based parameterization of GW it was assumed that identification of parameters which, by 

derivation, are related to topography (fsatmx and rsbmax) has the potential to capture the 

heterogeneity of the land features and improve both simulated runoff and simulated soil 

moisture. Our sensitivity analysis showed that adjusting parameter rsbmx within GW to 

better reflect within-watershed variations of topography has little to no effect in 

improving both the statistics of soil moisture and the realism of the simulation of runoff.  

In the derivation in of the simplified model, Niu and Yang (2003) state: “it is attractive to 

develop a topography-related runoff parameterization which does not require the 

topographic index data set. In the simplest case, the topographic characteristics may be 

parameterized as constants for all land points, and the saturated fraction and subsurface 

runoffs are only determined by the soil moisture represented by the water table depth”. It 

is evident that the dependency of the grid cell topography is largely lost when using the 

simplification embedded within the maximum rate of subsurface runoff (rsbmx). 

Similarly, the conceptual maximum saturated fraction (fsatmx) becomes a tunable 

parameter. Hence, GW’s simplifications for surface and subsurface runoff used here are 

disconnected from the actual physics of topographic influence on groundwater discharge. 

It is therefore not surprising that, without extensive calibration, they do not yield 

significant improvement in the physical realism of model simulations.  

In the LWREW, a combination approach may be warranted. GW is a modified 

saturation-excess runoff scheme, which is valid in humid regions, zones with large 
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infiltration capacity, and well-distributed precipitation. STD uses an infiltration-excess 

scheme, which is better suited to dry regions with sparse, localized rain or in humid areas 

where soils are impermeable. 

In order to accurately predict streamflow or other hydrologic fluxes and states, 

choosing the appropriate model structure (and model parameters) is a crucial step in 

hydrologic modeling. The same can be said about understanding the dominant physical 

controls on the response of a watershed (Clark et al., 2008). In land-surface modeling, 

often a bottom-up approach is followed (as is done here). LSM are complex structures 

that generally require detailed information of the physical characteristics of the modeled 

watersheds and are often potentially over-parameterized. As pointed out by Jakeman and 

Hornberger (1993), model overparameterization is particularly acute when simulating 

streamflow. Instead, and in the context of hypothesis testing, a top-down approach to 

model development is advisable (e.g., Farmer et al., 2003; Schultz and Beven, 2003; 

Sivapalan et al., 2003; Bai et al., 2009). The aim should be to identify a model structure 

with the minimum level of complexity that is capable of reproducing the observed 

watershed response for the 'right reasons' (Kirchner, 2006).  The gap between the 

simplified hydrological model components implemented in atmospheric models and the 

state-of-the-art integrated hydrological models (Overgaard et al., 2006) can only be 

bridged with approaches that systematically increase the complexity of the subsurface 

hydrologic parameterization in a framework that acknowledges explicitly the inherent 

uncertainty of the problem (Clark et al., 2008). 



 157 

4.6. CONCLUSIONS 
 
We conclude that, in their current formulations and on a 4-km grid, neither STD 

nor GW is able to capture the essential characteristics of runoff in the Little Washita 

River basin. A fundamental failure of the Noah STD soil parameterization is its inability 

to produce sustained baseflow for streams; the addition of the simple groundwater 

parameterization used here does not ameliorate this deficiency. In regions where the 

modeled water table is deep (> 10 m below the surface), GW does not simulate sufficient 

baseflow and instead causes the model to function as a simple bucket model. Both 

models have too high a ratio of surface to subsurface runoff and consequently simulate 

streamflow that is far too flashy. In both models, the soil column wets too quickly and 

dries too quickly. We note that parameters for both models are likely scale and site 

dependent, and we underscore the need for even ‘physically based’ models to be 

calibrated at all locations in which they are applied.  
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Table 4.1. Soil-vegetation properties 

Soil-
vegetation 

group  Vegetation type 
Vegetation 

index* Soil type 
Soil 

index* 

Number of 
4-km grid 

cells  
Area km2 

(fraction %) 

A Wooded grassland 7 Sand 1 1 16 (2.63) 

B Wooded grassland 7 Loam 6 1 16 (2.63) 

C Grassland/Cropland 10, 11 Sand 1 2 32 (5.26) 

D Grassland/Cropland 10, 11 Sandy 
loam 

3 9 144 (23.68) 

E Grassland/Cropland 10, 11 Silty 
loam 

4 9 144 (23.68) 

F Grassland/Cropland 10, 11 Loam 6 10 160 (26.31) 

G Wooded grassland 7 Sandy 
loam 

3 6 96 (15.78) 

* See Figure 4.1 
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Table 4.2. Bounds of distributions of parameters allowed to vary between realizations 

Name Description units Feasible range 

Soil-vegetation parameters♯ 

Kref
§ 

(refdk) Used with kdtref to compute runoff 
parameter kdt − 0.05−3.0 

kdtref
§ (refkdt) Surface runoff parameter − 0.1−10.0 

rcmin Minimum stomatal resistance s m-1 30−200 
fxexp Bare soil evaporation exponent − 0.1−2.0 
b Clapp−Hornberger b exponent − 2−12 
θmax (smcmax) Porosity m3 m-3 0.2−0.5 
psisat saturated soil matric potential m m-1 0.03−0.76 
Ksat (satdk) saturated soil hydraulic conductivity m s-1 0.1−10 
rous† Aquifer specific yield m3 m-3 0.05−3.0 

Basin parameters* 

rsbmax† Maximum rate of subsurface runoff m s-1 1.0E-6−1.0E-3 
f† e-folding depth of saturated hydraulic conductivity m-1 0.5−10 
fsatmx† Maximum saturated fraction % 0.1−90 
slope§ Slope of bottom soil layer − 0−1 

♯ Assigned to all the cells within a soil-vegetation class (see Fig. 1d)  
*Assigned to all the cells within a sub-basin to better capture the topographic relief of the 
catchment. 
§ Parameter is used by Noah-STD only. 
† Parameter is used by Noah-GW only. 
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Table 4.3. Performance score of the behavioral ensembles 

 
  Runoff (QTotal) SMC5cm SMC25cm 

Station 7327442 7327447 7327550 A148 A153 A148 A153
STD 1.66 1.42 0.99 0.58 0.57 0.61 0.67
GW 1.6 1.69 1.42 0.62 0.63 0.6 0.71
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Figure 4.1. Little Washita River Experimental Watershed (LWREW) modeling domain.  

(a) Hydrography and locations of the USGS streamflow gages, ARS soil moisture 
observation sites, and the FLUXNET tower. (b) 1-km FAO/STATSGO soil texture data. 
(c) 1-km UMD vegetation type data. (d) Groups A-G of cells with the same vegetation 
and soil types on the 4-km modeling domain used in all model realizations described 
here. Note the delineation of 3 sub-basins: upstream (7327442), mid-catchment 
(7327447) and downstream at the outlet (7327550). See Table 4.1 for soil and vegetation 
classification. 

73274406
73274408

7327442

7327447

7327483

-98.25 -98.2 -98.15 -98.1 -98.05 -98 -97.95 -97.9 -97.85

35

A121

A122A123A124

A125

A131
A132

A133

A134
A135 A136

A137

A144
A145A146

A147
A148A149

A150
A151

A152

A153
A155 A156

A159A160A161

A162A163

A165

A182

B123

A138

-98.3 -98.25 -98.2 -98.15 -98.1 -98.05 -98 -97.95 -97.9 -97.85

34.8

34.85

34.9

34.95

35

-98.3 -98.25 -98.2 -98.15 -98.1 -98.05 -98 -97.95 -97.9 -97.85

34.8

34.85

34.9

34.95

35

1

3

4

6

7

10

11

13

-98.3 -98.25 -98.2 -98.15 -98.1 -98.05 -98 -97.95 -97.9 -97.85

34.8

34.85

34.9

34.95

35

-98.3

34.8

34.85

34.9

34.95

7327550

7327550

73274458

7327550

7327550

A
B
C
D
E
F
G

Longitude (degrees)

La
ti

tu
d

e 
(d

eg
re

es
)

La
ti

tu
d

e 
(d

eg
re

es
)

La
ti

tu
d

e 
(d

eg
re

es
)

La
ti

tu
d

e 
(d

eg
re

es
)

475

320

FluxNet

USGS gage
ARS micronet 

el
ev

at
io

n 
 (m

)
ST

AT
SG

O
/F

AO
 S

oi
l t

ex
tu

re
 ty

pe
U

M
D

 V
eg

et
at

io
n 

ty
pe

So
il 

& 
Ve

ge
ta

tio
n 

gr
ou

ps

(a)

(b)

(c)

(d)

A154



 163 

 

 
 

Figure 4.2. Lag-correlation coefficients between streamflow at the outlet gauge 
(07327550) and gages upstream.  

The maximum correlation of the time series correlation has a time lag of 0 days. In the 
figure, 1 is USGS gauge 07327327; 3 is 07327442; 5 is 07327447; and 7 is the outlet 
07327550.  
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Figure 4.3. Performance of all realizations of STD and GW.  

Cumulative distribution functions (CDF) and histograms are shown for (a) the Bias at the 
watershed outlet, (b) the HMLE at the watershed outlet, and (c) the RMSE of the 1998 
latent heat flux. In all panels, CDFs with solid lines are those for all Monte Carlo 
realizations of STD (gray) and GW (black); dashed lines are the CDFs of the behavioral 
runs (for which both Bias and HMLE were minimized). 
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Figure 4.4. Box plots showing the 2002-2007 hydrologic response of the basin. 

Hydrologic response is defined in terms of (a) evaporative (E/P) and (b) runoff (Q/P) 
ratios for are all Monte Carlo realizations and the behavioral subset of runs (*), which 
minimized Bias and HMLE. The box shows the interquartile range (i.e., the range 
between the first and the third quartiles) of the ratios and the length of the whiskers is 1.5 
times the vertical scale of the boxes. Ratios outside of the whiskers are regarded as 
outliers and marked as crosses in the figure. For reference, the horizontal line in (a) 
stands for E/P=0.7 observed at the FLUXNET tower for 1997−1998. The line in (b) 
stands for Q/P=0.1 observed at the outlet for 1997−2007. 
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Figure 4.5. Daily streamflow hydrograph simulated at the outlet (7327550) by the 
behavioral ensemble of STD and GW during a wet period in 2007.  

Transformed observed daily streamflow observations [cfs] are shown as black dots. 
Transformed runoff is used for improved visualization of both high and low flows. For 
both STD (a) and GW (b), the 50 and 95% confidence intervals are shown. (c) 
Performance score (lower is better) of both STD and GW shows that both are too flashy 
(too high peaks and too persistent low flows), but STD consistently outperforms GW, 
especially during dry-down periods. 
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Figure 4.6. Daily streamflow hydrograph simulated at the outlet (7327550) by the 
behavioral ensemble of STD and GW during a dry period in 2005.  

See Figure 4.5. 
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Figure 4.7. Flow exceedance probability curves (FEPC) of the Qtotal simulated by the 
behavioral ensembles of STD and GW for 2002-2007.  

FEPCs are shown at (a) the intermediate gage (7327447) and at (b) the outlet (7237550). 
The observed FEPC (black) is baseflow-dominated. The FEPCs of the GW cohort (dark 
gray) resemble those of a bucket model; the FEPCs of STD (light gray) show a 
distribution more similar in shape to the observed but underpredicts medium and high 
probability events. For both, low probability, high-flow events are overpredicted. 
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 Figure 4.8. Flow recession curve for events in (x) April, (+) May and (o) August 2007.  

See Figure 4.5. 
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Figure 4.9. Spatial distribution of ensemble-mean cumulative surface and subsurface 
runoff.  

Panel (a) shows surface runoff; (b) subsurface runoff; (c) the ratio of surface to total 
runoff. GW (lower panels) has a higher ensemble-mean Qs/Qtotal than STD (upper 
panels). In both STD and GW, surface runoff is controlled by soil-vegetation group 
distribution. 
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Figure 4.10. Relative contribution of parameters to variance of the HMLE, NSE, and Bias 
of simulated streamflow.  

Sensitivity analysis for STD is shown in left column; that for GW is shown in right 
column. Parameters are color-coded by soil-vegetation group type (see also group colors 
in Fig. 4.1d). Group types that cover larger areas (e.g., soil-vegetation groups D, E, F, and 
G) tend to have more importance in shaping variance. 
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Figure 4.11. Depth to groundwater table (zwt) simulated by the behavioral ensemble of 
GW.  

(a) Ensemble-mean depth to groundwater; (b) time series of water table depth for all grid 
cells of all behavioral ensemble members. 
  

 

 

30

40

50

60

70

80
 

 
-98.22 -98.14 -97.90

34.97

34.93

34.89

34.85

34.81

-98.06 -97.98

La
tit

ud
e

Longitude

m
ea

n 
ZW

T 
[m

]

 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
0

20

40

60

80

zw
t [

m
]

(a)

(b)



 173 

 

 

Figure 4.12. Scatter plots of soil moisture statistics for observed and simulated volumetric 
soil moisture content (SMC).  

Mean SMC vs. the coefficient of variation (CV) of SMC are shown for (a) 5 cm and (b) 
25 cm. Mean SMC vs. the skewness of SMC are shown for (c) 5 cm and (d) 25 cm. The 
subsets of the simulated soil moisture statistics (STD: light gray dots; GW: dark gray 
dots) tend not to follow the same patterns as ARS observations (black crosses).  
 
  

0.25

0.5

0.75

1

1

0.25

0.5

0.75

1

−1

0

1

2

3

4

−1

0

1

2

3

4

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.25

0.5

0.75

1

mean SMC5cm

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.25

0.5

0.75

mean SMC25cm

C
V  SM

C25cm

0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

0

1

2

3

0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

0

1

2

3

skew
ness SM

C25cm

STD STD

STDSTD

GW GW

GW GW

C
V 

 S
M

C 5
cm

sk
ew

ne
ss

  S
M

C 5c
m

mean SMC5cm mean SMC25cm

(a) (b)

(c) (d)



 174 

 

 

 

Figure 4.13. Ensemble-mean SMC profile compared with observations at ARS sites 
A148 (north upper catchment) and A153 (south upper catchment).  

Ensemble mean SMC profiles are more consistent between behavioral models and 
between sites than they are with observations. See also Figure 4.1a. 
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Figure 4.14. Spatial distribution of ensemble-mean average soil moisture content (SMC).  

SMC is shown for STD (top panels) and GW (bottom panels) at depths of (a) 5, (b) 25, 
and (c) 150 cm. Note that the limits on the color-bar legends are not the same between 
panels. SMC at 5-cm appears to be strongly related to soil-vegetation group. Models in 
general experience slow wettening with depth. 
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Figure 4.15. Time series of observed and modeled 5-cm soil moisture content (SMC) at 
ARS sites A148 and A153 for the spring and summer of 2007.  

The 50% and 95% confidence intervals of the subset of STD (top row) and GW (middle 
row) are plotted with daily mean 5 cm-SMC (triangles). Time-varying performance 
scores (lower is better) of both models are shown in the bottom row. STD slightly 
outperforms GW at A148 and outperforms GW at A153. 
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Figure 4.16. Time series of observed and modeled 25-cm soil moisture content (SMC) at 
ARS sites A148 and A153 for the spring and summer of 2007.  

See legend of Figure 4.15. GW outperforms STD at site A148; the models are 
approximately equally well suited to simulate site A153. 
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Figure 4.17. Spatial distribution of the simulated ensemble-mean, average 
evapotranspiration for 2002-2007.  

Spatial patterns roughly correlate with soil-vegetation group. 
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Figure 4.18. Time series of simulated and observed ET at FLUXNET site Little Washita 
for 1998.  

Black dots are hourly ET observations. Daily mean observed values (black line) are 
significantly less variable and have a lower mean value than do the simulated daily mean 
values (a) STD (b) GW. Both the 50% and 90% intervals of the behavioral subset of GW 
realizations overestimate ET. See also Figure 4.1a.  
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Figure 4.19. Sensitivity of GW’s surface and subsurface runoff to depth to water table 
(zwt) and the f parameter.  

Sensitivity of surface runoff to depth to water table (zwt) is shown in (a); subsurface is 
shown in (b). Parameter f is e-folding depth of the exponential decay of saturated 
hydraulic conductivity). Dashed lines are values of calibrated parameters used by Niu et 
al. (2005; 2007). 
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Chapter 5:  Summary, conclusions, and contributions 

5.1. OVERVIEW OF WORK COMPLETED 
 
The work presented here advances diagnosis of the hydrologic parameterizations 

of land-surface models (LSM) to encompass the assessment of characteristic model 

behavior (‘signatures’) in feature, cost-function, and parameter spaces. I exhaustively 

evaluated hypotheses underlying the implementation of new representations of land-

memory mechanisms by comparing the performance of three versions of the medium-

complexity Noah LSM when simulating high-resolution near-surface states and fluxes in 

zones of transition between humid and arid climates of the continental U.S. The first 

version of the LSM was the benchmark, standard Noah release 2.7 (STD), which is the 

land component of the model used in operational weather forecasting by the NOAA 

National Centers for Environmental Prediction and which is also widely used in weather 

and climate research. The two augmented versions, GW and DV, were developed as part 

of community efforts to increase the conceptual (and physical) realism of the model. GW 

couples a simple aquifer model to the soil column of Noah and implements topography-

related parameterizations of surface and subsurface runoff. DV replaces prescribed 

biomass in Noah with a mechanistic representation of the vegetation response to short-

term environmental variation. I used an ensemble-based framework for model diagnostics 

that allowed me to account for sources of uncertainty and to reach conclusions about the 

capacity of the models to accurately and reliably reproduce characteristics of the system 

that are independent of the choice of parameters.  
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In Chapters 2 and 3, I assessed typical model behavior at a point scale using high-

temporal-resolution heat fluxes, soil states, and meteorological forcing data from the U.S. 

Southern Great Plains collected by the observational campaign of the International H2O 

Project 2002 (IHOP). The dataset contains 45 days of 30-minute data for a set of three 

dry sites (MAP=550 mm), a set of three wet sites (MAP=900 mm), and a set of three 

semi-humid sites (MAP=750 mm). I quantified the models’ ability to partition the energy 

balance and the evolution of moisture in the root zone, and I evaluated the parameters 

that the models require to produce accurate simulations. In Chapter 4, I used aggregated 

signatures of the land surface at the catchment scale to evaluate distributed simulations of 

11 years of daily streamflow and high-spatial-resolution near-surface states in the Little 

Washita river basin (MAP=760 mm) on a 4-km grid. Using ensembles of models 

constrained to reproduce the timing and volume of streamflow, I evaluated the models’ 

ability to partition the water balance, to simulate the long-term distribution of flow 

volumes, and to reproduce the characteristics of soil moisture in the upper and root zone. 

 The approach to LSM evaluation presented in this dissertation enabled me to 

identify shortcomings in the formulations of the parameterizations that hinder the 

models’ capacity to simulate near-surface states and fluxes of water and energy even 

when the models employed optimized parameters; it facilitated my challenging of 

common practices and assumptions in LSM development; and it allowed me to present 

the community with new, stringent ways to test models that bridge the gap between the 

model identification and model development communities. Such an approach will help to 
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ensure continued improvement of our understanding and modeling of environmental 

processes. 

5.2. MAJOR CONCLUSIONS AND CONTRIBUTIONS 
 
Although some of the conclusions offered in Chapters 2, 3 and 4 are to a certain 

extent model and site specific, the associated implications for model development and 

evaluation are significant and broad-reaching. 

The analysis presented in Chapter 2 showed that traditional, single realization 

model evaluation (using default or calibrated model parameters), as is typically 

performed in LSM intercomparison experiments and during the development of LSMs, is 

incomplete and uninformative. Traditional model evaluation does not have the capacity to 

distinguish between models under parametric uncertainty and therefore has little 

diagnostic power. Equifinality poses a significant problem for the ad hoc methods used to 

evaluate and compare models, and raising the models to optimal performance via 

calibration does not have the power to diagnose structural deficiencies in model 

formulation. Models are flexible, and the variation of parameters serves to mask errors. 

Indistinguishability of the calibrated models’ goodness-of-fit occurred at all sites studied, 

even though multiple criteria parameter estimation was used. Such equifinality does not 

mean that models cannot be used for scientific inquiry; however, it indicates that single 

realization, aggregated goodness-of-fit comparisons provide very little information by 

which one can distinguish between models and very little evidence of the improvements 

gained via model development. More powerful methods, such as the ensemble-based, 
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hypotheses-testing-oriented framework presented in this dissertation, are required to 

evaluate models for scientific and engineering applications. Model diagnostics require the 

use of ‘signatures’ (typical patterns in the behavior of the system) to help attribute cause-

effect relationships; explicit acknowledgement of the uncertainties in the simulation that 

come from structure, parameter, and data error; and the use of time-varying measures of 

performance or misfit that allow modelers to diagnose the potential reasons for 

shortcomings in the model’s formulations.    

Focusing on cost-function space and basing my hypothesis on an assumption that 

is widely held in the LSM development community, I asserted that: (1) Increasing a 

model’s conceptual realism decreases the sensitivity of model output to parameter 

choices. My results do not provide definitive evidence regarding the role of conceptual 

realism in shaping model robustness. Hypothesis 1 was not supported by the simulations 

of GW and DV at the dry IHOP sites. Results did support the hypothesis for GW (but not 

DV) at the wet sites. Adding complexity to models (although crucial for research 

endeavors) frequently requires the use of immeasurable, uncertain parameters, which 

entails a significant risk of decreasing model robustness. Less robust models are less well 

suited for broad application in operational settings.  

A significant byproduct of the work presented in Chapter 2 is the demonstration 

that calibration of only some, new model parameters (‘partial calibration’) of 

implemented modules (e.g., GW, DV) is insufficient to guarantee good results and 

significantly increases the chance of bad simulations. This part of my work suggests that 

parameter values may be model specific and that interactions between parameters are 
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necessary to accommodate new model structures. My work poses a caveat for simple 

‘plug and play’ of functional modules between LSMs. ‘Plug-and play’ and partial 

calibration are currently standard practices in LSM development and application; my 

results provide evidence that both should be re-examined.  

Focusing on model performance in the feature space and seeking to understand 

whether models are getting the right answer for the right reasons, I posed two additional 

hypotheses: (2) upward-flowing water from deep-soil stores is an important source of 

moisture in transition zones that supports latent heat flux and root zone soil moisture 

content during dry-downs or drought in the warm season (i.e., GW will perform better 

than STD in terms of simulated evaporative fraction and soil wetness); and (3) the rapid 

response of vegetation to changes in environmental conditions is an important control on 

evapotranspiration in transition zones during the warm season (i.e., DV will improve over 

STD on the simulation of observed evaporative fraction). The test of the hypotheses 

consisted of whether the models could reproduce a signature in the evolution of the 

observed evaporative fraction and root zone moisture: at dry sites the evaporation peaks 

and recedes immediately after rainfall, but at wet sites it does not peak until several days 

after precipitation. Results presented in Chapter 2 provide support for hypothesis 2 only 

in the case of soil moisture. However, it is likely that the improvement seen with GW is 

the result of bias correction in the mean moisture state, not improved soil moisture 

dynamics. Hypothesis 2 was not supported for evaporation. The current formulation of 

GW was unable to improve the partitioning of the energy cycle. My results provide 

support for hypothesis 3 at wet, vegetated sites where the partitioning between slow and 
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fast evaporation of DV improves over that of STD, but the results did not support 

hypothesis 3 at dry, sparsely vegetated sites. Note that I used ensembles of calibrated and 

uncalibrated models to quantify the ‘real’ performance of the models when simulating the 

signatures. Hence the identified shortcomings are likely structural and not the result of 

bad parameter choices. 

Research presented in Chapter 3 primarily evaluated the augmented models in the 

multidimensional parameter space, a facet of model behavior that is often overlooked in 

the LSM development community. Because LSM developers have attempted to use 

physical principles when conceptualizing and parameterizing their models, parameters of 

such physically based models are assumed to be physically meaningful and to correspond 

to unchanging physical characteristics of the land surface that can be measured or 

inferred. I tested the following hypothesis: (4) Model parameters are physically 

meaningful characteristics of the system whose values do not change between models for 

a given site. My results provide evidence that the marginal distributions of behavioral 

physically meaningful parameters (of models constrained to reproduce high-resolution 

near-surface fluxes and states) differ between models at every site, which does not 

support the hypothesis. Furthermore, I showed that the relationships between parameters 

among models are not the same for a given site. I presented evidence that the preferred 

values of optimal parameters at a given site are not the same between models and that the 

covariance structure between the parameters is also different between models. My results 

are not consistent with hypothesis 4, but, confirming observations made in Chapter 2, 

they suggest that parameters of medium complexity LSMs are model dependent, effective 
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quantities. My work shows that although the identification of an optimal value for an 

effective parameter is useful information, the change in the functional relationship 

between parameters is more important for model development and hypothesis testing. 

The corollary of the notion that in a hypothetical perfect model parameters 

correspond to observable, unchanging characteristics of a system is that the level of 

interaction between model parameters can serve as a measure of the model’s physical 

realism. I tested the hypothesis: (5) More physically realistic models are better models, 

which have less –unwarranted– parameter interaction (i.e., the parameters of STD are 

more interactive than those of GW and DV). In general, very few model parameters 

directly control the variance of the model, and the interaction between parameters is a 

significant source of variability. Evidence of the cumulative amount of variance 

explained by a single parameter interacting with all the rest at all orders did not support 

hypothesis 5 for DV at any of the IHOP sites and for GW at all dry sites. Quantification 

of the level of interaction of the parameters in GW at semi-humid and wet sites seem to 

support hypothesis 5, suggesting that it is a better model. Because of its improved 

partitioning of the water balance (a robust connection of the soil with the water table, 

direct evaporation decoupled from baseflow, and an enhanced ratio of subsurface to 

surface runoff), GW appears to be a more realistic model in wet sites. The application of 

an efficient, quantitative, variance-based sensitivity analysis presented in Chapter 3 is 

innovative in the field of land-surface modeling and offers the community a suitable tool 

to test parameter behavior during model development. 
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The other implication of the assumption made in land-surface modeling about the 

physical nature of the parameters is that if they are physically meaningful quantities that 

do not change and that have strong relationships with physical characteristics of the land 

surface (e.g., vegetation type, soil texture), then parameters will be the same for sites 

within the same physical classification. This assumption has resulted in the common 

practice of a priori estimation of LSM parameters. With no other information, soil and 

vegetation parameters are assigned using look-up tables that are based on soil texture 

class and vegetation type. In Chapter 3, I tested the hypothesis: (6) Physically meaningful 

model parameters can be transferred between sites with physically similar characteristics. 

Using unsupervised classification of the similarity of the marginal posterior distributions 

of optimal parameters between sites, I found evidence that does not support hypothesis 6. 

Vegetation (soil) parameter distributions could not be grouped by similarity solely based 

on vegetation (soil) type but appear to be strongly related to the climatic gradient. These 

results are consistent with the quantified level of parameter interaction between soil and 

vegetation parameters and at least partially explain why transferability between sites 

(solely based on shared soil texture or vegetation type) and models is not straightforward. 

The implication of my results is that a priori assignment of medium complexity LSM 

parameters should, in addition to a land-cover classification that accounts for interactive 

pairs of soil and vegetation classes, also consider the climatic conditions of a study 

location.   

In Chapter 4, I applied the ensemble-based, hypothesis-testing-oriented 

framework presented in Chapters 2 and 3 to diagnose shortcomings in the ability of STD 
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and GW to simulate the long-term distribution of streamflow and partitioning of the 

water cycle. I used ensembles of behavioral models to test two hypotheses: (7) The 

addition of a groundwater module provides sustained baseflow and improves the 

partitioning of surface to subsurface runoff; and (8) The topography-related 

parameterization of runoff and the explicit representation of the connection of the soil 

profile to an aquifer better represent the variability of upper and root-zone soil moisture. I 

used the flow duration curve of the baseflow-dominated watershed and the relationship 

between the first and second moments of the soil moisture observations as signatures of 

catchment hydrologic behavior. GW’s enhanced representation of topographic effects on 

runoff and its augmentation of Noah with an aquifer model do not improve the distributed 

simulation of the timing and volume of streamflow. 

In its current form, the deficient formulations of GW do not provide support for 

hypothesis 7. Streamflow simulated by STD and GW is too flashy: the models 

underestimate the persistency of low flows, and they fail to capture the flow recession 

curves properly. The dominance of surface over subsurface runoff in STD and GW was 

identified as the leading cause for the deficient performance. I showed that when the 

water table is deep, physically realistic values of GW model parameters make the model 

unable to simulate enough sustained baseflow and instead cause the model to function as 

a simple bucket. This unrealistic performance is consistent with the lack of sensitivity of 

the groundwater model parameters.  

Results of simulated soil moisture provide evidence that does not support 

hypothesis 8. I showed in Chapter 4 that the soil profile in both models (STD and GW) is 
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too quick to wet and too quick to dry. The statistics of the simulated soil moisture are not 

improved by the implementation of GW. This evidence points toward structural 

deficiencies in STD’s representation of the subsurface hydrologic processes that cannot 

be solved by the way in which GW represents groundwater.  

The fundamental thesis of my work is that the use of innovative diagnostic-

oriented methods is an approach to LSM evaluation that, unlike current practices, enables 

LSM developers to identify shortcomings in the formulations of the parameterizations 

that hinder the models’ capacity to simulate high-frequency near-surface states and fluxes 

of water and energy even with optimized parameters. The use of an ensemble approach 

allows for the accounting of sources of uncertainty that are inherent to land-surface 

modeling and allows researchers to reach conclusions that are independent of the choice 

of parameters. As a result of the model intercomparison presented here, I have shown that 

only when the water table is shallow and vegetation is lush do the more conceptually 

realistic versions of the Noah LSM ameliorate biases in the estimation of the root zone 

moisture, latent heat flux, and (potentially) runoff during the warm season in transition 

zones. The inability of the (enhanced) models to reproduce particular hydrologic features, 

such as a characteristic temporal or spatial pattern summarized by a ‘signature,’ has 

pointed out specific aspects in the parameterizations that need to be modified by  

developers. My work has confirmed that models are flexible and that model parameters 

are effective, scale-, site- and model-dependent, which underscores the need to account 

for parameter uncertainty (via calibration) even when using ‘physically based’ models. 

My work challenges common practices and assumptions in LSM development and offers 
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other modeling groups new, stringent ways to test their models. By helping bridge the 

gap between the model identification and the model development communities, this work 

contributes to ensure the continued improvement of our understanding and modeling of 

environmental processes. 

5.3. FUTURE WORK 
 
Immediate future work consists of implementing the suggested modifications to 

the augmented models identified in Chapters 2, 3 and 4. As a result of the discussions 

presented in Chapter 2 and 4, I advocate for a top-down approach to model development 

in which changes (additional complexity) are sequentially implemented.  

I caution that, as with any modeling endeavor, it is possible that the results 

presented in this dissertation might change if the same (or similar) models are used to 

represent other biomes (e.g., temperate forest) or locations where other hydrologic 

processes (e.g., snow accumulation and ablation) are dominant. Immediate future work 

consists of applying the ensemble-based diagnostic framework, in a similar fashion as in 

Chapters 2 and 3, to evaluate at a point scale the augmented versions of Noah (or similar 

variants) to locations throughout the world. Currently there are almost 30 FLUXNET 

stations worldwide, which collect high-frequency land-to-atmosphere fluxes. They 

present the opportunity to benchmark models. We need to know: How do results differ 

when models are used to represent other biomes? Where do models work? Are in-situ 

observations sufficient to capture the temporal and spatial dynamics of the energy and 

water balances? How can we use model diagnostics to better identify sites to collect 
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measurements? For which biomes are model process representations best suited? What 

parts of the model require the most attention in terms of improved process 

representation? How do model parameters vary across dominant biomes? How can we 

bridge the gap between our understanding of LSM parameters and in situ characteristics 

of the land surface for better a priori parameter identification?  

As we move away from in-situ to distributed evaluation of models (Chapter 4), 

other questions become more relevant. In Chapter 4, I used statistics of soil moisture that 

appear to be scale invariant. Are there other ways to bridge potential scale disconnects 

between models and observations? It would be useful to know: What is the role of remote 

sensing in providing meaningful information to rate models in the distributed setting? 

Specifically whether incorporating brightness temperature, estimates of moisture or 

evaporation can help constrain the models in the distributed setting. 

Although the findings of this work are relevant for coupled simulations, I can only 

be confident that my results on the value of the models hold in offline settings. Future 

research should focus on: What is the value of land-memory mechanisms for the 

predictability of precipitation? What is the impact of offline calibrated model structures 

for the online prediction of precipitation? How does the scatter of LSM-predicted fluxes 

and states propagate to the atmosphere? How can the ensemble-based signature-oriented 

framework be extended to evaluate simulations of precipitation? What are useful 

signatures of boundary layer meteorological processes?  

The analysis presented in the chapters of this thesis neglected uncertainty in the 

forcing and evaluation data. Assuming we can estimate their magnitudes, the framework 
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for model evaluation presented here can accommodate both sources of uncertainty. To 

that end it is important to be able to describe uncertainty a priori: How can we define 

prior uncertainties in data, model parameters, and model structure? It also is important to 

understand how different sources of uncertainty propagate through feature, cost-function, 

and parameter spaces: How can we estimate the contribution of these sources to the 

overall uncertainty? What does the inclusion of sources of uncertainty mean for decision 

making and scenario analysis? 

For operational prediction and forecasting, future work relates to addressing 

questions on the use of the performance metrics used in Chapters 2 and 4 to correct for 

systematic errors in the models: How can estimates of model structural error be used to 

correct for systematic biases? What is a meaningful way to combine multi-model 

ensemble predictions and their relative performance for an improved product? What is 

the relationship between the performance of behavioral ensembles conditioned on 

observed data and weights used in Bayesian Model Averaging?  

More important for the field of model development is the design of meaningful 

experiments to test whether energy and water cycle parameterizations in LSMs are 

sufficiently accurate to be used with confidence in land-use/land-cover and climate 

change attribution. In the diagnostic framework, signatures hold the key of identifying 

cause-and-effect relationships; therefore it is fundamental to select appropriate, 

informative diagnostic criteria. We need to know: Which signatures are relevant for the 

representation of land-surface fluxes and states? What is the nature of the system function 

or pattern summarized in the signature? Does it change with time and in space? Ideally, 
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choosing a signature reflects knowledge about a function of the natural system that is 

known in advance to be relevant. In Chapter 2 we identified the evolution of evaporative 

fraction and the depletion of root zone wetness. In Chapter 4 we identified the long-term 

distribution of flows and the relationship between the statistics of the near surface soil 

moisture as meaningful signatures. The timing of the partitioning of water and energy 

budgets was the essential characteristic of land-atmosphere interactions to be captured by 

the LSMs. They allowed me to provide explanations to the questions: What does it mean 

when models fail to reproduce the pattern contained in the signature? The fact that 

signatures need to be tailored according to the problem means that the community has yet 

to focus on: What does each signature tell the model developer about deficiencies in the 

parameterizations or the understanding of the system? Our inability to identify signatures 

hinders our capacity to pose relevant tests for evaluation and development of models. 

Choice of signature is not trivial and requires attention from the community, but it has the 

potential to help synthesize the knowledge of observationalists and modelers. 

If other modeling groups implement the LSM evaluation approach presented in 

this dissertation, it will help the community to understand the relationship between model 

complexity and predictive uncertainty. It would also be advisable for the community to 

revisit whether the conclusions reached by other model intercomparison experiments hold 

when accounting for uncertainty. 
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Appendices 

 

1. STATISTICS AND GOODNESS-OF-FIT METRICS 
 
For the following definitions, tP is the prediction at time t; to  is the observation at 

time t; and T  is the number of time steps (t) in the series. k is the number of free 

parameters in the model (Legates and McCabe, 1999; Akaike, 1974; Schwarz, 1978). 
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Nash-Sutcliffe Efficiency  
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2. ENSEMBLE METRICS  
 
For the following definitions, tix ,  is the ensemble member i at time t; to  is the 

observation at time t; ensN is the number of ensembles at time t; and T  is the number of 

time steps (t) in the series (Talagrand, 1997). 
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2.1. Metrics for model evaluation  

2.1.1. Model performance (ςt) 
 
For time step t, the best-performing model will have the lowest performance score 

(Gulden et al., 2008): 
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where tensCDF ,  is the cumulative distribution function (CDF) of the ensemble at time t,

tobsCDF , is the CDF of the observations at time t, and obsCDF is the CDF of the time 

mean of observation time series. As tς  decreases, model performance at time t increases. 

Inspired by ensemble verification metrics, model performance score tς is lowest (i.e., 
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best) when the parameter-set ensemble brackets observations, and when the ensemble is 

highly skilled (ensemble mean closer to the observation) and has low spread. It rewards 

near misses and penalizes overly uncertain prediction bounds. Note that when no 

uncertainty information is available for the observations, tobsCDF , is a step function. 

Denominator obsCDF−1  scales the score to enable cross-criterion and cross-site 

comparison along a time series. Note that if the modeler would like to penalize one 

criterion more heavily than another, the denominator can be modified: e.g., using a 

denominator of tobsCDF ,1−  would increase the stringency of the score more when 

observations are low than when observations are high.  

2.1.2. Model robustness (ρ) 
 
A robust model is insensitive to errant parameters: its performance is not 

significantly degraded when performing with suboptimal parameters (Carlson and Doyle, 

2002). We describe the sensitivity of model output to parameter choices as: 
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where pς  is the time median performance score of the Pareto set (PS) ensemble. mfς  is 

the time median performance score of the most-frequent performing (MF) ensemble. 

 2.1.3. Model fitness (φ) 
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The ς-score can be combined with a measure of model robustness to evaluate 

overall model fitness. We quantify each model’s overall suitability for broad application 

using: 

 psςρφ =  (A.2.7) 

where ρ is the robustness score for a given model where pς is the time median of the 

performance score for the PS ensemble of that model. For a given site and objective, the 

model with the lowest value of φ  is considered most suitable for broad application. 
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3. SIMPLE GROUNDWATER MODEL AND TOPOGRAPHY-RELATED RUNOFF 
PARAMETERIZATION 

 
Following Niu et al. (2007), the temporal variation in water stored in the aquifer is 

determined by the residual of recharge rate, Q, minus discharge rate (baseflow or 

subsurface runoff), Rsb.  

ܹ݀ܽ

ݐ݀
ൌ ܳ              (A.3.1) 

Q is then parameterized following Darcy’s law (to balance gravitational and 

capillary forces) and is positive when water enters the aquifer:  

ܳ ൌ െܭ௔
ି௭ೢ೟ିሺట್೚೟ି௭್೚೟ሻ

௭ೢ೟ିఝ್೚೟
            (A.3.2) 

where zwt is the water table depth, ψbot  is the matric potential of the bottom soil layer, zbot  

(1.5 m in Noah) is the midpoint of the bottom soil layer, calculated according to Clapp 

and Hornberger (1978)  as:     

ݐ݋ܾ߰ ൌ ݐ݋ܾ,ݐܽݏ߰ ൬
ݐ݋ܾߠ

ݐ݋ܾ,ݐܽݏߠ
൰
െܾ

            (A.3.3) 

and Ka is the and hydraulic conductivity of the aquifer, obtained  by integrating the 

hydraulic conductivity below the soil column (which is assumed to decay exponentially 

with depth at rate f), as:  

ܽܭ ൌ
׬ ൯ݐ݋ܾݖെݖെ݂൫݁ݐ݋ܾ݇
ݐݓݖ
ݐ݋ܾݖ

ݖ݀

ݐ݋ܾݖെݖ
ൌ

൯ቁݐ݋ܾݖെݖቀ1െ݁െ݂൫ݐ݋ܾ݇

݂ሺݐݓݖെݐ݋ܾݖሻ
            (A.3.4) 

The water table depth is related to the aquifer water storage through the specific 

yield of the aquifer, Sy:  

ݐݓݖ ൌ
ܹܽ

ݕܵ
             (A.3.5) 
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With the recharge rate, the volumetric soil moisture of the bottom layer θbot is 

updated using the Richards’ equation with zero flux  lower boundary condition as:  

െܳ ൌ ௕௢௧ݖ∆௪ߩ
ௗఏ್೚೟
ௗ௧

              (A.3.6) 

When the water table is within the soil column, equation A3.2 is expressed as: 

ܳ݅ ൌ െݐݓ,݅ܭ
൫߰ݐܽݏെݐݓݖ൯െ൫߰݅െ݅ݖ൯

݅ݖെݐݓݖ
            (A.3.7) 

where zi and ψi  are  node depth and the matric potential of the ith layer right above 

the layer where the water table is. ܭ௜,௪௧ is the hydraulic conductivity between layer i and 

the water table.  

Niu et al. 2005 use a simple TOPMODEL-based runoff model to compute surface 

runoff and groundwater discharge, which are both parameterized as exponential functions 

of the depth to water table. Surface runoff is mainly saturation-excess (Dunne) runoff, 

i.e., the water (sum of rainfall, dew, and snowmelt) incident (Pin) on the fractional 

saturated area of a model grid-cell (Fsat), or  

ݏܴ ൌ ሺܲ݅݊ݐܽݏܨሻ ൅ ሺ1 െ ,ሻmax ሺ0ݐܽݏܨ ܲ݅݊ െ  ሻ          (A.3.8)ݔܽ݉ܫ

where Imax is the maximum infiltration capacity and the fractional saturated area, Fsat, is 

parameterized as: 

ݐܽݏܨ ൌ ൫1 െ ݁ݔܽ݉ݐܽݏܨ൯ݖݎ݂ܨ
െ0.5݂ሺݐݓݖሻ ൅  (A.3.9)            ݖݎ݂ܨ

where the potential or maximum saturated fraction of a gridcell is Fsatmax and the 

impermeable fraction is Ffrz 

Analogously, the groundwater discharge (baseflow or subsurface runoff) rate is 

parameterized as: 
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ܾݏܴ ൌ ݁ݔܾܽ݉ݏܴ
െ݂ሺݐݓݖሻ             (A.3.10) 

where ܴ௦௕೘ೌೣ is the maximum rate of subsurface runoff and ݂ is the e-folding depth of 

saturated hydraulic conductivity, which, following Silvapalan et al. (1987), is assumed to 

exponentially decay with depth. 
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4.  DYNAMIC VEGETATION MODEL 
 

The dynamic leaf model (Dickinson et al., 1998) describes the carbon budget of 

vegetation (leaf, wood, and root) and soil carbon pools (fast and slow). The model 

represents various processes including carbon assimilation through photosynthesis, 

allocation of the assimilated carbon to various carbon pools (leaf, stem, wood, root, and 

soil), and respiration from each of the carbon pools.  

The leaf carbon mass, leafC , (g m–2) balance is calculated according to: 

leafleafleafcdleaf
leaf CRTSAF
t

C
)( ++−=

∂

∂
           (A.4.1) 

where A is the total carbon assimilation rate of the sunlit and shaded leaves (g m–2 s–1), Scd 

is death rate due to cold and drought stresses, and Tleaf is the rate of leaf turnover due to 

senescence, herbivory, or mechanical loss [see Dickinson et al., 1998 for details]. Rleaf is leaf 

respiration rate including maintenance and growth respiration and Fleaf  is the fraction of the 

assimilated carbon allocated to leaf and parameterized as an exponential function of LAI: 

))exp(1(*01.0( LAILAI
leaf eF −=        (A.4.2) 

LAI is converted from Cleaf  using specific leaf area (m2 g–1), a vegetation-type–dependent 

parameter. Greness vegetation fraction (Fveg) is then simply converted from LAI: 

LAI
veg eF 52.01 −−=                 (A.4.3) 

The rate of photosynthesis per unit LAI of shaded and sunlit leaves, Ai (Ashd andAsun), 

depends on the Ball-Berry stomatal resistance per unit LAI of shaded and sunlit leaves, rs,i (rs,shd 

and rs,sun),   

min
, )(

1 gP
Te

e
c
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r air
vsat

air

air

i

is

+=                     (A.4.4) 
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where cair is the CO2 concentration at leaf surface (355 × 10-6 × Pair in the unit of 

pa),  Pair surface air pressure (pa), eair  vapor pressure at the leaf surface (pa), esat(Tv) 

saturation vapor pressure inside leaf (pa), gmin minimum stomatal conductance (μmolm–

2s–1), m is an empirical parameter to relate transpiration with CO2 flux (a larger m 

indicates the leaf consumes more water, i.e., greater transpiration, to produce the same 

carbon mass). 

The total carbon assimilation (or photosynthesis) rate (g m–2 s–1), 

)(1012 6
shdshdsunsun LALAA +×= −              (A.4.5) 

where Asun and Ashd are photosynthesis rates (μmol m–2 s–1) per unit LAI of sunlit and 

shaded leaves, and Lsun and Lsha are sunlit and shaded leaf area indices, respectively. Lsun and Lsha 

are respectively proportional to sunlit and shaded fractions of the canopy, which are computed 

from the two-stream radiation transfer scheme. The factor 12×10–6 is to transform the unit μmol 

m–2s–1 to g m–2 s–1.  

leaves shaded andsunlit for           ),,min( , iAAAIA SiLCgsi =                   (A.4.6) 

where Igs is a growing season index depending on leaf temperature, AC, AL,i, and AS are 

carboxylase-limited (Rubisco-limited), light-limited, and  export-limited (for C3 plants) 

photosynthesis rates per unit LAI, respectively. 

AC, AL,i, and AS are respectively, 

)/1(
)( max
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c KoKc
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−
=               (A.4.7) 
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max5.0 VAs =                  (A.4.9) 
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where ci is the CO2 concentration inside leaf cavity, which is about 0.7 times of 

the atmospheric CO2 concentration, cair, (pa),  and oi are the atmospheric O2 

concentration (pa). PARi (i for shaded and sunlit leaves) is photosynthetically active 

radiation (Wm–2) per unit shaded and sunlit LAI. The factor 4.6 (μmol photons J-1) is 

used to convert Wm–2 to μmol photons m–2 s–1. ccp is the CO2 compensation point and 

equals to i
o

c o
K
K 21.05.0 (pa), where Kc and Ko are the Michaelis-Menton constants (pa) for 

CO2 and O2, respectively, varying with vegetation temperature Tv [Collatz et al., 1991]. 

α is the quantum efficiency (μmol CO2 per μmol photon). 

The maximum rate of carboxylation varies with temperature, foliage nitrogen, and 

soil water, 

β)()(10
25

max25maxmax v

T

v TfNfaVV
v −

=             (A.4.10) 

where 25maxV  is maximum carboxylation rate at 25˚C (μmol CO2 m–2 s–1) and 

maxvα is a temperature sensitive parameter. The )( vTf  is a function that mimics thermal 

breakdown of metabolic processes [Collatz et al., 1991]. The 1)( ≤Nf  is a foliage 

nitrogen factor, and 1)( =Nf assumes saturation. The β  factor is the soil moisture 

controlling factor, and it is parameterized as a function of soil moisture: 

∑
= −

−Δ
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i wiltref

wiltiliq
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z
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, ),0.1min(
θθ
θθ

β              (A.4.11) 

where wiltθ  and refθ are soil moisture at witling point (m–3 m–3) and a reference soil 

moisture (m–3 m–3) (close to field capacity), respectively. Both depend on soil type. Nroot and zroot 

are total number of soil layers containing roots and total depth of root-zone, respectively 
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5.  MULTIOBJECTIVE SHUFFLED COMPLEX EVOLUTION METROPOLIS 
 
The Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) 

algorithm (for details see Vrugt et al., 2003) used in this dissertation is a multi-criteria 

extension of the Shuffled Complex Evolution Metropolis (SCEM) algorithm. 

In contrast to local optimization methods, the SCEM is a general purpose global 

optimization algorithm that provides an estimate of the most likely parameter set and its 

underlying posterior probability distribution. SCEM is basically is an approximate 

Markov Chain Monte Carlo (MCMC) sampler, which generates a number of sequences 

of parameter sets that converges to the stationary posterior distribution for a large enough 

number of simulations. SCEM is only related to the Shuffled Complex Evolution (SCE) 

of Duan et al. (1992) global optimization method but uses the Metropolis-Hastings 

instead of the Downhill Simplex method for population evolution. The SCEM algorithm 

starts by sampling an initial population of parameter sets randomly distributed within the 

given feasible parameter ranges. The hydrologic model is run for each parameter set θ. 

The posterior density p(θ|y) (or the chance of θ being the optimal parameter set given the 

information from measurements y) is computed from the likelihood of the model score 

and the prior information using a Bayesian inference scheme: 

( ) ( ) ( )
)(

||
)()(

)(

yp
yLpyp

tt
t θθθ ∝       (A.5.1) 

Assuming that the residuals between model prediction and observation are mutually 

independent, Gaussian distributed, with constant variance 2, the likelihood of a 

parameter set θ(t) for describing the observed data y is: 
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where e is a vector of error terms (to be minimized). 

Box and Tiao (1973) showed that, assuming a noninformative prior of the form:  

( )
σ

θ 1)( ∝tp        (A.5.3) 

the influence of  can be integrated out, leading to the following form of the posterior 

density of θ(t): 
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The classical approximation to obtain the p(θ|y) is to use a first-order Taylor series 

expansion of the nonlinear model evaluated at the globally optimal parameter set estimate 

θopt. The estimated multivariate posterior joint probability density function of θ is then 

expressed as:  

 ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−−∝ opt

TT
opt

t XXyp θθθθ
σ

θ 2
)(

2
1exp|     (A.5.5) 

where X is the Jacobian evaluated at θopt. This means that p(θ(t)|y) is approximated by a 

normal distribution, Ni(θopt, σ2Σii), where Σii is the ith diagonal element of the covariance 

matrix computed as:  

( ) 1−XX T        (A.5.6) 

For nonlinear models (e.g., hydrologic models), this approximation can be quite 

poor. p(θ|y) exhibits strong and nonlinear parameter interdependence, and can deviate 



 208 

significantly from the multinormal distribution. In this case, an explicit expression of the 

joint and marginal probability density functions is often not possible and Markov Chain 

schemes are general approach for sampling from the p(θ|y).  

A Markov Chain is generated by sampling θ(t+1)~ z(θ| θ(t)) using a transition kernel 

z or proposal distribution of the Markov Chain. The most general Markov Chain Monte 

Carlo (MCMC) algorithm is the Metropolis-Hastings algorithm, summarized as follows: 

1. Randomly start at a location in the feasible parameter space, θ(t), and compute 

the posterior density, p(θ(t)|y), relevant to this point according to Eq. A.5.2 or 

A.5.4. 

 2. Generate a new candidate point θ(t+1)  from z(θ| θ(t)), where z(.) is called the 

proposal distribution. 

3. Evaluate , p(θ(t)|y), using Eq. A.5.2 or A.5.4. and compute Ω= p(θ(t+1)|y)/ 

p(θ(t)|y). 

4. Randomly sample a uniform label Z over the interval 0 to 1. 

5. If Z  Ω, then accept the new configuration. However, if Z > Ω, then reject 

the candidate point and remain at the current position, that is, θ(t+1) =θ(t). 

6. Increment t. If t is less than a prespecified number of draws, then return to 

step 2. 

In the SCEM, to increase information exchange between the sampled candidate 

points the population of parameter sets is partitioned into q complexes, and in each Ck 

complex k (k=1,2,...,q) a parallel sequence Sk is launched by the SEM (Sequence 

Evolution Metropolis) algorithm from the point that exhibits the highest posterior density. 
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SEM evolves each sequence and complex. The SEM algorithm produces new candidate 

points in each of the parallel sequences Sk by generating draws from an adaptive 

multivariate normal proposal distribution either centered around the current draw of the 

sequence (k) or the mean of the points in complex (k) extended with the covariance 

structure induced between the points in complex k by using the information induced in 

the m samples of Ck. The Metropolis-annealing criterion is used to test whether the 

candidate point should be added to the current sequence. The steps are summarized as 

follows: 

I. Compute the mean µk, and covariance structure Σk of the parameters of Ck. Sort 

the m point in complex Ck in order of decreasing posterior density and compute 

k, the ratio of the posterior density of the first (“best”) to the posterior density of 

the last (“worst”) member of Ck. 

II. Compute αk, the ratio of the mean posterior density of the m points in Ck to the 

mean posterior density of the last m generated points in Sk. 

III. If αk is smaller than a predefined likelihood ratio, T, generate a candidate 

point, θ(t+1), by using a multinormal distribution centered on the last draw, θ(t), of 

the sequence Sk, and covariance structure cn
2 Σk, where cn is a predefined 

jumprate. Go to step V, otherwise continue with step IV. 

IV. Generate offspring, θ(t+1), by using a multinormal distribution with mean µk 

and covariance structure cn
2Σk, and go to step V. 
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V. Compute the posterior density, p(θ(t+1)|y), of θ(t+1) using Eq. A.5.2 or A.5.4. If 

the generated candidate point is outside the feasible parameter space, set      

p(θ(t+1) |y) to zero. 

VI. Compute the ratio Ω = p(θ(t+1)|y)/p(θ(t)|y) and randomly sample a uniform label 

Z over the interval 0 to 1. 

VII. If Z   Ω, then accept the new candidate point. However, if Z > Ω, reject the 

candidate point and remain at the current position in the sequence, that is, θ(t+1) = 

θ(t). 

VIII. Add the point θ(t+1) to the sequence Sk. 

IX. If the candidate point is accepted, replace the best member of Ck with θ(t+1), 

and go to step X; otherwise replace the worst member (m) of Ck with θ(t+1), 

provided that k is larger than the predefined likelihood ratio, T, and p(θ(t+1)|y) is 

higher than the posterior density of the worst member of Ck. 

X. Repeat the steps I–VIII L times, where L is the number of evolution steps taken 

by each sequence before complexes are shuffled. 

The SEM routine passes the new candidate point back to SCEM and subsequently 

the new candidate point randomly replaces an existing member of the complex. Finally, 

after a certain number of iterations (q*L) new complexes are formed through a process of 

shuffling. L is the number of evolution steps taken by each sequence before complexes 

are shuffled. The Gelman and Rubin convergence statistic is calculated on the generated 

posterior densities to check whether convergence to a stationary target distribution has 
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been achieved. SCEM stops the search when the convergence criterion is met or when the 

maximum number of iterations is reached.  

The Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) 

algorithm (Vrugt et al., 2003) is capable of generating a fairly uniform approximation of 

the Pareto frontier within a single optimization run using a newly developed, improved 

concept of Pareto dominance.   

Note that MOSCEM is different from the Multi-Objective Complex evolution 

MOCOM algorithm (Yapo et al., 1998), an extension of SCE that merged the strengths of 

controlled random search with a competitive evolution, Pareto ranking, and multi-

objective downhill Simplex strategy. During the course of hydrologic investigations, it 

became apparent that MOCOM showed serious weaknesses typical of the evolutionary 

algorithms, which are currently available for solving the multiobjective optimization 

problem. The first shortcoming of MOCOM is that it does not consistently generate a 

uniform approximation to the Pareto front, but tends to cluster the solutions in the 

compromise region among the objectives, thereby leaving the ends of the Pareto frontier 

unrepresented. Consequently, the Pareto set of solutions does not contain the individual 

single-criterion solutions, which represent the theoretical extreme ends of the Pareto 

frontier. The second, perhaps more important, failure is the inability of the evolution 

strategy in the MOCOM algorithm to converge to solutions within the “true” Pareto set 

for case studies involving large numbers of parameters and highly correlated performance 

criteria (e.g., typical of land-surface models (LSMs)). The algorithm tends, instead, to 

converge to a fuzzy region surrounding the Pareto set and, in some cases, does not 
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converge at all. The phenomenon of genetic drift, where the members of the population 

drift to a single solution, is a characteristic typical of many evolutionary search 

algorithms.  

MOSCEM differs from MOCOM in three essential ways: 

First, to prevent the collapse of the search to a single region of highest attraction, the 

MOSCEM incorporates a strategy that preserves the diversity of the sampled population 

by using an improved fitness assignment method, whereas the MOCOM algorithm uses 

the standard Pareto ranking concept. The rank fitness assignment procedure begins by 

identifying all of the nondominated individuals in the population and assigning them rank 

“one”. While the original Pareto ranking concept now proceeds by peeling off these 

points and identifies the nondominated points of the remaining population (assigned rank 

“two”), the proposed fitness assignment as follows: 

a. Store all of the rank “one” points in an external nondominated set P1 and the 

remaining dominated points of the population in a set entitled P. 

b. Each solution i ∈P1 is assigned a real value ri ∈ [0, 1), called strength. The 

strength is proportional to the number of population members j ∈P for which i 

≥j. Let N be the number of individuals in P that are covered by i and s is the 

population size (P + P1). The strength is now defined as, ri=N/S. For each 

member i of P1, the fitness (fi) is identical to its computed strength (ri). 
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c. The fitness of the remaining dominated individuals j∈P is calculated by 

summing the strengths of all external nondominated solutions i ∈ P1 that cover 

j: 

∑
≤

=

+=
ji

i
ii rf

1

1        (A.5.7) 

where, fi ∈ [1,s). 

To ensure that the members of P have a lower fitness than the members of P1, 

the number one is added to the total sum. The closer the computed f value is to 

zero, the higher the fitness of the sampled point. 

Second, the multi-objective downhill simplex method used by the MOCOM algorithm is 

replaced with a probabilistic covariance-annealing search method (SCEM), which (as 

discussed above) is well-suited to deal with the strong correlation structures between the 

parameters in the Pareto set that are typically encountered in hydrologic modeling. 

Moreover, the stochastic nature of the annealing scheme prevents the collapse of 

MOSCEM into a relatively small region of some single “best” parameter set, thereby 

further preserving diversity of the sampled population and enabling the algorithm to 

generate a fairly uniform approximation of the Pareto front.  

Finally, the MOSCEM algorithm uses the strengths of the shuffling procedure and 

complex partitioning employed in the single-objective SCE algorithm to conduct an 

efficient search of the parameter space. 
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