
Copyright

by

Andrew Erich Stovall

2009

The Dissertation Committee for Andrew Erich Stovall
certifies that this is the approved version of the following dissertation:

Easing Software Development for

Pervasive Computing Environments

Committee:

Christine Julien, Supervisor

Sarfraz Khurshid

Scott Nettles

Dewayne E. Perry

William J. O’Brien

Gruia-Catalin Roman

Easing Software Development for

Pervasive Computing Environments

by

Andrew Erich Stovall, B.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2009

Dedicated to my wife and parents.

Thanks.

Easing Software Development for

Pervasive Computing Environments

Publication No.

Andrew Erich Stovall, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Christine Julien

In recent years pervasive computing has enjoyed an amazing growth

in both research and commercial fields. Not only have the number of available

techniques and tools expanded, but the number of actual deployments has

been underwhelming. With this growth however, we are also experiencing a

divergence of software interfaces, languages, and techniques. This leads to an

understandably confusing landscape which needlessly burdens the development

of applications. It is our sincere hope that through the use of specialized inter-

faces, languages, and tools, we can make pervasive computing environments

more approachable and efficient to software developers and thereby increase

the utility and value of pervasive computing applications.

In this dissertation, we present a new method for creating and manag-

ing the long-term conversations between peers in pervasive computing environ-

ments. The Application Sessions Model formally describes these conversations

v

and specifies techniques for managing them over their lifetimes. In addition

to these descriptions, this dissertation presents a prototype implementation

of the model and results from its use for realistic scenarios. To address the

Application Sessions Model’s unique needs for resource discovery in pervasive

computing environments, we also present the Evolving Tuples Model. This

model is also formally defined in this dissertation and practical examples are

used to clarify its features. A prototype for both sensor hardware and soft-

ware simulation of this model is described along with results characterizing

the behavior of the model. The models, prototypes, and evaluations of both

models presented here form the basis of a new and interesting line of research

into support structures for pervasive computing application development.

vi

Table of Contents

Abstract v

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 The Intelligent Construction Site 7

1.2 Goals . 10

Chapter 2. Application Sessions Model 13

2.1 Exemplar Applications . 15

2.2 Related Work . 20

2.3 The Application Sessions Model 22

2.3.1 Resource Representation 23

2.3.2 Resource Predicate Function 24

2.3.3 Resource Limit . 25

2.3.4 Resource Preference Function 26

2.3.5 Resource Selection . 28

2.3.6 Connection Maintenance Strategy 29

2.3.6.1 Query Session Strategy 32

2.3.6.2 Provider Session Strategy 35

2.3.6.3 Type Session Strategy 38

2.3.6.4 Session Strategies 40

2.4 A Middleware Design . 40

2.4.1 Resource Model . 42

2.4.2 Resource Predicate Specification 44

2.4.3 Resource Preference Specification 46

vii

2.4.4 Resource Selection Algorithm 48

2.4.5 Session Creation and Maintenance 51

2.4.5.1 Query Session 52

2.4.5.2 Provider Session 53

2.4.5.3 Type Session 55

2.5 Model and Middleware Evaluation 57

2.5.1 A Basic Application . 59

2.5.2 Sensors as Resources . 61

2.5.3 Evaluating Predicates and Preferences 63

2.5.4 Selecting Resources . 64

2.5.5 Intelligent Construction Site Applications 66

2.6 Summary . 74

Chapter 3. Evolving Tuples Model 76

3.1 Related Work . 79

3.2 Background . 82

3.3 The Evolving Tuples Model 85

3.3.1 Evolving Tuple Format 85

3.3.1.1 The name element 86

3.3.1.2 The formula element 88

3.3.2 Evolution . 90

3.3.3 The Deployment Model 95

3.3.3.1 The Director Process 95

3.3.3.2 The Receive Process 97

3.3.3.3 The Send process 99

3.3.4 Safety Properties . 100

3.4 Resource Discovery with Evolving Tuples 101

3.4.1 Crafting a Resource Request 103

3.4.2 Discovery Resolution . 107

3.4.3 Discovery Example . 109

3.5 Route Discovery with Evolving Tuples 112

3.5.1 Version 1: A Basic Protocol 114

viii

3.5.2 Version 2: Bidirectional Links 118

3.5.3 Version 3: Context-Based Discovery 121

3.5.4 Version 4: Context Collection 123

3.5.5 Version 5: Context-Based Flooding Optimization 125

3.6 Evaluation . 127

3.6.1 Implementation for SunSPOT platform 127

3.6.1.1 Core Library 129

3.6.1.2 Math Library 132

3.6.1.3 Evolving Tuples Library 132

3.6.1.4 Implementation Results 133

3.6.2 Large Network Simulation 134

3.6.2.1 Simulation configuration 136

3.6.2.2 Simulation of Route Discovery 141

3.7 Proposed Model Extensions 153

3.7.1 Single Field Routing . 153

3.7.2 Single-Hop or Multi-Hop? 154

3.8 Summary . 155

Chapter 4. Conclusions 156

Bibliography 161

Vita 177

ix

List of Tables

2.1 Sample “location monitor” resource 24

2.2 Synthetic Sensor Types and Attributes 67

3.1 Formula Operators . 89

3.2 Example discovery tuple . 104

3.3 Route Discovery Tuple (Version 1) 115

3.4 Route Discovery Tuple (Version 1) values as tuple propagates
through the example network 117

3.5 Route Discovery Tuple (Version 2) 120

3.6 Route Discovery Tuple (Version 2) values as tuple propagates
through the example network 121

3.7 Route Discovery Tuple (Version 3) 123

3.8 Route Discovery Tuple (Version 3) values as tuple propagates
through the example network 123

3.9 Route Discovery Tuple (Version 4) 124

3.10 Route Discovery Tuple (Version 4) values as tuple propagates
through the example network 125

3.11 Route Discovery Tuple (Version 5) 126

3.12 Summary of Route Discovery Tuple Versions 142

x

List of Figures

1.1 Intelligent and Automated Construction Job Site 9

2.1 High-level view of Application Session in runtime architecture 29

2.2 Example network configurations at three moments in time . . 31

2.3 Initial resource selections in example network for all sessions . 32

2.4 Resource assignments over time using Query Session Strategy 33

2.5 Query Connection Maintenance Strategy Invariant 33

2.6 Query Connection Maintenance Strategy Operational Model . 34

2.7 Resource assignments over time using Provider Session Strategy 36

2.8 Provider Connection Maintenance Strategy Invariant 37

2.9 Provider Connection Maintenance Strategy Operational Model 37

2.10 Resource assignments over time using Type Session Strategy . 38

2.11 Type Connection Maintenance Strategy Invariant 39

2.12 Type Connection Maintenance Strategy Operational Model . . 39

2.13 Pseduo-code for the Resource Interface 43

2.14 Pseduo-code for the Discovery Interface 44

2.15 Pseduo-code for the Discovery Listener Interface 44

2.16 Predicate Specification Language Grammar 45

2.17 Preference Specification Language Grammar 47

2.18 Pseduo-code for the basic algorithm to implement findBest(...) 49

2.19 Pseduo-code for the Session Interface 51

2.20 Pseduo-code for the Query Session 54

2.21 Pseduo-code for the Provider Session 56

2.22 Pseduo-code for the Type Session 58

2.23 Component overview for application with local sensors 59

2.24 Direct access to Sensors replaced by Resources and Discovery 62

2.25 Overview of an application using Application Sessions 65

2.26 Sensor locations on hypothetical construction site 67

xi

2.27 View of all sensors on hypothetical construction site 69

2.28 Establishing the Query Sessions for the Curing Concrete Mon-
itor application . 70

2.29 Snapshot of Curing Concrete Monitor example application . . 70

2.30 Establishing the Provider Sessions for the Crane Monitor appli-
cation . 72

2.31 Snapshot of Crane Monitor example application 73

2.32 Establishing the Type Sessions for the Danger Monitor application 74

2.33 Snapshot of Danger Monitor example application 75

3.1 Flow chart of standard deployment model 96

3.2 The Discovery process . 108

3.3 The dissemination of discovery request tuples followed by the
return of discovery reply tuples 109

3.4 An example network for route discovery with Evolving Tuples 116

3.5 Route Discovery Tuple (Version 1) field formula dependency graph118

3.6 Route Discovery Tuple (Version 2) field formula dependency graph122

3.7 SunSPOT Device . 128

3.8 Communications Stacks provided by the Core Library for high-
level applications on SunSPOT 130

3.9 Evolving Tuples components added to the core communications
stack . 133

3.10 Flow chart of standard deployment model (Same as Figure 3.1) 134

3.11 Number of neighbors for size and transmission radius 138

3.12 Likelihood of connected network for size and transmission radius 139

3.13 Number of network partitions for size and transmission radius 140

3.14 Required Transmission Range for Connected Network 141

3.15 Experiment 1 - Broadcast Messages for Tx Range = R(0.2) . . 143

3.16 Experiment 1 - Broadcast Messages for Tx Range = R(min) . 144

3.17 Experiment 1 - Routes found for Tx Range = R(0.2) 146

3.18 Experiment 1 - Unicast Messages for Tx Range = R(0.2) . . . 147

3.19 Experiment 1 - Unicast Messages for Tx Range = R(min) . . 148

3.20 Experiment 2 - Broadcast Messages for Tx Range = R(0.2) . . 150

3.21 Experiment 2 - Broadcast Messages for Tx Range = R(min) . 151

3.22 Experiment 2 - Unicast Messages for Tx Range = R(min) . . 152

xii

Chapter 1

Introduction

The increasing availability of ubiquitous computing technology has en-

abled a new class of pervasive computing applications. They interact with a

dynamic environment and a spectrum of collaborating applications and de-

vices to provide adaptive, responsive, personalized, and intuitive computing

experiences. As the deployment and capabilities of these technologies continue

to grow, they will provide an environment that will foster a new generation

of highly connected computing applications. These applications will no longer

use remote information and services occasionally, but will instead incorporate

them into their core functionality. Applications will derive their intrinsic value

from interactions with each other and the environment and embed new utility

into our everyday experience.

With this shift in computing paradigms, our computing applications

take on new characteristics, such as the need to support extreme heterogene-

ity of devices, unpredictability of connectivity between devices, the increasing

scale and distribution of the network, and the need for geographically specific

information. Applications cannot even assume compatible capabilities from

peers in the network. Resources in pervasive computing environments may

1

be simple environmental sensors and actuators controlling aspects of the envi-

ronment, or complete ecosystems of highly capable devices. Additionally, the

nodes in the network may be physically moving and thus creating the need

for adaptive data delivery mechanisms. All of these features contribute signif-

icantly to the complexity of designing, programming, and deploying pervasive

computing applications.

Much of the past and current research for pervasive computing environ-

ments concentrates on the physical, data link, and network layers of commu-

nication. While these elements are vital to pervasive computing, we must take

care when exposing these features to application developers. If these features

are modeled properly, developers can delegate low-level concerns to the appro-

priate technologies and focus their attention on the high-level concerns of their

application’s domain. However, the currently available conceptual and concrete

models for pervasive computing environments are too complex for software de-

velopment by application domain experts. The work in this dissertation focuses

on providing a model for application interactions with resources in these en-

vironments that ease the task of software development.

Several well designed interfaces have successfully realized a separation

of concerns in traditional networking environments, among them sockets, RMI,

and WebServices. We believe that a big part of the success of these technologies

is the support for autonomous long-term conversations. In these approaches,

the application developer supplies only essential information to the implement-

ing technology which creates and maintains an artifact representing a durable

2

conversation. Once created, the application interacts with its peer on the other

end of the conversation until the application terminates it. At no point be-

tween its creation and termination must the application interact directly with

the supporting technologies such as DNS, data serialization, or SOAP.

We believe that application developers in pervasive computing envi-

ronments should also be afforded a similar convenience, specifying a few pa-

rameters when beginning a conversation but otherwise delegating setup and

maintenance to underlying system. However, the additional complexities in-

troduced by the dynamic and heterogeneous nature of pervasive computing

networks inserts several new characteristics to the application level conversa-

tions. For example, the loss of a routing path in a traditional network will

simply terminate a conversation. In a pervasive computing environment, the

loss of a routing path is so common that it is expected. Certainly the loss of a

routing path will interrupt communications, but applications may reasonably

expect to be reconnected at some point in the future. When possible, ap-

plications should expect interruptions in communications to merely suspend

the longer-term conversation, not terminate it. More generally, technologies

supporting conversations in pervasive computing environments must contend

with the following complications:

• unpredictable connectivity: due to mobility and other outside forces (e.g.,

unreliable wireless communication), supporting technologies must help

applications handle intermittent connectivity.

3

• unpredictable and dynamic availability: unpredictable connectivity re-

sults in sporadic and volatile availability of the peers in a pervasive

computing network, requiring opportunistic leveraging of resources when

they are available.

• heterogeneous devices: pervasive computing mechanisms must support

a variety of devices including laptops, PDAs, sensors, and lightweight

domain specific devices (e.g., small medical tags [56] in a triage deploy-

ment.

• compatibility: owners of devices in pervasive computing networks will

make different technology and configuration decisions. Rather then ig-

noring incompatible resources entirely, applications should be provided

some basic support for interactions.

• need for application coordination: pervasive computing applications do

not operate autonomously and must coordinate to gather data and access

digital resources.

• large scale and wide distribution of the network: pervasive computing

networks can grow very large, requiring coordination through multi-hop

connections and scalable communication protocols.

• locality of information and interactions: applications’ interactions are

commonly defined by some abstract characterization of locality.

4

We address these concerns by rephrasing the pervasive computing en-

vironment into metaphors that are comfortable to an application developer in

Chapter 2 of this dissertation. These metaphors allow conversations to become

intuitive, first-order components of the application. This work takes special

care to specify techniques for the long-term maintenance of the conversations

by the underlying system. However, this maintenance is not the only chal-

lenge to providing the same conveniences available in traditional networks.

The challenges listed above are also a hindrance to just finding the resources

for a client application.

The approach taken by the traditional technologies noted above (sock-

ets, RMI, WebServices) relies on the notion of ids in some global namespace.

While these ids are not necessarily globally unique to each host in the network,

they incorporate the notion of a logical location or address (e.g., IP addresses

or domain names). When locating resources in pervasive computing environ-

ments, the identity of a host (when it is assigned one) is often less important

than the capabilities that it provides. Unsurprisingly, systems have been pro-

posed and studied for searching resources by the context they provide [2, 71].

While the field remains a very active area of research, discovery systems

often focus only on the context provided by the resource itself. We believe that

the discovery in a network should also include attributes describing the nodes

and connections that support the inevitable long-term conversation that will

be established between peers. We also believe the value of discovery increases

with access to a greater variety of attributes, especially when values are from

5

multiple abstraction layers in a host system. Furthermore, we believe that a

client should be able to specify combinations of attributes at runtime that were

not (and perhaps could not be) envisioned by designers of the networks and

the embedded resources. This is a much more general approach to defining

dynamic context than current literature considers (e.g., geographical or logical

distances).

Unfortunately, the very nature of pervasive computing environments

can impede the evolution of discovery protocols to provide new attributes and

even more the addition of new ways of combining attributes. Specifically, once

nodes are deployed, altering or updating protocols and applications can be

very difficult, if not impossible. In these cases, clients of shared pervasive

computing deployments are restricted to the interactions envisioned by the

original developers and deployed on that network.

For example, an algorithm that anticipated the need to conserve battery

power may become useless when it is altered to prioritize based on location

or temperature metrics. Recent research has provided techniques for updating

software so long as all clients are synchronously updated with the network [22,

63]. In cases when resource and network providers cannot require clients to

adapt simultaneously to network updates, complex backward-compatibility

functionality is then required. This additional logic limits the progress of new

applications and can result in unstable and brittle environments.

Discovery mechanisms for pervasive computing environments must be

durable in the face of these challenges. They must allow access to broad swaths

6

of cross-layer information, and allow for the evolution of protocols and algo-

rithms. In Chapter 3 we introduce a collaboration model that allows nodes

to use cross-layer information in novel ways without requiring updates or ad-

ditions to the nodes already deployed in a network. This allows developers

to evolve the techniques used for finding resources in the pervasive computing

network and ensures that application developers can establish the conversa-

tions they desire. The model also allows many different protocols to be used

concurrently by embedding behavior into the exchanged messages themselves.

We feel the challenges addressed by our models are not part of pervasive

software’s essence as described by Brooks [12]. They are accidents – merely

difficulties that hamper its production. The proper application of abstractions

and tools can reduce their impact and lead to higher quality, and ultimately

higher value, applications.

1.1 The Intelligent Construction Site

Many scenarios and case studies for pervasive computing research have

been proposed in the past. These include support for first responders [56, 84],

aware homes [49], taxi cab reservations [83], and electronic tourist guides [18].

However, these applications address scenarios that are point-deployments, al-

lowing (and requiring) software developers to be intimately familiar with the

details of the software and hardware of all the participating devices. Develop-

ers are also in control of all of the devices in the deployment, allowing them to

redeploy software or replace hardware as the application requires. But most

7

importantly, each deployment scenario is focused on performing a single task

with all participants pre-configured to support it. In contrast we use a scenario

focused on performing many discrete and unrelated tasks at the same time in

the same environment.

In this section we will briefly describe the “Intelligent and Automated

Construction Job Site” case study1, a previously used example for pervasive

computing technologies [33, 42, 44, 48, 81]. This scenario envisions the deploy-

ment of sensing, instrumentation, communication, and decision support onto

an active construction site. Members of the civil engineering and construc-

tion fields explicitly recognize that coordination and automation provided by

these devices promise to drastically improve the effectiveness and productivity

of many facets of construction execution [26]. To realize these benefits, the

hardware and software deployed to construction environments is expected to

participate in a variety of tasks and collaborate with peers on an ad-hoc basis.

The construction site is typical of pervasive computing environments

and presents many of the challenges discussed in above. For example, the

construction site in Figure 1.1 shows users, vehicles, and even raw materials

that communicate through wireless and cellular networks. In the lower right

corner of this figure, sensors attached to a crane are able to determine its load

and monitor its movement. On the right, materials are delivered and entered

into inventory automatically. At the top, a detector is installed to monitor

1Sometimes referred to as just “Intelligent Construction Site”

8

Figure 1.1: Intelligent and Automated Construction Job Site

the release of any dangerous volatile organic compounds (VOCs). Inside the

office at the upper-right, managers coordinate the movement of materials and

personnel on the site, and on the left a concrete pad is monitored while it

cures.

Many construction sites are adopting the level of instrumentation shown

in this figure, but the lack both the low-level and high-level communication and

coordination technologies prevents the fulfillment of the Intelligent Construc-

tion Site promise. In this dissertation, we pull examples from this case study

to explain the motivations, models, and evaluations of the work presented.

9

1.2 Goals

In this dissertation, we address the challenges of creating and main-

taining long-term conversations between peers in a pervasive computing envi-

ronment. As we have already discussed, there are significant differences in the

conversations occurring in traditional networks and those in pervasive comput-

ing environments. Among these differences is the use of contextual information

to select peers, the number of peers involved in any one conversation, and the

instability of the underlying connections over its lifetime.

Our approach to confronting this task is to propose new models for

these interactions. We present the Application Sessions Model in Chapter 2

to give a concrete form to conversations. This model defines the configuration

that an application must supply and the methods of maintaining conversations

once they are established. As this model was derived, it became clear that a

new method for dramatically flexible discovery was also needed. The Evolving

Tuples Model presented in Chapter 3 was derived to fulfill this purpose. After

formally describing and documenting the models, we show they are not only

useful, but potentially successful by building prototype implementations and

applying them to exemplar applications taken from the Intelligent Construc-

tion Site domain discussed above.

In this dissertation, we claim these models are promising solutions to

manage the complexities of pervasive computing conversations. The work

required to make these comprehensive conclusions is far outside the scope of

this work. The explicit aim our work is to show the proposed models and

10

designs are feasible solutions to address these challenges. We do this through

the following six explicit contributions:

1. The Application Sessions Model: This contribution defines the na-

ture of conversations in pervasive computing applications, lending formal

semantics to several conversation types. This model can then be used

both to document the behavior of these conversations for informing ap-

plication developers and to reason about the applications built using the

model.

2. Application Sessions Middleware Design and Prototype: The

second contribution is a practical realization of the Application Sessions

Model. They are used as the basis of our feasibility study and enable

the development of pervasive computing applications outside of those

described in this dissertation.

3. An Application Sessions Feasibility Study: In this contribution

we demonstrate the feasibility of both the Application Sessions Model

and Middleware through case study applications from the Intelligent

Construction Site domain

4. The Evolving Tuples Model: This contribution defines a method

for allowing messages exchanged in pervasive computing applications

to impact their own content by calculating abstract values. The model

serves to document the structure and behavior of these messages to guide

11

developers interacting with them and to reason about the operation of

pervasive computing networks that process the messages.

5. The Evolving Tuples Model Prototype: In this contribution we

realize the Evolving Tuples Model for both real pervasive computing

devices and for software simulation. This prototype is used as the foun-

dation for our feasibility study as well as the groundwork for protocols

under development elsewhere.

6. An Evolving Tuples Model Feasibility Study: The final contri-

bution validates the model’s anticipated characteristics and the model’s

feasibility through both theoretical examples and practical experiments

on actual hardware and in software simulation.

The remainder of this document is organized into three chapters. The

next chapter focuses primarily on the Application Sessions Model and contri-

butions 1, 2, and 3. Chapter 3 concentrates on the Evolving Tuples Model

and contributions 4, 5, and 6. The final chapter summarizes our findings and

discusses several avenues for future research.

12

Chapter 2

Application Sessions Model

This work is motivated by an increasing demand for pervasive com-

puting applications, and the ensuing need to enable application programmers

to create them. As we described in the previous chapter, one of the key

abstractions that is missing from the suite of current tools is support for con-

versations in pervasive computing environments. In this chapter we specify

a model for representing and managing these long term conversations for the

applications. We specifically design this model to remove the application pro-

grammer’s need for intimate familiarity with the details of communication.

Instead, applications declare the characteristics of required conversations and

delegate construction and maintenance tasks using the Application Sessions

Model.

The Application Sessions Model addresses the challenge of long-term

conversations by creating intuitive metaphors that conceal the complexities

of establishing and maintaining connections over long periods of time. These

metaphors then become the application developer’s view of the environment.

This shifts his focus and attention away from the network details and back to

problems in his domain of expertise. Application developers no longer need

13

to learn the details of discovery and routing protocols, nor how to deal with

the arrival and departure of network nodes, nor the libraries that implement

them. This separation of concerns both architecturally and organizationally

will lead to more robust, successful, and ultimately valuable software for per-

vasive computing environments.

The primary metaphor that our model uses to characterize the envi-

ronment is the application session. We define an application session to be a

collection of robust logical connections to one or more networked devices over

which application data is exchanged. To create the connections that are mem-

bers of the application session, a set of remote applications, devices, sensors,

and actuators (collectively referred to as “resources”) must be selected. The

model defines three components to manage this selection, the resource pred-

icate, the resource preference, and the session limit. The resource predicate

describes how an application defines interesting for a resource. The resource

preference describes how an application defines more interesting. The session

limit is used to cap the number of resources assigned to an application ses-

sion. These elements are typically based on the application’s non-functional

requirements or dynamic environmental characteristics. Once selected, the

application’s choice of connection maintenance strategy determines how the

system should manage the short-term connections to the resources. For exam-

ple, we may or may not wish to attempt to reconnect to resources that have

become unavailable.

Any framework designed for pervasive computing environments must

14

support a broad array of application domains with widely varying require-

ments. An analysis of all application domains is impossible as we anticipate

widespread adoption of pervasive computing to affect nearly all aspects of

our lives. Instead, in this chapter we use the Intelligent Construction Site

scenario to exemplify the unique challenges of building pervasive computing

applications.

In the next section, we describe hypothetical applications to provide

more specific motivations. Sections 2.3 and 2.4 present the Application Ses-

sions Model and a design for implementing the model. The hypothetical appli-

cations are then used in Section 2.5 to show how the middleware implementa-

tion is used, and to evaluate the model’s usefulness as a pervasive computing

programming construct. A discussion of work directly related to this model is

included in Section 2.2.

2.1 Exemplar Applications

The fundamental tenants of the “Intelligent and Automated Construc-

tion Job Site” case study have been outlined previously. In this scenario,

people and equipment are assembled on a site for a wide variety of tasks.

These tasks differ broadly in a number of aspects such as time-scales and the

number of participants. For example, administration offices are often present

on the site before the site preparation begins and may remain until well after

the project is complete, interacting with hundreds of devices and individuals

during this time. Conversely, delivery vehicles may only be on site for minutes

15

or hours and may only directly interact with a receiving clerk. To improve

efficiency, the Intelligent Construction Site uses pervasive computing applica-

tions to monitor and mediate interactions between the people and equipment

present. Some of these applications involve short duration interactions with

a simple device, as in downloading a file or punching the clock. Other tasks

such as environmental monitoring require more open ended interactions with

multiple resources. In this section, we select three specific hypothetical appli-

cations to serve as exemplars of the large variety of applications envisioned for

this scenario.

Application 1 - Monitoring the Curing of Concrete

To ensure that it is strong and durable, concrete must be cured for three

to seven days. During this process, the bond between the concrete paste and

the aggregate becomes stronger. To properly cure, concrete must be kept at

the proper level of moisture; to ensure proper curing, uniform moisture levels

must be maintained throughout the batch. Typically one of two techniques is

used to control these levels: a fine mist of water or a covering of plastic sheet-

ing. In the Intelligent Construction Site, a few humidity sensors are placed

to measure moisture levels, and many temperature sensors to monitor the

progress of reaction through the heat it releases. Our hypothetical applica-

tion will monitor curing conditions by periodically collecting values from these

sensors and synthesizing the results locally.

16

The results provided by this application may be passed to control soft-

ware to adjust water valves or notify staff when conditions exceed certain

thresholds. The readings could also be used by building inspectors or insur-

ance companies to ensure compliance, or by architects and engineers to analyze

any failures that occur later in the process. For this version of our hypothet-

ical application, we will assume that readings need only be taken once every

ten minutes or so, a very low sampling rate by intranetworking standards.

Given the low rate of data acquisition, a constant datastream from the sensors

would needlessly consume network resources to transmit the data and maintain

network routing information in the dynamic networks. Streaming data from

the sensors to the application is a poor choice for this application. Instead

a state-less query-and-respond approach should be used. Periodically, each

sensor is contacted for its current reading, which it sends back immediately.

There is no need to maintain any information about the query or the source

of the query after the sensor has responded. We avoid needlessly allocating

system resources on the sensors to maintain state while also realizing a drastic

reduction in network traffic overall.

To ensure the correct data is collected by the application, it may be

necessary to select sensors subject to constraints on a variety of attributes.

The selection, or discovery, of resources must leverage both low-level data

(e.g., network addresses) and application-level data (e.g., building level), or

even dynamically inferred data (e.g., proximity to a specific sensor). Sensors

may even be specified by a combination of their attributes. A model must be

17

able to perform the discovery task using any of these data types to support

this application.

Application 2 Crane Monitor

Monitoring the usage of equipment can be an important component

of resource- and risk-management plans. The “Crane Monitor” application

seeks to record usage information reported by sensors attached to cranes on

the construction site. Once the data is recorded, it can be analyzed off-line to

schedule routine servicing and other maintenance activities. To be effective,

this application requires much finer-gained information from the sensors than

the previous application. A constant connection to each sensor is justified for

this purpose.

When the application is started, we first select the sensors on the site

whose data is to be recorded. We then constantly monitor all of the reported

values as long as the crane is on the site. In effect, we are carrying on a

long-term conversation with these sensors. This application, and thus the

conversation, will run the entire time a crane is on the construction site. This

time period may range from hours to days, and even months. As factors con-

tributing to connection and link quality vary, this application must reestablish

broken connections. Some sensors may be offline for long periods of time

(over-night or longer) preventing routing layers from providing route-repair

for the application. While reconnecting to sensors, the application must also

be careful to avoid connecting to newly arrived sensors providing similar data.

18

Application 3 Monitoring Danger

Safety is an ongoing concern for workers on the Intelligent Construc-

tion Site. Despite design foresight, the conditions considered to be dangerous

change over time. Arrival of new components on the site, the progression of the

project, changes in codes, and simple changes in perception all contribute to

the dynamic definitions of “danger”. On the site, some dangerous conditions

are explicitly sensed by purpose-built hardware (e.g., volatile organic com-

pound sensors, fire detectors), while other conditions must be inferred through

the cooperation of various sensors (e.g., trucks in each other’s path). Inferred

dangers are specified by defining formulas to be calculated using current read-

ings from various sensors. Formulas can be set up by the site management

or by individuals who wish to define their own “dangerous conditions”. No

matter how the dangerous condition is defined, our application is only inter-

ested in conditions that apply to its user. Additionally, the application must

provide appropriate alerts based on the type of danger. Alerts to routine con-

ditions such as passing trucks and working cranes should not interfere with

the worker’s normal activities. However, the detection of fire should be given

immediate attention.

Unlike the query-and-respond technique used in the previous applica-

tion, the application will monitor the status of devices at all times. More

specifically, it will monitor devices reporting danger in geographical proximity

to the user. Over time, dangerous conditions and the sensors reporting them

19

will come and go from the network. Therefore it is the job of the support-

ing components to provide mechanisms for retrieving the data that is most

relevant to the user at any given time.

2.2 Related Work

It has previously been shown that adopting a coordination approach

to handling the unpredictability inherent in mobile computing can lead to

solutions that simplify programming [68]. Several middleware solutions have

taken this approach [27, 45, 61] but focus on exchanging data items in dynamic

conditions and not on generic resource usage in pervasive computing situations.

As pervasive computing has come to the forefront, projects have increasingly

focused on providing dynamic access to a changing set of resources. Many

efforts mediate quality of service requirements by leveraging object mobility to

enhance application responsiveness and network-wide performance metrics [31,

37, 69]. These approaches focus on bringing objects closer to clients instead of

on mobile clients that require inherently location-dependent resources.

Projects closer to our goals update bindings between clients and ser-

vices as processing or environment dictates [10, 50]. A follow-me session [35]

provides constant connectivity to services by transferring a connection from

one provider to another. Context-Sensitive Bindings [35, 67] implement the

follow-me session by defining a context and selecting resources from that con-

text that match an application’s specification. This approach decouples the

remote resource’s implementation from its realization at the client, and it

20

handles many of the migration concerns that apply in our framework’s type

session. Finally, this approach favors complete transparency and assumes that

a resource binding should always be transferred, subject to an application’s

specified policies. It does not allow for the other types of sessions we described

nor does it enable group interactions.

Service Oriented Network Sockets [70] provide support for selecting new

services based on an application’s configuration. This approach, however,

addresses client concerns at the lower level of network sockets as opposed

to application objects. In addition, the approach assumes the availability of

well-accepted service discovery mechanisms that it uses to gather all matching

services locally before deciding which services to connect to. This can incur

significant amounts of overhead in networks that are dynamic, large in size, or

contain numerous satisfactory services. iMash [6] addresses migration of user

connections as services are discovered but does not provide a convenient client

interface for specifying resources or enforcing session semantics as defined in

this paper. In addition, iMash relies on knowledgeable intermediaries that

handle service switches on behalf of clients and resources. Similarly, Atlas [20]

uses a central server to mediate the transfer of a service binding from one

provider to another.

Scenes [3] and Network Abstractions [66] provide alternate mechanisms

for selecting resources, but they do not allow the client to specify limits or

orderings on the returned set of resources. In the case that networks implement

these constructs to provide discovery support, it may be possible to translate

21

our resource predicate into the proper input for these mechanisms. This would

be just one example of leveraging existing functionality in the network to

optimize our middleware’s operations.

In summary, our approach differs from these projects in several ways.

First, we seek not to limit an application’s sessions to a single type but to

adapt to an application’s needs, including simple queries, lasting connections,

and transparent resource migration. Second, while we aim to decouple the

semantics of application sessions from the implementation supporting the ses-

sion, we recognize that the extreme scale and device constraints necessitate

communication protocols tailored to particular session requirements. As dis-

cussed previously, in the application sessions middleware, it is possible to

support a suite of communication protocols that efficiently support a variety

of coordination semantics.

2.3 The Application Sessions Model

From an architectural view, our model sits directly below the domain-

specific application and just above the wide variety of resource discovery and

routing protocols used to find and access remote resources. In implementation

terms, the application sessions model replaces the use of sockets, RMI, and

other middleware solutions conceived for traditional networks. In this sec-

tion we provide the operational semantics of the Application Sessions Model.

These semantics demonstrate the model’s ability to transparently adapt its

functionality to a mix of application requirements and changing operational

22

environments. We will first discuss our representation of resources and then

define and discuss the three specifications that define the resources in an appli-

cation session: predicate, limit, and preference. With these three components

in place we will show how resources are selected, and then discuss of how

connection maintenance strategies effect when resources are selected.

2.3.1 Resource Representation

As part of the Application Sessions Model, we specify a model of the

resources themselves. This is only used to stipulate how our components

interact and should not be construed to imply a complete model for resource

implementations. Actually, this model seeks to declare a minimal interface

which may be expanded by individual resource providers to support other

technologies.

Resources are viewed as a set of (potentially nested) values. Each value

is associated with a key, or name, that describes the nature of the value and

a type that describes the representation of the value. The name of a value

is simply a character string, while the type is an element of some large set

of enumerated data types available to all participants. Like a programming

variable, the values are shared between different processes and may change

at any given time. This results in a semi-structured data model [1], leaving

the definition of value dependence and interaction to the applications. For

example, a “location monitor” resource might be represented in this model as

shown in Figure 2.1. Here the model defines which three fields must appear

23

Name Type Value
latitude real 30.2867

longitude real -97.7364
elevation real 152.1

expires integer 1190935202938

Table 2.1: Sample “location monitor” resource

in each tuple, but not how many tuples nor the value of any field.

Obviously there is a need for a standardized structure for names, types,

and units to ensure unambiguous definitions; an issue also affecting the Evolv-

ing Tuples Model discussed in Chapter 3. In both models it is necessary for

users to share an understanding of how data will be named. In this example,

clients of the resource assume the meaning of the field named “latitude.” Dis-

tributing shared naming schemes in dynamic heterogeneous environment is a

well-studied problem, and not one we intend to undertake here. Instead, we

simply assume the presence of this shared knowledge and use it to semantically

tag data.

2.3.2 Resource Predicate Function

In our model, the client application provides the application session

framework with a resource predicate that is used to filter available resources.

This predicate, pred(x), is simply a conditional statement that evaluates to

true or false for any given input resource x. Since the client-supplied predicate

only allows for a boolean result, this function should be viewed as describing

the minimal acceptable characteristics of the target resources. A predicate will

24

typically include the type of resource (such as thermometer for the Curing

Concrete task) but may also filter on attributes such as the sensor’s owner or

location.

When supported by the underlying discovery mechanisms, the resource

predicate could specify connection or environmental attributes as well. For

example, the client could specify a maximum hop-count to prevent the under-

lying discovery protocols from searching in distant areas of the network. Even

though measurements like maximum hop-count are associated with the con-

nection between a client and host, they can be modeled as attributes assigned

to each resource on the host.

Metrics such as the latency and bandwidth of a physical connection

could also be measured and assigned to the remote resource as meta-attributes

in the same way. While some of these connection specific attributes are avail-

able in some discovery protocols [41, 43, 47], the Evolving Tuples Model de-

scribed in Chapter 3 is specifically designed to support this type of attribute

evaluation.

2.3.3 Resource Limit

Since we are designing a model with the pervasive computing environ-

ment in mind, the scope of a client’s request must be limited to avoid overload-

ing the network, the hardware, or the client application. Part of this limitation

can be provided by including time-varying attributes in the resource predicate

function described above. However, this technique is not always sufficiently

25

restrictive. We include another parameter to explicitly limit the number of

resources that should be provided by the infrastructure for a particular ses-

sion. The resource limit parameter simply specifies the maximum number of

resources that will be included in the session at any given time.

While the primary motivation for specification of a limit is to restrict

the load imposed on the network and remote resources, thought it can also be

used to intimate an application limitation. For example, the relatively small

screen size of hand-held devices may limit the amount of data that can be

presented. The application can use the resource limit to limit the number of

resources that are in the session as a way of reducing the data passed to the

user interface.

2.3.4 Resource Preference Function

Using a client’s predicate function, the model is able to determine which

of the available resources are acceptable for a particular session. However, we

would like to return not just acceptable results, but the best possible results

to our client. This is particularly important when the client has specified a

maximum number of resources that is smaller than the number of acceptable

resources. In this case, we must make some decision as to which physical

connections are established and which are omitted. Simple algorithms for this

selection would include non-deterministically choosing resources, or perhaps

choosing the first n resources that are returned by the discovery protocols.

These methods certainly have their place and serve as the default algorithms

26

for choosing between otherwise equal resources. However, we allow the client

to specifically dictate a selection algorithm through the resource preference

function.

This function allows the model (and the discovery protocols if they

support it) to reduce the set of resources that are returned by simply providing

a means for comparison. This comparison need not provide a detailed analysis,

just an indication of preference between two resources, if it exists. With this

function, the model can return an ordered list of resources that are “better”

than all other available resources, where the definition of “better” is provided

by the client. For example, the client application in the Danger Monitor

example above would prefer to use resources that are geographically closer to

the user. We define the resource preference function, pref (x, y), to provide

this functionality.

pref(x, y) > 0 ⇐⇒ x is “better” then y
pref(x, y) < 0 ⇐⇒ y is “better” then x
pref(x, y) = 0 ⇐⇒ no preference

As we discussed in Section 2.3.2, discovery and routing protocols may

be able to calculate connection specific information such as hop-count and

latency. Since we are modeling these values as attributes of the remote re-

sources, these values can also be used for preference functions in addition to

predicate functions. For example, a client could use hop-count in the resource

predicate to limit the scope of discovery to nearby (in the network) resources,

27

and then use latency in a preference function to select the “quickest” of those

resources.

2.3.5 Resource Selection

Using the client’s resource predicate function (pred(x)), resource pref-

erence function (pref(x,y)), and a resource limit (n), we can now create a

function findBest that returns a list of resources ordered by preference. To

correctly support all of the connection maintenance strategies discussed in the

next section, the list of resources returned by this function is padded with null

values (∅) to the size specified by the argument n.

findBest(pred, pref, n) = R[0..(n− 1)].(
∀r ∈ R :: r.reachable∧
∀r ∈ R :: pred(r)∧
∀r ∈ R, r′ /∈ R, r′.reachable :: pref(r) ≥ pref(r′)∧
∀i ∈ 0..(n− 2) :: (R[i+ 1] = ∅) ∨ (pref(R[i], R[i+ 1]) ≥ 0)

)1

This function returns a list of reachable resources R[...] such that its

size is equal to n, all of its members satisfy the client supplied predicate func-

tion, and the members are ordered according to the client-supplied preference

function. The exact order may be non-deterministic since resources considered

equal by the preference function can appear in any order relative to each other.

1The construct x.(condition) non-deterministically returns any value that matches the
condition and will return ∅ (null) immediately if no value can be found.

28

Figure 2.1: High-level view of Application Session in runtime architecture

2.3.6 Connection Maintenance Strategy

Using the three specifications above (predicate, limit, and preference)

and the findBest(...) function, the model can now select an initial set of

resources to satisfy the client’s request. However, in a pervasive comput-

ing environment, the client’s conversations may last longer than the underly-

ing best-effort connections can support, especially in environments including

physically mobile nodes. Thus, rather than using the results of findBest(...)

directly, applications call a new function newSession(...) which returns a ses-

sion. Applications interact with a session in much the same way as a list,

so we adopt a similar notation S[i] to denote the ith element of the session

S. Once an application has created a session, each of the session’s elements

provides a connection to a remote resource as shown in Figure 2.1. In this

figure, for example, when the application accesses S[5], a connection to the

remote resource with the value 58 is returned. The elements of this list can

be read by the client application sequentially (S[0], S[1], S[2]...) or randomly

(S[3], S[2], S[4]...), but cannot be modified by the application.

29

Though similar to the findBest(...) function, the newSession(...)

function requires an additional parameter, the connection maintenance strat-

egy. This argument specifies an invariant to be maintained on the connec-

tions in the session. To preserve the invariant, the session’s contents may be

removed, reorganized, and even replaced over its lifetime. This shuffling of

resources allows the model to efficiently manage system and network resources

in support of the applications’ long-term conversations.

The Application Sessions Model allows the client to select one of three

connection maintenance strategies. Below we describe each strategy, define

its invariant, and give an example operational definition which satisfies the

invariant. Since the invariants and definitions below describe the state of the

session over time, we must introduce a bit of notation: a subscript attached

to S to denote the logical time of the session. Thus S0 refers to the session

at time 0 (the instant it is created) and Sτ refers to the same session at some

time τ . Combined with the aforementioned index notation, Sβ[5] designates

the fifth element of session S at time β.

We first describe the Query Session Strategy, used when the client needs

only a short-term connection without the overhead of maintaining a stable

connection. We then describe the two cases for long-lived connections. The

first of these, the Provider Session Strategy is used when the client wants to

maintain the connection with the same resources throughout the session. The

Type Session Strategy is used when the client wants to maintain a connection

to the most preferable resources throughout the session.

30

Figure 2.2: Example network configurations at three moments in time

To give the reader a more concrete feeling for the strategies, a graphical

representation of the short-term network connections is provided with each

description. In each, the session is depicted at three different (logical) times

with the three different network configurations shown in Figure 2.2. At time

0, all nodes in the network are reachable in the network. At time 1, six of the

nodes have become disconnected and the left-most node has changed values

from 42 to 200. At time 2, two of the disconnected nodes have rejoined the

network, the left-most node has reverted it value to 42, and another node has

changed values from 81 to 72.

To emphasize the distinctions between the strategies, each of the

examples below passes the same parameters (excepting the strategy) to

newSession(...): the predicate selects only circle-shaped resources, the pref-

erence function favors larger values, and the session is limited to six resources.

Using these values, the initial resources selected for each session are shown in

Figure 2.3.

31

Figure 2.3: Initial resource selections in example network for all sessions

2.3.6.1 Query Session Strategy

The Query Strategy is used when an application will only use each

remote resource once. This implies that the infrastructure is free to dispose

of any system resources associated with the connection to the remote resource

once it has been used by the application. Additionally, the Query Strategy

also frees system resources for the connections to resources that have left the

network since the session’s creation. This aggressive management of system

and network resources is particularly useful when the client or remote devices

have limited system resources.

Figure 2.4 depicts this interaction over the three network configurations

discussed above. This figure shows the connections at S[3], S[4], and S[5] are

released when the associated resources leave the network at time 1. Even when

one of those resources rejoins at time 2, the connection is not reestablished.

The same connection release can be seen as the client uses the remote resources

S[0] and S[1] at times 0 and 1, respectively. Once these resources are used,

the connections are released and are never reestablished.

The formal definition of the fundamental invariant of the Query Strat-

32

Figure 2.4: Resource assignments over time using Query Session Strategy

Φ(t) = 〈 set ∀i, τ :
i ∈ [0..n) ∧ 0 < τ ≤ t ∧
(Sτ [i].used ∨ ¬ Sτ [i].reachable) :: i 〉

Query Strategy Invariant
S0 = findBest(pred , pref , n) ∧
(∀i, j, t :

0 < t ∧ i ∈ Φ(t) ∧ j /∈ Φ(t) ::
St[i] = ∅ ∧ St[j] = S0[j])

Figure 2.5: Query Connection Maintenance Strategy Invariant

egy is shown in Figure 2.5. In this figure, the function Φ(t) serves only to

simplify the rest of the definition. Given a time t, Φ(t) returns the indexes

of S that hold resources that were either used or unreachable at some time

τ between 0 and t. In other words, Φ(t) returns indexes of resources that

should be disconnected. The Query Strategy Invariant says that at time 0,

the session S0 is equal to the results returned by the findBest(...) function.

At times t after 0, the elements of the session that were assigned to used and

unreachable resources (indicated by Φ(t)) should now contain the null value

(∅). The elements representing unused and still reachable resources (those not

returned by Φ(t)) should still contain the original connections.

33

〈S[...]⇐ findBest(pred , pref , n)〉
co
〈await(S[i] 6= ∅ ∧ S[i].used)→ St[i]⇐ ∅〉2
‖
〈await(S[i] 6= ∅ ∧ ¬ S[i].reachable)→ St[i]⇐ ∅〉

oc

Figure 2.6: Query Connection Maintenance Strategy Operational Model

To give a sense of how this invariant can be satisfied in practice, we

present an operational model of the Query Session Strategy in Figure 2.6.

Here S[...] is initially (atomically) assigned the values returned by findBest(...).

Then, any time a non-null resource in S[...] is either used or unreachable, its

entry in the session is immediately and atomically assigned the value ∅. Once

this assignment is made, any system resources associated with the connection

to the resource may be released.

In the model we purposefully avoid narrowly defining how a resource

transitions to the “used” state. Our prototype system (described below) im-

plements this condition as any access to a resource’s values. However, this

definition may be too constraining when dealing with the variety of devices

that must be supported. The definition of “used” may even be a technology-

specific function. This particular aspect of the Application Sessions Model will

be revisited as deployment experience is gathered.

2The 〈awaitA→ B〉 construct [4] allows a program to delay execution until the condition
A holds. When A is true, the statements in B are executed in order. The angle brackets
enclosing the construct indicate that the statement is executed atomically, i.e., no state
internal to B is visible outside the execution of B.

34

The Query Session Strategy correlates with the Curing Concrete exam-

ple application described in Section 2.1. For this application, a query session

would be established for temperature and humidity resources in a particular

area. The application would then access each resource in turn (i.e., “using” it)

to download each sensor’s readings. After each use, the underlying resources

associated with the connection to the remote resource are immediately re-

claimed. This illustrates the key benefit of the query session — the framework

has managed these resources as efficiently as possible without any effort or

interaction from the client (save the initial session creation). When the appli-

cation needs another reading ten minutes later, a new session is created and

the process repeats.

2.3.6.2 Provider Session Strategy

The Provider Strategy is designed to support client tasks that require

long-term conversations with the same resources, even if “better” resources

become available. This is useful, for example, when a task produces state

at the remote endpoints that is necessary for subsequent operations. In a

pervasive computing environment this can be a complex goal to achieve due

to the inherent instability of short term connections. This instability may

cause resources to be unreachable for long periods of time. In these cases, the

Provider Strategy is responsible for reconnecting to any disconnected resources

and maintaining a consistent view of the resources that are available.

35

Figure 2.7: Resource assignments over time using Provider Session Strategy

Figure 2.7 continues our running example by showing how the appli-

cation of this strategy effects resource connections. The initial connections

are the same as the query session’s at time 0. At time 1, when three of the

originally included resources are no longer available, the session’s connections

are broken. However, the session reconnects to one of the original resources

(node with value 77) when it becomes available again at time 2.

Figure 2.8 states the Provider Strategy’s goal more exactly as the

Provider Strategy Invariant. The invariant first specifies that the session at

time 0 (S0) is equal to the results of findBest(...). The list Γ is a copy of S0[...]

and always contains references to the original resources. When the initial re-

sources are reachable at time t after 0, the session St holds a reference to them,

and when they are not, the associated session element is set to null (∅).

As with the query session, we provide an operational model in Figure 2.9

to show how the invariant can be maintained on the session S[...]. It specifies

a private list G[...] which holds the original remote resources of S[...]. Using

the await construct, the framework waits until there is a element in S that is

assigned to ∅ while its counterpart in G is reachable. When this occurs, the

36

Provider Strategy Invariant
S0 = findBest(pred , pref , n) ∧
Γ = S0 ∧
(∀i, j, t :

0 < t ∧ i ∈ [o..n) ::
(Γt[i].reachable ∧ St[i] = Γt[i])
⊗
(¬ Γt[i].reachable ∧ St[i] = ∅))

Figure 2.8: Provider Connection Maintenance Strategy Invariant

〈S[...]⇐ G[...]⇐ findBest(pred , pref , n)〉
co
〈await(S[i] = ∅ ∧G[i].reachable)⇒ S[i] = O[i]〉
‖
〈await(S[i] 6= ∅ ∧ ¬G[i].reachable)⇒ S[i] = ∅〉

oc

Figure 2.9: Provider Connection Maintenance Strategy Operational Model

element in S is immediately and atomically updated to the value in G. In

parallel, the model specifies the opposite transition: an element that is not ∅

which is unreachable is assigned the value ∅.

The Provider Strategy is a good fit for the Crane Monitoring task de-

scribed in Section 2.1. In this application the client collects data from sensors

attached to a crane over the course of many days, or even months. As network

conditions vary over the course of the session and resources become unreach-

able, the null value is substituted for the resource in the shared list S[...].

When connections are reestablished, its entries in the list are switched back to

the original resource references. In this way, the application is shielded from

the short-term concerns of reestablishing broken connections. The application

37

Figure 2.10: Resource assignments over time using Type Session Strategy

must acknowledge that these problems do exist by testing each element in

the session for null before using it, but is not involved with remedying the

problems.

2.3.6.3 Type Session Strategy

The Type Strategy is intended for an application task in which the exact

identity of a resource is less important than how it compares to other resources.

Stated another way, the client application wants the “best” resources at all

times and does not mind if the order or identity of those resources changes over

time. If we establish a session with the Type Strategy for our example network,

the connections will be updated as shown in Figure 2.10. When the left-most

node changes values at time 1, the first element of the session is updated to

refer to this new “best” resource. The connections to resources that are no

longer available are dropped, and the connected resources are assigned to the

elements of the session in decreasing values.

At time 2, the left-most element changes values again and becomes the

“worst” resource that is still connected in the network. As a result, the last

38

Type Strategy Invariant
(∀i, j, t : 0 ≤ t :: St = findBest(pred , pref , n))

Figure 2.11: Type Connection Maintenance Strategy Invariant

〈S[...]⇐ findBest(pred , pref , n)〉
co
〈await(S[i].valueChange)⇒ (S[...] = findBest(pred , pref , n))〉
〈await(¬ S[i].reachable)⇒ (S[...] = findBest(pred , pref , n))〉
〈await(r /∈ S[...].reachable)⇒ (S[...] = findBest(pred , pref , n))〉

oc

Figure 2.12: Type Connection Maintenance Strategy Operational Model

element of the session is connected to this resource. The updated value, 72,

on the node previously assigned the value 81 causes the connections originally

assigned to elements 2 and 3 to be reversed. The result of all these updates

is to assure that the references are connected to the session elements in order

of decreasing value. We express this formally as the Type Strategy Invariant

in Figure 2.11. This invariant allows the client to simply iterate through the

elements of the session to find the best resources at any given time.

The simplest way to model this strategy is to periodically update

the entire list with the results of a full reevaluation of available resources

(i.e., the findBest(...) function). We can avoid needlessly reevaluating

findBest(...) by waiting until there is a change that could affect the el-

ements of the session. Specifically, we wait for one of three conditions: a

change in the value of a resource in the session, the departure of a resource in

the session, or the arrival of a resource not in the session. When one of these

three events occurs, we re-execute our selection function findBest(...) and

39

update the session with the results.

The Type Strategy would be used to implement the danger monitor

example above. Here the original sessions would be configured to choose the

closest resources that represent dangerous conditions. As network conditions

fluctuate, and as sensor values change, the list of resources is constantly up-

dated to present the client application with the most current readings.

2.3.6.4 Session Strategies

The Connection Maintenance Strategies defined in the Application Ses-

sions Model are designed to support the majority of applications. There will

inevitably be applications that require semantics that lie outside those pro-

vided above. In these cases, it may be necessary for the application to provide

its own strategy definition. However, even in the absence of a formal survey

we believe that these strategies cover a large majority of potential pervasive

computing applications. Furthermore, we believe any subset of these strategies

will not be sufficient to provide the semantics required to implement a large

number of applications. Therefore, the Query, Provider, and Type strate-

gies presented here form a necessary and nearly complete set of strategies to

implement applications for pervasive computing environments.

2.4 A Middleware Design

In this section, we describe a middleware based design to support the

application sessions model. This is not meant to imply that the application

40

sessions model is best implemented with a middleware based architectural de-

sign. As software engineers, we are acutely aware that any definition of “best”

can be quite volatile. Implementations based on Mobile Agents and peer-to-

peer architectures have also been considered and may prove to be superior

architectures for other purposes. However, our goal here is not a traditional

metric such as speed or resource usage, but rather the architecture’s usefulness

as an explanatory tool. To this end, we require our design and implementation

to (1) minimize the need for deep knowledge outside the particular pervasive

computing application domain and (2) reflect the components of the model it-

self. We feel that the middleware pattern addresses both of these goals rather

succinctly.

The middleware architectural pattern is specifically designed to sim-

plify the details of distributed communication and coordination into high-level

primitives presented to the application developer [23]. The choice of high-level

primitives is left to the designer which, in this case, we choose to be the pri-

mary components of the Application Sessions Model. To different software

designers, this definition (and others like it) can take many different forms.

For example, some definitions of middleware attempt to hide the distributed

nature of the environment as much as possible and create what appears to be

a “single integrated computing facility”[59].

When parts of the distributed computing problem are hidden from the

application, designs typically adopt one aspect to be the primary dimension

of the middleware. This leads to several families of software designs such

41

as “Transaction Oriented,” “Message Oriented,” “Object / Component Ori-

ented,” “Real-time Oriented,” and so on. While the following design is clearly

a member of the “Object Oriented” family of solutions, our approach differs

from the traditional goals of middleware. We choose to hide only the mechan-

ics of the distribution and present all of the potentially interesting properties

of the environment, including its many independent nodes, to the application

programmer as cleanly and clearly as possible. We feel that this gives the ap-

plication developer more control and flexibility while developing applications

and postpones preemptive optimization.

Since our middleware design and implementation directly reflect the

model, our discussion here mirrors the organization of Section 2.3. We begin

this section with our model of resources and an introduction to the predi-

cate and preference specification languages. The middleware’s analog for find-

Best(...) is presented in Section 2.4.4 and it’s approach to ensuring the strategy

invariants is discussed in Section 2.4.5.

2.4.1 Resource Model

In a middleware design, resources must be modeled with a uniform

interface that balances the needs of applications and the typical capabil-

ities of the discovery and routing protocols available in the environment.

The model in Section 2.3.1 calls for resources to be modeled as sets of

〈key , type, value〉 triples. Our design is targeted for a strongly typed lan-

guage, allowing us to infer the type at runtime from the value of each tu-

42

Resource
Object get(key)

Figure 2.13: Pseduo-code for the Resource Interface

ple. This reduces the design and implementation of resources to a set of

〈key , value〉 pairs, a very common structure referred to as an “associative con-

tainer” or (more commonly) a “Map”. Once a resource is acquired, its values

are typically accessed as resource.get(key), and the type can be inferred

by resource.get(key).getType(). A pseudo-code version of the Resource

interface is shown in Figure 2.13.

This brings us to the problem of acquiring the resource. Since most

resources are accessed through a network, the components that we directly

interact with are typically local proxies that forward messages to remote re-

sources. Each proxy’s implementation is specific to the particular combination

of network and discovery protocols used to deploy the resource. To unify this

diversity, we define an interface for our middleware to communicate with these

protocols. The Discovery interface in Figure 2.14 separates the deployment-

time specifics of protocol interactions from the development-time concerns

addressed by our middleware design. Implementations of the Discovery in-

terface provide a mechanism to supply resources (local, proxied, or otherwise)

through the member method Discovery.find(...). Once we discuss the

middleware’s versions of the predicate and preference functions, Section 2.4.4

below discusses how the find(...) method is used in our design.

In addition to providing resources on-demand, many discovery and

43

Discovery
Collection<Resource> find(...)
addListener(listener)

Figure 2.14: Pseduo-code for the Discovery Interface

DiscoveryListener
onConnect(resource)
onDisconnect(resource)
onValueChange(resource)

Figure 2.15: Pseduo-code for the Discovery Listener Interface

routing protocols also provide support for asynchronous notification of node

arrivals, departures, and updates to remote values. To use this functionality,

a client typically registers a listener with the discovery mechanism or with

the resource itself. Figure 2.15 presents the DiscoveryListener interface

used by the Discovery implementations to make these asynchronous notifica-

tions. Like the Discovery interface, the primary purpose of this interface is

to provide a single coordination mechanism between the middleware and the

discovery protocols available at a specific deployment. The notification events

passed to the middleware are used to maintain the session invariants, a process

detailed in Section 2.4.4. When direct support for listeners is not provided by

a discovery protocol, it can be approximated by a Discovery component by

periodically polling the network’s membership and values to detect changes.

2.4.2 Resource Predicate Specification

The resource predicate acts as a filter to limit resources considered

for inclusion in an application session. Traditional network applications use

44

A → attribute name
V → value
O → == | ! = | > | >= | < | <=
T → ∅ | T T | V
U → (A O V)|(A in {T})
S → ∅ | U | (S and U) | (S or U)

Figure 2.16: Predicate Specification Language Grammar

addresses or unique identifiers to limit the potential resources. In pervasive

computing networks, these addresses and ids are not always well known, and

often we rely on attribute-based descriptions of remote resources. Some dis-

covery and routing protocols support this type of selection, but ultimately

it is the responsibility of the middleware to ensure the resources returned to

the client meet the requirements of the predicate. Thus, the simple language

defined here is designed for use by the middleware, but may be translatable

to some discovery protocols. Furthermore, this simplistic language is intended

to support the first generation middleware implementations. We expect the

development of more elaborate structures to support more elaborate formulas

to be proposed as the technique is field tested.

The grammar of the current language is shown in Figure 2.16. Here

we define two comparison methods (within U), one for each of the allowed

value types in our simple tuple-based model. To limit a resource based on

a numerical value, the programmer needs only to specify an attribute name

(A), a comparison operator (O), and the target value (V). For example, the

specification "altitude > 2000" will restrict resources to those that have a

45

numerical value for altitude that is greater then 2000.

To limit a resource by a character string value, the in operator is used

with a set of possible values. A common use of this comparison operator is to

limit resources to a particular type. For our concrete curing example above,

the programmer would use a predicate of "type in {"humidity"}" to limit

the search to resources whose type attribute has the string value "humidity".

We anticipate the need for other operators and other value types in the future

(for example the not-in operator), but the current language design is limited

to just this functionality.

Numerical and string value restrictions can be combined using the log-

ical and and or operators, which are subject to standard rules for order of

operations, allowing a full range of predicates to be formed. In this design,

nested expressions are not yet supported ("(A or B) and C" would have to

be expanded to "A and C or B and C"), but this feature will be incorporated

into future versions of the design.

2.4.3 Resource Preference Specification

The current resource preference specification language is designed to

be very similar to the predicate language above. It too is specified with lim-

ited capabilities while the design is being developed and will be extended as

experience guides us. As with the predicate language, the preference specifica-

tion may be passed along to underlying technologies if they support discovery

based on application-level concerns.

46

A → attribute name
O → + | −
U → A O
S → ∅ | U | S U

Figure 2.17: Preference Specification Language Grammar

The preference specification language shown in Figure 2.17 is made up

of a series of attributes, each of which should be evaluated for any pair of

resources, until a preference for one resource is established. The preference

attributes are evaluated in the order they are specified, giving precedence

to the attributes appearing earlier in the expression. Since some attributes

are “better” when they are larger (i.e., bandwidth) and some attributes are

“better” when they are smaller (i.e., latency), each attribute is annotated with

the sorting parity to be used.

As mentioned above, the user specifies his preference for larger or

smaller values by using a plus (+) or minus (-) sign after the attribute name.

For example, the specification (latency−, bandwidth+) would indicate a pref-

erence for resources that are quicker to respond (smaller latency), and a sec-

ondary preference for larger bandwidth in the case of equal latency.

The application session determines preference by comparing pairs of

resources. The evaluation of the preference function retrieves the attribute

values for each of the resources. For numerical values, a subtraction is suf-

ficient to detect differences. The specification of a domain-specific ordering

for non-numeric values is a future research task. Currently, the default string

47

comparison operator provided in the programming language is used.

2.4.4 Resource Selection Algorithm

With the definitions of the resource predicate and preference languages

above, the client can now describe his definition of “best” to the middleware. In

this section we describe how a middleware should implement the findBest(...)

function defined in Section 2.3.5. In the next section we will discuss how the

various sessions are built and maintained.

To describe our algorithm and implementation of findBest(...), we

begin with a very basic case and then build on it to incorporate more com-

plex configurations. In this basic case, let us assume all resources we wish

to communicate with are local to the middleware. That is, all resources are

components in our memory space and we can retrieve references to them by

calling Discovery.find(...). Given this, the “best” resources are selected

by applying the predicate specification to filter the resources, applying the

preference specification to order the selected resources, and then pruning the

remaining resources to the right number. This process is outlined in pseudo-

code in Figure 2.18. In this figure, the parameters predicate and preference

are executable versions of the predicate and preference specifications provided

in the languages described above.

If we wish to use resources provided over a network, we must consider

the performance implications of this algorithm. Fortunately, many existing

discovery protocols support some of the selection features required by the

48

List findBest(ResourcePredicate predicate,
ResourcePreference preference,
Integer maxSize,
DiscoveryListener listener) {

List temp = new List();

List connectedResources = discovery.find(...);

for (Resource resource : connectedResources)
if (pred.evaluate(resource))
temp.add(resource);

sort(temp, pref);

return temp.subList(0, maxSize);
}

Figure 2.18: Pseduo-code for the basic algorithm to implement findBest(...)

model. For any discovery mechanism used by the middleware, there are three

basic cases to be considered:

• Full Support: When Discovery supports the use of predicate, pref-

erence, and limits, the findBest(...) implementation simply dele-

gates entire requests directly to Discovery. Returned resources are

wrapped by proxy components to provide the Resource interface,

but are otherwise untouched. To support these implementations, the

ResourcePredicate and ResourcePreference artifacts that are passed

to Discovery provide the raw (text) expressions provided by the client.

• Partial Support: If Discovery supports only some of the selection

behavior (e.g., predicates but not preferences), the remaining func-

49

tions must be implemented locally. By wrapping the resources re-

turned by Discovery after applying the selections that are supported,

the ResourcePredicate and/or ResourcePreference can be applied to

complete the process.

• No Support: When Discovery does not support any selection of re-

sources, all remote resources must be wrapped with a proxy providing the

Resource interface and passed through the same basic algorithm shown

in Figure 2.18. A näıve proxy component which forwards individual re-

quests for resource values could easily lead to large amounts of network

traffic as sessions are created. However, Discovery implementors must

already be familiar with the discovery, routing, and data-exchange prop-

erties of the network and can play to its specific strengths to minimize

costs.

Using the techniques outlined above, we can now select the best re-

sources given any one implementation of Discovery. However, we expect to

find many situations when multiple network technologies are present in the

same environment (e.g., RMI and CORBA). In these situations, multiple im-

plementations of Discovery can be provided to the middleware representing

and interfacing with the available technologies. To merge the results of m

Discovery components, a single façade component is created to call each in-

stance in turn, generating m lists of resources. The Façade then selects the top

maxSize elements from these lists using the ResourcePreference to compare

50

Session
init(...)
Resource get(int i)
int size()

Figure 2.19: Pseduo-code for the Session Interface

Resources.

Regardless of the Discovery implementation and its providence, the

middleware may also supply a DiscoveryListener to monitor changes in the

network. Using this mechanism, the middleware can be notified when there

are changes in the network that potentially invalidate the “best” property of

the returned list. We will see how this feature can be used to implement the

strategy invariants.

2.4.5 Session Creation and Maintenance

In the previous section we have shown the middleware analog to the

model’s findBest(...) construct. In this section we present the analog to

the model’s session S[...], the Session interface, shown in Figure 2.19. The

Session’s get(i) method returns an object supporting the Resource inter-

face described in Section 2.4.1. The session’s size() method returns the size

limit defined when the session was created. If there are fewer resources then

the session’s limit, the session is padded with null values. For example, if the

session was created with a limit of 10, but only 1 resource could be found to

match the predicate, get(3) will return null.

Like the operational models of Section 2.3.6, each of the middleware’s

51

strategy components calls on findBest(...) to provide the initial resources.

Continuing with the operational model, the middleware then updates these

assignments to ensure the strategy’s invariant. To implement the await con-

struct, the component maintaining the assignments must be able to intercept

both the application’s use of resources and any connectivity or value changes

in the networks. By implementing both the Session and DiscoveryListener

interfaces, a single component can receive all the events that trigger the await

conditions of the operational models. In our design we specify three of these

components: QuerySession, ProviderSession, and TypeSession. As their

names imply, each component is imbued with the logic to support a single

connection maintenance strategy and serve as the actual implementation of

the session component that is returned to an application.

The remainder of this section is devoted to summarizing how each of

these components implements the respective operational model. For brevity,

synchronization and mutual exclusion concerns are omitted from this discus-

sion. In Section 2.5 we will present some details of an actual implementation

of this design. The source code for the evaluation implementation [75] does

provide the necessary guarantees and can be consulted for more details.

2.4.5.1 Query Session

In this section we describe the QuerySession component, an implemen-

tation of the Query Session Operational Model (Figure 2.6) that guarantees

the Query Session Invariant. As its name implies the QuerySession compo-

52

nent not only ensures the invariant but models the session S[...] as well. A

pseudo-code version of the QuerySession is shown in Figure 2.20. When a

new instance is created, the results of the findBest(...) method are stored

in an internal list, resources. To protect this collection, the client’s access

to these resources is mediated by the Session.get(i) method. Here, the

content of the resources list at index i is returned to the client and replaced

with the null value. This behavior effectively models the first await state-

ment in the operational model. The second await statement is triggered by

calls to the onDisconnect() method inherited from the DiscoveryListener

interface. When this event is fired, the appropriate element of the resources

array is also set to null.

2.4.5.2 Provider Session

Like the QuerySession component, the ProviderSession component’s

implementation is drawn directly from the operational model for the session

strategy of the same name. An outline of its implementation is shown in

pseudo-code in Figure 2.21. As with the QuerySession, we initialize an in-

ternal list of resources with the results returned by findBest(...). At the

same time, we also create a list of boolean variables connected to represent

the “connected-ness” of the resource with the same index in resources. The

size of the session is always the same and set from the initial list of resources.

Since there may be fewer resources available, size will range between zero and

the limit specified by the client.

53

QuerySession implements Session, DiscoveryListener

List resources;

init(...) {
resources.addAll(findBest(...));
size = resources.size();

}

get(int i) {
tmp = resources.get(i);
resources.set(i,null);
return tmp;

}

onDisconnect(resource) {
i = resources.indexOf(resource);
resources.set(i,null);

}

Figure 2.20: Pseduo-code for the Query Session

54

When clients access the session’s elements via Session.get(i), the

status in connected is checked. If the resource is connected, it is returned

from the resources list. Otherwise, null is returned. The values in the

connected list are maintained by intercepting the events that are indicated

by the await statements in the operational model in Figure 2.9 by implement-

ing the DiscoveryListener interface. When resources are connected to, or

disconnected from the network, the index of the resource is found by search-

ing the resources list. The matching value in connected is then updated to

reflect the new status.

2.4.5.3 Type Session

The TypeSession component represents a session implementing the

Type Strategy for connection maintenance. As with the other Session com-

ponents, we begin our pseudo-code implementation of the TypeSession in

Figure 2.22 with a call to findBest(...). However, in this invocation, we

ignore the session limit specified by the client and greedily select as many re-

sources as there are available. We then use the implementation of get(i) to

restrict the client from accessing elements of the resources list with indexes

larger then the size limit.

Using this technique, the internal list resources can contain more

resources then are allowed by the session size limit. Thus, when a resource

is removed, the remaining elements are still in order, and the get(i) method

still returns the correct resources for every index. The implementation of the

55

ProviderSession implements Session, DiscoveryListener

List resources;
List connected; // list of booleans

init(...) {
resources.addAll(findBest(...));
connected = new List(resources.size());
connected.setAll(true);
size = resources.size();

}

get(int i) {
if (connected.get(i)) {
return resources.get(i);

} else {
return null;

}
}

onConnect(resource) {
i = resources.indexOf(resource);
connected.set(i,true);

}

onDisconnect(resource) {
i = resources.indexOf(resource);
connected.set(i,false);

}

Figure 2.21: Pseduo-code for the Provider Session

56

third await statement in the operational model, the method onDisconnect,

relies on exactly this property.

The second await statement of the operational model (Figure 2.12) is

implemented in the body of onConnect. Here the resource is checked against

the session’s predicate and added to the internal list which is then sorted.

The final await statement is implemented in the onValueChange method and

blends the techniques used by the other methods. If a value change causes a

remote resource to be included in the session, then it is added to the internal

list resources. If it is already there, this addition is skipped, but either way

the list is re-sorted to maintain the invariant. If the resource fails the predicate,

it is removed from the internal list and the invariant is naturally preserved.

2.5 Model and Middleware Evaluation

The Application Sessions Model proposes a new way of interacting with

the remote resources available in pervasive computing environments. In this

section we qualitatively evaluate the feasibility of the model and the middle-

ware design by building a prototype middleware implementation of the model

and using it to implement the sample applications described in Section 2.1.

However, before introducing the middleware implementation, we first

describe how applications would be implemented if the data were available

locally and the Application Sessions Model was not needed. We refine this de-

sign in the following sections to describe how the middleware’s components are

incorporated. We begin in Section 2.5.2 by showing how sensors are exposed

57

TypeSession implements Session,Listener

List resources;

init(...) {
resources.addAll(findBest(...));

}

get(int i) {
if (i < min(resources.size(), maxNum)) {
return resources.get(i);

} else {
return null;

}
}

onValueChange(resource) {
if (predicate.evaluate(resource)) {
if (! resources.contains(resource)) {
resources.add(resource);

}
sort(resources);

} else {
resources.remove(resource);

}
}

onConnect(resource) {
if(predicate.evaluate(resource)) {
resources.add(resource);
sort(resources);

}
}

onDisconnect(resource) {
resources.remove(resource);

}

Figure 2.22: Pseduo-code for the Type Session

58

Figure 2.23: Component overview for application with local sensors

as Resources. This is followed in Section 2.5.3 with a very brief description of

how predicate and preference functions are parsed and evaluated. Using pred-

icates and preferences to locate resources is discussed in Section 2.5.4 which

also discusses how the connection maintenance strategies are implemented.

Since this document is a poor medium for a detailed tour of the source code,

we offer only an annotated overview in the following sections using figures and

pseudo-code. Complete documentation of the source is available the code [75]

and should be referred to for a detailed inspection.

2.5.1 A Basic Application

An overview of the target applications is given in Figure 2.23. The raw

data to be presented in this configuration is provided by Function components.

59

These components generate values based on the system’s clock (aka wall-clock

time). Several Functions are gathered together and assigned attribute names

to create Sensor components. Sensors serve as synthetic representations of

physical sensors deployed in a hypothetical pervasive computing environment.

The canonical example of a Sensor in this section is a location-aware tempera-

ture sensor. The Sensor component to model this example would incorporate

four Function components, one for each of four attributes: latitude, longitude,

altitude, and temperature.

When Sensor components are directly accessible and managed directly

by the application without the Application Sessions Model, they are simply

collected into a List or Array component held by a Sensor GUI component.

This component is responsible for transforming the data for human consump-

tion. To maintain a consistent view of the sensors, this GUI component must

periodically query or register as listeners of the Sensors to collect new data

and update the display. In this architecture, the Application component

merely serves as a container for the GUI component and will be reused in the

sections below.

The Application, Sensor, and Function components in this section

are used primarily as surrogates for their counterparts in an actual deployment.

Implementations of these components provide the most basic functionality and

should not be considered as part of the model’s evaluation.

60

2.5.2 Sensors as Resources

The first adaptation made to the application design above is the removal

of the glaring assumption of local resources. To simulate network access of

remote resources, the Sensor component is wrapped by a ResourceSensor

component. The ResourceSensor encodes all data provided by the target

Sensor as character strings which are in turn encoded as binary data. This

data is returned through the Resource interface discussed in Section 2.4.1.

The deconstruction of the Resource interface into a byte-oriented network

protocol is a simple matter that is not germane to the evaluation and omitted

for brevity.

As ResourceSensor components are created, they are added to a

ResourcePool component. The ResourcePool approximates the network

on which remote resources would normally be found. In this capacity, the

ResourcePool supports the Discovery interface to expose its Resources to

clients. By using the Discovery and Resource interfaces, the client imitates

the separation of components that exists in a real deployment. The simulation

is simplistic but effective and sufficient for the purposes of evaluation discussed

above.

With these substitutions, our example application takes the form shown

in Figure 2.24 and loosely models traditional remote resource interaction sys-

tems. From this point we are able to apply the Applcation Sessions Model to

provide high-level metaphors to the client.

61

Figure 2.24: Direct access to Sensors replaced by Resources and Discovery

62

2.5.3 Evaluating Predicates and Preferences

The ability to support complex predicates is a fundamental component

of the overall structure of the Application Sessions Model. For example, a

predicate requiring a temperature reading from a sensor east of some latitude

can be specified as "exists(temperature) && latitude > 8". To provide

robust support, we incorporated an external library [29] for parsing and eval-

uating these mathematical expressions. Once parsed, variables named in the

preference expression can be gathered from the predicate under evaluation

(e.g., “temperature”, “latitude”). The parsed expression is then evaluated

with these values, and the boolean result used to determine the resource’s

inclusion in the session.

The majority of the middleware components involved in evaluating the

preference function for each resource is dedicated to choreographing interac-

tions with the external library and handling any exceptional cases. When an

exceptional case is encountered (i.e., an expression cannot be evaluated for

a particular resource), the resource is considered to have failed the predicate

and will not be included in the session. This case can occur when a resource’s

attribute is missing or uses an incompatible type (e.g., using a string instead

of a number).

When evaluating the client’s preference function, the current implemen-

tation only supports numerical attributes in the preference function. While

somewhat limiting, this restriction also simplifies the evaluation of the prefer-

ence function. The preference specification language in Section 2.4.3 is easily

63

parsed, and the appropriate attributes are gathered from the candidate re-

sources. The values supplied by resources are parsed as numbers and then

compared to produce the proper ordering. When a resource’s attribute cannot

be parsed, it is regarded as “equally preferred” to resources with the same

unparseable attribute and “less preferred” than resources that are successfully

parsed.

2.5.4 Selecting Resources

The selection of resources in this prototype implementation focuses on

the most basic case, described as “No Support” in Section 2.4.4. In this case,

the Discovery.find(...) implementation is not able to perform any of the

selection functions and simply returns a complete enumeration of available

resources. Clearly this is sub-optimal for network performance, but it serves

as a baseline solution that can be improved upon.

The middleware’s selection component draws directly from the pseudo-

code description in Figure 2.18. The resulting findBest(...) method is then

used by each of the session implementations to initialize the session elements.

The complete implementations [75] include additional code to implement nec-

essary exclusion and ordering properties.

To make the middleware library a bit more intuitive, a SessionFactory

component is also introduced. The SessionFactory is charged with allocating

system and network resources. It also provides the newSession(...) method

to the client, accepting the four application session parameters and returning

64

Figure 2.25: Overview of an application using Application Sessions

a completely configured Session component. Once the underlying compo-

nents are configured, the SessionFactory and Session interfaces constitute

the entire client-facing API. Figure 2.25 shows how the original application

architecture has been adapted to the middleware implementation along with

the original components for comparison.

In the current prototype implementation, the newSession(...) method

requires a Map parameter to explicitly declare the data types of each of the

parameters referenced in the predicate. This parameter is an artifact of early

implementations and has not yet been removed. A full implementation should

65

not require this information in order to correctly evaluate resource predicates.

2.5.5 Intelligent Construction Site Applications

Using the Application Sessions Middleware described above, the Intelli-

gent Construction Site applications introduced in Section 2.1 were prototyped

to test the feasibility of the model and middleware. As the reader might ex-

pect, the applications do indeed benefit from the abstractions provided by

the Application Sessions Model, and the middleware design proved to be well

suited for the model. In this section we will show how the core functionality

of each hypothetical application was abstracted for the evaluation, and show

the resulting artifacts.

For each application, we create a suite of sensors to represent a hypo-

thetical Intelligent Construction Site. We define five sensor types to provide

the required data for the applications. We create 25 instances of each sensor

type and assign them to locations on the five-by-five grid shown in Figure 2.26.

The locations on this grid are labeled (A, B, C...) for discussion purposes only.

In addition to a sensor specific value (e.g. humidity for the Humidity sensors),

each sensor also provides its location as latitude, longitude, and altitude.

For the sake of simplicity, we use some unnamed unit of latitude and longitude

to measure these values using short numerical values. Table 2.2 summarizes

the attribute names and types provided by each sensor.

The VOC Detector sensor type models a sensor designed to detect dan-

gerous concentrations of volatile organic compounds (VOCs). For our current

66

Type Values Type
Temperature celcius real
Humidity humidity real
VOC Detector safe boolean
Crane Load loaded boolean
Crane Movement moving boolean
all of the above latitude real

longitude real
altitude real

Table 2.2: Synthetic Sensor Types and Attributes

Figure 2.26: Sensor locations on hypothetical construction site

67

example, these sensors only report a boolean value for the attribute “safe”

which is consistent with commercially available sensors. The Crane Load sen-

sor returns true when the associated hypothetical crane is carrying a load.

Likewise, the Crane Movement sensor returns true when the crane is moving

a load. Since a crane cannot move a load it is not carrying, these sensors are

linked in the simulation. Specifically, the Crane Movement sensor can only

return true when the Crane Load sensor is also returning true.

The raw data provided by the sensors is generated by Function com-

ponents as discussed in Section 2.5.2. To model stationary sensors, the three

attributes representing location are always provided by constant functions.

The other attributes (celcius, humidity, safe, loaded, and moving) cycle

between values on a periodic basis. To ease the visualization of the global sen-

sor view, shown in Figure 2.27, we use sinusoidal function based on wall-clock

time for the real-valued attributes. To a large extent, attributes’ functions

are chosen for convenience and are not meant to represent actual events on a

construction site.

Experiment 1 - Query Session / Curing Concrete

The first application we will examine is “Monitoring the Curing of

Concrete”. The core requirement of this application is to periodically request

Temperature and Humidity values from a specific region in space. Using the

Application Sessions Model to perform each request, we repeatedly establish

Query Sessions using the code in Figure 2.28, and pass the results to a GUI to

68

Figure 2.27: View of all sensors on hypothetical construction site

be displayed. Here the predicates specify "longitude > 8" which limits the

session to sensors east of 8 degrees longitude. Both calls to newSession(...)

limit the session to 10 resources and pass a Map of attribute names to their

expected data types as the parameter “types”. This map is an implementation

artifact discussed in Section 2.5.4.

The humiditySession in this example uses the preference function

"humidity+" to sort the humidity values from smallest to largest. This as-

sures us that the lowest humidity readings, those that indicate a problem,

will appear first in the session. In the snapshot of the application shown in

Figure 2.29, the humidity session is plotted on the right half of the window.

As expected, the values are arranged from smallest to largest as a result of

the preference function. Likewise, the "temperatureSession"’s function in-

dicates a preference for larger values. Thus the temperature readings shown

on the left half of the application window are sorted from largest to smallest.

69

DoQueryButtonListener
Session humiditySession =

sessionFactory.newSession(Strategy.Query,
"longitude > 8",
"humidity+",
10, types);

Session temperatureSession =
sessionFactory.newSession(Strategy.Query,
"longitude > 8",
"celcius-",
10, types);

gui.setHumidities(humiditySession);
gui.setTemperatures(temperatureSession);

Figure 2.28: Establishing the Query Sessions for the Curing Concrete Monitor
application

Figure 2.29: Snapshot of Curing Concrete Monitor example application

70

We should note that in our hypothetical construction site, this predi-

cate selects 25 sensors, five of each type. In this case, it is our GUI component

that selects only the resources with the correct attribute. There are a num-

ber of predicate variations that can make this selection before the resources

are passed to the GUI. Furthermore, rather then plotting values in a GUI,

a commercial application for monitoring curing concrete might alert person-

nel when certain thresholds are violated. In this case, an alternate predicate

could include the thresholds to limit the session to only the sensors reporting

troublesome conditions. The application would take action when the session

contains any non-null entries.

Experiment 2 - Provider Session / Crane Monitor

In our second study, we model the “Crane Monitor” application. Like

the curing concrete application above, this application retrieves values from

sensors on a periodic basis. However, the interval between samples is much

shorter, and the application’s time frame much longer. For this study we

implement the application using the Provider Session in Figure 2.30. By using

the exists(...) function, these predicates select resources explicitly by an

attribute they provide. The preference function sorts the sensors from north

to south and then east to west for convenience.

In addition to the variations in sensor readings, the sensors also expe-

rience variations in connectivity. In our hypothetical scenario, each sensor is

71

DoQueryButtonListener
Session craneLoadSession =
sessionFactory.newSession(Strategy.Provider,
"exists(loaded)",
"latitude+, longitude+",
10, types);

Session craneMotionSession =
sessionFactory.newSession(Strategy.Provider,
"exists(moving)",
"latitude+, longitude+",
10, types);

gui.setCraneLoads(craneLoadSession);
gui.setCraneMotions(craneMotionSession);

Figure 2.30: Establishing the Provider Sessions for the Crane Monitor appli-
cation

randomly disconnected from the network 20% of the time. This leads to spo-

radically missing values in our application’s interface. In the snapshot shown in

Figure 2.31, the first five resources of the craneLoadSession are shown in the

two left-most columns while the first five resources of the craneMotionSession

are displayed in the right-most columns. The missing values for the fifth crane-

load resource is evidence that the sensor was disconnected when the snapshot

was taken.

Experiment 3 - Type Session / Danger

The third application, “Danger Monitor”, uses the Application Sessions

Model to vigilantly monitor for dangerous conditions that are declared when

the application starts. For this purpose we create two TypeSessions, one

72

Figure 2.31: Snapshot of Crane Monitor example application

to monitor VOC Dectors and another to monitor cranes. We establish both

sessions with a predicate to select sensors in the general vicinity of the user.

For example, if the user is located at 3 units of latitude and -3 units of longitude

in Figure 2.26, we establish the sessions using the code in Figure 2.32. Here,

the first four terms of the predicates select sensors within 5 units of latitude

and longitude from the user. This will select the sensors at the locations

marked M, R, Q, and L in Figure 2.26. The last term in each predicate selects

only sensors reporting conditions of which the user needs to be aware. In this

example, the preference function is left blank for simplicity.

Once the sessions are created, they are passed to a GUI to be displayed.

At the time the snapshot shown in Figure 2.33 was taken, the user was in

particular danger: all four cranes and all four VOC detectors were indicating

dangerous conditions. In a more realistic deployment, the sessions would be

empty most of the time, making for a less interesting example. Again, a

73

InitDangerApp
Session vocSession =
sessionFactory.newSession(Strategy.Type,

"latitude > -2 && latitude < 8 &&
longitude > -8 && longitude < 2 && danger",
"", 10, types);

Session movingSession =
sessionFactory.newSession(Strategy.Type,

latitude > -2 && latitude < 8 &&
longitude > -8 && longitude < 2 && moving",
"", 10, types);

Container appPanel = new DangerGui(vocSession, movingSession);

Figure 2.32: Establishing the Type Sessions for the Danger Monitor applica-
tion

commercial application would likely not chose bar-graphs to report the results

of sessions, instead choosing a more intuitive mechanism. For example, an

unobtrusive visual alert for moving cranes, but an unavoidable buzzer and

audio alert for VOC warnings.

2.6 Summary

In the examples describing the Application Sessions Model and the

middleware prototype, we have focused on attributes that describe the remote

resources themselves. However, the pervasive computing environment provides

us with a wealth of other information about itself that could be used for selec-

tion. For example, the network latency between the host and resource is not

necessarily descriptive of the resource itself; rather it is a trait of the link(s)

74

Figure 2.33: Snapshot of Danger Monitor example application

between them. In ad-hoc networks, latency if often dominated by the number

of links in each multi-hop route. The desire to access this information can be

directly or indirectly satisfied by some routing and discovery protocols. Alas,

complex and application specific characterizations of the environment are not

often available. For this functionality we have developed a solution in the

Evolving Tuples Model described in the next Chapter. Using this technology,

resources can be selected based on latency and hop-count as well as metrics

such as “average latency per hop” or even “reachable without traversing a

cold node.” Exposing these rich metrics to the application developer’s predi-

cate and preference functions considerably promotes the value of the resulting

Application Session and in turn, the application itself.

75

Chapter 3

Evolving Tuples Model

In the previous chapter we presented a model to help application devel-

opers reason about their pervasive computing environments. The Application

Sessions Model provides a smooth and intuitive mechanism to manage the

long-term conversations with the resources in these environments. One of

the key features in this technique is the declarative definition of acceptable re-

sources via the resource predicate. Not only does the predicate allow the model

to select the initial set of resources for a session, but it enables the potential

addition of newly available resources (in the case of the type session strategy).

The utility of a session is thus highly dependent on the expressiveness of the

predicate that supports it.

Using a centralized technique for predicate evaluation would likely re-

sult in a simple and straightforward solution. For example, a client simply

gathers all data values from the environment and applies the predicate locally.

Unfortunately, centralized approaches are poor choices for pervasive comput-

ing networks. The dynamic nature of both the connectivity and the values

makes the process of gathering a consistent snapshot of the network difficult.

Additionally, pervasive computing environments are particularly likely to con-

76

taining power-restricted devices. Needlessly transmitting data from these de-

vices would exhaust batteries prematurely. For these reasons a centralized

approach is not a viable solution for the general case. Instead, a distributed

solution for predicate evaluation is required for the majority of environments

to apply the Application Sessions Model.

There is a wide range of existing research focused on the general field

of distributed resource discovery. Attempts have been made to adapt tradi-

tional (centralized) techniques to pervasive computing environments [10, 25,

53, 54, 78]. These approaches either push resource information preemptively

or wait for queries to be flooded through the network. Some solutions use

overlay networks and specialized messages to bolster performance while others

piggyback information on existing routing or data messages to reduce power

usage. These approaches typically require remote resources to be identifiable

through the use of unique identifiers, network addresses, or technology specific

service interfaces.

The exchange of identifying information amongst loosely-related orga-

nizations and their devices is too high an expectation for field deployments.

For example, participants will not be likely to negotiate and agree on service

interfaces and network addresses before arriving at the Intelligent Construc-

tion Site. We feel that approaches which only expect semi-structured data are

more likely to succeed in environments where the relationships between the

participants are semi-structured themselves.

77

In this chapter, we present the Evolving Tuples Model designed for re-

source discovery in pervasive computing networks. This model is specifically

designed to support the resource predicate structure of the Application Ses-

sions Model by evaluating potential resources using a language similar to that

proposed in Section 2.3.2. As the Evolving Tuples Model has developed, it

has proven to also be applicable outside this scope. Specifically, the model is

useful for prototyping certain classes of distributed algorithms such as route

discovery.

Before detailing the model in Section 3.3, we first present some back-

ground information on previous tuple-based models in Section 3.2. We then

show how the the Evolving Tuples Model is used to perform the resource dis-

covery that originally drove the development of the model in Section 3.4. The

additional prototyping functions are shown through example in Section 3.5.

Section 3.6 discusses an implementation of the model and experimental results

collected from feasbility studies performed in both hardware and software sim-

ulation. While we believe the current model to be a significant contribution

to the field, we also detail several potential model extensions and implemen-

tation concerns in Sections 3.7. Related work from the field is discussed in

Section 3.1.

78

3.1 Related Work

The early tuple space designs [30] and implementations [13] for Linda

targeted parallel processing environments. Specifically, the atomic insertion

and removal operations on tuple spaces relied on locks provided by shared

memory. The Lime [62] system introduced distributed tuple spaces that pro-

vided the same atomicity guarantees across a truly global tuple space spanning

many devices in a mobile ad-hoc network. This adaptation of tuple spaces

allows for a very abstract representation of the network underlying a perva-

sive application, but requires that tuples be delivered to consumer processes

without interacting with the “lower levels” of the network. We believe that

exposing information from these “lower levels” as cross-layer information in

our approach allows for more powerful applications at the cost of a slightly

more complex representation.

In a similar approach, mobile agent systems also combine behavior with

the data that traverses the network. Often these implementations choose to

extend the tuple model, as its minimalist nature makes it particularly well

suited for encoding for transmission.

MARS [14], for example, associates a tuple space to each host in a group

of physically connected nodes. Mobile agents can roam from host to host,

interacting with other agents through the locally available tuple spaces. MARS

employs reactivity in its tuple spaces to allow context information to impact

some of these interactions. However, the context-awareness is embedded in

these reactions, which are coded as separate entities from the data they impact.

79

In our approach the tuples themselves carry the behavior that creates context-

aware adaptation. Like MARS, Lime relies on reactions external to the tuple

space to create context-aware adaptation, while we focus on embedding this

adaptation directly in the coordination model.

The Agilla [28] system also provides a single tuple space per node to

mobile agents which roam from node to node. In addition to local access

though, Agilla allows agents to insert and remove tuples from tuple spaces

located on other nodes. In this way, Agilla can use tuples as network messages

between processes, but any behavior must be transmitted to remote nodes

as a separate mobile agent. However, Agilla does target sensor networks and

thus most all pervasive computing deployments can support the functionality

required to support its agents. While not cited directly, these minimal require-

ments of node capability make the system attractive to long-lived and mixed

technology deployments.

TOTA [57, 58] has a more integrated approach to incorporating context-

awareness into tuple spaces. In this system, tuples are automatically moved in

a dynamic network according to contextual properties. TOTA subroutines can

adapt to external properties in the environment and to the content of the tuples

to make decisions regarding, for example, routing. While these subroutines can

be carried within the tuple, the tuples effectively become empowered mobile

agents. The evolving tuples model, on the other hand, maintains a tuple

structure imposed over the data and the behavior in combination, maintaining

the easy-to-use benefits of traditional tuple space approaches.

80

In general, these aforementioned tuple based systems provide complex

behavior but often place undue burden on either the developer or the hosts.

Systems like Agilla require the developer to understand very low-level pro-

gramming languages, while systems like TOTA and MARS require host to

support high-level languages (i.e., Java). We feel that the evolving tuples

model strikes a balance between the skills required to use the system, and the

capabilities that are required of the network hosts.

Another similar technology is active networking [77], in particular

capsule-based systems [80]. The biggest difference with the evolving tuples

model is the target environment. Active networking targets relatively power-

ful routers in wired networks to enhance performance and offer new services

while evolving tuples are intended for relatively resource poor nodes in (typ-

ically) wireless networks. Additionally, the active networking community has

struggled with the security trade-offs associated with allowing mobile code to

modify network elements. Since the evolving tuples model only allows formulas

to modify the tuple itself, the security issues are reduced significantly.

While rooted in different technologies, there are a number of other

designs to reduce the efforts required to develop pervasive computing appli-

cations. For example, Weis et al. [79] use visual programming techniques to

reduce the learning curve for hobbyist developers. Other approaches [8, 34]

provide additional abstract programming interfaces to manage complexities

that can be hidden from the developer.

Centralized querying semi-structured data as mentioned above has a

81

number of established characterizations and solutions [1]. The application of

these techniques to distributed resource discovery has also been studied in the

literature [7, 17]. Approaches such as mobile agents [11, 21] can distribute semi-

structured data queries by embedding calculations into the network messages.

We expand on these approaches to arbitrarily combine data elements from

multiple sources to satisfy discovery requests.

As we have mentioned above, the evolving tuples model aims to reduce

the cost of developing applications through reducing the need for recompila-

tion and redeployment. Other work has tackled these problems as well. For

example Dyer et al. [22] deploy nodes in pairs to allow wired access to run-

ning applications, but also allow new applications to be more easily deployed.

We anticipate that these techniques to be complementary to the evolving tu-

ples model, and might be combined to further ease software development for

pervasive computing.

3.2 Background

The evolving tuples model is an extension to the large body of re-

search on the use of tuple spaces for ubiquitous and pervasive computing.

Originally introduced as part of the Linda [30] system, a tuple is simply

a name followed by an ordered list of typed data fields. Tuples are col-

lected in a bag-like1 data-structure called a tuple space. The insertion and

1As with a bag (or multiset), a tuple space can contain multiple copies of a tuple, and
tuples are unordered.

82

removal operations, tuplespace.out() and tuplespace.in() respectively2, are

atomic operations, making the tuple space a natural mechanism for buffered

communication between parallel processes. For example, a process monitor-

ing a sensor can package a temperature reading as the tuple 〈 “tempera-

ture”, (string,“celcius”), (int, 26) 〉 and add it to a shared tuple space. Another

process that uses temperature sensor readings can simply remove this tuple

from the tuple space and extract the relevant data.

In the original tuple space design, a process removing a tuple from

the tuple space provides a pattern to which candidate tuples are compared.

This mechanism allows a tuple space to store both temperature and wind-

speed readings (for example) using the self-describing nature of the data to

provide type-safety. These patterns take the form of a name followed by an

ordered sequence of actual or formal values. A tuple that matches a given

pattern has the same name and the same number of fields as the pattern,

and has equal values for any actuals and has values with the the same type

as any formals. To continue our temperature sensor example above, the pro-

cess using temperature sensor data would specify a pattern of 〈 “tempera-

ture”, (string,“celcius”), (int, ?) 〉 where “celcius” is an actual that must be

matched exactly, and (int, ?) is a formal specifying only the type of the second

field of a matching tuple.

2Tuple space operations are named from the perspective of the process. To remove a
tuple from a tuple space, a process is moving the data into its own scope and thus the
operation is called in(). Likewise the operation to move data from the process to the tuple
space is named out().

83

While forming a simple mechanism for passing data from one process

to another, this tuple space design requires that both the data producer and

data consumer are maintained together. Any alteration to the name, format,

or types of the generated tuples will cause them to no longer match the pattern

used by other processes. Since a pervasive computing environment typically

consists of devices that are not under the control of a single administrative

entity, we must assume that tuple formats and tuple patterns are likely to

change independently over the lifetime of a deployment.

To address this issue some models, such as LighTS [9] and ELights [46],

decouple tuple fields from their position in the tuple by assigning unique names

to each field. The types and values of a tuple’s fields are accessed using these

names instead of fixed positions. If a new field is added, or an unused field is

removed, consumers of the tuple will continue unaffected by the changes. As we

will explain in Section 3.3, our evolving tuples model also adopts this technique

to gain the same decoupling between the implementations of producers and

consumers.

These data producers and consumers are not only different processes,

but are typically located on different nodes of a connected network. Since

processes are already exchanging well formated data as tuples, simply allowing

nodes to pass these tuples as network messages is a natural mechanism for

interprocess coordination.

However, using traditional systems the behavior of the applications that

consume the data must still be specified a priori so that an application gener-

84

ating tuples can provide the right data to the consumers of tuples. Evolving

tuples reduce this level of coupling by directly embedding some of the behavior

we expect from nodes into the tuple itself. Specifically, rather then requiring

network nodes to adhere to a pre-specified recipe for manipulating the data

as it is transmitted across the network, evolving tuples allow tuple creators to

provide this behavior at runtime.

3.3 The Evolving Tuples Model

The evolving tuples model consists of three major components: the tu-

ple format, the evolution process, and the standard deployment. The tuple

format describes how data and behavior are specified while the evolution pro-

cess describes how the behavior is applied. The standard deployment describes

the instantiation of the elements that applications can expect from other nodes

in the network.

3.3.1 Evolving Tuple Format

The format of an evolving tuple is a simple extension to the original

Linda tuple design. The name assigned to each tuple is dropped in favor of

names assigned to each of the tuple’s fields. Each field is then extended to

include a formula that governs the behavior of the field, and indirectly, the

behavior of other fields and the behavior of the tuple itself. The name and

formula field elements are each discussed in detail in the following sections.

85

3.3.1.1 The name element

The addition of a unique name to each field in a tuple decouples the im-

plementations of the tuple producer and consumer from each other. Instead of

depending on the exact format of a tuple, applications can depend on the data

that the tuple should provide. For example, if one application requires tuples

with fields A and B while another requires fields B and C, both applications

can correctly identify and consume a tuple with fields A, B and C. In addi-

tion, tuples with an extra field D can be introduced without affecting either

application, and the removal of field A would only affect the first application.

To ensure unambiguous use of data, we constrain the names of the

fields to be unique within a tuple. The uniqueness of field names allows us to

unambiguously reference a field by using only the field’s name. This allows

a tuple to be viewed as a look-up table of sorts; given a name, the type and

value of a field can be returned by simply inspecting the associated field with

a matching name element.

With this addition, we must also alter the format of the tuple templates

used by tuple space operations. In this model we choose to adhere to the

original Linda specifications and allow the user to match either the exact value

(actual) of a field, or the type of the field’s value (formal). This small set of

predicate functionality suits our application requirements and avoids adding

unnecessary complexity to the matching function. The format of a template is

86

simply the name, type, and value of each of the fields that must be matched:

〈 (name, type, value), ←Actual
(name, type, ∅), ←Formal
. . . 〉

The template’s name and type elements have the same meaning as in

a tuple. The third element can take either the null value (∅) or a concrete

value. The null value effectively turns the field into a formal, indicating that

the matching function should only be concerned with the type. If a concrete

value is provided, the field is an actual and thus the matching function requires

the candidate field to contain the same value. In either case, the field formulas

(discussed below) are ignored when matching tuples to templates.

The matching function M used by the in and read operations is defined

for a tuple θ and a template τ as:

M(θ, τ) ≡ 〈∀c : c ∈ τ :: 〈∃f : f ∈ θ
∧ f .name = c.name
∧ f .type = c.type
∧ (c.value = f .value ∨ c.value = ∅)〉3〉

For each field in the template, the tuple must contain a field with the

same name and type. If a template field also specifies an actual, the field must

3In the three-part notation: 〈op quantified variables : range :: expression〉, the variables
from quantified variables take on all possible values permitted by range. Each instantiation
of the variables is substituted in expression, producing a multiset of values to which op is
applied, yielding the value of the three-part expression. If no instantiation of the variables
satisfies range, then the value of the three-part expression is the identity element for op,
e.g., true if op is ∀ or ∅ when op is set.

87

have a value equal to the one specified. Note that a template may match a

tuple with more fields then the template. Specifically, the fields in a template

must only be a subset of the fields in any matched tuple. This flexibility allows

applications to use data from different sources, provided a consistent naming

scheme for the fields of interest.

3.3.1.2 The formula element

In addition to the name element, the Evolving Tuples Model also adds

a formula element to each tuple field. The formula associated with a field

describes how the field’s value can be automatically updated or evolved. We

will discuss the formula element in detail shortly. Combined with the type

and value elements of the traditional tuple model, the format of an evolving

tuple takes the form:

〈 (name, type, value, formula),
(name, type, value, formula),
. . . 〉

The tuple’s producer specifies the field formulas to manage updates to

the values of each field and to impart some amount of behavior to the tuple as

it passes through a network. Previous to the evolving tuples framework, tuple

values were either immutable, or altered only according to strict pre-existing

protocols deployed to network nodes. By moving the logic of value evolution

to the tuple, its producer is free to alter his tuple’s behavior without altering

the protocols already deployed to the network.

88

Name Description
+ − ∗ / Arithmetic operators
< ≤ > ≥ Comparison operators
= 6=
&& || ! Logical operators (and, or, not).
if(x,y,z) Conditional statement: takes the value y

when x is true, the value z otherwise.
exists(x) returns the value true if a variable by the

name x is present, the value false otherwise.
append(x,y) appends the value y to the end of the

value x. The value has the list type.
elementAt(x,y) returns the yth element from the list x
newUuid() returns a new universally unique id.

Table 3.1: Formula Operators

In an extension to the original Linda model, Carriero and Gelernter

described a similar mechanism called active tuples [15] which contained fields

to be evaluated by the tuple space itself. This evaluation produces just a single

value for the tuple field, and is only available after the evaluation is complete.

The field values of an evolving tuple are always available and can be repeatedly

updated by their associated formula, producing a significantly different effect.

Though it can be empty or null (∅), a field’s formula is nominally an

arithmetic expression. Since tuple fields are uniquely indexed by their names,

formulas can reference the values of peer fields through the field’s name. In

addition to normal arithmetic operators, a few simple logical functions are also

provided. Table 3.1 outlines the operators that we will be using in the sections

below.

89

Additionally, we allow expressions to access elements of a dictionary-like

construct which we will call the evolution context. The evolution context serves

as a lookup table for sensor readings, configuration information, and other

contextual information related to the tuple’s current location. The evolution

context is provided by the process which is evolving a tuple. Since this data

is indexed by names that are not necessarily unique from the names of tuple

fields, formulas use the prefix “ec.” to differentiate them from references to

peer tuple fields. By combining values taken from the context and values

already stored in the tuple, a formula can synthesize raw data values into

abstract specific application values.

3.3.2 Evolution

When a tuple is evolved, each field’s formula is evaluated and the ex-

isting value is replaced with the result. Since formulas typically combine both

the previous value and the values provided in the evolution context, the new

value is viewed as the subsequent evolution of the field’s value. Consider the

following example in which a field in an evolving tuple periodically encounters

new evolution contexts. In this example, the tuple aims to maintain a field

that contains the maximum value for the temperature field in any evolution

context. This field can be defined as:

〈 . . .,
(maxTemp, int, 0, if (maxTemp > ec.temperature,

maxTemp, ec.temperature)),
. . .〉

90

When this tuple is evolved, the maxTemp field’s value will be assigned

the greater of the evolution context’s temperature field (ec.temperature) and

the field’s current value (maxTemp). Each time the field is evolved with a larger

temperature value, the field’s value is updated to reflect its “environment,”

effectively maintaining the maximum observed value for temperature.

This formula is relatively simple, and is not effected by the order in

which it is evaluated relative to its peers. Let us consider for a moment how

a peer field maxTempCount might be effected by the order of evolution:

〈 . . .,
(maxTempCount, int, 0, if (maxTemp > ec.temperature,

maxTempCount, maxTempCount + 1)),
. . .〉

The intention of this field is to keep track of how many times a new

maxTemp value has been assigned. So long as this field’s formula is evaluated

before the maxTemp field is evaluated, the formula works. However, if max-

Temp is evaluated before maxTempCount, the formula will never increment its

value.

To determine the order of evaluation for an evolution step, we must

create a standard that is universal to all nodes. Various evaluation orders are

available which would yield a simple-to-implement standard (e.g., “alphabeti-

cally by field name”), but we prefer a standard that is not only implementable,

but intuitive also.

91

To derive evaluation order, we use a dependency tree and evaluate fields

that are depended upon before the fields that depend on them. In addition

to being intuitive, this technique ensures that the values appearing in the

resulting tuple are the values used to compute the other values in the tuple,

ensuring a consistent data structure.

This ordering does, however, impose the additional requirement that

formulas do not create circular dependencies. We make one exception to this

rule to allow a formula to reference itself. In this case, the value used is the

field’s previous value. We feel that the restriction on circular dependencies is

more than offset by the deterministic and intuitive behavior that it provides.

Given this restriction, we can formalize the evolve() operation using the

following definitions.

First, let f refer to a field in a tuple (i.e., one name, type, value,

and formula combination). Within a field, f.formula refers to the code that

specifies that field’s evolution. Within the formalization that follows, a formula

has three components. The first specifies the names of the sibling fields other

than itself that the formula relies on. The second specifies the names of the

evolution context fields that the formula relies on. The third specifies the

executable behavior. That is, a formula, φ can be represented as the triple:

φ = 〈D,E, behavior〉. D and E are specified simply as sets of names. These

dependencies are extracted from the formula when it is parsed by the evolve()

operation and are easy to extract based on notation. We also define the

following piece of shorthand notation: names(θ), which allows us to access

92

the set of names contained within the tuple θ.

Let θ′ be the result tuple that is constructed incrementally during evo-

lution from the original tuple θ. Fields in the tuple evolve one at a time, and

as each field evolves, it is added to the result tuple θ′. Initially, θ′ contains no

fields.

Before formally defining tuple evolution, we define what it means for a

single field f in the tuple θ to be enabled, i.e., to be capable of being evaluated:

f.enabled ,
f.formula = ∅ ∨ f.formula.D ⊆ names(θ′)

The above states that a field’s formula is enabled exactly when either

no evaluation is required (the formula is ∅) or the sibling fields that a formula

depends upon have been added to the new tuple θ′ (i.e., they have already

been evaluated for this evolution step).

We now define evolution of a tuple in terms of single steps that evolve

one field at a time, ultimately generating a new tuple (θ′) that has exactly the

same field names and formulas as the original tuple (θ) but potentially new

values:

93

θ′ := evolve(θ, ε) ,

θ′ = newTuple()
while f := f ′.(f ′ ∈ θ ∧ f ′.enabled ∧ f ′.name 6∈ names(θ′))4 6= ∅ do

if (f.formula.E ∈ names(ε)) then
new value := exec(f.formula, f.value, θ′, ε)
θ′.add(〈f.name, new value.type, new value, f.formula〉)

else
θ′.add(f.name, f.type, f.value, f.formula)

fi
od
while f := f ′.(f ′ ∈ θ ∧ f ′.name 6∈ names(θ′)) 6= ∅ do
θ′.add(〈f.name, f.type, f.value, f.formula〉)

od

Here ε is the evolution context tuple provided by the calling process.

The guard on the first loop in this definition requires that there exists a field in

the original tuple that is enabled and has not yet been evaluated for this evo-

lution step. As long as such a field exists (i.e., the non-deterministic selection

results in a non-null value), the selected field is subjected to a second guard

requiring the formula’s dependencies on the evolution context to be satisfied.

If these dependencies are present, the field is evolved, and the result of the

evolution is placed in the result tuple θ′. Since the evolution context tuple

ε does not change during evolution, any formula that fails the second guard

cannot be evaluated during this evolution, and the field is simply copied with

its original value to the new tuple. The evolution of a particular field (either

evolved or copied) may enable additional fields in the original tuple whose

formulas rely on the new field. When there are no more enabled fields in the

4The construct x.(condition) non-deterministically returns any value that matches the
condition and will return ∅ (null) immediately if no value can be found [5].

94

original tuple, the second loop copies any remaining unselected fields to the

result tuple; their evaluation cannot be enabled in this context.

3.3.3 The Deployment Model

Though evolving tuples and the evolution procedure itself can be used

directly by an application, the true power of the evolving tuples model is real-

ized when nodes in a network each provide a consistent processing scheme for

tuple-based messages. The model presented in this section is a reference design

that represents the conceptual flow of tuples through each node. While the

details of any particular implementation may differ, the externally observable

behaviors of each should match those of this reference design.

The reference model contains six components: three processes (Receive,

Director, Send) and three tuple spaces (inbound, outbound, application). This

model is depicted in Figure 3.1 and described below. We first discuss the cen-

tral Director process, which will also introduce the three tuple spaces. We

then describe how tuples are sent to and received from the network by the

Send and Receive processes respectively.

3.3.3.1 The Director Process

When a host receives a tuple, the tuple is first processed by the Receive

process. The details of this process are described below, but for now we can

assume that this process deposits each tuple into the host’s inbound tuple

space. The evolving tuples deployment model includes a Director process

95

Figure 3.1: Flow chart of standard deployment model

that removes tuples from this tuple space and performs evolution on each.

This evolution operation is provided with any data that the node can make

available to the tuple, including sensor readings, as the evolution context.

After evolution, the tuple is inspected for a destination field. This

field is used by the model to guide the tuple to its target. If the tuple’s

destination field contains either the node’s address or the broadcast address,

it is destined for this node and the Director process deposits a copy of the

tuple in the application tuple space. If the tuple needs to be forwarded (because

the destination field contains either a different node’s address or the broadcast

address), the Director process deposits a copy of the tuple in the outbound

tuple space, where another process Send (described below) will deliver the

tuple to its destination. If the tuple does not contain a destination field, it is

ignored. The behavior of the Director method is formalized as:

96

Director ,
while true do

θ := inbound .in(∅)
θ′ := evolve(θ, evolution-context)
if (θ′[destination].value = my-address or
θ′[destination].value = broadcast) then

application.out(θ′)
fi
if (θ′[destination].value 6= my-address)5then

outbound.out(θ′)
fi od

In this definition the Director process first selects a tuple from the

inbound tuple space. Here the tuple pattern ∅ is used to match any tuple in

the tuple space. The selected tuple θ is then evolved using the node’s evolution

context, and the new tuple is assigned to θ′. This tuple is then deposited into

one of (or both) the tuple spaces as discussed above. Since the tuple space

does not maintain order, the Director process does not guarantee fairness

when processing tuples.

3.3.3.2 The Receive Process

The use of the reserved broadcast address (typically -1) in a tuple’s

destination field designates that the tuple should be sent to every node in

the network. The only significant complexity of the Receive process is a

mechanism for filtering out duplicate broadcast messages. That is, a node that

receives duplicate copies of the same broadcast message should not reprocess

it. Because the evolving tuples model equates messages with tuples, this means

5Here we assume my-address 6= broadcast

97

that the node should not deposit the “same” tuple into the inbound tuple space

twice, even if the tuple has been evaluated in the meantime.

In our model, we accomplish this by assigning each tuple a unique

identifier, or tuple-id. This id should be universally unique and can generally

be generated using the traditional combination of some unique node id, (e.g.,

IP or MAC address) and a monotonic counter, though any procedure that

generates universally unique identifiers is acceptable. Access to the identifier

generation mechanism must be provided to both the evolution process (e.g.,

the newUuid() function in Table 3.1) and any application creating new tuples.

To suppress duplicate broadcast messages, the Receive process simply

maintains a collection of tuple-ids from recently received broadcast tuples.

Any broadcast tuple received that contains an tuple-id from this collection

is considered a duplicate and simply discarded. The collection of tuple-ids

should be pruned to prevent unbounded growth. The mechanism used for this

function is not defined as part of the Standard Deployment Model.

As our notation indicates, the tuple-id is simply another field in the

tuple. An implication of this choice is that, just like any other field, the value

can actually be changed by its associated formula. In effect, the tuple can be

replaced by a “new” tuple which, in all respects other than the id, is identical

to the old tuple.

98

3.3.3.3 The Send process

In an evolving tuples network, messages between nodes are simply the

tuples themselves. Tuples from the Receive process or any application that

need to be sent out on the network interface are placed in the outbound tuple

space. Since messages require a destination, the reference model assumes each

tuple has, at a minimum, a destination field. The producing application should

initialize the value of this destination field to the address of a neighboring node,

or to the broadcast address. The Send process continuously mines the outbound

tuple space, removing each tuple and transmitting it to the node indicated by

the destination field. If this transmission fails, the tuple is redeposited into

the outbound tuple space where it may be selected at a later time for another

attempt. Formally, this process can be stated as:

Send ,
while true do

template := 〈(destination, int, ∅)〉
θ :=outbound.in(template)
if θ[destination].value 6= ∅ then

success := send(θ, θ[destination])
if (success = false) then

outbound .out(θ)
fi

fi
od

The Send process non-deterministically removes a tuple from the out-

bound tuple space. If the tuple has a null (∅) destination, the Send process

ignores (i.e., discards) it. Otherwise, the process delivers the tuple to the

99

address specified by the destination field. If this delivery fails, rather then

immediately reattempting to send the tuple, the process deposits the tuple

into the outbound tuple space from which it will eventually be reselected6.

Note that throughout the Director and Send processes, tuples are

handled based solely on their destination fields. Since the field’s value can be

updated by its formula, the tuple can provide its own routing information. This

self-routing functionality can be leveraged by a tuple author to elicit elaborate

behavior from a tuple such as way-point based routing, or even request-reply

routing without any support from the application layer. We will examine an

example of this in section 3.4.

3.3.4 Safety Properties

We have not yet performed a detailed analysis of the safety properties of

the Evolving Tuples Model, but a cursory examination yields a few interesting

observations. For example, the duplicate message elimination mechanism relies

on values provided by tuples’ tuple-id field. Since this field can be updated

by the tuple itself, it is easy to design a tuple that will never be dropped by

the Send process as a duplicate. Combined with a destination field directing

the node to always broadcast the tuple, a broadcast-storm can be unleashed

accidentally (or maliciously) on a network of evolving tuple nodes.

6Here we are making no assertions about how the send method delivers the tuple. Specif-
ically, the Send process does not limit the delivery to single-hop transmissions but rather
uses whatever technique the underlying network interface chooses to support. Control over
this decision an area for future investigation.

100

While the network is exposed to this and other safety issues, we believe

that nodes themselves and the evolution process in particular are not subject

to these types of attacks. Evolving Tuples must be passed in network messages

and therefore must have a finite size. This implies that the functions contained

in the tuples must also have finite length. Since the evolving tuples formulas

do not allow looping constructs, their evaluation must terminate in a finite

number of steps.

Though the evolution process can be considered safe, the risk to the

network due to broadcast-storms and related issues implies that any Evolving

Tuples network exposed to the public should take precautions. Research on

security and safety issues for Mobile Agent and Active Network technologies

can provide a basis for this future work.

3.4 Resource Discovery with Evolving Tuples

In this section we describe the use of Evolving Tuples for resource dis-

covery. The primary goal of this application of evolving tuples is to provide

support for the Application Sessions Model’s predicate functions, which can be

used to select resources from remote clients. When nodes share resources with

clients, they must be able to receive resource requests and send appropriate

replies. Often the process of matching resources to requests requires informa-

tion from application level processes (e.g., physical location) as well as from

various levels of the networking stack (e.g., link latency, buffer saturation).

This context information is often restricted to the values originally built into

101

the resource discovery protocol. If a certain attribute (e.g., manufacturer) was

not specified during the protocol’s design, a resource request may not be able

to restrict resources based on its value. Evolving tuples allow us to collect

context information by name from any provided context and allows the tuple

author to combine these values using mathematical and logical operators to

form a variety of selection and preference behaviors.

In this section, we first show a discovery request expressed as an evolv-

ing tuple, explain the various fields, and show how the fields provide context-

aware resource discovery. As resource discovery tuples are broadcast across

the network, they will make their way into the application tuple space. At this

point, the task-specific process Discovery defined below in Section 3.4.2 is re-

sponsible for processing these tuples and generating reply messages. After an

explanation of how this process is modeled, we include a step-by-step example

of a discovery tuple as it passes through a sample network.

To reduce the complexity of the example, we assume that the Send

process on the nodes of this network has access to a reliable multi-hop routing

mechanism for unicast addresses, and 1-hop neighbor delivery for the broadcast

address. We will explore some alternatives to this assumption in the next

section when we discuss multi-hop source routing with Evolving Tuples. The

selection or restriction of multi-hop routing could be considered an application

level concern, and is one of the tasks left for future work noted in Section 3.7.

102

3.4.1 Crafting a Resource Request

A resource discovery request, like other evolving tuples, is a self-routing

structure that gathers data and changes its values as it progresses through a

series of evolutions. The tuple will cross a multi-hop network and will be

evolved in the context of potentially matching resources. If a suitable resource

is found, the tuple switches itself from a request to a reply and sends itself

back to the original source.

Table 3.2 shows an example tuple that a requester could create to lo-

cate a VOC detector within walking distance of a given location. To support

the “Danger Monitor” example application in the previous chapter, a tuple

like this could be used to satisfy the resource predicate. This request has em-

bedded within it all of the information necessary to evaluate the request (in

the context of potential resources) and to return replies to the source. Be-

cause this definition is under the control of the requester, many options can be

changed depending on application requirements. For example, the reply could

be dispatched to a node other than the requester itself. Below we explain each

field and formula in the example, which assumes a broadcast address of -1.

• source: The network address of the node sending the resource request.

In our example, this value will be used as our destination for the reply

sent when the request finds a matching resource.

• distance: A simple distance calculation to bound the resource request

geographically. This field actually contains the square of the difference

103

Name Value Formula
source 5 ∅

distance 0 (30.2867− latitude)2+
(−97.7364− longitude)2

match ∅ if (match 6= ∅,
match,
(distance ≤ 0.00001 and

ec.resource-type = “voc-detector”))
msg type “discovery-request” if (match = true,

“discovery-reply”,
“discovery-request”)

destination -1 if (match = ∅,
if(distance ≤ 0.00001, -1, ∅),
if(match = true, source, ∅)),

resource-uri ∅ if (resource-uri = ∅ and match = true,
ec.uri,
∅)

Table 3.2: Example discovery tuple

104

in latitude and longitude, which serves as a reasonable approximation

for this application (and location). When the field is evolved by pro-

cesses without location information, the latitude and longitude fields are

not present in the evolution context, preventing the formula from be-

ing evaluated. In this case, the field retains its previous value, the best

available approximation.

• match: Serves as a simple switch to notify other fields that a resource

has (or has not) been found. The initial value is set to ∅ to indicate

that no resource has been evaluated. When the formula is evaluated,

the value becomes either true to denote a suitable resource, or false to

denote an unsuitable resource. We use an if statement to preserve the

field’s value if it is non-null.

• msg type: A flag used to retrieve resource discovery tuples from the ap-

plication tuple space. Initially, and any time before the match field is

set to true, the message type is “discovery-request”. Once the tuple has

found a matching resource, the message type is changed to “discovery-

reply”. Since this reply tuple will eventually be returned to the source,

a process there can use this value to retrieve a successful resource dis-

covery. The msg type field may also be used by other application level

processes, for example a print daemon might use tuples with a msg type

of “print-job”.

105

• destination: Used by both the Director and Send processes to guide the

tuple. Until a resource has been evaluated (i.e., match = ∅) the desti-

nation is a function of distance. We set the destination to the broadcast

address if the next hop will not exceed our scope, and set the value to

null (∅) if it will. While the destination field is set to the broadcast ad-

dress, the Director process will deliver a copy to both the application

and outbound tuple spaces. Tuples deposited into the application tuple

space will be subject to the discovery resolution methods described in

Section 3.4.2 below. Tuples deposited into the outbound tuple space will

be forwarded by Send appropriately. After a tuple has been through

discovery resolution, the destination is a function of match. If match is

true, we set our destination to the value of the source field. If match is

false, we set our destination to null, causing the Send process to drop

the tuple.

• resource-uri: originally null, this value is set to the URI7 of the matched

resource. The if statement guards the value from being updated once

it has been set and only sets it when a match has been found. This

information can be used by the application to actually use the resource

(e.g., as a member of an Application Session).

As shown above, the data and logic necessary for selecting resources

is completely contained within the tuple with the exception of the requisite

7Uniform Resource Identifier

106

resource attributes. This reduction frees the host system from any deep in-

volvement in the process of discovery, and, as we will see next, the interface

between the host and tuple is reduced to just the destination and msg type

fields.

3.4.2 Discovery Resolution

In our model, the Director process evolves request tuples using gen-

eral information about the node in its evolution context. However, this in-

formation does not include the specific resources that the node is exposing

to external clients. Instead, this information is handled by a higher-level pro-

cess, Discovery. The Discovery process mines the application tuple space for

resource requests, and evolves each tuple using a different evolution context

populated with information about a shared resource. As shown in Figure 3.2,

each tuple removed from the application tuple space is evolved once for each

shared resource, and the results are deposited into the outbound tuple space.

Instead of directly depositing the new tuples into the outbound tuple

space, the Discovery process could filter the tuples based on their match field,

only passing on those that are actual matches. However, this introduces ad-

ditional coupling between the tuple format and the process implementation,

which we are trying to avoid. For this reason, we simple let the Send pro-

cess drop the tuple due to a null destination field. We formally describe the

Discovery application process as:

107

Figure 3.2: The Discovery process

Discovery ,
template := 〈(msg type, string, “discovery-request”)〉
while true do

θ = application.in(template)
res [] := getResources()
for each r in res

θ′ := evolve(θ, r)
outbound .out(θ′)

rof
od

This definition contains only the procedural framework for discovery,

while all of the logic of matching resource attributes and determining resource

satisfaction is delegated to the formulas of the evolving tuple. In this definition,

we explicitly use tuples to provide the evolution context functionality. These

tuples representing the properties of each resource are provided by the method

getResources(), which could in turn retrieve its tuples from a separate tuple

108

Figure 3.3: The dissemination of discovery request tuples followed by the return
of discovery reply tuples

space (not shown). By using a “probing group read”8of this “resources tuple

space,” the operation would return all of a host’s resources in a single step.

3.4.3 Discovery Example

In this section, we will step through the entire process of sending and

returning resource discovery tuples. For this example we will use the network

depicted in Figure 3.3. The discovery tuple from Table 3.2 is sent by node 5

through the entire network, but we will concentrate on the tuples that pass

through nodes 1 and 2.

The process begins when an application on node 5 creates a resource-

discovery tuple. This tuple is inserted directly into the outbound tuple space

8a “probing group read” is a common tuple space extension that atomically returns copies
of all tuples in a tuple space that match a template.

109

where it is removed by the Send process described in Section 3.3. The Send

process reads the value of the destination field (the broadcast address -1) and

sends the tuple to each of the node’s neighbors (2, 3, 6, and 7). When this

tuple is received at node 2, it is handled first by the Receive process and then

by the Director process and encounters its first evolution.

This evolution is performed using an evolution context containing val-

ues describing the node itself. First the distance field’s formula shown in

Table 3.2 is evaluated which updates the current distance (squared) from our

office, for example 0.000001. Since the Director process’s evolution context

does not contain a resource-type entry, the dependencies of the match field

can not be resolved and it retains its current value (∅). The other tuple fields

(destination, msg type, and resource-uri) each depend on match, so they too

are not evaluated and retain their initial values.

After this evolution step is complete, the new tuple is inserted into both

the application and outbound tuple spaces. From the outbound tuple space, the

Send process will re-broadcast the tuple to all of the node’s neighbors, where

receptions of duplications of the same broadcast are handled as described

in Section 3.3. The tuple in the application tuple space is removed by the

Discovery process described in the previous subsection, which will then evolve

the tuple in the context of each of the resources available on the node.

For the purposes of discussion, we will assume that node 2 contains

only one resource, and the tuple describing it has a field named resource-type

with value “voc-detector.” The Discovery process removes the tuple from the

110

application tuple space and evolves the tuple with this resource’s description as

the evolution context. Since the distance field depends on context fields that

are not available, its value is not changed. However, since this field (distance)

and the evolution context field resource-type are both available, the match

field is enabled. When it is evaluated, the value for the match field is set to

true. This enables evolution of the remaining fields: destination, msg type,

and uri. The destination field is updated to the value of the source field (5),

the msg type field is set to “discovery-reply,” and the resource-uri field is set

to ec.uri (e.g., http://2:83/voc). The Discovery process then places this

evolved tuple into the outbound tuple space where the Send process will send

it to its new destination, node 5.

As mentioned previously, the Send process also sent the first evolution

of our tuple to node 2’s neighbors, or more specifically, to node 1. In our

example depicted in Figure 3.3, node 1 contains a matching resource which

causes the Discovery process to evolve a discovery-reply tuple and place it

in the outbound tuple space. However, if node 1 contains a resource with a

resource-type field that is not equal to “voc-detector”, the evolution will result

in a new tuple with a match value of false and a destination field of ∅. When

this tuple is removed by Send from the outbound tuple space, it is ignored

and dropped due to its null destination. In contrast, node 8 creates multiple

discovery-reply tuples for each matching resource hosted on the node. Each of

these tuples are inserted into the local outbound tuple space and are forwarded

individually to node 5.

111

When the discovery-reply tuples arrive at node 5, the applica-

tion that inserted the original tuple (or potentially another applica-

tion) will retrieve the reply tuples from its application tuple space using

in(〈(msg type, string, “discovery-reply”)〉). In our sample, the application

would then use the value in the resource-uri field to begin communications

with the voc-detector resources that were discovered.

3.5 Route Discovery with Evolving Tuples

While experimenting with the Evolving Tuples Model for resource dis-

covery, we have also found the model to be useful for prototyping certain types

of pervasive computing applications. In this section we demonstrate how the

model can be used for this purpose. Specifically, we incrementally derive a

route discovery protocol for pervasive computing in which each step in the

derivation adds additional functionality. This is not presented as a new proto-

col for study, rather we intend to demonstrate that the evolving tuples model

enables designers to rapidly implement and deploy functionality to validate

new behavior in situ.

In this study, we use source routing, a technique that has enjoyed sig-

nificant success in mobile computing due to its robust and autonomous na-

ture [19, 39, 43]9. In its simplest form, source routing requires the message

9A number of other routing techniques have also been shown to perform well, e.g.,
AODV [65] and DSDV [64]. We do not promote a particular protocol or style, but have
selected source routing to demonstrate our approach.

112

sender to include the message’s route through the network by specifying the

addresses of each intermediate node. This is typically accomplished by em-

bedding an ordered list of network addresses in the message header. Either by

cycling the addresses in this list, or by maintaining an index in the message’s

header, a relaying node can determine the next recipient in the path.

Before application data can be sent, source routing requires a sender

to discover a route to the destination. In mobile and pervasive computing

networks, this discovery is usually accomplished by flooding a route-request

packet through the network. As a node forwards the packet, it appends its

own address to an accumulating ordered list of addresses. This list represents

the path the route-request message has taken. Assuming bi-directional links

when the target node receives this tuple, it can simply reverse the path to send

a route-reply packet back to the original sender.

Our derivation starts with a simple source routing protocol and demon-

strates how it can be quickly and easily prototyped using the evolving tuples

model. We then incrementally extend this basic protocol to include additional

behaviors that eventually lead to a context-aware source routing protocol.

Each derivation of the protocol requires only changes to the routing applica-

tion’s tuples, without requiring any changes to the code already deployed on

nodes in the network.

113

3.5.1 Version 1: A Basic Protocol

To implement basic source routing functionality, we introduce an evolv-

ing tuple that performs the basic functions of route discovery. By modifying

field values to slightly change behavior, the same tuple is used for both the

request and reply. Initially we assume that connections are uni-directional,

an assumption supported by empirical results demonstrating that this is of-

ten the case in wireless networks [51, 52]. This assumption requires both the

route-request and the route-reply message to be flooded across the network to

build a route in each direction. For this reason, some route discovery algo-

rithms embed the route-reply message inside a new route-discovery message

sent from the target back to the source [43]. In the evolving tuples approach

below, the route from the source to the target and back is recorded in the

single route-request/route-reply tuple.

The original tuple deposited by the application is shown in Table 3.3

(the types of each field have been removed for brevity). In this table and

the examples below, we will assume that the initiating application resides on

a node with address 0 and it is attempting to discover a route to a node

with address 2. These values are stored in the source and target fields in the

evolving tuple. The onSource and onTarget fields are flags to be used by other

formulas in the tuple and signal that the tuple is being evolved upon its return

to the source node and the target node respectively. In a final version of the

tuple, these flags could be in-lined, but they are useful for demonstrating the

framework.

114

Name Value Formula
source 0 Ø
target 2 Ø

onSource false ec.address == source
onTarget false ec.address == target

route 0 append(route, ec.address)
destination -1 if (onSource, ec.address, -1)

id newUuid() if (onTarget, newUuid(), id)

Table 3.3: Route Discovery Tuple (Version 1)

The route field carries the accumulated route by appending the current

node’s address, ec.address, to the end of the route field’s current value at each

evolution. This includes both the trip from the source to the target, and the

return trip10. The destination field, as described in Section 3.3.3, is used to

send the tuple to the next node. Since both the request and reply must be

flooded across the network, the destination field is almost always the reserved

broadcast address -1. In the case that the tuple is being evolved on the source

node itself, we know that the tuple is a route reply and does not need to be

forwarded to any other nodes. In this state we set the destination to the source

node’s address, which prevents it from being deposited into the outbound tuple

space.

As mentioned in Section 3.3, the broadcast dissemination protocol on a

node in an evolving tuples network avoids duplicate transmissions by caching

the unique identifiers of the tuples it has recently transmitted. To differentiate

10The resulting path must be split into the out-bound and in-bound routes by the appli-
cation.

115

Figure 3.4: An example network for route discovery with Evolving Tuples

the route-reply tuple from the initial outbound route-request tuple, it must

have a different value for its id field before it is sent back to the requester. This

is accomplished by adding a formula to the tuple’s id field. When the tuple

changes from a route-request into a route-reply, the field’s formula assigns the

tuple a new id. For the purposes of our example, we use tuple ids composed of

two parts: the id of the node generating the tuple and a counter. For example,

the first tuple id generated by Node 0 in this example is 0.0. The second id

would be 0.1. The first tuple id generated on node 2 would be 2.0

Figure 3.4 gives an example. When the tuple in Table 3.3 is deposited

in Node 0’s outbound tuple space, it is broadcast to all neighboring nodes (i.e.,

Node 1). As the tuple moves through this simple network and is evolved, its

fields’ values change. The new values are shown in Table 3.4 as they would

appear after evolution on the node at the top of the column.

We briefly walk through the tuple evolution, using the evolutions from

Table 3.4 as an example. Since evaluation order is governed by dependency

assurance (see Section 3.3.2), even if the tuple fields are arranged in a different

116

Field Name Node 0 Node 1 Node 2 Node 1 Node 0
source 0 0 0 0 0
target 2 2 2 2 2

onSource false false false false true
onTarget false false true false false

route 0 01 012 0121 01210
destination -1 -1 -1 -1 0

id 0.0 0.0 2.0 2.0 2.0

Table 3.4: Route Discovery Tuple (Version 1) values as tuple propagates
through the example network

order, the evolution is deterministic, and the results would be the same. For

reference, the dependency tree for the formulas in our example is shown in

Figure 3.5. Since formulas can be evaluated once the fields they depend upon

are evolved, the order of evolution may be slightly different than described

here:

• source and target have no formula and thus depend on no other fields.

These values are retained.

• onTarget and onSource depend on the source and target fields and the

address value in the evolution context. If ec.address is present, then the

fields are evaluated. If the local node’s address matches the target or

source field values, then the onTarget and onSource fields are set to true

(respectively), otherwise the fields are set to false.

• route depends only on ec.address (and itself). This formula updates the

field value by appending the current node’s address to the ordered list

already stored there.

117

Figure 3.5: Route Discovery Tuple (Version 1) field formula dependency graph

• destination depends on the onSource field. Once this field is evolved,

the destination formula is evaluated. The field is usually set to -1 (the

broadcast address) with the exception of when onSource is true. In this

case we set the destination field to the current node’s address preventing

it from propagating any further.

• id depends only on the onTarget field. When the tuple is being evolved

on the target node, it needs to choose a new id to allow it to be re-flooded

across the network back to the source. Here the formula calls upon the

newUuid() function to generate a new globally unique identifier.

3.5.2 Version 2: Bidirectional Links

The first derivation of our prototype protocol targets networks in which

unidirectional links are present. When links are bidirectional, the target node

can eliminate the use of flooding for the route-reply message by inverting the

118

discovered path in the route-request message. As in the previous version, the

route field will store a history of nodes visited. However, in this version of

the tuple, there is no need to store addresses in the return trip. To make

this determination easier, we introduce the isReply field to determine in which

phase of route discovery the tuple is currently operating.

When the tuple is operating as a reply message, we use the addresses

in the route field to direct the tuple back to the source. Since we are no longer

broadcasting, the destination field must be updated on each evolution to be

the address of the next node in the route. The destination field formula in this

tuple has three cases. As in the previous version, if the tuple has returned to

the source, the destination is set to the source’s address. In the case that the

tuple is in the request phase (still searching for the target), the destination

is set to the broadcast address (-1). In the final case, we select the next

address from the previously assembled route using the value of the routeIndex

field, which reverses the route that was received at the target. This is done

by setting the index correctly at the target, and then decrementing it after

each hop along the route, or more specifically, on each evolution. If the tuple

is operating as a route request, the value is uninportant, so we set it to -1.

These fields and formulas are shown in Table 3.5.

In Table 3.6 we show how the values for the fields in this tuple evolve

as the tuple passes through the example network shown in Figure 3.4. For

brevity, we show only the fields that have been changed for this version of the

protocol. Note that in this version, the route list continues to collect node

119

Name Value Formula
source 0 Ø
target 2 Ø

onSource false ec.address == source
onTarget false ec.address == target

isReply false isReply || onTarget
route 0 if (!isReply || onTarget,

append(route, ec.address),
route)

routeIndex -1 if (isReply,
if (onTarget,

size(route)-2,
routeIndex-1),

-1)
destination -1 if (source == ec.address,

ec.address,
if (isReply,

elementAt(route, routeIndex),
-1),

)
id newUuid() Ø

Table 3.5: Route Discovery Tuple (Version 2)

120

Field Name Node 0 Node 1 Node 2 Node 1 Node 0
...

isReply false false true true true
route 0 01 012 012 012

routeIndex -1 -1 2 1 0
destination -1 -1 1 0 0

id 0.0 0.0 0.0 0.0 0.0

Table 3.6: Route Discovery Tuple (Version 2) values as tuple propagates
through the example network

addresses as the tuple is returned to the source.

3.5.3 Version 3: Context-Based Discovery

The first two versions of our mobile communication protocol assume

that a source node knows the network address of the destination (2). In per-

vasive computing networks (especially those that include nodes from different

administrative domains) applications may not have the benefit of knowing

each other’s addresses a priori [16, 82]. In the absence of this pre-shared infor-

mation, applications can use centralized or distributed service directories to

locate addresses of nodes which host specific information or services [24, 32, 53].

Another approach to service discovery is to use context-based information at

the routing layer [47, 82].

The next step in our derivation changes our previous protocol to one

that searches for the target based not on its address, but on a description of the

node. In the evolving tuples model, the attributes of a node are represented

as part of the context that node provides. In evolving tuples language, this

121

Figure 3.6: Route Discovery Tuple (Version 2) field formula dependency graph

means descriptive attributes are stored in the evolution context. As our route-

request tuple travels through the network, the task of determining whether

it has found a compatible target must now examine a descriptive attribute

rather then a prescriptive attribute. Specifically we will be searching for a

node with a temperature reading larger than 65 rather then a node with a

pre-determined address.

The evolving tuple that accomplishes this is shown in Table 3.7. We

simply update the formula for the onTarget field to examine the temperature

context field rather then the address field. We also set the initial value of the

target field to null (∅) to reflect the lack of a concrete target. The formula for

target is also updated to set its value to the network address of the current node

when the onTarget field is true. The formulas for the route and destination

fields can be selected from either of the previous tuple versions based on the

122

Name Value Formula
...

onTarget false ec.temperature > 65
target ∅ if (onTarget, ec.address, target)

...

Table 3.7: Route Discovery Tuple (Version 3)

Field Name Node 0 Node 1 Node 2 Node 1 Node 0
onTarget false false true false false

target ∅ ∅ 2 2 2

Table 3.8: Route Discovery Tuple (Version 3) values as tuple propagates
through the example network

presence of unidirectional links. Here we store the address of the matching

node as target. This value can be used to split the accumulated route into out-

bound and in-bound segments if we use Version 1’s technique. The values of

these fields as they pass through our sample network are shown in Table 3.8. In

this example, the route-request tuple is searching for a node whose temperature

value is greater than a specified threshold (65).

3.5.4 Version 4: Context Collection

Our derivations so far have generated a protocol that can find and

return network routes using either unique addresses or context information

to designate the route’s endpoints. Using elements from these protocol ap-

proaches, we can now use the evolving tuples model to derive additional pro-

tocols with more complex behavior. For example, applications designed for

pervasive computing networks are commonly interested in both the data stored

123

Name Value Formula
numTemps 0 if (exists(ec.temperature),

numTemps+1, numTemps)
totalTemp 0 totalTemp + ec.temperature

Table 3.9: Route Discovery Tuple (Version 4)

at the ultimate destination and data from intermediate nodes (e.g., average

temperature sensor readings). This is often addressed using protocol schemes

that aggregate data along paths in a network [55]. Such approaches have been

shown to have significant performance benefits when compared to contacting

each node on the route individually and then locally aggregating the results.

Along these lines, our next protocol derivation adds the ability to ag-

gregate contextual information encountered as a tuple traverses the network.

In this particular example we collect enough information to determine the av-

erage temperature of the nodes along the route. Similar approaches could be

used to collect other common aggregates (e.g., minimum, maximum, count,

etc.). In addition, the expressiveness of the evolving tuples formula language

allows the tuples to compute more complex, application-defined aggregates as

well, e.g., such as those defined in [72] and [36].

In the tuple shown in Table 3.9, the sum of all the temperatures en-

countered is maintained as the value of the totalTemp field, and the number of

temperature readings is maintained in the numTemps field. In this example,

the final calculation (totalTemp/numTemps) is left to the application receiving

the returned tuple.

124

Field Name Node 0 Node 1 Node 2 Node 1 Node 0
numTemps 0 1 2 3 4
totalTemp 0 60 130 180 230

Table 3.10: Route Discovery Tuple (Version 4) values as tuple propagates
through the example network

The values of our two new fields as the tuple propagates through the

network are shown in Table 3.10. Variations of this tuple could be created to

maintain separate averages for the route-discovery and route-reply phases if

the application required by simply using the existing isReply field as a guard.

While this is just a simple example of how an evolving tuple can be used

to provide in-network context collection and aggregation, it demonstrates the

power of the evolving tuples model. By using the evolving tuples model to

prototype such sophisticated communication schemes, protocol developers can

use and evaluate various context values quickly and effectively without requir-

ing a recompilation or redeployment process. It also allows the developers to

deploy and evaluate the protocols on test-bed networks in advance of creating

a full-fledged low-level implementation.

3.5.5 Version 5: Context-Based Flooding Optimization

In typical implementations of flooding based protocols, we often find

some sort of mechanism to limit the scope of messages to prevent the con-

sumption of valuable resources far from the area of interest. Normally, these

mechanisms are based on the number of network transmissions that the mes-

sage has been passed along (i.e., hop-count or TTL). Other metrics can also

125

Name Value Formula
...

inFloodRegion true ec.temperature > 35
destination -1 if (! inFloodRegion,

∅,
old destination formula)

...

Table 3.11: Route Discovery Tuple (Version 5)

be used to limit the distribution of flooded messages, for example nodes that

are aware of their physical location can incorporate geographical boundaries.11

Using evolving tuples, we can not only implement these simple tech-

niques, but we can combine a variety of contextual data to precisely limit

flooded messages to regions of interest on a per-message basis. As we have

done previously, we present a simple example in Table 3.11, but much more

complex variations are clearly possible. The approach here is to simply guard

the previous tuple formula for the destination field with a check to the in-

FloodRegion field. This field is initially set to true, but is set to false if the

tuple encounters a node where the temperature is below 30.

Taken together with the previous versions, our tuple now implements

source-based route discovery for networks with unidirectional links to find a

node whose temperature is greater then 65 without traversing any links to

nodes with temperatures less then 35. Additionally, the route’s average tem-

perature is easily calculated from the values collected as the message traversed

11The resource discovery example in Section 3.4 used location to define geographical
boundaries in this way.

126

the network.

3.6 Evaluation

Ideally, the evaluation of the model would be performed in a collection

of hundreds of heterogeneous devices deployed at a construction site or sim-

ilar environment. Unfortunately, a full-scale test is outside the scope of this

dissertation and modest simplifications must be made. In this section we will

detail the methods used to evaluate the use of evolving tuples for prototyping

in sensor networks and the results extracted from several experiments.

The first section below describes the Evolving Tuples Model imple-

mentation for the SunSPOT12, a mid-level sensor platform combining a micro

controller, an 802.15.4 [40] radio, a rechargeable battery, and several envi-

ronmental sensors. This implementation was used to validate the model and

the examples from Section 3.5. In the following section, we describe how the

core libraries from the SunSPOT implementation are re-used for large-network

simulations to provide quantitative results.

3.6.1 Implementation for SunSPOT platform

We implemented the Evolving Tuples Model for the SunSPOT [73]

platform. The SunSPOT project combines the Squawk Virtual Machine [74]

with wireless sensor hardware to create an ideal platform for prototyping new

12Small Programmable Object Technology

127

Figure 3.7: SunSPOT Device

pervasive computing applications. For reference, Figure 3.7 shows one of our

SunSPOT devices.

As if to prove the difficulty of application development for pervasive

computing applications, the first major implementation challenges were asso-

ciated with building and deploying any working program for the device. This

process requires locating and installing development tools from the vendor,

updating firmware, and a variety of configuration changes to support the new

device. Additional work was required to integrate the tools into a familiar

development environment and to port pre-existing code to the SPOT variant

of the Java platform. These challenges proved to be major stumbling blocks.

128

The source code for the Evolving Tuples prototype is divided into three

major libraries: Core, Math, and Evolving Tuples. In the sections below we

give and overview of the components in each of these libraries. The com-

plete source code and detailed documentation are available on the project

website [76].

3.6.1.1 Core Library

The core library delivers general purpose utilities and frameworks. Most

fundamentally it provides the Set or Bag data types which are not included

in the standard SunSPOT platform, but are the basis for Tuple Space im-

plementations. In addition to data types, support for daemon threads is also

absent, making background services difficult to create. This library also in-

cludes classes to support background services by abstracting away most of the

concurrency and lifecycle issues and delegating to “work” of the services to

clients. Properly synchronized and throughly tested implementations of these

classes are the primary focus of the core library.

However, as a secondary focus, we also addressed the biggest produc-

tivity challenge: a fast and robust unit test framework. While vendor tools

provide some support for unit testing, they assume tests are run only on the

SunSPOT devices themselves. As a result, the user is forced to deploy unit

tests to the device each time they are to be run, a process that can consume

several minutes per device. This effect is magnified by tests that require the

passing of tuples across a network which implies deployment to several devices.

129

Figure 3.8: Communications Stacks provided by the Core Library for high-
level applications on SunSPOT

To address these issues we designed a set of components to emulate a

datagram network that can be executed on either a desktop computer or the

SunSPOT devices themselves. The SharedObjectNetwork and MemoryNetwork

emulators allow clients to exchange object references and byte arrays respec-

tively. In both implementations network clients operate in separate threads,

and the platform’s native memory synchronization mechanisms are used to

mediate message delivery. The first component (SharedObjectNetwork) is

much simplier to configure and includes features that make it ideal for high-

level unit testing. The latter component (MemoryNetwork) is built to closely

resemble the SunSPOT Radiogram protocol to support low-level and system

tests.

130

As part of the unit test framework, a simple layered communi-

cation stack provides features commonly used by network applications.

Figure 3.8 shows how these components are typically assembled. Each

layer of the stack exports the same API so that they may be inter-

changed to provide alternate behaviors (except the CodingNetworkClient and

SharedObjectNetworkClient which accept object references rather then byte

arrays). A brief description of each component in Figure 3.8 is given below:

• CodingNetworkClient: Accepts object references from clients and en-

codes them into byte-arrays; decodes byte-arrays received from its dele-

gate into object references for consumption by clients.

• AppDataCoder: An application specific component provided to the Cod-

ingNetworkClient when the stack is initialized; this component handles

the details of the object / byte conversions independently of network

abstractions.

• NeighborhoodNetClient: Filters incoming and outgoing messages accord-

ing to a client-specified list of neighbooring nodes; this component allows

for an artificial topography to be imposed on the network during testing

and for neighborhood maintenance in deployments.

• SpotNickNameNetClient: Maps short (2 byte) network names to full

MAC addresses required by delegate layers; this component allows for

easier debugging and smaller routing tables. These optimizations are

potentially unnecessary in full deployments.

131

• MemoryNetworkClient / RadiogramNetworkClient: Manages the tech-

nology specific details of the connections to neighboring hosts.

• MemoryNetwork: Shared memory MAC / PHY implementation.

• Radiogram Port: SunSPOT 805.14.5 MAC / PHY implementation pro-

vided by the platform.

3.6.1.2 Math Library

The most difficult technical challenge proved to be the parsing and

evaluation of arbitrary mathematical expressions. To reduce errors and effort,

our final solution was to port a pre-existing open-source library [29] to provide

most of this functionality. Much of this source was automatically generated

by a parser generator which explains the relatively large size (∼3500 lines) of

this library’s source code. Unfortunately, the porting process removed many

of the original features due to the limited functionality available in the Squawk

JVM. The resulting code base was then wrapped in a simplifying API to bring

it to the proper level of abstraction for consumption by the Evolving Tuples

Library.

3.6.1.3 Evolving Tuples Library

This library (not surprisingly) implements all of functionality specific

to the Evolving Tuples Model itself. Tuples, tuple spaces, and the services that

move tuples through a node’s deployment are defined here. The choreography

required to create data structures and services is also provided by this library.

132

Figure 3.9: Evolving Tuples components added to the core communications
stack

The current implementations for the Receive, Director, and Send processes

delegate scheduling to the virtual machine through the use of threads. In

retrospect, an implementation providing its own process scheduling may have

provided more predictable and more testable behaviors.

The broadcast duplicate elimination mechanism described in Sec-

tion 3.3.3 is implemented in this library through the use of a communication

stack layer as shown in Figure 3.9. The IdFilteringNetworkClient retains

a cache of recently sent or received tuple ids and is able to drop any duplicate

messages before they are propagated to the core evolving tuples deployment.

3.6.1.4 Implementation Results

To validate the Evolving Tuples implementation, it was deployed on a

network of SunSPOT devices. Several small networks were used for testing and

debugging of the code, however for the discussion below we will focus on a spe-

133

Figure 3.10: Flow chart of standard deployment model (Same as Figure 3.1)

cific arrangement of 10 nodes. In this deployment, the NeighborhoodNetClient

component discussed above was used to impose a simple topography; each node

Ni has two neighbors, Ni−1 and Ni+1. The resulting network is an extended

version of the example network depicted in Figure 3.4. However, since the

SunSPOTs use real radios unlike the diagram, the nodes all contend with each

other for access to the wireless medium.

To validate the implementation, the route discovery tuples given in Sec-

tion 3.5 were sent from node N0 to find a route to N9. As expected, the tuples

discovered routes and aggregated data properly. The majority of tuples were

returned to the source within 20s with no discernible difference in performance

between the versions of the tuples. We believe that this performance on real

hardware is within acceptable limits for prototyping the classes of applications

described in this dissertation.

3.6.2 Large Network Simulation

In the previous section we have described our evolving tuples implemen-

tation for the SunSPOT platform. While this implementation is limited by the

134

functionality provided by the platform, we took care during development to

limit the use of SunSPOT-specific features. Through careful design, the result-

ing libraries are compatible with the desktop-oriented Java Standard Edition

(JavaSE). Of particular note, the in-memory network abstractions created to

support unit testing (See Section 3.6.1.1) work seamlessly in JavaSE. With

the addition of a few support classes, the implementation described in Sec-

tion 3.6.1 runs unmodified on the desktop. This design not only reduces the

complexity of the overall project, but adds significant validity to the simulation

results. The primary implication is the expectation that a large deployment of

SunSPOT-based evolving tuples nodes would indeed show the same qualities

observed on the desktop.

For the large network simulations below, we used MemoryNetwork

and the other networking components shown in Figures 3.8 and 3.9. The

MemoryNetwork component uses shared memory to communicate and models

concurrent clients with Java threads. This environment does not use elabo-

rate models for wireless channel loss or node mobility. The statically placed

nodes have perfect communication to all nodes within the source’s circular

transmission range.

Additionally, the order of transmission and reception events relies on

the virtual machine’s servicing of the hundreds of threads in the simulation.

This limitation means that it is impossible to re-execute specific event order-

ings and may even produce otherwise impossible ordering of messages in the

network. A different type of simulation (e.g., discrete-events) may provide

135

more reproducible results but would also suffer a validity penalty since the

code would require modification to run on the hardware.

3.6.2.1 Simulation configuration

The large network simulations that we have used below are designed to

test the feasibility of the Evolving Tuples Model, and as such do not include

the potentially complex interactions of multiple clients. Instead the focus

is on measuring high-level trends with which an application prototypist is

most likely concerned. In these scenarios, the programmer is less interested

in metrics easily optimized in a specific implementation, and more interested

in the protocol’s intrinsic metrics. For example, we will discuss the number

of messages sent instead of the number of bytes. Carefully designed message

formats can greatly reduce the size of each message, but cannot eliminate the

need for the message’s transmission.

In fact, the values of the metrics themselves can be misleading and

we instead focus on the trends that we see in these metrics as a function of

network size and connectivity. In our trend analysis below we will vary the

number of nodes and the transmission range of those nodes providing the two

independent variables N and R respectively. Node positions are assigned ran-

domly in the playing field and given in a unitless length in the range [0.0, 1.0].

All nodes in an experiment share the same circular transmission range, and re-

ceive any message perfectly when sent by a node within that range. To enable

the testing of context-value driven protocols, each node x is also assigned a

136

unitless temperature Tx in the range [0, 100]. Since many context values, and

temperature in particular, are observed as gradients in the physical world, Tx

is assigned as a linear function of the node’s distance from the origin (<0,0>).

More realistic and complex assignments of context values is an area of future

study.

Experiment 0

Before we continue to the Evolving Tuples experiments, we must first

understand the effects of the independent variables N and R. The most funda-

mental result of changing these parameters is the number of nodes with which

each node can directly communicate. In Figure 3.11 we see that the number

of neighbors is approximately linear with the number of nodes and the trans-

mission radius. Here R(0.1) represents a transmission radius of 0.1, or a tenth

of the length of the square playing field. In all of this section’s graphs, 90%

confidence intervals are plotted in addition to the mean values.

However, for the route and resource discovery algorithms presented

above, we are less interested in the number of neighbors than we are in the

likelihood that the node or resource we are looking for is reachable from the

source node. Figure 3.12 plots the probability that the network is connected,

that is all nodes can communicate with each other via multi-hop messaging.

For large transmission ranges (0.4), networks are reliably connected when the

playing field is populated with at least 40 nodes. For small transmission ranges

(0.1), more then 600 nodes are required. Furthermore, Figure 3.13 shows that

137

Figure 3.11: Number of neighbors for size and transmission radius

138

Figure 3.12: Likelihood of connected network for size and transmission radius

networks without sufficient nodes to be connected form a large number of

independent network partitions. For our purposes, the R(0.2) data series is

particularly interesting. While networks of more then 100 nodes are usually

connected, there is a distinct range of networks (10-30 nodes) with a large

number of network partitions (∼8). By focusing on this data series we can

study both connected and highly partitioned networks within a reasonable

range of network sizes.

In addition to the static transmission radius of 0.2, we also examine

networks with an adaptive transmission radius. Nodes in these networks all

139

Figure 3.13: Number of network partitions for size and transmission radius

140

Figure 3.14: Required Transmission Range for Connected Network

share the same transmission radius, denoted R(min), which is selected to be

just large enough to guarantee the network is connected. Figure 3.14 shows

the selected transmission ranges for various network sizes. By using these

networks, we can elicit effects that are due simply to the rise in the number of

nodes in the network.

3.6.2.2 Simulation of Route Discovery

In this section we present the trend analysis of high-level metrics to

give an example of the type of information a developer would receive about

his prototype implementation. to demonstrate this we use the route discovery

141

Version Request Reply Target Feature
Version 1 Flood Flood Node 2
Version 2 Flood Unicast Node 2
Version 3 Flood Unicast Temp > 65
Version 4 Flood Unicast Temp > 65 Collects data en-route
Version 5 Flood Unicast Temp > 65 Flood limited to Temp > 35

Table 3.12: Summary of Route Discovery Tuple Versions

protocols described in Section 3.5. Each of the tuples derived in this section

(summarized in Table 3.12) was injected into and used to find resources in

networks of varying sizes. We will limit the results presented here to networks

using the R(min) and R(0.2) transmission ranges which elicit interesting be-

haviors without the verbosity of all the collected data.

Experiment 1

In our first experiment, we examine the number of broadcast messages

transmitted by example tuples. For this experiment we will simply chose two

nodes in the network at random as the source and target of the route discovery.

In connected networks we expect that any message that is broadcast will reach,

and be re-transmitted by, every node in the network. More specifically, in

Version 1 of our discovery tuple we expect to see 2 ∗N messages representing

the broadcast of the request followed by the broadcast of the reply. In Version

2, we expect that the N broadcast messages used for the reply will be replaced

by a multi-hop unicast message from the destination to the source. Figure 3.15

shows these trends for the R(0.2) case, and Figure 3.16 shows these trends for

142

Figure 3.15: Experiment 1 - Broadcast Messages for Tx Range = R(0.2)

the R(min) case. In both figures we can see a trend towards the expected

values as the network size grows.

The unexpectedly large confidence intervals for et-v1 data points above

∼500 nodes in Figure 3.15 are interesting outliers. The root cause is the load

that large networks place on the simulator. This load causes a significant delay

in the processing and distribution of messages. This can delay the route reply

messages sufficiently that the simulated clients abandon routes as unreach-

able. Once abandoned, the simulation framework immediately tallies the sent

messages and continues on to the next iteration. Since the message tallies are

143

Figure 3.16: Experiment 1 - Broadcast Messages for Tx Range = R(min)

144

taken before the full route request/reply cycle has completed, it effectively un-

dercounts the number of messages that would have been sent given more time.

The undercount disproportionately effects the v1 tuple since the uncounted

messages are those sent later in the simulation during the reply phase.

The presence of this effect lends credibility to the simulations since the

same delay would be encountered in a real deployment. However, the symptom

(lower then expected message count) would be realized in a real deployment

as a decreased number of returned routes. This is exactly the effect that we

see in the simulation results shown in Figure 3.17; in networks larger then 500

nodes, the number of returned routes drops off.

Since the route reply messages in Version 2 traverse the discovered

route using unicast messages, we expect the number of these messages to be

equal to the length of the discovered routes.13 Figures 3.18 and 3.19 show this

trend. Here we also see the effect of message delay in the rising ratio for the

v2 protocol at 5̃00 nodes in Figure 3.18. By giving up early, the client causes

the simulator to count the only messages sent before the route reply can be

sent back.

Experiment 2

In our second experiment, we examine how using context values instead

of unique addresses effects the number of messages. In Versions 3, 4, and 5

13Since our tuples’ routes contain the target address as well, we stipulate the route length
to be one less then the number of nodes in the route.

145

Figure 3.17: Experiment 1 - Routes found for Tx Range = R(0.2)

146

Figure 3.18: Experiment 1 - Unicast Messages for Tx Range = R(0.2)

147

Figure 3.19: Experiment 1 - Unicast Messages for Tx Range = R(min)

148

of our discovery protocol, we expect that there will be more than one node

replying to route requests sent from a randomly selected node. Since tem-

peratures are assigned as a linear function of distance from the origin14, our

route discovery broadcast should reach many nodes where T > 65 that will

immediately reply to the source. Since these nodes do not forward on the orig-

inal request to neighbors, many of the nodes that are beyond the transmission

radius of nodes where T < 65 will never receive a discovery message. This

results in a drop in the number of broadcast messages as the replying nodes

and the nodes that do not recieve the original broadcast never broadcast a

route request message. This effect is even more dramatic in Version 5 of the

protocol where nodes with T < 35 also limit the propagation of the discovery

message. In Figure 3.20 and Figure 3.21, we see that Versions 3 and 4 of the

protocol result in almost 50% drop in the number of broadcast messages, and

Version 5 sees a 60% drop in networks with both connectivity ranges.

In Figure 3.22 we see another dramatic effect of using context-based

route discovery. If we plot the same values as shown in Figures 3.18 and 3.19,

we see a dramatic rise in the number of unicast messages in the network. This

is due to the multiple routes that are now being returned to the source node.

Indeed, the number of unicast messages sent when using context values to

identify the target nodes is approximately equal to the average route length

multiplied by the number of routes found.

14See Section 3.6.2.1

149

Figure 3.20: Experiment 2 - Broadcast Messages for Tx Range = R(0.2)

150

Figure 3.21: Experiment 2 - Broadcast Messages for Tx Range = R(min)

151

Figure 3.22: Experiment 2 - Unicast Messages for Tx Range = R(min)

152

3.7 Proposed Model Extensions

Over the course of developing the evolving tuples model, a number of

possible extensions have been proposed without being fully investigated. In

this section, we briefly discuss some of these extensions.

3.7.1 Single Field Routing

The current specification of the evolving tuples model uses two fields to

control the propagation of the tuple from one node to the next, destination

and tupleId. The primary purpose of the tupleId field is to support the dis-

semination of broadcasted tuples via a simple flooding based protocol. How-

ever, when flooding is being used, we know the destination field will be the

broadcast address (typically -1). This hints that perhaps the inclusion of both

the broadcast address and the tuple’s id is redundant.

As an alternative, it has been proposed that the destination field

could be replaced by a choice of one of unicastAddress, multicastAddress,

and broadcastId. Using an intention-based name for the address of the tu-

ple’s intended target could provide advantages to both comprehension and

implementation. A user can more readily understand the method of trans-

mission along with the destination by looking at the field’s name, and the

Send process could be divided into 3 different processes, each concerned with

a different method of delivery.

153

This alternative has some disadvantages though; most notably that the

method of dissemination can not be changed after the tuple is created. Since

the current model does not allow a field’s name to be updated, a tuple that

initially used broadcast addresses will not be able to “switch” to unicast or

multicast addresses. It is our belief that this restriction is sufficiently disruptive

to be unattractive to users of the model. However, if the model changes in the

future in such a way that field names can be updated, this proposal may be

reevaluated.

3.7.2 Single-Hop or Multi-Hop?

The evolving tuples model is intended for use in networks that may or

may not support multi-hop routing internally. Since the model is specifically

designed to allow users to collect and aggregate data from within a pervasive

computing environment, the use of multi-hop routing may be detrimental to

some applications. For example, these applications may wish to simply count

the number of routing hops that a tuple transverses, or may with to control

the details of routing themselves.

To support these applications, an extension to the evolving tuples

model must be derived. The addition of another well-known field name (e.g.,

allowMultiHopRouting) could be an appropriate solution. However we feel

that the model should be evaluated in its current incarnation before making

this change.

154

3.8 Summary

In this chapter we have presented the Evolving Tuples Model and a pro-

totype implementation. We then examined their characteristics as the model

and prototype were applied to resource discovery and route discovery in perva-

sive computing networks. Working with this model has exposed several other

avenues of potential research. In the next chapter we will discuss a few of

these opportunities.

155

Chapter 4

Conclusions

This dissertation presents two models for supporting application devel-

opment in pervasive computing environments. Current techniques for inter-

acting with remote resources are often connection-oriented, lacking support

for the very long-term conversations demanded by applications in pervasive

computing environments. To provide this support, we have formulated the

Application Sessions Model. Using this model, applications can declaratively

specify target resources in the environment and thus delegate the details of

setup and maintenance of short-term connections to the underlying system.

This results in an intuitive interface for development that is adaptable to the

variety of technologies and techniques available in pervasive computing envi-

ronments.

To realize the full potential of the Application Sessions Model, new tech-

nologies for resource selection are required. The Evolving Tuples Model pre-

sented in this dissertation was derived to provide flexible and effective resource

discovery. By embedding small amounts of behavior in network messages, val-

ues from across the network can be collected, combined, and evaluated in situ.

The model’s inherent flexibility also makes it suitable to other distributed

156

computing applications as it can be used to rapidly prototype coordination

activities without requiring the deployment of new hardware or software to

remote nodes. As an example of this, we also present how the model can be

applied to context-sensitive route discovery.

The work described by this dissertation has the following impacts on

the software engineering research community:

1. The Application Sessions Model is defined and lends formal semantics

to the notion of conversations between peers in a pervasive computing

environment. The model’s formal components can be used by application

developers to reason about the behavior of their applications and serves

to precisely document the requirements of any implementation of the

model.

2. The Application Sessions Middleware Design and Prototype serve as a

practical realization of the Application Sessions Model. They are used to

perform our feasibility study and to enable the development of additional

pervasive computing applications.

3. The Application Sessions Feasibility Study demonstrates the use and

usefulness of the Application Sessions Model and Middleware through

case study applications from the Intelligent Construction Site domain.

4. The Evolving Tuples Model defines a method for calculating application-

specific abstract values by embedding behavior in pervasive computing

157

network messages. This model can be used to reason about network

messages and it documents, the expected behaviors for developers of

devices participating in the network.

5. The Evolving Tuples Model Prototype forms the foundation for our fea-

sibility study. It also serves as an example implementation and a test-

ing environment. Furthermore, it lays groundwork for development and

study of coordination protocols and pervasive computing applications

under development.

6. The Evolving Tuples Model Feasibility Study describes the characteris-

tics observed in the prototype implementation on sensor hardware and in

software simulation. The study shows the Evolving Tuples Model is in-

deed a feasible solution to resource discovery. The study has also shown

that the model can be successfully used for other purposes, specifically

for route discovery.

As expected, both models have proven to be promising solutions for

their problem domains. The Evolving Tuples Model has also proven to be

an effective tool for related problem domains as well. With further research,

these models may form the basis for practical solutions to the challenges pre-

sented by the Intelligent Construction Site and similar pervasive computing

environments.

158

To guide this research, we believe the next step is to conduct empiri-

cal studies of software developers as they use the Application Sessions Model

and Evolving Tuples Model. Measuring the interactions between developers

and the model and measuring the reduction in application complexity will

likely form the foundation of the study. As software developers are ultimately

the consumers of the model, feedback from actual usage will be valuable in

identifying potential weaknesses and motivating corrections to the models.

To truly study the value of the Application Sessions Model for field de-

ployments we will require integration with additional discovery protocols. These

integrations will also enable us to perform a more quantitative comparison of

the Evolving Tuples Model’s contribution to resource predicate evaluations.

Likewise, implementations of the Evolving Tuples Model for additional hard-

ware will also allow for quantitative comparisons of its applicability in het-

erogeneous environments. These Evolving Tuples implementations will also

facilitate the study of Application Sessions Models in heterogeneous environ-

ments.

The promise that the Evolving Tuples Model has shown outside of re-

source discovery is also quite compelling. Some initial work has begun to

integrate the model with ongoing research in the Mobile and Pervasive Com-

puting Group [60]. The SEAP architectural pattern [38] under development

is designed to allowing novice developers to create collaborative applications.

This work has also shown long-term promise for enabling non-programmers to

define impromptu collaborations amongst devices, the ultimate goal of much

159

of the research in our field.

The incorporation of sensing and controlling devices into our surround-

ings is an exciting and stimulating trend. To realize the potential value these

environments offer, we must provide application developers the tools to man-

age coordination and collaboration of the devices. Providing easy, intuitive,

and reliable mechanisms for interacting with them is a very real challenge, and

one that can we have demonstrated can be undertaken through the proper ap-

plication of software engineering.

160

Bibliography

[1] Serge Abiteboul. Querying semi-structured data. In Proceedings of the

6th International Conference on Database Theory (ICDT ’97), pages 1–18,

London, UK, January 1997. Springer-Verlag.

[2] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy

Lilley. The design and implementation of an intentional naming sys-

tem. In Proceedings of the 17th ACM Symposium on Operating Systems

Principles (SOSP ’99), pages 186–201, New York, NY, USA, Dec 1999.

ACM.

[3] Sanem Kabadayıand Christine Julien. A local data abstraction and com-

munication paradigm for pervasive computing. In Proceedings of the

5th Annual IEEE International Conference on Pervasive Computing and

Communications (PerCom ’07), 2007.

[4] Greg R. Andrews. Foundations of Multithreaded, Parallel, and Dis-

tributed Programming. Addison Wesley, 1999.

[5] R.J.R. Back and K. Sere. Stepwise refinement of parallel algorithms.

Science of Computer Programming, 13(2-3):133–180, May 1990.

[6] R. Bagrodia, S. Bhattacharyya, F. Cheng, S. Gerding, G. Glazer, R. Guy,

Z. Ji, J. Lin, T. Phan, E. Skow, M. Varshney, and G. Zorpas. iMASH:

161

Interactive mobile application session handoff. In Proceedings of the 1st

International Conference on Mobile Systems, Applications, and Services

(MobiSys ’03), pages 259–272, New York, NY, USA, May 2003. ACM

Press.

[7] Magdalena Balazinska, Hari Balakrishnan, and David Karger. Ins/twine:

A scalable peer-to-peer architecture for intentional resource discovery. In

Proceedings of the 1st International Conference on Pervasive Computing

(Pervasive 2002), pages 149–153, Zrich, Switzerland, August 26-28 2002.

[8] Francisco J. Ballesteros, Enrique Soriano, Gorka Guardiola, and Katia

Leal. Plan B: Using files instead of middleware abstractions. IEEE

Pervasive Computing, 6(3):58–65, July-September 2007.

[9] Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The LighTS tuple

space framework and its customization for context-aware applications.

International Journal on Web Intelligence and Agent Systems (WAIS),

5:2, 2007.

[10] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Dynamic

binding in mobile applications: A middleware approach. IEEE Internet

Computing, 7(2):34–42, 2003.

[11] Jeffrey M. Bradshaw, editor. Software Agents. MIT Press, Cambridge,

MA, USA, 1997.

162

[12] Frederick P. Brooks, Jr. No silver bulletessence and accidents of software

engineering. In H.J. Kugler, editor, Information Processing 86, pages

1069–1076. Elsevier Science Publishers B.V. (North Holland), 1986.

[13] Paul Butcher. A behavioural semantics for Linda-2. Software Engineer-

ing Journal, 6(4):196–204, 1991.

[14] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. MARS: A pro-

grammable coordination architecture for mobile agents. IEEE Internet

Computing, 4(4):26–35, 2000.

[15] Nicholas Carriero and David Gelernter. Linda in context. Communica-

tions of the ACM, 32(4):444–458, 1989.

[16] R. Chand and P.A. Felber. A scalable protocol for content-based routing

in overlay networks. In Proceedings of the 2nd IEEE International Sym-

posium on Network Computing and Applications, pages 123–130, April

2003.

[17] Guanling Chen and David Kotz. Context-sensitive resource discovery.

In Proceedings of the 1st IEEE International Conference on Pervasive

Computing and Communications (PERCOM ’03), page 243, Washington,

DC, USA, 2003. IEEE Computer Society.

[18] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Expe-

riences of developing and deploying a context-aware tourist guide: The

163

GUIDE project. In Proceedings of the 6th Annual International Confer-

ence on Mobile Computing and Networking (MobiCom ’00), pages 20–31,

New York, NY, USA, 2000. ACM Press.

[19] J.-H. Choi and C. Yoo. CTP-aware source routing in mobile ad hoc net-

works. In Proceedings of the 8th International Symposium on Computers

and Communication, pages 69–74, June-July 2003.

[20] Alan Cole, Sastry Duri, Jonathan Munson, Jay Murdock, and David

Wood. Adaptive service binding middleware to support mobility. In

Proceedings of the 23rd International Conference on Distributed Comput-

ing Workshops (ICDCSW ’03), pages 369–374, Washington, DC, USA,

May 2003. IEEE Computer Society.

[21] Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna.

Analyzing mobile code languages. In J. Vitek and C. Tschudin, editors,

Mobile Object Systems: Towards the Programmable Internet, volume 1222

of Lecture Notes on Computer Science, pages 93–111. Springer, April

1997.

[22] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele,

Kevin Martin, and Philipp Blum. Deployment support network - a toolkit

for the development of WSNs. In Procedings of the 4th European Con-

ference on Wireless Sensor Networks (EWSN 2007), Lecture Notes in

Computer Science, pages 195–211. Springer Berlin / Heidelberg, January

2007.

164

[23] Wolfgang Emmerich. Software engineering and middleware: A roadmap.

In Proceedings of the Conference on The Future of Software Engineering

(ICSE ’00), pages 117–129, New York, NY, USA, 2000. ACM.

[24] P. Engelstad, D.V. Thanh, and T.E. Jonvik. Name resolution in mobile

ad hoc networks. In Proc. of the 10th Int’l. Conf. on Telecommun.,

2003.

[25] Paal Engelstad, Yan Zheng, Tore Jonvik, and Do Van Thanh. Service

discovery and name resolution architectures for on-demand MANETs. In

Proceedings of the 23rd International Conference on Distributed Comput-

ing Systems Workshops (ICDCSW’03), pages 736–742, Los Alamitos, CA,

USA, May 19-22 2003. IEEE Computer Society.

[26] Fiatech. Element 4: Intelligent & automated construction job site.

http://fiatech.org/tech-roadmap/roadmap-elements/element4.html,

05 June 2009.

[27] Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann. A

lightweight coordination middleware for mobile computing. In Proceed-

ings of the 6th International Conference on Coordination Models and Lan-

guages, volume 2949 of Lecture Notes in Computer Science, pages 135–

151, February 2004.

[28] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid de-

velopment and flexible deployment of adaptive wireless sensor network

165

applications. In Proceedings of the 25th International Conference on Dis-

tributed Computing Systems (ICDCS’05), pages 653–662. IEEE, June

2005.

[29] Nathan Funk and Singular Systems. Jep-java math expression parser,

version 2.4.1. http://sourceforge.net/projects/jep/, 1 Aug 2009.

[30] David Gelernter and Arthur J. Bernstein. Distributed communication

via global buffer. In Proceedings of the 1st ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing, pages 10–18, New York,

NY, USA, 1982. ACM Press.

[31] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-

son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Grib-

ble, and David Wetherall. System support for pervasive applications.

ACM Transactions on Computer Systems, 22(4):421–486, 2004.

[32] Erik Guttman. Service location protocol: Automatic discovery of IP

network services. IEEE Internet Computing, 3(4):71–80, July-Aug. 1999.

[33] Joachim Hammer, Imran Hassan, Christine Julien, Sanem Kabadayı,

William J. O’Brien, and Jason Trujillo. Dynamic decision support in

direct-access sensor networks: A demonstration. In Proceedings of the 3rd

International Conference on Mobile Ad-hoc and Sensor Systems, 2006.

[34] Radu Handorean, Jamie Payton, Christine Julien, and Gruia-Catalin Ro-

man. Coordination middleware supporting rapid deployment of ad hoc

166

mobile systems. In Proceedings of the 1st International Workshop on Mo-

bile Computing Middleware, co-located with ICDCS 2003, pages 362–368,

May 2003.

[35] Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Ro-

man. Context-aware session management for services in ad hoc networks.

In Proceedings of the International Conference on Services Computing,

pages 113–120, July 2005.

[36] J. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond average:

Toward sophisticated sensing with queries. In Procedings of the 2nd Inter-

national Workshop on Information Processing in Sensor Networks, pages

553–568, April 2003.

[37] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. Dynamic layout of

distributed applications in FarGo. In Proceedings of the 21st Interna-

tional Conference on Software Engineering (ICSE ’99), pages 163–173,

Los Alamitos, CA, USA, May 1999. IEEE Computer Society Press.

[38] Seth Holloway, Drew Stovall, Jorge Lara-Garduno, and Christine Julien.

Opening pervasive computing to the masses using the seap middleware.

In Proceedings of Middleware Support for Pervasive Computing Workshop

(PerWare ’09 at PerCom ’09), number TR-UTEDGE-2008-015, Galve-

ston, Texas, 9–13 March 2009.

[39] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure

167

on-demand routing protocol for ad-hoc networks. Wireless Networks,

11(1–2):21–38, January 2005.

[40] IEEE. Wireless medium access control and physical layer specifications

for low-rate wireless personal area networks. IEEE Standard 802.15.4-

2003, pages 1–670, 2003.

[41] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-

rected Diffusion: a scalable and robust communication paradigm for sen-

sor networks. In Proceedings of the 6th annual international conference

on Mobile computing and networking (MobiCom ’00), pages 56–67, New

York, NY, USA, 2000. ACM.

[42] Edward J. Jaselskis and Tarek Elmisalami. RFID’s role in a fully inte-

grated, automated project process. In Proceedings of ASCE Construction

Research Congress 7, Honolulu, Hawaii, March 19–21 2003.

[43] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Imielinski and Korth, editors, Mobile Computing,

volume 353, pages 158–163. Kluwer Academic Publishers, 8-9 December

1996.

[44] Christine Julien, Joachim Hammer, and William J. O’Brien. A dynamic

programming framework for pervasive computing environments. In Pro-

ceedings of the Workshop on Building Software for Pervasive Computing

(co-located with OOPSLA 2005), October 2005.

168

[45] Christine Julien and Gruia-Catalin Roman. Egocentric context-aware

programming in ad hoc mobile environments. In Proceedings of the 10th

International Symposium on the Foundations of Software Engineering,

pages 21–30, November 2002.

[46] Christine Julien and Gruia-Catalin Roman. Egospaces: Facilitating rapid

development of context-aware mobile applications. IEEE Transactions

on Software Engineering, 32(5):281–298, May 2006.

[47] Christine Julien and Meenakshi Venkataraman. Cross-layer discovery

and routing in reconfigurable wireless networks. In Proceedings of the 3rd

International Conference on Mobile Ad-hoc and Sensor Systems, 2006.

[48] Sanem Kabadayı, Christine Julien, William J. O’Brien, and Drew Sto-

vall. Virtual sensors: A demonstration. In The 26th International

Conference on Computer Communications (INFOCOM): Demonstrations

Track, 2007.

[49] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson,

Irfan A. Essa, Blair MacIntyre, Elizabeth D. Mynatt, Thad Starner, and

Wendy Newstetter. The aware home: A living laboratory for ubiquitous

computing research. In Proceedings of the 2nd International Workshop

on Cooperative Buildings, Integrating Information, Organization, and Ar-

chitecture (CoBuild ’99), pages 191–198, London, UK, 1999. Springer-

Verlag.

169

[50] Michael Klein and Birgitta Konig-Ries. Combining query and preference:

An approach to fully automize dynamic service binding. In Proceedings

of the IEEE International Conference on Web Services, pages 788–791,

San Diego, CA, USA, July 6–9 2004.

[51] David Kotz, Calvin Newport, and Chip Elliott. The mistaken axioms of

wireless-network research. Technical Report TR2003-467, Department of

Computer Science, Dartmouth College, July 2003.

[52] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan,

and Chip Elliott. Experimental evaluation of wireless simulation as-

sumptions. In Proceedings of the ACM/IEEE International Symposium

on Modeling, Analysis and Simulation of Wireless and Mobile Systems

(MSWiM), number TR2004-507, pages 78–82. ACM Press, October 2004.

[53] Ulas C. Kozat and Leandros Tassiulas. Service discovery in mobile ad

hoc networks: an overall perspective on architectural choices and network

layer support issues. Ad Hoc Networks, 2(1):23–44, 2004.

[54] Li Li and Louise Lamont. A lightweight service discovery mechanism

for mobile ad hoc pervasive environment using cross-layer design. In

Pervasive Computing and Communications Workshops, 2005. PerCom

2005 Workshops. Third IEEE International Conference on, pages 55–59,

March 2005.

[55] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TAG: A tiny

aggregation service for ad-hoc sensor networks. In Proceedings of the

170

5th Symposium on Operating Systems Design and Implementation, pages

131–146, December 2002.

[56] David Malan, Thaddeus Fulford-Jones, Matt Welsh, and Steve Moulton.

CodeBlue: An ad hoc sensor network infrastructure for emergency medi-

cal care. In Proceedings of the International Workshop on Wearable and

Implanted Body Sensor Networks, April 2004.

[57] Marco Mamei and Franco Zambonelli. Self-maintained distributed tuples

for field-based coordination in dynamic networks. In Proceedings of the

19th Symposium on Applied Computing (SAC ’04), pages 479–486, New

York, NY, USA, 2004. ACM Press.

[58] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on the

air: A middleware for context-aware computing in dynamic networks. In

Proceedings of the 23rd International Conference on Distributed Comput-

ing Systems Workshops, pages 342–347, 19-22 May 2003.

[59] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Middleware for

Communications. John Wiley, 2004.

[60] Mobile and Pervasive Computing Group. Mobile and pervasive comput-

ing group. http://mpc.ece.utexas.edu/, Aug 2009. Electrical and

Computer Engineering, The University of Texas at Austin.

[61] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime:

A middleware for physical and logical mobility. In Proceedings of the

171

21st International Conference on Distributed Computing Systems, pages

524–533, 2001.

[62] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A

coordination middleware supporting mobility of hosts and agents. ACM

Transactions on Software Engineering and Methodology (TOSEM), 15(3):279–

328, July 2006.

[63] R. K. Panta, I. Khalil, and S. Bagchi. Stream: Low overhead wireless

reprogramming for sensor networks. In I. Khalil, editor, Proceedings of

the 26th IEEE International Conference on Computer Communications

(INFOCOM 2007), pages 928–936, 2007.

[64] C.E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced dis-

tance vector routing (DSDV) for mobile computers. In Proceedings of the

ACM SIGCOMM Conference on Communications Architecture, Protocols

and Applications, pages 234–244, August 1994.

[65] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance

vector routing. In Proceedings of the 2nd IEEE Workshop on Mobile

Computer Systems and Applications, pages 90–100, Los Alamitos, CA,

USA, 1999. IEEE Computer Society.

[66] Gruia-Catalin Roman, Christine Julien, and Qingfeng Huang. Network

abstractions for context-aware mobile computing. In Proceedings of the

24th International Conference on Software Engineering (ICSE ’02), pages

363–373, May 2002.

172

[67] Gruia-Catalin Roman, Christine Julien, and Amy Murphy. A declarative

approach to agent-centered context-aware computing in ad hoc wireless

environments. In A. Garcia, C. Lucena, F. Zambonelli, A. Omicini,

and J. Castro, editors, Proceedings of the 1st International Workshop on

Software Engineering for Large-Scale Multi-Agent Systems, May 2002.

[68] Gruia-Catalin Roman, Gian Pietro Picco, and Amy L. Murphy. Software

engineering for mobility: A roadmap. In Proceedings of the 22nd Interna-

tional Conference on Software Engineering (ICSE 2000), pages 241–258,

New York, NY, USA, 2000. ACM Press.

[69] Caspar Ryan and Christopher Westhorpe. Application adaptation through

transparent and portable object mobility in Java. In Proceedings of OTM

Federated Conferences, pages 1262–1284. Springer Berlin / Heidelberg,

2004.

[70] Umar Saif and Justin Mazzola Paluska. Service-oriented network sock-

ets. In Proceedings of the 1st international conference on Mobile systems,

applications and services (MobiSys ’03), pages 159–172, New York, NY,

USA, May 2003. ACM Press.

[71] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context

toolkit: Aiding the development of context-enabled applications. In

Proceedings of the SIGCHI conference on Human factors in computing

systems (CHI ’99), pages 434–441, New York, NY, USA, 1999. ACM.

173

[72] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and

beyond: New aggregation techniques for sensor networks. In Proceed-

ings of the 2nd international conference on Embedded networked sensor

systems, pages 239–249, 2004.

[73] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek

White. Java on the bare metal of wireless sensor devices. In Proceedings

of the 2nd International Conference on Virtual Execution Environments,

June 2006.

[74] Randall B. Smith, Cristina Cifuentes, and Doug Simon. Enabling java

for small wireless devices with Squawk and SpotWorld. In Proceedings of

the Workshop on Building Software for Pervasive Computing (co-located

with OOPSLA 2005), 2005.

[75] Drew Stovall. Application sessions website. http://mpc.ece.utexas.

edu/application-sessions, 1 Aug 2009.

[76] Drew Stovall. Evolving tuples website. http://mpc.ece.utexas.edu/

evolving-tuples, 1 Aug 2009.

[77] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.

Wetherall, and Gary J. Minden. A survey of active network research.

IEEE Communications Magazine, 35(1):80–86, January 1997.

[78] C.N. Ververidis and G.C. Polyzos. Routing layer support for service

discovery in mobile ad hoc networks. In Proceedings of the 3rd IEEE

174

International Conference on Pervasive Computing and Communications

Workshops, 2005. (PerCom 2005 Workshops)., pages 258–262, March

2005.

[79] Torben Weis, Mirko Knoll, Andreas Ulbrich, Gero Muhl, and Alexander

Brandle. Rapid prototyping for pervasive applications. IEEE Pervasive

Computing, 6(2):76–84, April–June 2007.

[80] David Wetherall. Active network vision and reality: lessons from a

capsule-based system. In Proceedings of DARPA Active NEtworks Con-

ference and Exposition, volume 33, pages 25–40, San Francisco, CA, USA,

May 2002.

[81] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan,

Alan Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor

network for structural monitoring. In Proceedings of the 2nd International

Conference on Embedded Networked Sensor Systems (SenSys ’04), pages

13–24, New York, NY, USA, November 2004. ACM Press.

[82] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc net-

works. In Proceedings of the 1st Workshop on Mobile Ad Hoc Networking

and Computing (Mobihoc at MobiCom 2000), pages 51–60, 2000.

[83] Peng Zhou, Tamer Nadeem, Porlin Kang, Cristian Borcea, and Liviu

Iftode. EZCab: A cab booking application using short-range wireless

175

communication. In Proceedings of the International Conference on Per-

vasive Computing and Communications, pages 27–38, Los Alamitos, CA,

USA, 8–12 March 2005. IEEE Computer Society.

[84] Gil Zussman and Adrian Segall. Energy efficient routing in ad hoc dis-

aster recovery networks. In Proceedings of the 22nd Annual Joint Con-

ference of the IEEE Computer and Communications Societies (INFO-

COM ’03), pages 682–691, March–April 2003.

176

Vita

Andrew Erich Stovall was born in Los Alamos, New Mexico on 17 June

1977, the son of James E. Stovall and Mary K. Stovall. He received the Bach-

elor of Science degree in Physics from Carnegie-Mellon University in 1999. He

entered the private sector and worked for several software development compa-

nies including Trilogy, WhisperWire, and eBay. While still working, he earned

his Masters of Science in Engineering in the field of Software Engineering from

the University of Texas at Austin. In 2007, he left the private sector and en-

rolled as a full-time student at the University of Texas at Austin to pursue a

Doctorate in Software Engineering.

Permanent address: 6522 Laird Drive
Austin, Texas 78757

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

177

